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Abstract

GREAT is a finite-state toolkit which is
devoted to Machine Translation and that
learns structured models from bilingual
data. The training procedure is based on
grammatical inference techniques to ob-
tain stochastic transducers that model both
the structure of the languages and the re-
lationship between them. The inference
of grammars from natural language causes
the models to become larger when a less
restrictive task is involved; even more if
a bilingual modelling is being considered.
GREAT has been successful to implement
the GIATI learning methodology, using
different scalability issues to be able to
deal with corpora of high volume of data.
This is reported with experiments on the
EuroParl corpus, which is a state-of-the-
art task in Statistical Machine Translation.

Introduction

The conditional probabilityPr(t|s) can be re-
placed by a joint probability distributioRr(s,t)
which is modelled by a stochastic transducer being
inferred through the GIATI methodology (Casacu-
berta et al., 2004; Casacuberta and Vidal, 2004):
t= argtmaxPr(s, t) 2)
This paper describes GREAT, a software pack-
age for bilingual modelling from parallel corpus.
GREAT is a finite-state toolkit which was born
to overcome the computational problems that pre-
vious implementations of GIATI (Pico, 2005) had
in practice when huge amounts of data were used.
Even more, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.
Experiments for a state-of-the-art, voluminous
translation task, such as the EuroParl, are re-
ported. In (Gonzélez and Casacuberta, 2007),

Over the last years, grammatical inference teChg,e g4 called phrase-based finite-state transducers

nigues have not been widely employed in the ma

were concluded to be a better modelling option for

chine translation area. Nevertheless, it is not UNthis task than the ones that derive from a word-
known that researchers are trying to include somg,¢qq approach. That is why the experiments here

structured information into their models in order to

are exclusively related to this particular kind of

capture the grammatical regularities that there argy| aT1-based transducers.
in languages together with their own relationship. The structure of this work is as follows: first,

GIATI (Casacuberta, 2000; Casacuberta et al

'section 2 is devoted to describe the training proce-

2005) is a grammatical inference methodology todure, which is in turn divided into several lines, for

infer stochastic transducers in a bilingual mod-

instance, the finite-state GIATI-based models are

elling approach for statistical machine translation.deﬁned and their corresponding grammatical in-

From a statistical point of V'eW’.th? translation oo ce methods are described, including the tech-
problem can be stated as follows: given a sourc%iqueS to deal with tasks of high volume of data;

sentences = s; ...y, the goal is to find a target
sentencé = t;...t;, among all possible target

then, section 3 is related to the decodification pro-
cess, which includes an improved smoothing be-

stringst, that maximises the posterior probability: haviour and an analysis algorithm that performs

t = argmaxPr(t|s) (1)
t

according to the granularity of the bilingual sym-
bols in the models; to continue, section 4 deals
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with an exhaustive report on experiments; and fito infer stochastic finite-state transducers through
nally, the conclusions are stated in the last sectiorthe modelling of languages. Rather than learn-
ing translations, GIATI first converts every pair

of parallel sentences in the training corpus into a

A stochastic finite-state automato# is a tuple corresponding extended-symbol string in order to,
(T, Q,1, f, P), whereTl is an alphabet of symbols, straight afterwards, infer a language model from.
Q is a finite set of states, functions Q — [0, 1] More concretely, given a parallel corpus con-
andf : Q — [0,1] refer to the probability of each sisting of a finite sampl€” of string pairs: first,
state to be, respectively, initial and final, and par€ach training paifz, ) € X* x A* is transformed
cial functionP : Q x {T Ue} x Q — [0,1] de- into a stringz € I'* from an extended alphabet,
fines a set of transitions between pairs of states ifielding a string corpus’; then, a stochastic finite-
such a way that each transition is labelled with sstate automatos is inferred froms; finally, tran-
symbol fromT (or the empty string), and is as- sition labels in.A are turned back into pairs of
signed a probability. Moreover, functionsf, and ~ strings of source/target symbolsiit x A*, thus

P have to respect theonsistencyroperty in or- converting the automatoA into a transduce? .

der to define a distribution of probabilities on the The first transformation is modelled by some la-
free monoid. Consistent probability distributions belling functionZ : ¥* x A* — I'*, while the last
can be obtained by requiring a series of local contransformation is defined by an inverse labelling
straints which are similar to the ones for stochastidunction A(-), such thatA(£(C)) = C. Build-

2 Finite state models

regular grammars (Vidal et al., 2005): ing a corpus of extended symbols from the original
(o) = 1 bilingual corpus allows for the use of many useful
* Z ilg) = algorithms for learning stochastic finite-state au-
el tomata (or equivalent models) that have been pro-
e Vge@: Z P(g,v,d)+flq) =1 posed in the literature on grammatical inference.

ve{lUe},¢'€Q
L , . 2.2 Phrase-based-gram transducers
A stochastic finite-state transducer is defined

similarly to a stochastic finite-state automaton,Phrase-based-gram transducers represent an in-
with the difference that transitions between statederesting application of the GIATI methodology,
are labelled with pairs of symbols that belong towhere the extended symbols are actually bilingual
two different (input and output) alphabets, thatPhrase pairs, and-gram models are employed as
is, (U ¢) x (AUe). Then, given some in- language models (Gonzalez et al., 2008). Figure 2
put and output strings andt, a stochastic finite- shows a general scheme for the representation of
state transducer is able to associate them a joist-9rams through stochastic finite state automata.
probability Pr(s,t). An example of a stochastic
finite-state transducer can be observed in Figure 1.
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2.1 Inference of stochastic transducers

HISTORY LEVEL 0

The GIATI methodology (Casacuberta et al., _ o
2005) has been revealed as an interesting approach ~ Figure 2: A finite-state:-gram model
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The states in the model refer to all thegram they do not belong to the original automaton
histories that have been seen in the string cofhus model. As a result, they are non-final states, with
in training time. Consuming transitions jump from only one incoming and one outcoming edge each.
states in a determined layer to the one immediately
above, increasing the history level. Once the to2-3 Transducer pruning vian-gram events

level has been reached;gram transitions allow = GREAT implements this pruning technique, which
for movements inside this layer, from state to statejs inspired by some other statistical machine trans-
updating the history to the last— 1 seen events. |ation decoders that usually filter their phrase-

Given that an  n-gram event phased translation dictionaries by means of the
Ip1ln—z...T2Ihly is statistically stated wordsin the test set sentences (Koehn et al., 2007).
as Pr(Lo[l',1Tn—2...T2I'), then it is appro- g ajready seen in Figure 3, anygram event

priately represented as a finite state transitiofs represented as a transition between their cor-
between their corresponding up-to-date historiesesponding historical states. In order to be able
which are associated to some states (see Figure ), navigate through this transition, the analy-

sis must have reached thg,_; ... I'sI';I"; state

I'_1Ty—o... oI and the remaining input must fit the source ele-
ments ofly. In other words, the full source se-
guence from the-gram event’,, 1 ...T'3sI'sT" T

has to be present in the test set. Otherwise,
its corresponding transition will not be able to
Lo be employed during the analysis of the test set
Figure 3: Finite-state representationrefjrams  sentences. As a result-gram events that are
not in the test set can skip their transition gener-

ation, since they will not be affected during de-

Therefore, transitions are labelled with a sym-coding time, thus reducing the size of the model.
bol from I" and every extended symbol Ihis a If there is also a backoff probability that is asso-
translation pair coming from a phrase-based dicciated to the same-gram event, its correspond-
tionary which is inferred from the parallel corpus. ing transition generation can be skipped too, since

Nevertheless, backoff transitions to lower his-its source state will never be reached, as it is the
tory levels are taken for smoothing purposes. Ifstate which represents thegram event. Nev-
the lowest level is reached and no transition hagrtheless, since trained extended-symbgram
been found for next word;, then a transition to €vents would typically include more tharsource
the <unk> state is fired, thus considerirg as a words, the verification of their presence or their
non-starting word for any bilingual phrase in theabsence inside the test set would imply hashing all
model. There is only 1 initial state, which is deno-the test-set word sequences, which is rather im-
ted as<s>, and itis placed at the 1st history level. practical. Instead, a window size is used to hash

The inverse labelling function is applied over the words in the test set, then the trainedram
the automaton transitions as in Figure 4, obtaining@Vvents are scanned on their source sequence using

a single transducer (Casacuberta and Vidal, 2004$his window size to check if they might be skipped
or not. It should be clear that the bigger the win-

dow size is, the more-gram rejections there will

On demande une activité

@/P’p\ e be, therefore the transducer will be smaller. How-
Action s requred ever, the translation results will not be affected as
these disappearing transitions are unreachable us-

@ activie ing that test set. As the window size increases, the

resulting filtered transducer is closer to the mini-

On /e demandgse  une/e Action is required
@ O O O mum transducer that reflects the test set sentences.
Pr=p Pr=1 Pr=1 Pr=1

3 Finite state decoding

Figure 4: Phrase-based inverse labelling function . _
Equation 2 expresses the MT problem in terms of

Intermediate states are artificially created since finite state model that is able to compute the ex-
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pressionPr(s,t). Given that only the input sen- should not be taken into account. However, as far
tence is known, the model has to be parsed, takings the words in the test sentence are compatible
into account all possiblethat are compatible with with the corresponding transitions, and according
s. The best output hypothedisvould be that one to the phrase score, this (word) synchronous pars-
which corresponds to a path through the transdudng algorithm may store these intermediate states
tion model that, with the highest probability, ac- into the trellis structure, even if the full path will
cepts the input sequence as part of the input lamot be accomplished in the end. As a consequence,
guage of the transducer. these entries will be using a valuable position in-
Although the navigation through the model is side the trellis structure to an idle result. This will
constrained by the input sentence, the search spabe not only a waste of time, but also a distortion
can be extremely large. As a consequence, onl9n the best score per stage, reducing the effective
the most scored partial hypotheses are being corpower of the beam parameter during the decoding.
sidered as possible candidates to become the solGome other better analysis options may be rejected
tion. This search process is very efficiently carriedoecause of their a-priori lower score. Therefore,
out by a beam-search approach of the well knowrthis decoding algorithm can lead the system to a
Viterbi algorithm (Jelinek, 1998), whose temporalworse translation result. Alternatively, the beam
asymptotic cost i®(J - |Q| - M), whereM is the factor can be increased in order to be large enough
average number of incoming transitions per statefo store the successful paths, thus more time will
be required for the decoding of any input sentence.
3.1 Parsing strategies: from words to phrases ~ On the other hand, a phrase-based analysis stra-

. . tegy would never include intermediate states in-
The trellis structure that is commonly employed _. . e
side a trellis structure. Instead, these artificial

for the a_lna_ly_3|s of an input sentence th_rough Zitates are tried to be parsed through until an ori-
stochastic finite state transducer has a variable size . . ) S
_ginal state is being reached, i.e. Q’ in Figure 4.

that depends on the beam factor in & dynamiy, g pageq and phrase-based analysis are con-
beam-search strategy. That way, only those nodes

. ) ceptually compared in Figure 5, by means of their
scoring ata preo_leflned thr'eshold from the best on espective edge generation on the trellis structure.
in every stage will be considered for the next stage.

A word-based parsing strategy would start with On demande une activité
the initial state<s>, looking for the best transi-
tions that are compatible with the first wosgl. O Q O

The corresponding target _state_s are then placed WORD-BASED EDGES
into the output structure, which will be used for the
analysis of the second wosd. lIteratively, every

state in the structure is scanned in order to get th@
) . PHRASE-BASED EDGES

input labels that match the current analysis word

s;, and then to build an output structure with the rigyre 5: Word-based and phrase-based analysis
best scored partial paths. Finally, the states that

result from the last analysis step are then rescored However, in order to be able to use a scrolled
by their corresponding final probabilities. two-stage implementation of a Viterbi phrase-
This is the standard algorithm for parsing based analysis, the target states, which may be
a source sentence through an non-deterministigositioned at several stages of distance from the
stochastic finite state transducer. Nevertheless, gurrent one, are directly advanced to the next one.
may not be the most appropriate one when dealingherefore, the nodes in the trellis must be stored
with this type of phrase-basedgram transducers. together with their corresponding last input posi-
As it must be observed in Figure 4, a set oftion that was parsed. In the same manner, states
consecutive transitions represent only one phrase the structure are only scanned if their posi-
translation probability after a given history. In tion indicator is lower than the current analysis
fact, the path from Q to Q' should only be fol- word. Otherwise, they have already taken it into
lowed if the remaining input sentence, which hasaccount so they are directly transfered to the next
not been analysed yet, begins with the full inputstage. The algorithm remains synchronous with
sequenc®n demande une activitéOtherwise, it the words in the input sentence, however, on this
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particular occasion, states in th¢h step of anal- such a way as if they could be internally repre-
ysis are guaranteed to have parsgdeastuntil  senting any possible bilingual symbol from the ex-
the i-th word, but maybe they have gone further.tended vocabulary that matches their source sides.
Figure 6 is a graphical diagram about this conceptThat way, bilingual symbols are considered to be a
sort of input, so the backoff smoothing criterion is
i j then applied to each compatible, bilingual symbol.
On demande une actvitt  For phrase-based transducers, it means that for a
successful transitiofiz, ), there is no need to go
backoff and find other paths consuming that bilin-
gual symbol, but we must try backoff transitions
/ \ to look for any other successful transiti¢®, '),
@ which is also compatible with the current position.
Conceptually, this procedure would be as if the
Figure 6: A phrase-based analysis implementationUt sentence, rather than asource string, was ac-
tually composed of a left-to-right bilingual graph,
Moreover, all the states that are being stored irPeing built from the expansion of every input word

the successive stages, that is, the ones from the ofto their compatible, bilingual symbols as in a

ginal topology of the finite-state representation Ofcategory—based approac_h. Phrase-based bilingual
the n-gram model, are also guaranteed to lead t(§ymbols would be graphically represented as a sort

a final state in the model, because if they are no?f skip transitions inside this bilingual input graph.

final states themselves, then there will always be a This _new |_nterpretat|p_n about the backoff
successful path towards a final state. smoothing weights on bilinguat-gram models,

GREAT incorporates an analysis strategy thawhlch is n'otaprlorlatrlwal feature tq be included,
Is easily implemented for stochastic transducers

depends on the granularity of the bilingual sym- o . .
bols themselves so that a phrase-based decodir? conscljdf ring batckofkf t][an;ltlons'alg.{zst tr?fns; q
is applied when a phrase-based transducer is use NS and keeping frack ot a dynamic ist of forbid-

en states every time a backoff transition is taken.
3.2 Backoff smoothing An outline about the management of state ac-

) o i tiveness, which is integrated into the parsing algo-
Two smoothing criteria have been explored in Ofithm. is shown below:

der to parse the input through the GIATI model.
First, a standard backoff behaviour, where backA
off transitions are taken as failure transitions, was
implemented. There, backoff transitions are onlyf O Q in {states to expl ore}
followed if there is not any other successful path for QQ in {transitions} (a)

LGORITHM

that has been compatible with the remaining input. if Q is active
However, GREAT also includes another more [...] _ _
refined smoothing behaviour, to be applied over set Q to inactive
the same bilingual-gram transducers, where |f Q1S not NULL
smoothing edges are interpreted in a different way. if Qnot in the top level

for @ in {inactive states}
set Q@ to active
Q' := backoff(Q)
set @’ to inactive
Q : = backoff(Q
GoTo (a)
el se

GREAT suggests to apply the backoff crite-
rion according to its definition in the grammati-
cal inference method which incorporated it into
the language model being learnt and that will be
represented as a stochastic finite-state automaton.
In other words, from the:-gram point of view,
backoff weights (or finite-state transitions) should
only be employed if no transitions are found in the [...] _ _ _
n-gram automaton for a currebilingual symbol. for Q@ in {inactive states}
Nevertheless, input words in translation applica- set Q to active
tions do not belong to those bilingual languages! - - -

Instead, input sequences have to be analysed EBND ALGORITHM
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The algorithm will try to translate several con- of the Association for Computational Linguistics.
secutive input words as a whole phrase, always alfhe corpus characteristics can be seen in Table 1.
lowing a backoff transition in order to cover all
the compatible phrases in the model, not only the Table 1:Characteristics of the Fr-En EuroParl.
ones which have been seen after a given history,
but after all its suffixes as well. A dynamic list
of forbidden states will take care to accomplish an
exploration constraint that has to be included into
the parsing algorithm: a path between two states
Q and Q’ has necessarily to be traced through the
minimum number of backoff transitions; any other
Q-Q’ or Q-Q” paths, where Q” is the destination
of a Q-Q” backoff path, should be ignored. This The EuroParl corpus is built on the proceedings
constraint will cause that only one transition perof the European Parliament, which are published
bilingual symbol will be followed, and that it will ©On its web and are freely available. Because of
be the highest in the hierarchy of history levels.its nature, this corpus has a large variability and
Figure 7 shows a parsing example over a finitecomplexity, since the translations into the differ-

state representation of a smoothed bigram model€nt official languages are performed by groups of
human translators. The fact that not all transla-

French | English
Sentences 688031
Training | Run. words| 15.6 M| 13.8 M
Vocabulary | 80348| 61626
Sentences 2000
Dev-Test| Run. words| 66200 57951

D, tors agree in their translation criteria implies that a
/—\ given source sentence can be translated in various
different ways throughout the corpus.

@ AT @ @ @ Since the proceedings are not available in every
language as a whole, a different subset of the cor-

pus is extracted for every different language pair,
thus evolving into somewhat a different corpus for

<backoff>\_ P2 D, each pair of languages.
4.1 System evaluation
We evaluated the performance of our methods by

using the following evaluation measures:
Figure 7:Compatible edges for a bigram model
Given a reaching state Q, let us assume thatBh€U (Bilingual Evaluation Understudy) scare
transitions that correspond to certain bilingual This indicator computes the precision of uni-

phrase pairg,, p, andp, are all compatible with grams, bigrams, trigrams, and tetragrams
the remaining input. However, the bigram (Q, with respect to a set of reference translations,
p,) did not occur throughout the training corpus,  with a penalty for too short sentences (Pap-
therefore there is no a direct transition from Q to ineni et al., 2001). BLEU measures accuracy,
p,. A backoff transition enables the accesto not error rate.

because the bigram (@,) turns into a unigram
event that is actually inside the model. UnigrafyER (Word Error Rate) The WER criterion calcu-

transitions top, andp, must be ignored because lates the minimum number of editions (subs-
their corresponding bigram events were success- tjtutions, insertions or deletions) that are
fully found one level above. needed to convert the system hypothesis into

the sentence considered ground truth. Be-
: cause of its nature, this measure is very pes-
4 Experiments simistic.
GREAT has been successfully employed to work . o

with the French-English EuroParl corpus, that i§ime. It refers to the average time (in milliseconds)
the benchmark corpus of the NAACL 2006 shared ~ to translate one word from the test corpus,

task of the Workshop on Machine Translation  Without considering loading times.
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4.2 Results Table 4:Results for a phrase-based analysis.

A set of experimental results were obtained in or- beam| Time (ms) BLEU WER
der to assess the impact of the proposed techniques 1.00 0.2 198 718
in the work with phrase-basedgram transducers. 1.02 0.4 221 68.6

By assuming an unconstrained parsing, that is, 1.05 0.7 24.3 66.0
the successive trellis structure is large enough to 1.10 2.4 26.1 64.2
store all the states that are compatible within the 1.25 7.0 27.1 628
analysis of a source sentence, the results are not 1.50 9.7 27.5 62.3
very sensitive to the-gram degree, just showing 2.00 114 27.8 62.0
that bigrams are powerful enough for this corpus. 3.50 12.3 28.0 61.9

However, apart from this, Table 2 is also show-
ing a significant better performance for the second,

more refined behaviour for the backoff transitions O States in every iteration of the algorithm is in
terms of temporal requirements.

Table 2:Results for the two smoothing criteria. However, a phrase-based approach only stores
those states that have been successfully reached by
a full phrase compatibility with the input sentence.
Therefore, it takes more time to process an indi-
vidual state, but since the list of states is shorter,
the search method performs at a better speed rate.
Another important element to point out between
Tables 3 and 4, is about the differences on quality
results for a same beam parameter in both tables.
Word-based decoding strategies suffer the effec-
tive reduction on the beam factor that was men-

From now on, the algorithms will be tested ontioned on section 3.1 because their best scores on
the phrase-basedigram transducer, being built every analysis stage, which determine the explo-
according to the GIATI method, where backoff is ration boundaries, may refer to a no way out path.
employed as /¢ transitions with forbidden states. Logically, these differences are progressively re-

In these conditions, the results, following aduced as the beam parameter increases, since the
word-based and a phrase-based decoding strateggarch space is explored in a more exhaustive way.
which are in function of the dynamic beam factor,

n
Backoff | 1 2 3 4 5
baseline
BLEU | 26.8 26.3 25.8 25.7 25.
WER | 62.3 63.9 645 645 64.
GREAT
BLEU | 26.8 28.0 279 279 279
WER | 62.3 619 62.0 62.0 62.0

OoT

can be analysed in Tables 3 and 4. Table 5:Number of trained and survivedgrams.
Table 3:Results for a word-based analysis. _ _ __n-grams
Window size| unigrams bigrams
beam| Time (ms) BLEU WER No filter 1,593,677 4,477,382
1.00 0.1 0.4 94.6 2 299,002 512,943
1.02 0.3 12.8 81.9 3 153,153 141,883
1.05 5.2 20.0 74.0 4 130,666 90,2685
1.10 30.0 24.9 68.2 5 126,056 78,824
1.25 99.0 27.1 64.6 6 125,516 77,341
1.50 147.0 27.5 62.9
200 | 173.6 278 621 On the other hand, a phrase-based extended-
3.50 | 252.3 28.0 619 symbol bigram model, being learnt by means of

the full training data, computes an overall set of
From the comparison of Tables 3 and 4, it canapproximately 6 million events. The application
be deduced that a word-based analysis is iteraf the n-gram pruning technique, using a grow-
tively taking into account a quite high percentageing window parameter, can effectively reduce that
of useless states, thus needing to increase the beamamber to only 200,000. Thesegrams, when
parameter to include the successful paths into theepresented as transducer transitions, suppose a re-
analysis. The price for considering such a long lisduction from 20 million transitions to only those
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