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Abstract

This paper presents a model-based ap-
proach to dialogue management that is
guided by data-driven dialogue act predic-
tion. The statistical prediction is based on
stochastic context-free grammars that have
been obtained by means of grammatical
inference. The prediction performance of
the method compares favourably to that of
a heuristic baseline and to that @fgram
language models.

The act prediction is explored both for
dialogue acts without realised semantic
content (consisting only of communicative
functions) and for dialogue acts with re-
alised semantic content.

I ntroduction

implies that dialogue is modelled as a sequential
decision task in which each contribution (action)
results in a transition from one state to another.

The latter assumption allows to assigreward
for action-state pairs, and to determine the dia-
logue management strategy that results in the max-
imum expected reward by finding for each state
the optimal action by usingeinforcement learn-
ing (cf. (Sutton and Barto, 1998)). Reinforce-
ment learning approaches to dialogue manage-
ment have proven to be successful in several task
domains (see for example (Paek, 2006; Lemon et
al., 2006)). In this process there is no supervision,
but what is optimal depends usually on factors that
require human action, such as task completion or
user satisfaction.

The remainder of this paper describes and eval-
uates a model-based approach to dialogue man-
agement in which the decision process of taking

Dialogue management is the activity of determin-a particular action given a dialogue state is guided
ing how to behave as an interlocutor at a specifiby data-driven dialogue act prediction. The ap-
moment of time in a conversation: whiefttion
can or should be taken at whstiate of the dia-
logue. The systematic way in which an interlocu-tion, without yet providing a full alternative to re-
tor chooses among the options for continuing a diinforcement learning.

alogue is often called dialogue strategy
Coming up with suitable dialogue management? Using structural properties of
strategies for dialogue systems is not an easy task. task-oriented dialogue

Traditional methods typically involve manually gne of the best known regularities that are ob-

crafting and tuning frames or hand-crafted rules

proach improves oven-gram language models
and can be used in isolation or for user simula-

served in dialogue are the two-part structures,

requiring considerable implementation time andynown asadjacency pairgSchegloff, 1968), like

cost.

More recently, statistical methods are be

QUESTION-ANSWER Or GREETING-GREETING.

ing used to semi-automatically obtain models that simple model of predicting a plausible next
can be trained and optimised using dialogue data.yjaj0gue act that deals with such regularities could
These methods are usually based on two assUMBg pased on bigrams, and to include more context
tions. First, the training data is assumed to beg g, higher-order.-grams could be used. For in-
representative of the communication that may b&isnce Stolcke et al. (2000) exploregram mod-

encountered in interaction. Second,

itis assumed|s pased on transcribed words and prosodic in-

that dialogue can be modelled as a Markov Desqrmation for swep-pamstL dialogue acts in the
cision Process (MDP) (Levin et al., 1998), which g\yitchhoard corpus (Godfrey et al., 1992). After

!See e.g. (Young, 2002) for an overview.

training back-offn-gram models (Katz, 1987) of
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different order using frequency smoothing (Wittenthe number of reoccurring patterns which could be

and Bell, 1991), it was concluded that trigrams andused in the prediction.

higher-ordern-grams offer a small gain in predi-  In compiling the symbols for the prediction ex-

cation performance with respect to bigrams. periments, three aspects are important: the identi-
Apart from adjacency pairs, there is a varietyfication of interlocutors, the definition of dialogue

of more complex re-occurring interaction patterns.acts, and multifunctionality in dialogue.

For instance, the following utterances with cor- The dialogue act taxonomy that is used in the

responding dialogue act types illustrate a clarifi-prediction experiments is that ofT (Bunt, 2000).

cation sub-dialogue within an information-requestA dialogue act is defined as a pair consisting of a

dialogue: communicative function (CF) and a semantic con-
tent (SC):a =< CF,SC >. TheDIT taxonomy

1 A:Howdo Idoafax? QUESTION distinguishes 11 dimensions of communicative

2 B: Do you want to send QUESTION functions, addressing information about the task

or print one? domain, feedback, turn management, and other

3 A:lwant to print it ANSWER generic aspects of dialogue (Bunt, 2006). There
4 B:Just press the grey button ANSWER are also functions, calledhe general-purpose

functions that may occur in any dimension. In

. . uite some cases, particularly when dialogue con-
Such structures have received considerable af* . . . o )

) . rol is addressed and dimension-specific functions
tention and their models are often referred to as

. , ) are realised, the SC is empty. General-purpose
discourse/dialogue grammars (Polanyi and Sch%nctions by contrast, are aFI)V\yays used inpcorrr)1bi-

;224“)/'O%rre?olnglgeé)s.atlonalld|alogue games (Levmnation with a realised SC. For example:

As also remarked by Levin (1999), predict-
ing and recognising dialogue games usingram
models is not really successful. There are vari
ous causes for this. The flat horizontal structure of
n-grams does not allow (hierarchical) grouping of Press the button.  SETANSWER Ertetss(Y) A
symbols. This may weaken the predictive power- ut ton(y)
and reduces the power of the representation since _ _ _ _
nested structures such as exemplified above cannot,The SC —if real!sed— descrlbes objects, prop-
be represented in a straightforward way. ertles,_and events in thg dpmam _of con_\/ersatlon.

A better solution would be to express the struc- In d|a_tlogu_e ‘?‘Ct prediction Wh_'le taking multi-
ture of dialogue games by a context-free gramma?j'mens'on‘"lllty Into account, a dlalogufe.can b_e
(CFG) representation in which the terminals arerepres_ented as a sequence of events in \{vhlch.an
dialogue acts and the non-terminals denote conSVentis a set of one dlglogue act or multlpl'e di-
versational games. Construction of a CFG Woulcx""log!ue acts occurring simultaneously. The mfor-
require explicit specification of a discourse gram—m_at'?n concerning mt_erlocutor and multifunction-
mar, which could be done by hand, but it would beallty is encoded in a single _symbol and denoted by
a great advantage if CFGs could automatically pdneans of an-tuple. As_sumlng that at most three_
induced from the data. An additional advantagefunctIons pan occur simultaneously, a 4-tuple is
of grammar induction is the possibility to assesd'eeded: (i nterlocutor, dal, da2, da3) . An ex-
the frequency of typical patterns and a stochastit‘:?‘mIOIe of a bigram of 4-tuples would then look as
context-free grammar (SCFG) may be produce&OHOWS:
which can be used for parsing the dialogue data.

dialogue act

utterance function semantic content

What to do next? SET-QUESTION next -step(X)

(A, <SETQ, "next-step(X)">, , ),
(B, <SETA, "press(Y) A button(Y)">, )

3 Seguencing dialogue acts

Both n-gram language models and SCFG basedwo symbols are considered to be identical when
models work on sequences of symbols. Usinghe same speaker is involved and when the sym-
more complex symbols increases data sparsitypols both address the same functions. To make
encoc_hng more mfor_matlon increases the number 2|gnoring the half percent of occurrences with four simul-
of unique symbols in the dataset and decreaseasneous functions.



it easy to determine if two symbols are identical,5 Dialogue grammars

the order of elements in a tuple is fixed: func- . . .

: ) : To automatically induce patterns from dialogue
tions that occur simultaneously are first ordered on . . o
. . . data in an unsupervised way, grammatical infer-
importance of dimension, and subsequently on al-

phabet. The task-related functions are considered. °° (GI) techniques can be used. Gl is a branch

the most important, followed by feedback—relatedOf unsupemsed ma'\chlne Iear_n ing that a|m§to find
. o structure in symbolic sequential data. In this case,
functions, followed by any other remaining func-

tions. This raises the question how recognitionthe Input of the GI algorithm will be sequences of

. . . dialogue acts.
performance using multifunctional symbols com-

pares against recognition performance using syms.1 Dialogue Grammars |nducer

bols that only encode the primary function For the induction of structure, a Gl algorithm has

been implemented that will be referred to as Dia-

logue Grammars Inducer (DGI). This algorithm is
4 N-gram language models based on distributional clustering and alignment-

based learning (van Zaanen and Adriaans, 2001;

There exists a significant body of work on the use/an Zaanen, 2002; Geertzen and van Zaanen,
of language models in relation to dialogue man-2004). Alignment-based learning (ABL) is a sym-

agement. Nagata and Morimoto (1994) describe Rolic grammar inference framework that has suc-
statistical model of discourse based on trigrams of€Ssfully been applied to several unsupervised ma-
utterances classified by custom speech act type§hine learning tasks in natural language process-
They report39.7% prediction accuracy for the top ing. The framework accepts sequences with sym-

candidate an@1.7% for the top three candidates. PoIs, aligns them with each other, and compares
i them to find interchangeable subsequences that
In the context of the dialogue component of the e srycture. As a result, the input sequences

speech-to-speech translation system VERBMOgq 5,gmented with the induced structure.
BIL, Reithinger and Maier (1995) usegramdia- 1o g algorithm takes as input time series of

logue act probabilities to suggest the most ”kelydialogue acts, and gives as output a set of SCFGs.
dialogue act. In later work, Alexandersson andy . algorithm has five phases:

Reithinger (1997) describe an approach which

comes close to the work reported in this paper: Us- 1. SEGMENTATION:. In the first phase of DGI,

ing grammar induction, plan operators are semi-  the time series are —if necessary— seg-
automatically derived and combined with a statis- mented in smaller sequences based on a spe-
tical disambiguation component. This system is  cific time interval in which no communica-
claimed to have an accuracy score of around 70%  tion takes place. This is a necessary step in
on turn management classes. task-oriented conversation in which there is
ample time to discuss (and carry out) several
related tasks, and an interaction often con-
sists of a series of short dialogues.

Another study is that of Poesio and Mikheev
(1998), in which prediction based on the previous
dialogue act is compared with prediction based on
the context of dialogue games. Using the Map 2. ALIGNMENT LEARNING: In the second
Task corpus annotated with ‘moves’ (dialogue  phase a search space of possible structures,
acts) and ‘transactions’ (games) they showed that  called hypotheses, is generated by compar-

by using higher dialogue structures it was possi-  ing all input sequences with each other and
ble to perform significantly better than a bigram by clustering sub-sequences that share simi-
model approach. Using bigram§.6% accuracy lar context. To illustrate the alignment learn-

was achieved. Additionally taking game structure ing, consider the following input sequences:
into account resulted iK0.6%; adding informa-

tion about speaker change resulted in an accuracy AISET-Q, BIPRO-Q, AIPROA, BISETA.

. . . A:SET-Q, B:PAUSE B:RESUME B:SETA.
0 0
of 41.8% with bigrams, 54% with game structure. A-SETQ. B:SETA.

All studies discussed so far are only concerned
with sequences of communicative functions, and  The alignment learning compares all input
disregard the semantic content of dialogue acts. sequences with each other, and produces the



hypothesised structures depicted below. Thenay be recognised, which can in turn be used ben-
induced structure is represented using brackeficially in dialogue management.
eting.

5.2 A worked example

[ A:SETQ, [; BIPRO-Q, AIPRO-A, |; BISETA. J; In testing the algorithm, DGI has been used to
[ AiSETQ, [; B:PAUSE A:RESUME, |; B:SETA. |;

[ A'SETQ, [, |; BiSETA. |; infer a set of SCFGs from a development set of
250 utterances of the DIAMOND corpus (see also
The hypothesig is generated because of the Section 6.1). Already for this small dataset, DGI
similar context (which is underlined). The Produced, using default parameters, 45 ‘dialogue
hypothesisi, the full span, is introduced by 9ames’. One of the largest produced structures
default, as it might be possible that the se-Was the following:

guence is in itself a part of a longer sequence

4 S A:SET-Q,NTAX ,NTBT , B:SET-A
_ 4 NTAX B:PRO-Q, NTFJ
. SELECTION LEARNING The set of hypothe 2 NTED A PROA

ses that is generated during alignment learn- 1  NTEJ
ing contains hypotheses that are unlikely to 2 NTBT
be correct. These hypotheses are filtered out 2 NTBT
overlapping hypotheses are eliminated to as-

sure that it is possible to extract a context- In this figure, each CFG rule has a number in-

free grammar, and the remaining hypothesegicating how many times the rules has been used.
are selected and remain in the bracketed outOne of the dialogue fragments that was used to in-
put. The decision of which hypotheses to seduce this structure is the following excerpt:

lect and which to discard is based on a Viterbi

A:PRO-A , A:CLARIFY
B:PRO-Q, A:PRO-A
0

LR R

beam search (Viterbi, 1967). utterance dialogue act
A1 howdo | do ashort code? SET-Q
. EXTRACTION: In the fourth phase, SCFG El do you want to program one? PRO-Q
. no SET-A
grammars are extracted from the_ remaining Az | want to enter a kie* a short code CLARIFY
hypotheses by means of recursive descents, youwant to use a short code? PRO-Q
parsing. Ignoring the stochastic informa- A« yes PRO-A
Bs  press the VK button SET-A

tion, a CFG of the above-mentioned example
looks in terms of grammar rules as depicted

below: Unfortunately, many of the 45 induced struc-
tures were very small or involved generalisations

S = AISETQ J BISETA already based on only two input samples. To en-

J = BPPROQ APROA sure that the grammars produced by DGI gen-

J = BIPAUSE A!RESUME i g P y g

J = 0 eralise better and are less fragmented, a post-

processing step has been added which traverses
the grammars and eliminates generalisations based
. FILTERING: In the last phase, the SCFG on a low number of samples. In practice, this
grammars that have small coverage or involvemeans that the post-processing requires the re-
many non-terminals are filtered out, and themaining grammatical structure to be presentéd
remaining SCFG grammars are presented agmes or more in the dath. The algorithm without

the output of DGI. post-processing will be referred to as DGI1; the

Depending on the mode of working, the DGI algorithm with post-processing as DGI2.

algorithm can generate a SCFG covering the comg At prediction experiments

plete input or can generate a set of SCFGs. In the

former mode, the grammar that is generated can b&o determine how to behave as an interlocutor at
used for parsing sequences of dialogue acts and & specific moment of time in a conversation, the
doing so suggests ways to continue the dialogud?Gl algorithm can be used to infer a SCFG that
In the latter mode, by parsing each grammar in thénodels the structure of the interaction. The SCFG
set of grammars that are expected to represent di- a5 _ 5 v 4

= 2 by default, but may increase with the size of the

alogue games in parallel, specific dialogue gamesaining data.
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can then be used to suggest a next dialogue aguished: action predicates, element predicates,
to continue the dialogue. In this section, the perand property predicates. These types have a fixed
formance of the proposed SCFG based dialoguerder. The action predicates appear before element
model is compared with the performance of thepredicates, which appear in turn before property
well-knownn-gram language models, both trainedpredicates. This allows to simplify the semantic
on intentional level, i.e. on sequences of sets of dicontent for the purpose of reducing data sparsity
alogue acts. in act prediction experiments, by stripping away
e.g. property predicates. For instance, if desired
6.1 Data the SC of utterance 3 in the example could be sim-
The task-oriented dialogues used in the dialoguglified to that of utterance 2, making the semantics
act prediction tasks were drawn from the DIA- less detailed but still meaningful.
MOND corpus (Geertzen et al., 2004), which con-
tains human-machine and human-human Dutc#.2 Methodology and metrics

dialogues that have an assistance seeking Ngyajuation of overall performance in communi-
ture. The dataset used in the experiments CoMsation is problematic; there are no generally ac-
tains 1,214 utterances representing 592 func-  cepted criteria as to what constitutes an objective
tional segments from the human-human part ofng sound way of comparative evaluation. An
corpus. In the domain of the DIAMOND data, often-used paradigm for dialogue system evalua-
i.e. operating a fax device, the predicates and argujon js PARADISE (Walker et al., 2000), in which
ments in the logical expressions of the SC of thene performance metric is derived as a weighted
dialogue acts refer to entities, properties, eventg,omhination of subjectively rated user satisfac-
anql tasks m_the application d_omgln. The applition, task-success measures and dialogue cost.
cation domain of the fax device is complex butgya|yating if the predicted dialogue acts are con-
small: the domain model consists of 70 entitiessijered as positive contributions in such a way
with at most 10 properties, 72 higher-level actions,gid require the model to be embedded in a fully
or tasks, and 45 different settings. working dialogue system.

Representations of semantic content are often 15 5ssess whether the models that are learned

expressed in some form of predicate logic typeyroquce human-like behaviour without resorting
formula. Examples are Quasi Logical Forms (Al-q ¢ostly user interaction experiments, it is needed

shawi, 1990), Dynamic Predicate Logic (Groe-y, compare their output with real human responses
nendijk and Stokhof, 1991), and Underspecifiedyiyen in the same contexts. This will be done by
Discourse Representation Theory (Reyle, 1993)4eriying a model from one part of a dialogue cor-
The SC in the dataset is in a simplified first orderIOUS and applying the model on an 'unseen’ part
logic similar to guasi Iogica_ll forms, aqd is suitable of the corpus, comparing the suggested next dia-
to support feasible reasoning, for which also theoyy e act with the observed next dialogue act. To
rem provers, model builders, and model ChECker?neasure the performanaegcuracyis used, which
can be used. The following utterances and theifg gefined as the proportion of suggested dialogue
corresponding SC characterise the dataset: acts that match the observed dialogue acts.

In addition to the accuracy, alguerplexityis

1 wat moet ik nu doen?

(what do I have to do now?) used as metric. Perplexity is widely used in re-
Az . next-step) lation to speech recognition and language models,
2 druk op een toets and can in this context be understood as a metric
(press a button) that measures the number of equiprobable possi-
Az . pressg) A buttong) ble choices that a model faces at a given moment.
3 druk op de groene toets Perplexity, being related to entropy is defined as
(press the green button) follows:

Az . pressg) A button) A color(z,'green’)

4 wat zit er boven de starttoets?
(what is located above the starttoets?)
Az . loc-aboveg, button041’)

Entropy = p(wilh) - logs p(w;|h)

(2

Three types of predicate groups are distin- Perplexity = 2Fmropry
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whereh denotes the conditioned part, i.es;_;  function results in better accuracy scores®P6

in the case of bigrams and;_»,w; 1 in the case on average, despite the increase in data sparsity. A

of trigrams, et cetera. In sum, accuracy could besimilar effect has also been reported by Stolcke et

described as a measure of correctness of the hgl. (2000).

pothesis and perplexity could be described as how Only for the 5-gram language model, the data

probable the correct hypothesis is. become too sparse to learn reliably a language
For all n-gram language modelling tasks re-model from. There is again an increase in per-

ported, good-turing smoothing was used (Katzformance when also the last two positions in the

1987). To reduce the effect of imbalances in thed-tuple are used and all available dialogue act as-

dialogue data, the results were obtained using 5signments are available. It should be noted, how-

fold cross-validation. ever, that this increase has less impact than adding
To have an idea how the performance of botrthe speaker identity. The best performinggram

the n-gram language models and the SCFG modlanguage model achieve@6.4% accuracy; the

els relate to the performance of a simple heurisbest SCFG model achiev&8.9% accuracy.

tic, a baseline has been computed which suggests

a majority class label according to the interlocutor6.4 Resultsfor dialogue acts

role in the d'alpgue' T_he mformanon seeker hasl'he scores for prediction of dialogue acts, includ-
SET,'Q,and the information provider haETA as ing SC, are presented in the left part of Table 2.
majority class label. The presentation is similar to Table 1: for each of
the three kinds of symbols, accuracy and perplex-
ity were calculated. For dialogue acts that may in-
The scores for communicative function predictionclude semantic content, computing a useful base-
are presented in Table 1. For each of the threéne is not obvious. The same baseline as for com-
kinds of symbols, accuracy and perplexity are calimunicative functions was used, which results in
culated: the first two columns are for the main CFower scores.
the second two columns are for the combination The table shows that the attempts to learn to
of speaker identitandmain CF, and the third two predict additionally the semantic content of utter-
columns are for the combination of speaker idenances quickly run into data sparsity problems. It
tity and all CFs. The scores for the latter two cod-turned out to be impossible to make predictions
ings could not be calculated for the 5-gram modelfrom 4-grams and 5-grams, and for 3-grams the
as the data were too sparse. combination of speaker and all dialogue acts could
As was expected, there is an improvement imot be computed. Training the SCFGs, by con-
both accuracy (increasing) and perplexity (de-rast, resulted in fewer problems with data sparsity,
creasing) for increasing-gram order. After the as the models abstract quickly.
4-gram language model, the scores drop again. As with predicting communicative functions,
This could well be the result of insufficient train- the SCFG models show better performance than
ing data, as the more complex symbols could nothe n-gram language models, for which the 2-
be predicted well. grams show slightly better results than the 3-
Both language models and SCFG models pergrams. Where there was a notable performance
form better than the baseline, for all three groupsdifference between DGI1 and DGI2 for CF pre-
The two SCFG models, DGI1 and DGI2, clearly diction, for dialogue act prediction there is only a
outperform then-gram language models with a very little difference, which is insignificant con-
substantial difference in accuracy. Also the persidering the relatively high standard deviation.
plexity tends to be lower. Furthermore, modelThis small difference is explained by the fact that
DGI2 performs clearly better than model DGI1, DGI2 becomes less effective as the size of the
which indicates that the ‘flattening’ of non- training data decreases.
terminals which is described in Section 5 results As with CF prediction, it can be concluded that
in better inductions. providing the speaker identity with the main dia-
When comparing the three groups of sequence$ogue act results in better scores, but the difference
it can be concluded that providing the speakels less big than observed with CF prediction due to
identity combined with the main communicative the increased data sparsity.

6.3 Resaultsfor communicative functions
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Table 1: Communicative function prediction scoresifegram language models and SCFGs in accuracy
(acg in percent) and perplexitypf). CF,,.:» denotes the main communicative function, SPK speaker
identity, and CE;; all occurring communicative functions.

CFrain SPK + CEain SPK + CR,;
acc pp acc pp acc pp

baseline 39.£0.23 24.2:0.19 44.6:0.92 22.2:0.25 42.%1.33 23.40.41

2-gram 53.#+0.88 17.%0.35 58.3:1.84 16.80.31 61.1%#1.65 16.3:0.59
3-gram 58.60.85 17.1#0.47 63.2:1.98 14.5:0.26 65.9:1.92 14.6£0.23
4-gram 60.41.12 16.#40.15 65.4:1.62 15.2£1.07 66.4:2.03 14.2:0.44
5-gram 60.30.43 18.6:0.21 - - - -

DGI1 67.4£3.05 18.3:1.28 74.6:1.94 14.81.47 76.52.13 13.9£0.35
DGI2 71.8:2.67 16.%1.25 78.32.50 14.G:2.39 78.%1.98 13.6:0.35

Table 2: Dialogue act prediction scores fogram language models and SCFGs. DA, denotes the
dialogue act with the main communicative function, and,pAll occurring dialogue acts.

DA main SPK + DAnain SPK + DA,

full SC simplified SC
acc pp acc pp acc pp acc pp

baseline 18.%2.01 31.¢:1.64 19.31.79 27.6£0.93 18.221.93 31.6:1.38 18.221.93 31.6:1.38

2-gram 31.21.42 28.51.03 34.6:1.51 24.%40.62 35.%1.30 26.9-0.47 37.51.34 26.22.37
3-gram 29.61.14 344282 31.%1.21 30.5:2.06 - - 29.11.28 28.@:2.59
4-gram - - - - - - - -
5-gram - - - - - - - -
DGI1 38.8£3.27 25.%#0.94 42.50.96 25.:1.14 42.9£2.44 27.3:1.98 46.6:2.01 24.6:2.24
DGI2 39.2+2.45 25.:1.28 42.#1.03 25.3:0.99 42.4-2.19 28.6£1.57 46.4:1.94 24.#2.55

The prediction scores of dialogue acts with fullbased model can capture regularities that have
semantic content and simplified semantic contenjaps, and allow to model long(er) distance rela-
are presented in the right part of Table 2. For botftions. Both algorithms work on sequences and
cases multifunctionality is taken into account byhence are easily susceptible to data-sparsity when
including all occurring communicative functions the symbols in the sequences get more complex.
in each symbol. As can be seen from the tableThe SCFG approach, though, has the advantage
the simplification of the semantic content leads tahat symbols can be clustered in the non-terminals
improvements in the prediction performance forof the grammar, which allows more flexibility.

both types of model. The bestgram language  The multidimensional nature of theiT+*
model improved with2.4% accuracy fron85.1%  functions can be adequately encoded in the sym-
to 37.5%; the best SCFG-based model improvedyols of the sequences. Keeping track of the inter-
with 3.7% from 42.9% t0 46.6%. locutor and including not only the main commu-
Moreover, the simplification of the semantic njcative function but also other functions that oc-
content reduced the problem of data-sparsity, makcur simultaneously results in better performance

ing it also possible to predict based on 3-gramseven though it decreases the amount of data to
although the accuracy is considerably lower thanearn from.

that of the 2-gram model. The prediction experiments based on main com-

municative functions assume that in case of multi-
functionality, a main function can clearly be iden-
Both n-gram language models and SCFG basedified. Moreover, it is assumed that task-related
models have their strengths and weaknesses. functions are more important than feedback func-
gram models have the advantage of being very rations or other functions. For most cases, these as-
bust and they can be easily trained. The SCFGumptions are justified, but in some cases they are

7 Discussion
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problematic. For instance, in a heated discussiorgluded that the algorithm outperforms thegram
the turn management function could be consideredhodels: on the task of predicting the communica-
more important for the dialogue than a simultanetive functions, the best performinggram model
ously occurring domain specific function. In otherachieved 66.4% accuracy; the best SCFG model
cases, it is impossible to clearly identify a mainachieved 78.9% accuracy. Predicting the seman-
function as all functions occurring simultaneouslytic content in combination with the communica-
are equally important to the dialogue. tive functions is difficult, as evidenced by moder-
In general,n-grams of a higher order have a ate scores. Obtaining lower degreegram lan-
higher predictability and therefore a lower per-guage models is feasible, whereas higher degree
plexity. However, using high order-grams is models are not trainable. Prediction works better
problematic due to sparsity of training data, whichwith the SCFG models, but does not result in con-
clearly is the case with 4-grams, and particularlyvincing scores. As the corpus is small, it is ex-
with 5-grams in combination with complex sym- pected that with scaling up the available training
bols as for CF prediction. data, scores will improve for both tasks.
Considerably more difficult is the prediction of ~ Future work in this direction can go in sev-
dialogue acts with realised semantic content, asral directions. First, the grammar induction ap-
is evidenced in the differences in accuracy androach shows potential of learning dialogue game-
perplexity for all models. Considering that the like structures unsupervised. The performance on
data set, with about, 600 functional segments, this task could be tested and measured by applying
is rather small, the statistical prediction of logical the algorithm on corpus data that have been anno-
expressions increases data sparsity to such a deted with dialogue games. Second, the models
gree that from thes-gram language models, only could also be extended to incorporate more infor-
2-gram (and 3-grams to some extent) could benation than dialogue acts alone. This could make
trained. The SCFG models can be trained for botlfomparisons with the performance obtained with
CF prediction and dialogue act prediction. reinforcement learning or with Bayesian networks
As noted in Section 6.2, objective evaluation ofinteresting. Third, it would be interesting to learn
dialogue strategies and behaviour is difficult. Theand apply the same models on other kinds of con-
evaluation approach used here compares the sugersation, such as dialogue with more than two in-
gested next dialogue act with the next dialogue acierlocutors. Fourth, datasets could be drawn from
as observed. This is done for each dialogue act i@t large corpus that covers dialogues on a small
the test set. This evaluation approach has the adut complex domain. This makes it possible to
vantage that the evaluation metric can easily be urevaluate according to the possible continuations
derstood and computed. The approach, howeve@s found in the data for situations with similar di-
is also very strict: in a given dialogue context, con-alogue context, rather than to evaluate according
tinuations with various types of dialogue acts mayto a single possible continuation. Last, the rather
all be equally appropriate. To also take other postinexplored parameter space of the DGI algorithm
sible contributions into account, a rich dataset ignight be worth exploring in optimising the sys-
required in which interlocutors act differently in tem’s performance.
similar dialogue context with a similar established
common ground. Moreover, such a dataset shoul
contain for each of these cases with similar dia-
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