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Abstract

The phenomenon of meaning-preserving
corrections given by an adult to a child
involves several aspects: (1) the child
produces an incorrect utterance, which
the adult nevertheless understands, (2) the
adult produces a correct utterance with the
same meaning and (3) the child recognizes
the adult utterance as having the same
meaning as its previous utterance, and
takes that as a signal that its previous ut-
terance is not correct according to the adult
grammar. An adequate model of this phe-
nomenon must incorporate utterances and
meanings, account for how the child and
adult can understand each other’s mean-
ings, and model how meaning-preserving
corrections interact with the child’s in-
creasing mastery of language production.
In this paper we are concerned with how
a learner who has learned to comprehend
utterances might go about learning to pro-
duce them.

We consider a model of language com-
prehension and production based on finite
sequential and subsequential transducers.
Utterances are modeled as finite sequences
of words and meanings as finite sequences
of predicates. Comprehension is inter-
preted as a mapping of utterances to mean-
ings and production as a mapping of mean-
ings to utterances. Previous work (Castel-
lanos et al., 1993; Pieraccini et al., 1993)
has applied subsequential transducers and
the OSTIA algorithm to the problem of
learning to comprehend language; here we
apply them to the problem of learning to
produce language. For ten natural lan-
guages and a limited domain of geomet-
ric shapes and their properties and rela-

tions we define sequential transducers to
produce pairs consisting of an utterance
in that language and its meaning. Using
this data we empirically explore the prop-
erties of the OSTIA and DD-OSTIA al-
gorithms for the tasks of learning compre-
hension and production in this domain, to
assess whether they may provide a basis
for a model of meaning-preserving correc-
tions.

1 Introduction

The role of corrections in language learning has
recently received substantial attention in Gram-
matical Inference. The kinds of corrections con-
sidered are mainly syntactic corrections based on
proximity between strings. For example, a cor-
rection of a string may be given by using edit
distance (Becerra-Bonache et al., 2007; Kinber,
2008) or based on the shortest extension of the
queried string (Becerra-Bonache et al., 20006),
among others. In these approaches semantic in-
formation is not used.

However, in natural situations, a child’s er-
roneous utterances are corrected by her parents
based on the meaning that the child intends to ex-
press; typically, the adult’s corrections preserve
the intended meaning of the child. Adults use cor-
rections in part as a way of making sure they have
understood the child’s intentions, in order to keep
the conversation “on track”. Thus the child’s ut-
terance and the adult’s correction have the same
meaning, but the form is different. As Chouinard
and Clark point out (2003), because children at-
tend to contrasts in form, any change in form that
does not mark a different meaning will signal to
children that they may have produced something
that is not acceptable in the target language. Re-
sults in (Chouinard and Clark, 2003) show that
adults reformulate erroneous child utterances of-
ten enough to help learning. Moreover, these re-
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sults show that children can not only detect differ-
ences between their own utterance and the adult
reformulation, but that they do make use of that
information.

Thus in some natural situations, corrections
have a semantic component that has not been taken
into account in previous Grammatical Inference
studies. Some interesting questions arise: What
are the effects of corrections on learning syntax?
Can corrections facilitate the language learning
process? One of our long-term goals is to find a
formal model that gives an account of this kind
of correction and in which we can address these
questions. Moreover, such a model might allow us
to show that semantic information can simplify the
problem of learning formal languages.

A simple computational model of semantics and
context for language learning incorporating se-
mantics was proposed in (Angluin and Becerra-
Bonache, 2008). This model accommodates two
different tasks: comprehension and production.
That paper focused only on the comprehension
task and formulated the learning problem as fol-
lows. The teacher provides to the learner several
example pairs consisting of a situation and an ut-
terance denoting something in the situation; the
goal of the learner is to learn the meaning func-
tion, allowing the learner to comprehend novel ut-
terances. The results in that paper show that under
certain assumptions, a simple algorithm can learn
to comprehend an adult’s utterance in the sense of
producing the same sequence of predicates, even
without mastering the adult’s grammar. For exam-
ple, receiving the utterance the blue square above
the circle, the learner would be able to produce the
sequence of predicates (bl, sq, ab, ci).

In this paper we focus on the production task,
using sequential and subsequential transducers to
model both comprehension and production. Adult
production can be modeled as converting a se-
quence of predicates into an utterance, which can
be done with access to the meaning transducer for
the adult’s language.

However, we do not assume that the child ini-
tially has access to the meaning transducer for
the adult’s language; instead we assume that the
child’s production progresses through different
stages. Initially, child production is modeled as
consisting of two different tasks: finding a correct
sequence of predicates, and inverting the meaning
function to produce a kind of “telegraphic speech”.
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For example, from (gr, tr, le, sq) the child may
produce green triangle left square. Our goal is to
model how the learner might move from this tele-
graphic speech to speech that is grammatical in the
adult’s sense. Moreover, we would like to find a
formal framework in which corrections (in form of
expansions, for example, the green triangle to the
left of the square) can be given to the child dur-
ing the intermediate stages (before the learner is
able to produce grammatically correct utterances)
to study their effect on language learning.

We thus propose to model the problem of
child language production as a machine trans-
lation problem, that is, as the task of translat-
ing a sequence of predicate symbols (representing
the meaning of an utterance) into a correspond-
ing utterance in a natural language. In this pa-
per we explore the possibility of applying existing
automata-theoretic approaches to machine transla-
tion to model language production. In Section 2,
we describe the use of subsequential transducers
for machine translation tasks and review the OS-
TIA algorithm to learn them (Oncina, 1991). In
Section 3, we present our model of how the learner
can move from telegraphic to adult speech. In Sec-
tion 4, we present the results of experiments in the
model made using OSTIA. Discussion of these re-
sults is presented in Section 5 and ideas for future
work are in Section 6.

2 Learning Subsequential Transducers

Subsequential transducers (SSTs) are a formal
model of translation widely studied in the liter-
ature. SSTs are deterministic finite state mod-
els that allow input-output mappings between lan-
guages. Each edge of an SST has an associated
input symbol and output string. When an in-
put string is accepted, an SST produces an out-
put string that consists of concatenating the out-
put substrings associated with sequence of edges
traversed, together with the substring associated
with the last state reached by the input string. Sev-
eral phenomena in natural languages can be eas-
ily represented by means of SSTs, for example,
the different orders of noun and adjective in Span-
ish and English (e.g., un cuadrado rojo - a red
square). Formal and detailed definitions can be
found in (Berstel, 1979).

For any SST it is always possible to find an
equivalent SST that has the output strings assigned
to the edges and states so that they are as close to



the initial state as they can be. This is called an
Onward Subsequential Transducer (OST).

It has been proved that SSTs are learnable in
the limit from a positive presentation of sentence
pairs by an efficient algorithm called OSTIA (On-
ward Subsequential Transducer Inference Algo-
rithm) (Oncina, 1991). OSTIA takes as input a fi-
nite training set of input-output pairs of sentences,
and produces as output an OST that generalizes
the training pairs. The algorithm proceeds as fol-
lows (this description is based on (Oncina, 1998)):

e A prefix tree representation of all the input
sentences of the training set is built. Empty
strings are assigned as output strings to both
the internal nodes and the edges of this tree,
and every output sentence of the training set
is assigned to the corresponding leaf of the
tree. The result is called a tree subsequential
transducer.

An onward tree subsequential transducer
equivalent to the tree subsequential trans-
ducer is constructed by moving the longest
common prefixes of the output strings, level
by level, from the leaves of the tree towards
the root.

Starting from the root, all pairs of states of
the onward tree subsequential transducer are
considered in order, level by level, and are
merged if possible (i.e., if the resulting trans-
ducer is subsequential and does not contra-
dict any pair in the training set).

SSTs and OSTIA have been successfully ap-
plied to different translation tasks: Roman numer-
als to their decimal representations, numbers writ-
ten in English to their Spanish spelling (Oncina,
1991) and Spanish sentences describing simple
visual scenes to corresponding English and Ger-
man sentences (Castellanos et al., 1994). They
have also been applied to language understanding
tasks (Castellanos et al., 1993; Pieraccini et al.,
1993).

Moreover, several extensions of OSTIA have
been introduced. For example, OSTIA-DR incor-
porates domain (input) and range (output) mod-
els in the learning process, allowing the algorithm
to learn SSTs that accept only sentences compat-
ible with the input model and produce only sen-
tences compatible with the output model (Oncina
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and Varo, 1996). Experiments with a language un-
derstanding task gave better results with OSTIA-
DR than with OSTIA (Castellanos et al., 1993).
Another extension is DD-OSTIA (Oncina, 1998),
which instead of considering a lexicographic order
to merge states, uses a heuristic order based on a
measure of the equivalence of the states. Experi-
ments in (Oncina, 1998) show that better results
can be obtained by using DD-OSTIA in certain
translation tasks from Spanish to English.

3 From telegraphic to adult speech

To model how the learner can move from tele-
graphic speech to adult speech, we reduce this
problem to a translation problem, in which the
learner has to learn a mapping from sequences of
predicates to utterances. As we have seen in the
previous section, SSTs are an interesting approach
to machine translation. Therefore, we explore the
possibility of modeling language production using
SSTs and OSTIA, to see whether they may pro-
vide a good framework to model corrections.

As described in (Angluin and Becerra-Bonache,
2008), after learning the meaning function the
learner is able to assign correct meanings to ut-
terances, and therefore, given a situation and an
utterance that denotes something in the situation,
the learner is able to point correctly to the object
denoted by the utterance. To simplify the task
we consider, we make two assumptions about the
learner at the start of the production phase: (1)
the learner’s lexicon represents a correct meaning
function and (2) the learner can generate correct
sequences of predicates.

Therefore, in the initial stage of the production
phase, the learner is able to produce a kind of
“telegraphic speech” by inverting the lexicon con-
structed during the comprehension stage. For ex-
ample, if the sequence of predicates is (bl, sq, ler,
ci), and in the lexicon blue is mapped to bl, square
to sq, right to ler and circle to ci, then by invert-
ing this mapping, the learner would produce blue
square right circle.

In order to explore the capability of SSTs and
OSTIA to model the next stage of language pro-
duction (from telegraphic to adult speech), we take
the training set to be input-output pairs each of
which contains as input a sequence of predicates
(e.g., (b, sq, ler, ci)) and as output the correspond-
ing utterance in a natural language (e.g., the blue
square to the right of the circle). In this example,



the learner must learn to include appropriate func-
tion words. In other languages, the learner may
have to learn a correct choice of words determined
by gender, case or other factors. (Note that we are
not yet in a position to consider corrections.)

4 Experiments

Our experiments were made for a limited domain
of geometric shapes and their properties and re-
lations. This domain is a simplification of the
Miniature Language Acquisition task proposed by
Feldman et al. (Feldman et al., 1990). Previous
applications of OSTIA to language understanding
and machine translation have also used adapta-
tions and extensions of the Feldman task.

In our experiments, we have predicates for three
different shapes (circle (ci), square (sq) and tri-
angle (¢r)), three different colors (blue (bl), green
(gr) and red (re)) and three different relations (to
the left of (/e), to the right of (ler), and above (ab)).
We consider ten different natural languages: Ara-
bic, English, Greek, Hebrew, Hindi, Hungarian,
Mandarin, Russian, Spanish and Turkish.

We created a data sequence of input-output
pairs, each consisting of a predicate sequence and
a natural language utterance. For example, one
pair for Spanish is ((ci, re, ler, tr), el circulo rojo
a la derecha del triangulo). We ran OSTIA on ini-
tial segments of the sequence of pairs, of lengths
10,20, 30, ..., to produce a sequence of subse-
quential transducers. The whole data sequence
was used to test the correctness of the transducers
generated during the process. An error is counted
whenever given a data pair (z,y), the subsequen-
tial transducer translates x to ¢/, and v # y. We
say that OSTIA has converged to a correct trans-
ducer if all the transducers produced afterwards
have the same number of states and edges, and O
errors on the whole data sequence.

To generate the sequences of input-output pairs,
for each language we constructed a meaning trans-
ducer capable of producing the 444 different pos-
sible meanings involving one or two objects. We
randomly generated 400 unique (non-repeated)
input-output pairs for each language. This process
was repeated 10 times. In addition, to investigate
the effect of the order of presentation of the input-
output pairs, we repeated the data generation pro-
cess for each language, sorting the pairs according
to a length-lex ordering of the utterances.

We give some examples to illustrate the trans-
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ducers produced. Figure 1 shows an example of
a transducer produced by OSTIA after just ten
pairs of input-output examples for Spanish. This
transducer correctly translates the ten predicate se-
quences used to construct it, but the data is not
sufficient for OSTIA to generalize correctly in all
cases, and many other correct meanings are still
incorrectly translated. For example, the sequence
(ci, bl) is translated as el circulo a la izquierda del
circulo verde azul instead of el circulo azul.

The transducers produced after convergence by
OSTIA and DD-OSTIA correctly translate all 444
possible correct meanings. Examples for Spanish
are shown in Figure 2 (OSTIA) and Figure 3 (DD-
OSTIA). Note that although they correctly trans-
late all 444 correct meanings, the behavior of these
two transducers on other (incorrect) predicate se-
quences is different, for example on (tr, tr).

sql
bl/ azul ci/

sq/ el cuadrado bl/ azul
ci/el circulo a la gr/

izquierda del ler/ a la derecha
circulo verde

tr/ encima del triangulo
ci/ verde encima del
circulo azul

) bl/
tr/ el triangulo re/ rojo

le/

C—2 C3 .
al

° re/ rojo a la derecha ° °

del cuadrado

del cuadrado

Figure 1: Production task, OSTIA. A transducer
produced using 10 random unique input-output
pairs (predicate sequence, utterance) for Spanish.

le/ a la izquierda del
ler/ a la derecha del
ab/ encima del

bl/ azul

le/ a la izquierda del re/ rojo

ler/ a la derecha del gr/ verde

ab/ encima del sq/ cuadrado

bl/ azul re/ rojo ci/ circulo

sg/ el cuadrado gr/ verde tr/ triangulo
ci/ el circulo
1 tr/ el triangulo S

Figure 2: Production task, OSTIA. A transducer
produced (after convergence) by using random
unique input-output pairs (predicate sequence, ut-
terance) for Spanish.

Different languages required very different
numbers of data pairs to converge. Statistics on
the number of pairs needed until convergence for
OSTIA for all ten languages for both random
unique and random unique sorted data sequences
are shown in Table 1. Because better results were
reported using DD-OSTIA in machine translation



bl/ azul
re/ rojo
gr/ verde
sg/ el cuadrado
ci/ el circulo
tr/ el triangulo

le/ a la izquierda del
ler/ a la derecha del
ab/ encima del

sg/ cuadrado
ci/ circulo
tr/ triangulo

Figure 3: Production task, DD-OSTIA. A trans-
ducer produced (after convergence) using random
unique input-output pairs (predicate-sequence, ut-
terance) for Spanish.

Language | # Pairs | # Sorted Pairs
Arabic 150 200
English 200 235
Greek 375 400
Hebrew 195 30
Hindi 380 350
Hungarian 365 395
Mandarin 45 150
Russian 270 210
Spanish 190 150
Turkish 185 80

Table 1: Production task, OSTIA. The entries give
the median number of input-output pairs until con-
vergence in 10 runs. For Greek, Hindi and Hun-
garian, the median for the unsorted case is calcu-

lated using all 444 random unique pairs, instead of
400.

tasks (Oncina, 1998), we also tried using DD-
OSTIA for learning to translate a sequence of
predicates to an utterance. We used the same se-
quences of input-output pairs as in the previous
experiment. The results obtained are shown in Ta-
ble 2.

We also report the sizes of the transducers
learned by OSTIA and DD-OSTIA. Table 3 and
Table 4 show the numbers of states and edges
of the transducers after convergence for each lan-
guage. In case of disagreements, the number re-
ported is the mode.

To answer the question of whether production
is harder than comprehension in this setting, we
also considered the comprehension task, that is,
to translate an utterance in a natural language
into the corresponding sequence of predicates.
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Language | # Pairs | # Sorted Pairs
Arabic 80 140
English 85 180
Greek 350 400
Hebrew 65 80
Hindi 175 120
Hungarian 245 140
Mandarin 40 150
Russian 185 210
Spanish 80 150
Turkish 50 40

Table 2: Production task, DD-OSTIA. The entries
give the median number of input-output pairs un-
til convergence in 10 runs. For Greek, Hindi and
Hungarian, the median for the unsorted case is cal-

culated using all 444 random unique pairs, instead
of 400.

Languages | #states | #edges
Arabic 2 20
English 2 20
Greek 9 65
Hebrew 2 20
Hindi 7 58
Hungarian 3 20
Mandarin 1 10
Russian 3 30
Spanish 2 20
Turkish 4 31

Table 3: Production task, OSTIA. Sizes of trans-
ducers at convergence.

The comprehension task was studied by Oncina
et al. (Castellanos et al., 1993). They used En-
glish sentences, with a more complex version of
the Feldman task domain and more complex se-
mantic representations than we use. Our results
are presented in Table 5. The number of states
and edges of the transducers after convergence is
shown in Table 6.

5 Discussion

It should be noted that because the transducers
output by OSTIA and DD-OSTIA correctly repro-
duce all the pairs used to construct them, once ei-
ther algorithm has seen all 444 possible data pairs
in either the production or the comprehension task,
the resulting transducers will correctly translate all
correct inputs. However, state-merging in the al-



Languages | #states | #edges
Arabic 2 17
English 2 16
Greek 9 45
Hebrew 2 13
Hindi 7 40
Hungarian 3 20
Mandarin 1 10
Russian 3 23
Spanish 2 13
Turkish 3 18

Table 4: Production task, DD-OSTIA. Sizes of
transducers at convergence.

Languages | OSTIA | DD-OSTIA
Arabic 65 65
English 60 20
Greek 325 60
Hebrew 90 45
Hindi 60 35
Hungarian 40 45
Mandarin 60 40
Russian 280 55
Spanish 45 30
Turkish 60 35

Table 5: Comprehension task, OSTIA and DD-
OSTIA. Median number (in 10 runs) of input-
output pairs until convergence using a sequence of
400 random unique pairs of (utterance, predicate
sequence).

gorithms induces compression and generalization,
and the interesting questions are how much data
is required to achieve correct generalization, and
how that quantity scales with the complexity of
the task. This are very difficult questions to ap-
proach analytically, but empirical results can offer
valuable insights.

Considering the comprehension task (Tables 5
and 6), we see that OSTIA generalizes correctly
from at most 15% of all 444 possible pairs except
in the cases of Greek, Hebrew and Russian. DD-
OSTIA improves the OSTIA results, in some cases
dramatically, for all languages except Hungarian.
DD-OSTIA achieves correct generalization from
at most 15% of all possible pairs for all ten lan-
guages. Because the meaning function for all ten
language transducers is independent of the state,
in each case there is a 1-state sequential trans-
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Languages | #states | #edges
Arabic 1 15
English 1 13
Greek 2 25
Hebrew 1 13
Hindi 1 13
Hungarian 1 14
Mandarin 1 17
Russian 1 24
Spanish 1 14
Turkish 1 13

Table 6: Comprehension task, OSTIA and DD-
OSTIA. Sizes of transducers at convergence using
400 random unique input-output pairs (utterance,
predicate sequence). In cases of disagreement, the
number reported is the mode.

ducer that achieves correct translation of correct
utterances into predicate sequences. OSTIA and
DD-OSTIA converged to 1-state transducers for
all languages except Greek, for which they con-
verged to 2-state transducers. Examining one such
transducer for Greek, we found that the require-
ment that the transducer be “onward” necessitated
two states. These results are broadly compatible
with the results obtained by Oncina et al. (Castel-
lanos et al., 1993) on language understanding; the
more complex tasks they consider also give evi-
dence that this approach may scale well for the
comprehension task.

Turning to the production task (Tables 1, 2, 3
and 4), we see that providing the random samples
with a length-lex ordering of utterances has incon-
sistent effects for both OSTIA and DD-OSTIA,
sometimes dramatically increasing or decreasing
the number of samples required. We do not fur-
ther consider the sorted samples.

Comparing the production task with the com-
prehension task for OSTIA, the production task
generally requires substantially more random
unique samples than the comprehension task for
the same language. The exceptions are Mandarin
(production: 45 and comprehension: 60) and Rus-
sian (production: 270 and comprehension: 280).
For DD-OSTIA the results are similar, with the
sole exception of Mandarin (production: 40 and
comprehension: 40). For the production task DD-
OSTIA requires fewer (sometimes dramatically
fewer) samples to converge than OSTIA. How-
ever, even with DD-OSTIA the number of sam-



ples is in several cases (Greek, Hindi, Hungarian
and Russian) a rather large fraction (40% or more)
of all 444 possible pairs. Further experimentation
and analysis is required to determine how these re-
sults will scale.

Looking at the sizes of the transducers learned
by OSTIA and DD-OSTIA in the production task,
we see that the numbers of states agree for all lan-
guages except Turkish. (Recall from our discus-
sion in Section 4 that there may be differences in
the behavior of the transducers learned by OSTIA
and DD-OSTIA at convergence.) For the produc-
tion task, Mandarin gives the smallest transducer;
for this fragment of the language, the translation
of correct predicate sequences into utterances can
be achieved with a 1-state transducer. In contrast,
English and Spanish both require 2 states to handle
articles correctly. For example, in the transducer
in Figure 3, the predicate for a circle (ci) is trans-
lated as el circulo if it occurs as the first object (in
state 1) and as circulo if it occurs as second ob-
ject (in state 2) because del has been supplied by
the translation of the intervening binary relation
(le, ler, or ab.) Greek gives the largest transducer
for the production task, with 9 states, and requires
the largest number of samples for DD-OSTIA to
achieve convergence, and one of the largest num-
bers of samples for OSTIA. Despite the evidence
of the extremes of Mandarin and Greek, the rela-
tion between the size of the transducer for a lan-
guage and the number of samples required to con-
verge to it is not monotonic.

In our model, one reason that learning the pro-
duction task may in general be more difficult than
learning the comprehension task is that while the
mapping of a word to a predicate does not depend
on context, the mapping of a predicate to a word
or words does (except in the case of our Mandarin
transducer.) As an example, in the comprehension
task the Russian words triugolnik, triugolnika and
triugonikom are each mapped to the predicate tr,
but the reverse mapping must be sensitive to the
context of the occurrence of tr.

These results suggest that OSTIA or DD-
OSTIA may be an effective method to learn to
translate sequences of predicates into natural lan-
guage utterances in our domain. However, some of
our objectives seem incompatible with the proper-
ties of OSTIA. In particular, it is not clear how
to incorporate the learner’s initial knowledge of
the lexicon and ability to produce “telegraphic
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speech” by inverting the lexicon. Also, the in-
termediate results of the learning process do not
seem to have the properties we expect of a learner
who is progressing towards mastery of produc-
tion. That is, the intermediate transducers per-
fectly translate the predicate sequences used to
construct them, but typically produce other trans-
lations that the learner (using the lexicon) would
know to be incorrect. For example, the intermedi-
ate transducer from Figure 1 translates the predi-
cate sequence (ci) as el circulo a la izquierda del
circulo verde, which the learner’s lexicon indicates
should be translated as (ci, le, ci, gr).

6 Future work

Further experiments and analysis are required to
understand how these results will scale with larger
domains and languages. In this connection, it may
be interesting to try the experiments of (Castel-
lanos et al., 1993) in the reverse (production) di-
rection. Finding a way to incorporate the learner’s
initial lexicon seems important. Perhaps by incor-
porating the learner’s knowledge of the input do-
main (the legal sequences of predicates) and using
the domain-aware version, OSTIA-D, the interme-
diate results in the learning process would be more
compatible with our modeling objectives. Coping
with errors will be necessary; perhaps an explic-
itly statistical framework for machine translation
should be considered.

If we can find an appropriate model of how
the learner’s language production process might
evolve, then we will be in a position to model
meaning-preserving corrections.  That is, the
learner chooses a sequence of predicates and maps
it to a (flawed) utterance. Despite its flaws, the
learner’s utterance is understood by the teacher
(i.e., the teacher is able to map it to the sequence
of predicates chosen by the learner) and responds
with a correction, that is, a correct utterance for
that meaning. The learner, recognizing that the
teacher’s utterance has the same meaning but a
different form, then uses the correct utterance (as
well as the meaning and the incorrect utterance) to
improve the mapping of sequences of predicates to
utterances.

It is clear that in this model, corrections are not
necessary to the process of learning comprehen-
sion and production; once the learner has a correct
lexicon, the utterances of the teacher can be trans-
lated into sequences of predicates, and the pairs



of (predicate sequence, utterance) can be used to
learn (via an appropriate variant of OSTIA) a per-
fect production mapping. However, it seems very
likely that corrections can make the process of
learning a production mapping easier or faster, and
finding a model in which such phenomena can be
studied remains an important goal of this work.
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