
EACL 2009

Proceedings of the
EACL 2009 Workshop on
Computational Linguistic

Aspects of
Grammatical Inference

CLAGI 2009

30 March – 2009
Megaron Athens International Conference Centre

Athens, Greece

Production and Manufacturing by
TEHNOGRAFIA DIGITAL PRESS
7 Ektoros Street
152 35 Vrilissia
Athens, Greece

c©2009 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Preface

We are delighted to present you with this volume containing the papers accepted for presentation at the
1st workshop CLAGI 2009, held in Athens, Greece, on March 30th 2009.

We want to acknowledge the help of the PASCAL 2 network of excellence.

Thanks also to Damir Ćavar for giving an invited talk and to the programme committee for the reviewing
and advising.

We are indebted to the general chair of EACL 2009, Alex Lascarides, to the publication chairs, Kemal
Oflazer and David Schlangen, and to the Workshop chairs Stephen Clark and Miriam Butt, for all their
help. We are also grateful for Thierry Murgue’s assistance when putting together the proceedings.

Wishing you a very enjoyable time at CLAGI 2009!

Menno van Zaanen and Colin de la Higuera
CLAGI 2009 Programme Chairs

iii

CLAGI 2009 Program Committee

Program Chairs:

Menno van Zaanen, Tilburg University (The Netherlands)
Colin de la Higuera, University of Saint-Étienne, (France)

Program Committee Members:

Pieter Adriaans, University of Amsterdam (The Netherlands)
Srinivas Bangalore, AT&T Labs-Research (USA)
Leonor Becerra-Bonache, Yale University (USA)
Rens Bod, University of Amsterdam (The Netherlands)
Antal van den Bosch, Tilburg University (The Netherlands)
Alexander Clark, Royal Halloway, University of London (UK)
Walter Daelemans, University of Antwerp (Belgium)
Shimon Edelman, Cornell University (USA)
Jeroen Geertzen, University of Cambridge (UK)
Jeffrey Heinz, University of Delaware (USA)
Colin de la Higuera, University of Saint-Étienne (France)
Alfons Juan, Polytechnic University of Valencia (Spain)
Frantisek Mraz, Charles University (Czech Republic)
Georgios Petasis, National Centre for Scientific Research (NCSR) ”Demokritos” (Greece)
Khalil Sima’an, University of Amsterdam (The Netherlands)
Richard Sproat, University of Illinois at Urbana-Champaign (USA)
Menno van Zaanen, Tilburg University (The Netherlands)
Willem Zuidema, University of Amsterdam (The Netherlands)

v

Table of Contents

Grammatical Inference and Computational Linguistics
Menno van Zaanen and Colin de la Higuera . 1

On Bootstrapping of Linguistic Features for Bootstrapping Grammars
Damir Ćavar . 5

Dialogue Act Prediction Using Stochastic Context-Free Grammar Induction
Jeroen Geertzen . 7

Experiments Using OSTIA for a Language Production Task
Dana Angluin and Leonor Becerra-Bonache . 16

GREAT: A Finite-State Machine Translation Toolkit Implementing a Grammatical Inference Approach
for Transducer Inference (GIATI)

Jorge González and Francisco Casacuberta . 24

A Note on Contextual Binary Feature Grammars
Alexander Clark, Remi Eyraud and Amaury Habrard . 33

Language Models for Contextual Error Detection and Correction
Herman Stehouwer and Menno van Zaanen . 41

On Statistical Parsing of French with Supervised and Semi-Supervised Strategies
Marie Candito, Benoit Crabbé and Djamé Seddah . 49

Upper Bounds for Unsupervised Parsing with Unambiguous Non-Terminally Separated Grammars
Franco M. Luque and Gabriel Infante-Lopez. .58

Comparing Learners for Boolean partitions: Implications for Morphological Paradigms
Katya Pertsova . 66

vii

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 1–4,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Grammatical Inference and Computational Linguistics

Menno van Zaanen
Tilburg Centre for Creative Computing

Tilburg University
Tilburg, The Netherlands
mvzaanen@uvt.nl

Colin de la Higuera
University of Saint-́Etienne

France
cdlh@univ-st-etienne.fr

1 Grammatical inference and its links to
natural language processing

When dealing with language, (machine) learning
can take many different faces, of which the most
important are those concerned with learning lan-
guages and grammars from data. Questions in
this context have been at the intersection of the
fields of inductive inference and computational
linguistics for the past fifty years. To go back
to the pioneering work, Chomsky (1955; 1957)
and Solomonoff (1960; 1964) were interested, for
very different reasons, in systems or programs that
could deduce a language when presented informa-
tion about it.

Gold (1967; 1978) proposed a little later a uni-
fying paradigm called identification in the limit,
and the term of grammatical inference seems to
have appeared in Horning’s PhD thesis (1969).

Out of the scope of linguistics, researchers and
engineers dealing with pattern recognition, under
the impulsion of Fu (1974; 1975), invented algo-
rithms and studied subclasses of languages and
grammars from the point of view of what could
or could not be learned.

Researchers in machine learning tackled related
problems (the most famous being that of infer-
ring a deterministic finite automaton, given ex-
amples and counter-examples of strings). An-
gluin (1978; 1980; 1981; 1982; 1987) introduced
the important setting of active learning, or learn-
ing for queries, whereas Pitt and his colleagues
(1988; 1989; 1993) gave several complexity in-
spired results with which the hardness of the dif-
ferent learning problems was exposed.

Researchers working in more applied areas,
such as computational biology, also deal with
strings. A number of researchers from that
field worked on learning grammars or automata
from string data (Brazma and Cerans, 1994;
Brazma, 1997; Brazma et al., 1998). Simi-

larly, stemming from computational linguistics,
one can point out the work relating language learn-
ing with more complex grammatical formalisms
(Kanazawa, 1998), the more statistical approaches
based on building language models (Goodman,
2001), or the different systems introduced to au-
tomatically build grammars from sentences (van
Zaanen, 2000; Adriaans and Vervoort, 2002). Sur-
veys of related work in specific fields can also
be found (Natarajan, 1991; Kearns and Vazirani,
1994; Sakakibara, 1997; Adriaans and van Zaa-
nen, 2004; de la Higuera, 2005; Wolf, 2006).

2 Meeting points between grammatical
inference and natural language
processing

Grammatical inference scientists belong to a num-
ber of larger communities: machine learning (with
special emphasis on inductive inference), com-
putational linguistics, pattern recognition (within
the structural and syntactic sub-group). There is
a specific conference called ICGI (International
Colloquium on Grammatical Inference) devoted
to the subject. These conferences have been held
at Alicante (Carrasco and Oncina, 1994), Mont-
pellier (Miclet and de la Higuera, 1996), Ames
(Honavar and Slutski, 1998), Lisbon (de Oliveira,
2000), Amsterdam (Adriaans et al., 2002), Athens
(Paliouras and Sakakibara, 2004), Tokyo (Sakak-
ibara et al., 2006) and Saint-Malo (Clark et al.,
2008). In the proceedings of this event it is pos-
sible to find a number of technical papers. Within
this context, there has been a growing trend to-
wards problems of language learning in the field
of computational linguistics.

The formal objects in common between the
two communities are the different types of au-
tomata and grammars. Therefore, another meet-
ing point between these communities has been the
different workshops, conferences and journals that
focus on grammars and automata, for instance,

1

FSMNLP,GRAMMARS, CIAA, . . .

3 Goal for the workshop

There has been growing interest over the last few
years in learning grammars from natural language
text (and structured or semi-structured text). The
family of techniques enabling such learning is usu-
ally called “grammatical inference” or “grammar
induction”.

The field of grammatical inference is often sub-
divided into formal grammatical inference, where
researchers aim to proof efficient learnability of
classes of grammars, and empirical grammatical
inference, where the aim is to learn structure from
data. In this case the existence of an underlying
grammar is just regarded as a hypothesis and what
is sought is to better describe the language through
some automatically learned rules.

Both formal and empirical grammatical infer-
ence have been linked with (computational) lin-
guistics. Formal learnability of grammars has
been used in discussions on how people learn lan-
guage. Some people mention proofs of (non-
)learnability of certain classes of grammars as ar-
guments in the empiricist/nativist discussion. On
the more practical side, empirical systems that
learn grammars have been applied to natural lan-
guage. Instead of proving whether classes of
grammars can be learnt, the aim here is to pro-
vide practical learning systems that automatically
introduce structure in language. Example fields
where initial research has been done are syntac-
tic parsing, morphological analysis of words, and
bilingual modelling (or machine translation).

This workshop organized at EACL 2009 aimed
to explore the state-of-the-art in these topics. In
particular, we aimed at bringing formal and empir-
ical grammatical inference researchers closer to-
gether with researchers in the field of computa-
tional linguistics.

The topics put forward were to cover research
on all aspects of grammatical inference in rela-
tion to natural language (such as, syntax, seman-
tics, morphology, phonology, phonetics), includ-
ing, but not limited to

• Automatic grammar engineering, including,
for example,

– parser construction,

– parameter estimation,

– smoothing, . . .

• Unsupervised parsing

• Language modelling

• Transducers, for instance, for

– morphology,
– text to speech,
– automatic translation,
– transliteration,
– spelling correction, . . .

• Learning syntax with semantics,

• Unsupervised or semi-supervised learning of
linguistic knowledge,

• Learning (classes of) grammars (e.g. sub-
classes of the Chomsky Hierarchy) from lin-
guistic inputs,

• Comparing learning results in different
frameworks (e.g. membership vs. correction
queries),

• Learning linguistic structures (e.g. phonolog-
ical features, lexicon) from the acoustic sig-
nal,

• Grammars and finite state machines in ma-
chine translation,

• Learning setting of Chomskyan parameters,

• Cognitive aspects of grammar acquisition,
covering, among others,

– developmental trajectories as studied by
psycholinguists working with children,

– characteristics of child-directed speech
as they are manifested in corpora such
as CHILDES, . . .

• (Unsupervised) Computational language ac-
quisition (experimental or observational),

4 The papers

The workshop was glad to have as invited speaker
DamirĆavar, who presented a talk titled:On boot-
strapping of linguistic features for bootstrapping
grammars.

The papers submitted to the workshop and re-
viewed by at least three reviewers each, covered a
very wide range of problems and techniques. Ar-
ranging them into patterns was not a simple task!

There were three papers focussing on transduc-
ers:

2

• Jeroen Geertzen shows in his paperDialogue
Act Prediction Using Stochastic Context-Free
Grammar Induction, how grammar induction
can be used in dialogue act prediction.

• In their paper (Experiments Using OSTIA for
a Language Production Task), Dana Angluin
and Leonor Becerra-Bonache build on previ-
ous work to see the transducer learning algo-
rithm OSTIA as capable of translating syn-
tax to semantics.

• In their paper titledGREAT: a finite-state
machine translation toolkit implementing a
Grammatical Inference Approach for Trans-
ducer Inference (GIATI), Jorge González and
Francisco Casacuberta build on a long his-
tory of GOATI learning and try to eliminate
some of the limitations of previous work.
The learning concerns finite-state transducers
from parallel corpora.

Context-free grammars of different types were
used for very different tasks:

• Alexander Clark, Remi Eyraud and Amaury
Habrard (A note on contextual binary fea-
ture grammars) propose a formal study of
a new formalism called “CBFG”, describe
the relationship of CBFG to other standard
formalisms and its appropriateness for mod-
elling natural language.

• In their work titledLanguage models for con-
textual error detection and correction, Her-
man Stehouwer and Menno van Zaanen look
at spelling problems as a word prediction
problem. The prediction needs a language
model which is learnt.

• A formal study of French treebanks is made
by Marie-Hélène Candito, Benoit Crabbé and
Djamé Seddah in their work:On statistical
parsing of French with supervised and semi-
supervised strategies.

• Franco M. Luque and Gabriel Infante-Lopez
study the learnability of NTS grammars with
reference to the Penn treebank in their paper
titled Upper Bounds for Unsupervised Pars-
ing with Unambiguous Non-Terminally Sep-
arated Grammars.

One paper concentrated on morphology :

• In A comparison of several learners for
Boolean partitions: implications for morpho-
logical paradigm, Katya Pertsova compares a
rote learner to three morphological paradigm
learners.

References

P. Adriaans and M. van Zaanen. 2004. Computational
grammar induction for linguists.Grammars, 7:57–
68.

P. Adriaans and M. Vervoort. 2002. The EMILE
4.1 grammar induction toolbox. In Adriaans et al.
(Adriaans et al., 2002), pages 293–295.

P. Adriaans, H. Fernau, and M. van Zaannen, editors.
2002. Grammatical Inference: Algorithms and Ap-
plications, Proceedings ofICGI ’02, volume 2484
of LNAI , Berlin, Heidelberg. Springer-Verlag.

D. Angluin. 1978. On the complexity of minimum
inference of regular sets.Information and Control,
39:337–350.

D. Angluin. 1980. Inductive inference of formal lan-
guages from positive data.Information and Control,
45:117–135.

D. Angluin. 1981. A note on the number of queries
needed to identify regular languages.Information
and Control, 51:76–87.

D. Angluin. 1982. Inference of reversible languages.
Journal of the Association for Computing Machin-
ery, 29(3):741–765.

D. Angluin. 1987. Queries and concept learning.Ma-
chine Learning Journal, 2:319–342.

A. Brazma and K. Cerans. 1994. Efficient learning
of regular expressions from good examples. In AII
’94: Proceedings of the 4th International Workshop
on Analogical and Inductive Inference, pages 76–90.
Springer-Verlag.

A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. 1998.
Pattern discovery in biosequences. In Honavar and
Slutski (Honavar and Slutski, 1998), pages 257–270.

A. Brazma, 1997.Computational learning theory and
natural learning systems, volume 4, chapter Effi-
cient learning of regular expressions from approxi-
mate examples, pages 351–366. MIT Press.

R. C. Carrasco and J. Oncina, editors. 1994.Gram-
matical Inference and Applications, Proceedings of
ICGI ’94, number 862 in LNAI , Berlin, Heidelberg.
Springer-Verlag.

N. Chomsky. 1955.The logical structure of linguis-
tic theory. Ph.D. thesis, Massachusetts Institute of
Technology.

3

N. Chomsky. 1957.Syntactic structure. Mouton.

A. Clark, F. Coste, and L. Miclet, editors. 2008.
Grammatical Inference: Algorithms and Applica-
tions, Proceedings ofICGI ’08, volume 5278 of
LNCS. Springer-Verlag.

C. de la Higuera. 2005. A bibliographical study
of grammatical inference. Pattern Recognition,
38:1332–1348.

A. L. de Oliveira, editor. 2000.Grammatical Infer-
ence: Algorithms and Applications, Proceedings of
ICGI ’00, volume 1891 of LNAI , Berlin, Heidelberg.
Springer-Verlag.

K. S. Fu and T. L. Booth. 1975. Grammatical infer-
ence: Introduction and survey. Part I and II. IEEE
Transactions on Syst. Man. and Cybern., 5:59–72
and 409–423.

K. S. Fu. 1974.Syntactic Methods in Pattern Recogni-
tion. Academic Press, New-York.

E. M. Gold. 1967. Language identification in the limit.
Information and Control, 10(5):447–474.

E. M. Gold. 1978. Complexity of automaton identi-
fication from given data.Information and Control,
37:302–320.

J. Goodman. 2001. A bit of progress in language mod-
eling. Technical report, Microsoft Research.

V. Honavar and G. Slutski, editors. 1998.Gram-
matical Inference, Proceedings ofICGI ’98, number
1433 in LNAI , Berlin, Heidelberg. Springer-Verlag.

J. J. Horning. 1969.A study of Grammatical Inference.
Ph.D. thesis, Stanford University.

M. Kanazawa. 1998.Learnable Classes of Categorial
Grammars. CSLI Publications, Stanford, Ca.

M. J. Kearns and U. Vazirani. 1994.An Introduction
to Computational Learning Theory. M IT press.

L. Miclet and C. de la Higuera, editors. 1996.Pro-
ceedings ofICGI ’96, number 1147 in LNAI , Berlin,
Heidelberg. Springer-Verlag.

B. L. Natarajan. 1991.Machine Learning: a Theoret-
ical Approach. Morgan Kauffman Pub., San Mateo,
CA.

G. Paliouras and Y. Sakakibara, editors. 2004.Gram-
matical Inference: Algorithms and Applications,
Proceedings ofICGI ’04, volume 3264 of LNAI ,
Berlin, Heidelberg. Springer-Verlag.

L. Pitt and M. Warmuth. 1988. Reductions among
prediction problems: on the difficulty of predicting
automata. In3rd Conference on Structure in Com-
plexity Theory, pages 60–69.

L. Pitt and M. Warmuth. 1993. The minimum consis-
tent DFA problem cannot be approximated within
any polynomial. Journal of the Association for
Computing Machinery, 40(1):95–142.

L. Pitt. 1989. Inductive inference, DFA’s, and com-
putational complexity. InAnalogical and Induc-
tive Inference, number 397 in LNAI , pages 18–44.
Springer-Verlag, Berlin, Heidelberg.

Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and
E. Tomita, editors. 2006. Grammatical Infer-
ence: Algorithms and Applications, Proceedings of
ICGI ’06, volume 4201 of LNAI , Berlin, Heidelberg.
Springer-Verlag.

Y. Sakakibara. 1997. Recent advances of grammatical
inference. Theoretical Computer Science, 185:15–
45.

R. Solomonoff. 1960. A preliminary report on a gen-
eral theory of inductive inference. Technical Report
ZTB-138, Zator Company, Cambridge, Mass.

R. Solomonoff. 1964. A formal theory of inductive
inference. Information and Control, 7(1):1–22 and
224–254.

M. van Zaanen. 2000. ABL: Alignment-based learn-
ing. In Proceedings ofCOLING 2000, pages 961–
967. Morgan Kaufmann.

G. Wolf. 2006. Unifying computing and cognition.
Cognition research.

4

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 5–6,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

On bootstrapping of linguistic features for bootstrapping grammars

Damir Ćavar
University of Zadar

Zadar, Croatia
dcavar@unizd.hr

Abstract

We discuss a cue-based grammar induc-
tion approach based on a parallel theory of
grammar. Our model is based on the hy-
potheses of interdependency between lin-
guistic levels (of representation) and in-
ductability of specific structural properties
at a particular level, with consequences
for the induction of structural properties at
other linguistic levels. We present the re-
sults of three different cue-learning exper-
iments and settings, covering the induc-
tion of phonological, morphological, and
syntactic properties, and discuss potential
consequences for our general grammar in-
duction model.1

1 Introduction

We assume that individual linguistic levels of nat-
ural languages differ with respect to their for-
mal complexity. In particular, the assumption is
that structural properties of linguistic levels like
phonology or morphology can be characterized
fully by Regular grammars, and if not, at least a
large subset can. Structural properties of natural
language syntax on the other hand might be char-
acterized by Mildly context-free grammars (Joshi
et al., 1991), where at least a large subset could be
characterized by Regular and Context-free gram-
mars.2

1This article is builds on joint work and articles with K.
Elghamri, J. Herring, T. Ikuta, P. Rodrigues, G. Schrementi
and colleagues at the Institute of Croatian Language and Lin-
guistics and the University of Zadar. The research activities
were partially funded by several grants over a couple of years,
at Indiana University and from the Croatian Ministry of Sci-
ence, Education and Sports of the Republic of Croatia.

2We are abstracting away from concrete linguistic models
and theories, and their particular complexity, as discussed e.g.
in (Ristad, 1990) or (Tesar and Smolensky, 2000).

Ignoring for the time being extra-linguistic con-
ditions and cues for linguistic properties, and in-
dependent of the complexity of specific linguis-
tic levels for particular languages, we assume
that specific properties at one particular linguistic
level correlate with properties at another level. In
natural languages certain phonological processes
might be triggered at morphological boundaries
only, e.g. (Chomsky and Halle, 1968), or prosodic
properties correlate with syntactic phrase bound-
aries and semantic properties, e.g. (Inkelas and
Zec, 1990). Similarly, lexical properties, as for
example stress patterns and morphological struc-
ture tend to be specific to certain word types (e.g.
substantives, but not function words). i.e. corre-
late with the lexical morpho-syntactic properties
used in grammars of syntax. Other more informal
correlations that are discussed in linguistics, that
rather lack a formal model or explanation, are for
example the relation between morphological rich-
ness and the freedom of word order in syntax.

Thus, it seems that specific regularities and
grammatical properties at one linguistic level
might provide cues for structural properties at an-
other level. We expect such correlations to be lan-
guage specific, given that languages qualitatively
significantly differ at least at the phonetic, phono-
logical and morphological level, and at least quan-
titatively also at the syntactic level.

Thus in our model of grammar induction, we
favor the view expressed e.g. in (Frank, 2000)
that complex grammars are bootstrapped (or grow)
from less complex grammars. On the other hand,
the intuition that structural or inherent proper-
ties at different linguistic levels correlate, i.e. they
seem to be used as cues in processing and acquisi-
tion, might require a parallel model of language
learning or grammar induction, as for example
suggested in (Jackendoff, 1996) or the Competi-
tion Model (MacWhinney and Bates, 1989).

In general, we start with the observation that

5

natural languages are learnable. In principle, the
study of how this might be modeled, and what the
minimal assumptions about the grammar proper-
ties and the induction algorithm could be, could
start top-down, by assuming maximal knowledge
of the target grammar, and subsequently eliminat-
ing elements that are obviously learnable in an un-
supervised way, or fall out as side-effects. Alter-
natively, a bottom-up approach could start with the
question about how much supervision has to be
added to an unsupervised model in order to con-
verge to a concise grammar.

Here we favor the bottom-up approach, and ask
how simple properties of grammar can be learned
in an unsupervised way, and how cues could be
identified that allow for the induction of higher
level properties of the target grammar, or other lin-
guistic levels, by for example favoring some struc-
tural hypotheses over others.

In this article we will discuss in detail sev-
eral experiments of morphological cue induction
for lexical classification (Ćavar et al., 2004a) and
(Ćavar et al., 2004b) using Vector Space Models
for category induction and subsequent rule for-
mation. Furthermore, we discuss structural cohe-
sion measured via Entropy-based statistics on the
basis of distributional properties for unsupervised
syntactic structure induction (Ćavar et al., 2004c)
from raw text, and compare the results with syn-
tactic corpora like the Penn Treebank. We ex-
pand these results with recent experiments in the
domain of unsupervised induction of phonotactic
regularities and phonological structure (Ćavar and
Ćavar, 2009), providing cues for morphological
structure induction and syntactic phrasing.

References
Damir Ćavar and Małgorzata E. Ćavar. 2009. On the

induction of linguistic categories and learning gram-
mars. Paper presented at the 10th Szklarska Poreba
Workshop, March.

Damir Ćavar, Joshua Herring, Toshikazu Ikuta, Paul
Rodrigues, and Giancarlo Schrementi. 2004a.
Alignment based induction of morphology grammar
and its role for bootstrapping. In Gerhard Jäger,
Paola Monachesi, Gerald Penn, and Shuly Wint-
ner, editors, Proceedings of Formal Grammar 2004,
pages 47–62, Nancy.

Damir Ćavar, Joshua Herring, Toshikazu Ikuta, Paul
Rodrigues, and Giancarlo Schrementi. 2004b. On
statistical bootstrapping. In William G. Sakas, ed-
itor, Proceedings of the First Workshop on Psycho-

computational Models of Human Language Acqui-
sition, pages 9–16.

Damir Ćavar, Joshua Herring, Toshikazu Ikuta, Paul
Rodrigues, and Giancarlo Schrementi. 2004c. Syn-
tactic parsing using mutual information and relative
entropy. Midwest Computational Linguistics Collo-
quium (MCLC), June.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Robert Frank. 2000. From regular to context free to
mildly context sensitive tree rewriting systems: The
path of child language acquisition. In A. Abeillé
and O. Rambow, editors, Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis and Process-
ing, pages 101–120. CSLI Publications.

Sharon Inkelas and Draga Zec. 1990. The Phonology-
Syntax Connection. University Of Chicago Press,
Chicago.

Ray Jackendoff. 1996. The Architecture of the Lan-
guage Faculty. Number 28 in Linguistic Inquiry
Monographs. MIT Press, Cambridge, MA.

Aravind Joshi, K. Vijay-Shanker, and David Weird.
1991. The convergence of mildly context-sensitive
grammar formalisms. In Peter Sells, Stuart Shieber,
and Thomas Wasow, editors, Foundational Issues in
Natural Language Processing, pages 31–81. MIT
Press, Cambridge, MA.

Brian MacWhinney and Elizabeth Bates. 1989. The
Crosslinguistic Study of Sentence Processing. Cam-
bridge University Press, New York.

Eric S. Ristad. 1990. Computational structure of gen-
erative phonology and its relation to language com-
prehension. In Proceedings of the 28th annual meet-
ing on Association for Computational Linguistics,
pages 235–242. Association for Computational Lin-
guistics.

Bruce Tesar and Paul Smolensky. 2000. Learnability
in Optimality Theory. MIT Press, Cambridge, MA.

6

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 7–15,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Dialogue Act Prediction Using Stochastic Context-Free Grammar
Induction

Jeroen Geertzen
Research Centre for English & Applied Linguistics

University of Cambridge, UK
jg532@cam.ac.uk

Abstract

This paper presents a model-based ap-
proach to dialogue management that is
guided by data-driven dialogue act predic-
tion. The statistical prediction is based on
stochastic context-free grammars that have
been obtained by means of grammatical
inference. The prediction performance of
the method compares favourably to that of
a heuristic baseline and to that ofn-gram
language models.

The act prediction is explored both for
dialogue acts without realised semantic
content (consisting only of communicative
functions) and for dialogue acts with re-
alised semantic content.

1 Introduction

Dialogue management is the activity of determin-
ing how to behave as an interlocutor at a specific
moment of time in a conversation: whichaction
can or should be taken at whatstateof the dia-
logue. The systematic way in which an interlocu-
tor chooses among the options for continuing a di-
alogue is often called adialogue strategy.

Coming up with suitable dialogue management
strategies for dialogue systems is not an easy task.
Traditional methods typically involve manually
crafting and tuning frames or hand-crafted rules,
requiring considerable implementation time and
cost. More recently, statistical methods are be-
ing used to semi-automatically obtain models that
can be trained and optimised using dialogue data.1

These methods are usually based on two assump-
tions. First, the training data is assumed to be
representative of the communication that may be
encountered in interaction. Second, it is assumed
that dialogue can be modelled as a Markov De-
cision Process (MDP) (Levin et al., 1998), which

1See e.g. (Young, 2002) for an overview.

implies that dialogue is modelled as a sequential
decision task in which each contribution (action)
results in a transition from one state to another.

The latter assumption allows to assign areward
for action-state pairs, and to determine the dia-
logue management strategy that results in the max-
imum expected reward by finding for each state
the optimal action by usingreinforcement learn-
ing (cf. (Sutton and Barto, 1998)). Reinforce-
ment learning approaches to dialogue manage-
ment have proven to be successful in several task
domains (see for example (Paek, 2006; Lemon et
al., 2006)). In this process there is no supervision,
but what is optimal depends usually on factors that
require human action, such as task completion or
user satisfaction.

The remainder of this paper describes and eval-
uates a model-based approach to dialogue man-
agement in which the decision process of taking
a particular action given a dialogue state is guided
by data-driven dialogue act prediction. The ap-
proach improves overn-gram language models
and can be used in isolation or for user simula-
tion, without yet providing a full alternative to re-
inforcement learning.

2 Using structural properties of
task-oriented dialogue

One of the best known regularities that are ob-
served in dialogue are the two-part structures,
known asadjacency pairs(Schegloff, 1968), like
QUESTION-ANSWER or GREETING-GREETING.

A simple model of predicting a plausible next
dialogue act that deals with such regularities could
be based on bigrams, and to include more context
also higher-ordern-grams could be used. For in-
stance, Stolcke et al. (2000) exploren-gram mod-
els based on transcribed words and prosodic in-
formation for SWBD-DAMSL dialogue acts in the
Switchboard corpus (Godfrey et al., 1992). After
training back-offn-gram models (Katz, 1987) of

7

different order using frequency smoothing (Witten
and Bell, 1991), it was concluded that trigrams and
higher-ordern-grams offer a small gain in predi-
cation performance with respect to bigrams.

Apart from adjacency pairs, there is a variety
of more complex re-occurring interaction patterns.
For instance, the following utterances with cor-
responding dialogue act types illustrate a clarifi-
cation sub-dialogue within an information-request
dialogue:

1 A: How do I do a fax? QUESTION

2 B: Do you want to send QUESTION
or print one?

3 A: I want to print it ANSWER

4 B: Just press the grey button ANSWER

Such structures have received considerable at-
tention and their models are often referred to as
discourse/dialogue grammars (Polanyi and Scha,
1984) or conversational/dialogue games (Levin
and Moore, 1988).

As also remarked by Levin (1999), predict-
ing and recognising dialogue games usingn-gram
models is not really successful. There are vari-
ous causes for this. The flat horizontal structure of
n-grams does not allow (hierarchical) grouping of
symbols. This may weaken the predictive power
and reduces the power of the representation since
nested structures such as exemplified above cannot
be represented in a straightforward way.

A better solution would be to express the struc-
ture of dialogue games by a context-free grammar
(CFG) representation in which the terminals are
dialogue acts and the non-terminals denote con-
versational games. Construction of a CFG would
require explicit specification of a discourse gram-
mar, which could be done by hand, but it would be
a great advantage if CFGs could automatically be
induced from the data. An additional advantage
of grammar induction is the possibility to assess
the frequency of typical patterns and a stochastic
context-free grammar (SCFG) may be produced
which can be used for parsing the dialogue data.

3 Sequencing dialogue acts

Both n-gram language models and SCFG based
models work on sequences of symbols. Using
more complex symbols increases data sparsity:
encoding more information increases the number
of unique symbols in the dataset and decreases

the number of reoccurring patterns which could be
used in the prediction.

In compiling the symbols for the prediction ex-
periments, three aspects are important: the identi-
fication of interlocutors, the definition of dialogue
acts, and multifunctionality in dialogue.

The dialogue act taxonomy that is used in the
prediction experiments is that ofDIT (Bunt, 2000).
A dialogue act is defined as a pair consisting of a
communicative function (CF) and a semantic con-
tent (SC):a =< CF,SC >. The DIT taxonomy
distinguishes 11 dimensions of communicative
functions, addressing information about the task
domain, feedback, turn management, and other
generic aspects of dialogue (Bunt, 2006). There
are also functions, calledthe general-purpose
functions, that may occur in any dimension. In
quite some cases, particularly when dialogue con-
trol is addressed and dimension-specific functions
are realised, the SC is empty. General-purpose
functions, by contrast, are always used in combi-
nation with a realised SC. For example:

dialogue act

utterance function semantic content

What to do next? SET-QUESTION next-step(X)

Press the button. SET-ANSWER press(Y) ∧

button(Y)

The SC —if realised— describes objects, prop-
erties, and events in the domain of conversation.

In dialogue act prediction while taking multi-
dimensionality into account, a dialogueD can be
represented as a sequence of events in which an
event is a set of one dialogue act or multiple di-
alogue acts occurring simultaneously. The infor-
mation concerning interlocutor and multifunction-
ality is encoded in a single symbol and denoted by
means of an-tuple. Assuming that at most three
functions can occur simultaneously, a 4-tuple is
needed2: (interlocutor,da1,da2,da3). An ex-
ample of a bigram of 4-tuples would then look as
follows:

(A,<SET-Q,"next-step(X)">, ,) ,
(B,<SET-A,"press(Y) ∧ button(Y)">, ,)

Two symbols are considered to be identical when
the same speaker is involved and when the sym-
bols both address the same functions. To make

2Ignoring the half percent of occurrences with four simul-
taneous functions.

8

it easy to determine if two symbols are identical,
the order of elements in a tuple is fixed: func-
tions that occur simultaneously are first ordered on
importance of dimension, and subsequently on al-
phabet. The task-related functions are considered
the most important, followed by feedback-related
functions, followed by any other remaining func-
tions. This raises the question how recognition
performance using multifunctional symbols com-
pares against recognition performance using sym-
bols that only encode the primary function

4 N-gram language models

There exists a significant body of work on the use
of language models in relation to dialogue man-
agement. Nagata and Morimoto (1994) describe a
statistical model of discourse based on trigrams of
utterances classified by custom speech act types.
They report39.7% prediction accuracy for the top
candidate and61.7% for the top three candidates.

In the context of the dialogue component of the
speech-to-speech translation system VERBMO-
BIL, Reithinger and Maier (1995) usen-gram dia-
logue act probabilities to suggest the most likely
dialogue act. In later work, Alexandersson and
Reithinger (1997) describe an approach which
comes close to the work reported in this paper: Us-
ing grammar induction, plan operators are semi-
automatically derived and combined with a statis-
tical disambiguation component. This system is
claimed to have an accuracy score of around 70%
on turn management classes.

Another study is that of Poesio and Mikheev
(1998), in which prediction based on the previous
dialogue act is compared with prediction based on
the context of dialogue games. Using the Map
Task corpus annotated with ‘moves’ (dialogue
acts) and ‘transactions’ (games) they showed that
by using higher dialogue structures it was possi-
ble to perform significantly better than a bigram
model approach. Using bigrams,38.6% accuracy
was achieved. Additionally taking game structure
into account resulted in50.6%; adding informa-
tion about speaker change resulted in an accuracy
of 41.8% with bigrams, 54% with game structure.

All studies discussed so far are only concerned
with sequences of communicative functions, and
disregard the semantic content of dialogue acts.

5 Dialogue grammars

To automatically induce patterns from dialogue
data in an unsupervised way, grammatical infer-
ence (GI) techniques can be used. GI is a branch
of unsupervised machine learning that aims to find
structure in symbolic sequential data. In this case,
the input of the GI algorithm will be sequences of
dialogue acts.

5.1 Dialogue Grammars Inducer

For the induction of structure, a GI algorithm has
been implemented that will be referred to as Dia-
logue Grammars Inducer (DGI). This algorithm is
based on distributional clustering and alignment-
based learning (van Zaanen and Adriaans, 2001;
van Zaanen, 2002; Geertzen and van Zaanen,
2004). Alignment-based learning (ABL) is a sym-
bolic grammar inference framework that has suc-
cessfully been applied to several unsupervised ma-
chine learning tasks in natural language process-
ing. The framework accepts sequences with sym-
bols, aligns them with each other, and compares
them to find interchangeable subsequences that
mark structure. As a result, the input sequences
are augmented with the induced structure.

The DGI algorithm takes as input time series of
dialogue acts, and gives as output a set of SCFGs.
The algorithm has five phases:

1. SEGMENTATION: In the first phase of DGI,
the time series are —if necessary— seg-
mented in smaller sequences based on a spe-
cific time interval in which no communica-
tion takes place. This is a necessary step in
task-oriented conversation in which there is
ample time to discuss (and carry out) several
related tasks, and an interaction often con-
sists of a series of short dialogues.

2. ALIGNMENT LEARNING : In the second
phase a search space of possible structures,
called hypotheses, is generated by compar-
ing all input sequences with each other and
by clustering sub-sequences that share simi-
lar context. To illustrate the alignment learn-
ing, consider the following input sequences:

A:SET-Q, B:PRO-Q, A:PRO-A, B:SET-A.
A:SET-Q, B:PAUSE, B:RESUME, B:SET-A.
A:SET-Q, B:SET-A.

The alignment learning compares all input
sequences with each other, and produces the

9

hypothesised structures depicted below. The
induced structure is represented using brack-
eting.

[i A:SET-Q, [j B:PRO-Q, A:PRO-A,]j B:SET-A.]i
[i A:SET-Q, [j B:PAUSE, A:RESUME,]j B:SET-A.]i
[i A:SET-Q, [j]j B:SET-A.]i

The hypothesisj is generated because of the
similar context (which is underlined). The
hypothesisi, the full span, is introduced by
default, as it might be possible that the se-
quence is in itself a part of a longer sequence.

3. SELECTION LEARNING: The set of hypothe-
ses that is generated during alignment learn-
ing contains hypotheses that are unlikely to
be correct. These hypotheses are filtered out,
overlapping hypotheses are eliminated to as-
sure that it is possible to extract a context-
free grammar, and the remaining hypotheses
are selected and remain in the bracketed out-
put. The decision of which hypotheses to se-
lect and which to discard is based on a Viterbi
beam search (Viterbi, 1967).

4. EXTRACTION: In the fourth phase, SCFG
grammars are extracted from the remaining
hypotheses by means of recursive descent
parsing. Ignoring the stochastic informa-
tion, a CFG of the above-mentioned example
looks in terms of grammar rules as depicted
below:

S ⇒ A:SET-Q J B:SET-A
J ⇒ B:PRO-Q A:PRO-A
J ⇒ B:PAUSE A:RESUME
J ⇒ ∅

5. FILTERING: In the last phase, the SCFG
grammars that have small coverage or involve
many non-terminals are filtered out, and the
remaining SCFG grammars are presented as
the output of DGI.

Depending on the mode of working, the DGI
algorithm can generate a SCFG covering the com-
plete input or can generate a set of SCFGs. In the
former mode, the grammar that is generated can be
used for parsing sequences of dialogue acts and by
doing so suggests ways to continue the dialogue.
In the latter mode, by parsing each grammar in the
set of grammars that are expected to represent di-
alogue games in parallel, specific dialogue games

may be recognised, which can in turn be used ben-
eficially in dialogue management.

5.2 A worked example

In testing the algorithm, DGI has been used to
infer a set of SCFGs from a development set of
250 utterances of the DIAMOND corpus (see also
Section 6.1). Already for this small dataset, DGI
produced, using default parameters, 45 ‘dialogue
games’. One of the largest produced structures
was the following:

4 S ⇒ A:SET-Q , NTAX , NTBT , B:SET-A
4 NTAX ⇒ B:PRO-Q , NTFJ
3 NTFJ ⇒ A:PRO-A
1 NTFJ ⇒ A:PRO-A , A:CLARIFY
2 NTBT ⇒ B:PRO-Q , A:PRO-A
2 NTBT ⇒ ∅

In this figure, each CFG rule has a number in-
dicating how many times the rules has been used.
One of the dialogue fragments that was used to in-
duce this structure is the following excerpt:

utterance dialogue act

A1 how do I do a short code? SET-Q
B1 do you want to program one? PRO-Q
A2 no SET-A
A3 I want to enter a kie* a short code CLARIFY
B2 you want to use a short code? PRO-Q
A4 yes PRO-A
B3 press the VK button SET-A

Unfortunately, many of the 45 induced struc-
tures were very small or involved generalisations
already based on only two input samples. To en-
sure that the grammars produced by DGI gen-
eralise better and are less fragmented, a post-
processing step has been added which traverses
the grammars and eliminates generalisations based
on a low number of samples. In practice, this
means that the post-processing requires the re-
maining grammatical structure to be presentedN

times or more in the data.3. The algorithm without
post-processing will be referred to as DGI1; the
algorithm with post-processing as DGI2.

6 Act prediction experiments

To determine how to behave as an interlocutor at
a specific moment of time in a conversation, the
DGI algorithm can be used to infer a SCFG that
models the structure of the interaction. The SCFG

3
N = 2 by default, but may increase with the size of the

training data.

10

can then be used to suggest a next dialogue act
to continue the dialogue. In this section, the per-
formance of the proposed SCFG based dialogue
model is compared with the performance of the
well-knownn-gram language models, both trained
on intentional level, i.e. on sequences of sets of di-
alogue acts.

6.1 Data

The task-oriented dialogues used in the dialogue
act prediction tasks were drawn from the DIA-
MOND corpus (Geertzen et al., 2004), which con-
tains human-machine and human-human Dutch
dialogues that have an assistance seeking na-
ture. The dataset used in the experiments con-
tains 1, 214 utterances representing1, 592 func-
tional segments from the human-human part of
corpus. In the domain of the DIAMOND data,
i.e. operating a fax device, the predicates and argu-
ments in the logical expressions of the SC of the
dialogue acts refer to entities, properties, events,
and tasks in the application domain. The appli-
cation domain of the fax device is complex but
small: the domain model consists of 70 entities
with at most 10 properties, 72 higher-level actions
or tasks, and 45 different settings.

Representations of semantic content are often
expressed in some form of predicate logic type
formula. Examples are Quasi Logical Forms (Al-
shawi, 1990), Dynamic Predicate Logic (Groe-
nendijk and Stokhof, 1991), and Underspecified
Discourse Representation Theory (Reyle, 1993).
The SC in the dataset is in a simplified first order
logic similar to quasi logical forms, and is suitable
to support feasible reasoning, for which also theo-
rem provers, model builders, and model checkers
can be used. The following utterances and their
corresponding SC characterise the dataset:

1 wat moet ik nu doen?
(what do I have to do now?)
λx . next-step(x)

2 druk op een toets
(press a button)
λx . press(x) ∧ button(x)

3 druk op de groene toets
(press the green button)
λx . press(x) ∧ button(x) ∧ color(x,’green’)

4 wat zit er boven de starttoets?
(what is located above the starttoets?)
λx . loc-above(x,’button041’)

Three types of predicate groups are distin-

guished: action predicates, element predicates,
and property predicates. These types have a fixed
order. The action predicates appear before element
predicates, which appear in turn before property
predicates. This allows to simplify the semantic
content for the purpose of reducing data sparsity
in act prediction experiments, by stripping away
e.g. property predicates. For instance, if desired
the SC of utterance 3 in the example could be sim-
plified to that of utterance 2, making the semantics
less detailed but still meaningful.

6.2 Methodology and metrics

Evaluation of overall performance in communi-
cation is problematic; there are no generally ac-
cepted criteria as to what constitutes an objective
and sound way of comparative evaluation. An
often-used paradigm for dialogue system evalua-
tion is PARADISE (Walker et al., 2000), in which
the performance metric is derived as a weighted
combination of subjectively rated user satisfac-
tion, task-success measures and dialogue cost.
Evaluating if the predicted dialogue acts are con-
sidered as positive contributions in such a way
would require the model to be embedded in a fully
working dialogue system.

To assess whether the models that are learned
produce human-like behaviour without resorting
to costly user interaction experiments, it is needed
to compare their output with real human responses
given in the same contexts. This will be done by
deriving a model from one part of a dialogue cor-
pus and applying the model on an ’unseen’ part
of the corpus, comparing the suggested next dia-
logue act with the observed next dialogue act. To
measure the performance,accuracyis used, which
is defined as the proportion of suggested dialogue
acts that match the observed dialogue acts.

In addition to the accuracy, alsoperplexity is
used as metric. Perplexity is widely used in re-
lation to speech recognition and language models,
and can in this context be understood as a metric
that measures the number of equiprobable possi-
ble choices that a model faces at a given moment.
Perplexity, being related to entropy is defined as
follows:

Entropy = −
∑

i

p(wi|h) · log2 p(wi|h)

Perplexity = 2Entropy

11

whereh denotes the conditioned part, i.e.wi−1

in the case of bigrams andwi−2, wi−1 in the case
of trigrams, et cetera. In sum, accuracy could be
described as a measure of correctness of the hy-
pothesis and perplexity could be described as how
probable the correct hypothesis is.

For all n-gram language modelling tasks re-
ported, good-turing smoothing was used (Katz,
1987). To reduce the effect of imbalances in the
dialogue data, the results were obtained using 5-
fold cross-validation.

To have an idea how the performance of both
then-gram language models and the SCFG mod-
els relate to the performance of a simple heuris-
tic, a baseline has been computed which suggests
a majority class label according to the interlocutor
role in the dialogue. The information seeker has
SET-Q and the information provider hasSET-A as
majority class label.

6.3 Results for communicative functions

The scores for communicative function prediction
are presented in Table 1. For each of the three
kinds of symbols, accuracy and perplexity are cal-
culated: the first two columns are for the main CF,
the second two columns are for the combination
of speaker identityandmain CF, and the third two
columns are for the combination of speaker iden-
tity and all CFs. The scores for the latter two cod-
ings could not be calculated for the 5-gram model,
as the data were too sparse.

As was expected, there is an improvement in
both accuracy (increasing) and perplexity (de-
creasing) for increasingn-gram order. After the
4-gram language model, the scores drop again.
This could well be the result of insufficient train-
ing data, as the more complex symbols could not
be predicted well.

Both language models and SCFG models per-
form better than the baseline, for all three groups.
The two SCFG models, DGI1 and DGI2, clearly
outperform then-gram language models with a
substantial difference in accuracy. Also the per-
plexity tends to be lower. Furthermore, model
DGI2 performs clearly better than model DGI1,
which indicates that the ‘flattening’ of non-
terminals which is described in Section 5 results
in better inductions.

When comparing the three groups of sequences,
it can be concluded that providing the speaker
identity combined with the main communicative

function results in better accuracy scores of5.9%
on average, despite the increase in data sparsity. A
similar effect has also been reported by Stolcke et
al. (2000).

Only for the 5-gram language model, the data
become too sparse to learn reliably a language
model from. There is again an increase in per-
formance when also the last two positions in the
4-tuple are used and all available dialogue act as-
signments are available. It should be noted, how-
ever, that this increase has less impact than adding
the speaker identity. The best performingn-gram
language model achieved66.4% accuracy; the
best SCFG model achieved78.9% accuracy.

6.4 Results for dialogue acts

The scores for prediction of dialogue acts, includ-
ing SC, are presented in the left part of Table 2.
The presentation is similar to Table 1: for each of
the three kinds of symbols, accuracy and perplex-
ity were calculated. For dialogue acts that may in-
clude semantic content, computing a useful base-
line is not obvious. The same baseline as for com-
municative functions was used, which results in
lower scores.

The table shows that the attempts to learn to
predict additionally the semantic content of utter-
ances quickly run into data sparsity problems. It
turned out to be impossible to make predictions
from 4-grams and 5-grams, and for 3-grams the
combination of speaker and all dialogue acts could
not be computed. Training the SCFGs, by con-
trast, resulted in fewer problems with data sparsity,
as the models abstract quickly.

As with predicting communicative functions,
the SCFG models show better performance than
the n-gram language models, for which the 2-
grams show slightly better results than the 3-
grams. Where there was a notable performance
difference between DGI1 and DGI2 for CF pre-
diction, for dialogue act prediction there is only a
very little difference, which is insignificant con-
sidering the relatively high standard deviation.
This small difference is explained by the fact that
DGI2 becomes less effective as the size of the
training data decreases.

As with CF prediction, it can be concluded that
providing the speaker identity with the main dia-
logue act results in better scores, but the difference
is less big than observed with CF prediction due to
the increased data sparsity.

12

Table 1: Communicative function prediction scores forn-gram language models and SCFGs in accuracy
(acc, in percent) and perplexity (pp). CFmain denotes the main communicative function, SPK speaker
identity, and CFall all occurring communicative functions.

CFmain SPK + CFmain SPK + CFall

acc pp acc pp acc pp

baseline 39.1±0.23 24.2±0.19 44.6±0.92 22.0±0.25 42.9±1.33 23.7±0.41

2-gram 53.1±0.88 17.9±0.35 58.3±1.84 16.8±0.31 61.1±1.65 16.3±0.59
3-gram 58.6±0.85 17.1±0.47 63.0±1.98 14.5±0.26 65.9±1.92 14.0±0.23
4-gram 60.9±1.12 16.7±0.15 65.4±1.62 15.2±1.07 66.4±2.03 14.2±0.44
5-gram 60.3±0.43 18.6±0.21 - - - -

DGI1 67.4±3.05 18.3±1.28 74.6±1.94 14.8±1.47 76.5±2.13 13.9±0.35
DGI2 71.8±2.67 16.1±1.25 78.3±2.50 14.0±2.39 78.9±1.98 13.6±0.35

Table 2: Dialogue act prediction scores forn-gram language models and SCFGs. DAmain denotes the
dialogue act with the main communicative function, and DAall all occurring dialogue acts.

DAmain SPK + DAmain SPK + DAall

full SC simplified SC
acc pp acc pp acc pp acc pp

baseline 18.5±2.01 31.0±1.64 19.3±1.79 27.6±0.93 18.2±1.93 31.6±1.38 18.2±1.93 31.6±1.38

2-gram 31.2±1.42 28.5±1.03 34.6±1.51 24.7±0.62 35.1±1.30 26.9±0.47 37.5±1.34 26.2±2.37
3-gram 29.0±1.14 34.7±2.82 31.9±1.21 30.5±2.06 - - 29.1±1.28 28.0±2.59
4-gram - - - - - - - -
5-gram - - - - - - - -

DGI1 38.8±3.27 25.1±0.94 42.5±0.96 25.0±1.14 42.9±2.44 27.3±1.98 46.6±2.01 24.6±2.24
DGI2 39.2±2.45 25.0±1.28 42.7±1.03 25.3±0.99 42.4±2.19 28.0±1.57 46.4±1.94 24.7±2.55

The prediction scores of dialogue acts with full
semantic content and simplified semantic content
are presented in the right part of Table 2. For both
cases multifunctionality is taken into account by
including all occurring communicative functions
in each symbol. As can be seen from the table,
the simplification of the semantic content leads to
improvements in the prediction performance for
both types of model. The bestn-gram language
model improved with2.4% accuracy from35.1%
to 37.5%; the best SCFG-based model improved
with 3.7% from42.9% to46.6%.

Moreover, the simplification of the semantic
content reduced the problem of data-sparsity, mak-
ing it also possible to predict based on 3-grams
although the accuracy is considerably lower than
that of the 2-gram model.

7 Discussion

Both n-gram language models and SCFG based
models have their strengths and weaknesses.n-
gram models have the advantage of being very ro-
bust and they can be easily trained. The SCFG

based model can capture regularities that have
gaps, and allow to model long(er) distance rela-
tions. Both algorithms work on sequences and
hence are easily susceptible to data-sparsity when
the symbols in the sequences get more complex.
The SCFG approach, though, has the advantage
that symbols can be clustered in the non-terminals
of the grammar, which allows more flexibility.

The multidimensional nature of theDIT++

functions can be adequately encoded in the sym-
bols of the sequences. Keeping track of the inter-
locutor and including not only the main commu-
nicative function but also other functions that oc-
cur simultaneously results in better performance
even though it decreases the amount of data to
learn from.

The prediction experiments based on main com-
municative functions assume that in case of multi-
functionality, a main function can clearly be iden-
tified. Moreover, it is assumed that task-related
functions are more important than feedback func-
tions or other functions. For most cases, these as-
sumptions are justified, but in some cases they are

13

problematic. For instance, in a heated discussion,
the turn management function could be considered
more important for the dialogue than a simultane-
ously occurring domain specific function. In other
cases, it is impossible to clearly identify a main
function as all functions occurring simultaneously
are equally important to the dialogue.

In general,n-grams of a higher order have a
higher predictability and therefore a lower per-
plexity. However, using high ordern-grams is
problematic due to sparsity of training data, which
clearly is the case with 4-grams, and particularly
with 5-grams in combination with complex sym-
bols as for CF prediction.

Considerably more difficult is the prediction of
dialogue acts with realised semantic content, as
is evidenced in the differences in accuracy and
perplexity for all models. Considering that the
data set, with about1, 600 functional segments,
is rather small, the statistical prediction of logical
expressions increases data sparsity to such a de-
gree that from then-gram language models, only
2-gram (and 3-grams to some extent) could be
trained. The SCFG models can be trained for both
CF prediction and dialogue act prediction.

As noted in Section 6.2, objective evaluation of
dialogue strategies and behaviour is difficult. The
evaluation approach used here compares the sug-
gested next dialogue act with the next dialogue act
as observed. This is done for each dialogue act in
the test set. This evaluation approach has the ad-
vantage that the evaluation metric can easily be un-
derstood and computed. The approach, however,
is also very strict: in a given dialogue context, con-
tinuations with various types of dialogue acts may
all be equally appropriate. To also take other pos-
sible contributions into account, a rich dataset is
required in which interlocutors act differently in
similar dialogue context with a similar established
common ground. Moreover, such a dataset should
contain for each of these cases with similar dia-
logue context a representative set of samples.

8 Conclusions and future work

An approach to the prediction of communicative
functions and dialogue acts has been presented
that makes use of grammatical inference to auto-
matically extract structure from corpus data. The
algorithm, based on alignment-based learning, has
been tested against a baseline and severaln-gram
language models. From the results it can be con-

cluded that the algorithm outperforms then-gram
models: on the task of predicting the communica-
tive functions, the best performingn-gram model
achieved 66.4% accuracy; the best SCFG model
achieved 78.9% accuracy. Predicting the seman-
tic content in combination with the communica-
tive functions is difficult, as evidenced by moder-
ate scores. Obtaining lower degreen-gram lan-
guage models is feasible, whereas higher degree
models are not trainable. Prediction works better
with the SCFG models, but does not result in con-
vincing scores. As the corpus is small, it is ex-
pected that with scaling up the available training
data, scores will improve for both tasks.

Future work in this direction can go in sev-
eral directions. First, the grammar induction ap-
proach shows potential of learning dialogue game-
like structures unsupervised. The performance on
this task could be tested and measured by applying
the algorithm on corpus data that have been anno-
tated with dialogue games. Second, the models
could also be extended to incorporate more infor-
mation than dialogue acts alone. This could make
comparisons with the performance obtained with
reinforcement learning or with Bayesian networks
interesting. Third, it would be interesting to learn
and apply the same models on other kinds of con-
versation, such as dialogue with more than two in-
terlocutors. Fourth, datasets could be drawn from
a large corpus that covers dialogues on a small
but complex domain. This makes it possible to
evaluate according to the possible continuations
as found in the data for situations with similar di-
alogue context, rather than to evaluate according
to a single possible continuation. Last, the rather
unexplored parameter space of the DGI algorithm
might be worth exploring in optimising the sys-
tem’s performance.

References

Jan Alexandersson and Norbert Reithinger. 1997.
Learning dialogue structures from a corpus. In
Proceedings of Eurospeech 1997, pages 2231–2234,
Rhodes, Greece, September.

Hiyan Alshawi. 1990. Resolving quasi logical forms.
Computational Linguistics, 16(3):133–144.

Harry Bunt. 2000. Dialogue pragmatics and context
specification. In Harry Bunt and William Black, ed-
itors, Abduction, Belief and Context in Dialogue;
Studies in Computational Pragmatics, pages 81–
150. John Benjamins, Amsterdam, The Netherlands.

14

Harry Bunt. 2006. Dimensions in dialogue annota-
tion. InProceedings of the 5th International Confer-
ence on Language Resources and Evaluation (LREC
2006), pages 1444–1449, Genova, Italy, May.

Jeroen Geertzen and Menno M. van Zaanen. 2004.
Grammatical inference using suffix trees. In
Proceedings of the 7th International Colloquium
on Grammatical Inference (ICGI), pages 163–174,
Athens, Greece, October.

Jeroen Geertzen, Yann Girard, and Roser Morante.
2004. The DIAMOND project. Poster at the 8th
Workshop on the Semantics and Pragmatics of Dia-
logue (CATALOG 2004), Barcelona, Spain, July.

John Godfrey, Edward Holliman, and Jane McDaniel.
1992. SWITCHBOARD: Telephone speech corpus
for research and development. InProceedings of the
ICASSP-92, pages 517–520, San Francisco, USA.

Jeroen Groenendijk and Martin Stokhof. 1991. Dy-
namic predicate logic.Linguistics and Philosophy,
14(1):39–100.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer.IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401.

Oliver Lemon, Kallirroi Georgila, and James Hender-
son. 2006. Evaluating effectiveness and portabil-
ity of reinforcement learned dialogue strategies with
real users: The talk towninfo evaluation. InSpoken
Language Technology Workshop, pages 178–181.

Joan A. Levin and Johanna A. Moore. 1988. Dialogue-
games: metacommunication structures for natural
language interaction.Distributed Artificial Intelli-
gence, pages 385–397.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1998. Using markov decision process for
learning dialogue strategies. InProceedings of the
ICASSP’98, pages 201–204, Seattle, WA, USA.

Lori Levin, Klaus Ries, Ann Thymé-Gobbel, and Alon
Lavie. 1999. Tagging of speech acts and dialogue
games in spanish call home. InProceedings of ACL-
99 Workshop on Discourse Tagging, College Park,
MD, USA.

Masaaki Nagata and Tsuyoshi Morimoto. 1994. First
steps towards statistical modeling of dialogue to pre-
dict the speech act type of the next utterance.Speech
Communication, 15(3-4):193–203.

Tim Paek. 2006. Reinforcement learning for spoken
dialogue systems: Comparing strenghts and weak-
nesses for practical deployment. InInterspeech
Workshop on ”Dialogue on Dialogues”.

Massimo Poesio and Andrei Mikheev. 1998. The
predictive power of game structure in dialogue

act recognition: Experimental results using maxi-
mum entropy estimation. InProceedings Interna-
tional Conference on Spoken Language Processing
(ICSLP-98), Sydney, Australia, December.

Livia Polanyi and Remko Scha. 1984. A syntactic ap-
proach to discourse semantics. InProceedings of
the 10th international conference on Computational
linguistics, pages 413–419, Stanford, CA, USA.

Norbert Reithinger and Elisabeth Maier. 1995. Uti-
lizing statistical dialogue act processing in VERB-
MOBIL. In Proceedings of the 33rd annual meeting
on the Association for Computational Linguistics
(ACL), pages 116–121, Cambridge, Massachusetts.
Association for Computational Linguistics (ACL).

Uwe Reyle. 1993. Dealing with ambiguities by under-
specification: Construction, representation and de-
duction.Journal of Semantics, 10(2):123–179.

Emanuel A. Schegloff. 1968. Sequencing in con-
versational openings. American Anthropologist,
70:1075–1095.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech.Computational Linguistics, 26(3):339–373.

Richard S. Sutton and Andrew G. Barto. 1998.Re-
inforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). MIT Press,
March.

Menno van Zaanen and Pieter W. Adriaans. 2001.
Comparing two unsupervised grammar induction
systems: Alignment-Based Learning vs. EMILE.
Technical Report TR2001.05, University of Leeds,
Leeds, UK, March.

Menno M. van Zaanen. 2002.Bootstrapping Structure
into Language: Alignment-Based Learning. Ph.D.
thesis, University of Leeds, Leeds, UK, January.

Andrew J. Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum decod-
ing algorithm. IEEE Transactions on Information
Theory, 13(2):260–269, April.

Marilyn Walker, Candace Kamm, and Diane Litman.
2000. Towards developing general models of usabil-
ity with paradise. Natural Language Engineering,
6(3-4):363–377.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression.IEEE
Transactions on Information Theory, 37(4):1085–
1094.

Steve Young. 2002. The statistical approach to the
design of spoken dialogue systems. Technical Re-
port CUED/F-INFENG/TR.433, Engineering De-
partment, Cambridge University, UK, September.

15

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 16–23,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Experiments Using OSTIA for a Language Production Task

Dana Angluin and Leonor Becerra-Bonache
Department of Computer Science, Yale University

P.O.Box 208285, New Haven, CT, USA
{dana.angluin, leonor.becerra-bonache}@yale.edu

Abstract

The phenomenon of meaning-preserving
corrections given by an adult to a child
involves several aspects: (1) the child
produces an incorrect utterance, which
the adult nevertheless understands, (2) the
adult produces a correct utterance with the
same meaning and (3) the child recognizes
the adult utterance as having the same
meaning as its previous utterance, and
takes that as a signal that its previous ut-
terance is not correct according to the adult
grammar. An adequate model of this phe-
nomenon must incorporate utterances and
meanings, account for how the child and
adult can understand each other’s mean-
ings, and model how meaning-preserving
corrections interact with the child’s in-
creasing mastery of language production.
In this paper we are concerned with how
a learner who has learned to comprehend
utterances might go about learning to pro-
duce them.

We consider a model of language com-
prehension and production based on finite
sequential and subsequential transducers.
Utterances are modeled as finite sequences
of words and meanings as finite sequences
of predicates. Comprehension is inter-
preted as a mapping of utterances to mean-
ings and production as a mapping of mean-
ings to utterances. Previous work (Castel-
lanos et al., 1993; Pieraccini et al., 1993)
has applied subsequential transducers and
the OSTIA algorithm to the problem of
learning to comprehend language; here we
apply them to the problem of learning to
produce language. For ten natural lan-
guages and a limited domain of geomet-
ric shapes and their properties and rela-

tions we define sequential transducers to
produce pairs consisting of an utterance
in that language and its meaning. Using
this data we empirically explore the prop-
erties of the OSTIA and DD-OSTIA al-
gorithms for the tasks of learning compre-
hension and production in this domain, to
assess whether they may provide a basis
for a model of meaning-preserving correc-
tions.

1 Introduction

The role of corrections in language learning has
recently received substantial attention in Gram-
matical Inference. The kinds of corrections con-
sidered are mainly syntactic corrections based on
proximity between strings. For example, a cor-
rection of a string may be given by using edit
distance (Becerra-Bonache et al., 2007; Kinber,
2008) or based on the shortest extension of the
queried string (Becerra-Bonache et al., 2006),
among others. In these approaches semantic in-
formation is not used.

However, in natural situations, a child’s er-
roneous utterances are corrected by her parents
based on the meaning that the child intends to ex-
press; typically, the adult’s corrections preserve
the intended meaning of the child. Adults use cor-
rections in part as a way of making sure they have
understood the child’s intentions, in order to keep
the conversation “on track”. Thus the child’s ut-
terance and the adult’s correction have the same
meaning, but the form is different. As Chouinard
and Clark point out (2003), because children at-
tend to contrasts in form, any change in form that
does not mark a different meaning will signal to
children that they may have produced something
that is not acceptable in the target language. Re-
sults in (Chouinard and Clark, 2003) show that
adults reformulate erroneous child utterances of-
ten enough to help learning. Moreover, these re-

16

sults show that children can not only detect differ-
ences between their own utterance and the adult
reformulation, but that they do make use of that
information.

Thus in some natural situations, corrections
have a semantic component that has not been taken
into account in previous Grammatical Inference
studies. Some interesting questions arise: What
are the effects of corrections on learning syntax?
Can corrections facilitate the language learning
process? One of our long-term goals is to find a
formal model that gives an account of this kind
of correction and in which we can address these
questions. Moreover, such a model might allow us
to show that semantic information can simplify the
problem of learning formal languages.

A simple computational model of semantics and
context for language learning incorporating se-
mantics was proposed in (Angluin and Becerra-
Bonache, 2008). This model accommodates two
different tasks: comprehension and production.
That paper focused only on the comprehension
task and formulated the learning problem as fol-
lows. The teacher provides to the learner several
example pairs consisting of a situation and an ut-
terance denoting something in the situation; the
goal of the learner is to learn the meaning func-
tion, allowing the learner to comprehend novel ut-
terances. The results in that paper show that under
certain assumptions, a simple algorithm can learn
to comprehend an adult’s utterance in the sense of
producing the same sequence of predicates, even
without mastering the adult’s grammar. For exam-
ple, receiving the utterance the blue square above
the circle, the learner would be able to produce the
sequence of predicates (bl, sq, ab, ci).

In this paper we focus on the production task,
using sequential and subsequential transducers to
model both comprehension and production. Adult
production can be modeled as converting a se-
quence of predicates into an utterance, which can
be done with access to the meaning transducer for
the adult’s language.

However, we do not assume that the child ini-
tially has access to the meaning transducer for
the adult’s language; instead we assume that the
child’s production progresses through different
stages. Initially, child production is modeled as
consisting of two different tasks: finding a correct
sequence of predicates, and inverting the meaning
function to produce a kind of “telegraphic speech”.

For example, from (gr, tr, le, sq) the child may
produce green triangle left square. Our goal is to
model how the learner might move from this tele-
graphic speech to speech that is grammatical in the
adult’s sense. Moreover, we would like to find a
formal framework in which corrections (in form of
expansions, for example, the green triangle to the
left of the square) can be given to the child dur-
ing the intermediate stages (before the learner is
able to produce grammatically correct utterances)
to study their effect on language learning.

We thus propose to model the problem of
child language production as a machine trans-
lation problem, that is, as the task of translat-
ing a sequence of predicate symbols (representing
the meaning of an utterance) into a correspond-
ing utterance in a natural language. In this pa-
per we explore the possibility of applying existing
automata-theoretic approaches to machine transla-
tion to model language production. In Section 2,
we describe the use of subsequential transducers
for machine translation tasks and review the OS-
TIA algorithm to learn them (Oncina, 1991). In
Section 3, we present our model of how the learner
can move from telegraphic to adult speech. In Sec-
tion 4, we present the results of experiments in the
model made using OSTIA. Discussion of these re-
sults is presented in Section 5 and ideas for future
work are in Section 6.

2 Learning Subsequential Transducers

Subsequential transducers (SSTs) are a formal
model of translation widely studied in the liter-
ature. SSTs are deterministic finite state mod-
els that allow input-output mappings between lan-
guages. Each edge of an SST has an associated
input symbol and output string. When an in-
put string is accepted, an SST produces an out-
put string that consists of concatenating the out-
put substrings associated with sequence of edges
traversed, together with the substring associated
with the last state reached by the input string. Sev-
eral phenomena in natural languages can be eas-
ily represented by means of SSTs, for example,
the different orders of noun and adjective in Span-
ish and English (e.g., un cuadrado rojo - a red
square). Formal and detailed definitions can be
found in (Berstel, 1979).

For any SST it is always possible to find an
equivalent SST that has the output strings assigned
to the edges and states so that they are as close to

17

the initial state as they can be. This is called an
Onward Subsequential Transducer (OST).

It has been proved that SSTs are learnable in
the limit from a positive presentation of sentence
pairs by an efficient algorithm called OSTIA (On-
ward Subsequential Transducer Inference Algo-
rithm) (Oncina, 1991). OSTIA takes as input a fi-
nite training set of input-output pairs of sentences,
and produces as output an OST that generalizes
the training pairs. The algorithm proceeds as fol-
lows (this description is based on (Oncina, 1998)):

• A prefix tree representation of all the input
sentences of the training set is built. Empty
strings are assigned as output strings to both
the internal nodes and the edges of this tree,
and every output sentence of the training set
is assigned to the corresponding leaf of the
tree. The result is called a tree subsequential
transducer.

• An onward tree subsequential transducer
equivalent to the tree subsequential trans-
ducer is constructed by moving the longest
common prefixes of the output strings, level
by level, from the leaves of the tree towards
the root.

• Starting from the root, all pairs of states of
the onward tree subsequential transducer are
considered in order, level by level, and are
merged if possible (i.e., if the resulting trans-
ducer is subsequential and does not contra-
dict any pair in the training set).

SSTs and OSTIA have been successfully ap-
plied to different translation tasks: Roman numer-
als to their decimal representations, numbers writ-
ten in English to their Spanish spelling (Oncina,
1991) and Spanish sentences describing simple
visual scenes to corresponding English and Ger-
man sentences (Castellanos et al., 1994). They
have also been applied to language understanding
tasks (Castellanos et al., 1993; Pieraccini et al.,
1993).

Moreover, several extensions of OSTIA have
been introduced. For example, OSTIA-DR incor-
porates domain (input) and range (output) mod-
els in the learning process, allowing the algorithm
to learn SSTs that accept only sentences compat-
ible with the input model and produce only sen-
tences compatible with the output model (Oncina

and Varo, 1996). Experiments with a language un-
derstanding task gave better results with OSTIA-
DR than with OSTIA (Castellanos et al., 1993).
Another extension is DD-OSTIA (Oncina, 1998),
which instead of considering a lexicographic order
to merge states, uses a heuristic order based on a
measure of the equivalence of the states. Experi-
ments in (Oncina, 1998) show that better results
can be obtained by using DD-OSTIA in certain
translation tasks from Spanish to English.

3 From telegraphic to adult speech

To model how the learner can move from tele-
graphic speech to adult speech, we reduce this
problem to a translation problem, in which the
learner has to learn a mapping from sequences of
predicates to utterances. As we have seen in the
previous section, SSTs are an interesting approach
to machine translation. Therefore, we explore the
possibility of modeling language production using
SSTs and OSTIA, to see whether they may pro-
vide a good framework to model corrections.

As described in (Angluin and Becerra-Bonache,
2008), after learning the meaning function the
learner is able to assign correct meanings to ut-
terances, and therefore, given a situation and an
utterance that denotes something in the situation,
the learner is able to point correctly to the object
denoted by the utterance. To simplify the task
we consider, we make two assumptions about the
learner at the start of the production phase: (1)
the learner’s lexicon represents a correct meaning
function and (2) the learner can generate correct
sequences of predicates.

Therefore, in the initial stage of the production
phase, the learner is able to produce a kind of
“telegraphic speech” by inverting the lexicon con-
structed during the comprehension stage. For ex-
ample, if the sequence of predicates is (bl, sq, ler,
ci), and in the lexicon blue is mapped to bl, square
to sq, right to ler and circle to ci, then by invert-
ing this mapping, the learner would produce blue
square right circle.

In order to explore the capability of SSTs and
OSTIA to model the next stage of language pro-
duction (from telegraphic to adult speech), we take
the training set to be input-output pairs each of
which contains as input a sequence of predicates
(e.g., (bl, sq, ler, ci)) and as output the correspond-
ing utterance in a natural language (e.g., the blue
square to the right of the circle). In this example,

18

the learner must learn to include appropriate func-
tion words. In other languages, the learner may
have to learn a correct choice of words determined
by gender, case or other factors. (Note that we are
not yet in a position to consider corrections.)

4 Experiments

Our experiments were made for a limited domain
of geometric shapes and their properties and re-
lations. This domain is a simplification of the
Miniature Language Acquisition task proposed by
Feldman et al. (Feldman et al., 1990). Previous
applications of OSTIA to language understanding
and machine translation have also used adapta-
tions and extensions of the Feldman task.

In our experiments, we have predicates for three
different shapes (circle (ci), square (sq) and tri-
angle (tr)), three different colors (blue (bl), green
(gr) and red (re)) and three different relations (to
the left of (le), to the right of (ler), and above (ab)).
We consider ten different natural languages: Ara-
bic, English, Greek, Hebrew, Hindi, Hungarian,
Mandarin, Russian, Spanish and Turkish.

We created a data sequence of input-output
pairs, each consisting of a predicate sequence and
a natural language utterance. For example, one
pair for Spanish is ((ci, re, ler, tr), el circulo rojo
a la derecha del triangulo). We ran OSTIA on ini-
tial segments of the sequence of pairs, of lengths
10, 20, 30, . . ., to produce a sequence of subse-
quential transducers. The whole data sequence
was used to test the correctness of the transducers
generated during the process. An error is counted
whenever given a data pair (x, y), the subsequen-
tial transducer translates x to y′, and y′ 6= y. We
say that OSTIA has converged to a correct trans-
ducer if all the transducers produced afterwards
have the same number of states and edges, and 0
errors on the whole data sequence.

To generate the sequences of input-output pairs,
for each language we constructed a meaning trans-
ducer capable of producing the 444 different pos-
sible meanings involving one or two objects. We
randomly generated 400 unique (non-repeated)
input-output pairs for each language. This process
was repeated 10 times. In addition, to investigate
the effect of the order of presentation of the input-
output pairs, we repeated the data generation pro-
cess for each language, sorting the pairs according
to a length-lex ordering of the utterances.

We give some examples to illustrate the trans-

ducers produced. Figure 1 shows an example of
a transducer produced by OSTIA after just ten
pairs of input-output examples for Spanish. This
transducer correctly translates the ten predicate se-
quences used to construct it, but the data is not
sufficient for OSTIA to generalize correctly in all
cases, and many other correct meanings are still
incorrectly translated. For example, the sequence
(ci, bl) is translated as el circulo a la izquierda del
circulo verde azul instead of el circulo azul.

The transducers produced after convergence by
OSTIA and DD-OSTIA correctly translate all 444
possible correct meanings. Examples for Spanish
are shown in Figure 2 (OSTIA) and Figure 3 (DD-
OSTIA). Note that although they correctly trans-
late all 444 correct meanings, the behavior of these
two transducers on other (incorrect) predicate se-
quences is different, for example on (tr, tr).

1

bl/ azul
 sq/ el cuadrado
 ci/el circulo a la

 izquierda del
 circulo verde

2

tr/ el triangulo
 le/
 ler/

re/ rojo a la derecha
 del cuadrado

sq/
 ci/

 bl/ azul
 gr/

 ler/ a la derecha
 del cuadrado

3ab/

tr/ encima del triangulo
 ci/ verde encima del

 circulo azul
 bl/

 re/ rojo

Figure 1: Production task, OSTIA. A transducer
produced using 10 random unique input-output
pairs (predicate sequence, utterance) for Spanish.

1

bl/ azul
 sq/ el cuadrado

2

le/ a la izquierda del
 ler/ a la derecha del

 ab/ encima del
 re/ rojo

 gr/ verde
 ci/ el circulo

 tr/ el triangulo

le/ a la izquierda del
 ler/ a la derecha del

 ab/ encima del
 bl/ azul
 re/ rojo

 gr/ verde
 sq/ cuadrado

 ci/ circulo
 tr/ triangulo

Figure 2: Production task, OSTIA. A transducer
produced (after convergence) by using random
unique input-output pairs (predicate sequence, ut-
terance) for Spanish.

Different languages required very different
numbers of data pairs to converge. Statistics on
the number of pairs needed until convergence for
OSTIA for all ten languages for both random
unique and random unique sorted data sequences
are shown in Table 1. Because better results were
reported using DD-OSTIA in machine translation

19

1

bl/ azul
 re/ rojo

 gr/ verde
 sq/ el cuadrado

 ci/ el circulo
 tr/ el triangulo

2

le/ a la izquierda del
 ler/ a la derecha del

 ab/ encima del

sq/ cuadrado
 ci/ circulo

 tr/ triangulo

Figure 3: Production task, DD-OSTIA. A trans-
ducer produced (after convergence) using random
unique input-output pairs (predicate-sequence, ut-
terance) for Spanish.

Language # Pairs # Sorted Pairs
Arabic 150 200
English 200 235
Greek 375 400
Hebrew 195 30
Hindi 380 350
Hungarian 365 395
Mandarin 45 150
Russian 270 210
Spanish 190 150
Turkish 185 80

Table 1: Production task, OSTIA. The entries give
the median number of input-output pairs until con-
vergence in 10 runs. For Greek, Hindi and Hun-
garian, the median for the unsorted case is calcu-
lated using all 444 random unique pairs, instead of
400.

tasks (Oncina, 1998), we also tried using DD-
OSTIA for learning to translate a sequence of
predicates to an utterance. We used the same se-
quences of input-output pairs as in the previous
experiment. The results obtained are shown in Ta-
ble 2.

We also report the sizes of the transducers
learned by OSTIA and DD-OSTIA. Table 3 and
Table 4 show the numbers of states and edges
of the transducers after convergence for each lan-
guage. In case of disagreements, the number re-
ported is the mode.

To answer the question of whether production
is harder than comprehension in this setting, we
also considered the comprehension task, that is,
to translate an utterance in a natural language
into the corresponding sequence of predicates.

Language # Pairs # Sorted Pairs
Arabic 80 140
English 85 180
Greek 350 400
Hebrew 65 80
Hindi 175 120
Hungarian 245 140
Mandarin 40 150
Russian 185 210
Spanish 80 150
Turkish 50 40

Table 2: Production task, DD-OSTIA. The entries
give the median number of input-output pairs un-
til convergence in 10 runs. For Greek, Hindi and
Hungarian, the median for the unsorted case is cal-
culated using all 444 random unique pairs, instead
of 400.

Languages #states #edges
Arabic 2 20
English 2 20
Greek 9 65
Hebrew 2 20
Hindi 7 58
Hungarian 3 20
Mandarin 1 10
Russian 3 30
Spanish 2 20
Turkish 4 31

Table 3: Production task, OSTIA. Sizes of trans-
ducers at convergence.

The comprehension task was studied by Oncina
et al. (Castellanos et al., 1993). They used En-
glish sentences, with a more complex version of
the Feldman task domain and more complex se-
mantic representations than we use. Our results
are presented in Table 5. The number of states
and edges of the transducers after convergence is
shown in Table 6.

5 Discussion

It should be noted that because the transducers
output by OSTIA and DD-OSTIA correctly repro-
duce all the pairs used to construct them, once ei-
ther algorithm has seen all 444 possible data pairs
in either the production or the comprehension task,
the resulting transducers will correctly translate all
correct inputs. However, state-merging in the al-

20

Languages #states #edges
Arabic 2 17
English 2 16
Greek 9 45
Hebrew 2 13
Hindi 7 40
Hungarian 3 20
Mandarin 1 10
Russian 3 23
Spanish 2 13
Turkish 3 18

Table 4: Production task, DD-OSTIA. Sizes of
transducers at convergence.

Languages OSTIA DD-OSTIA
Arabic 65 65
English 60 20
Greek 325 60
Hebrew 90 45
Hindi 60 35
Hungarian 40 45
Mandarin 60 40
Russian 280 55
Spanish 45 30
Turkish 60 35

Table 5: Comprehension task, OSTIA and DD-
OSTIA. Median number (in 10 runs) of input-
output pairs until convergence using a sequence of
400 random unique pairs of (utterance, predicate
sequence).

gorithms induces compression and generalization,
and the interesting questions are how much data
is required to achieve correct generalization, and
how that quantity scales with the complexity of
the task. This are very difficult questions to ap-
proach analytically, but empirical results can offer
valuable insights.

Considering the comprehension task (Tables 5
and 6), we see that OSTIA generalizes correctly
from at most 15% of all 444 possible pairs except
in the cases of Greek, Hebrew and Russian. DD-
OSTIA improves the OSTIA results, in some cases
dramatically, for all languages except Hungarian.
DD-OSTIA achieves correct generalization from
at most 15% of all possible pairs for all ten lan-
guages. Because the meaning function for all ten
language transducers is independent of the state,
in each case there is a 1-state sequential trans-

Languages #states #edges
Arabic 1 15
English 1 13
Greek 2 25
Hebrew 1 13
Hindi 1 13
Hungarian 1 14
Mandarin 1 17
Russian 1 24
Spanish 1 14
Turkish 1 13

Table 6: Comprehension task, OSTIA and DD-
OSTIA. Sizes of transducers at convergence using
400 random unique input-output pairs (utterance,
predicate sequence). In cases of disagreement, the
number reported is the mode.

ducer that achieves correct translation of correct
utterances into predicate sequences. OSTIA and
DD-OSTIA converged to 1-state transducers for
all languages except Greek, for which they con-
verged to 2-state transducers. Examining one such
transducer for Greek, we found that the require-
ment that the transducer be “onward” necessitated
two states. These results are broadly compatible
with the results obtained by Oncina et al. (Castel-
lanos et al., 1993) on language understanding; the
more complex tasks they consider also give evi-
dence that this approach may scale well for the
comprehension task.

Turning to the production task (Tables 1, 2, 3
and 4), we see that providing the random samples
with a length-lex ordering of utterances has incon-
sistent effects for both OSTIA and DD-OSTIA,
sometimes dramatically increasing or decreasing
the number of samples required. We do not fur-
ther consider the sorted samples.

Comparing the production task with the com-
prehension task for OSTIA, the production task
generally requires substantially more random
unique samples than the comprehension task for
the same language. The exceptions are Mandarin
(production: 45 and comprehension: 60) and Rus-
sian (production: 270 and comprehension: 280).
For DD-OSTIA the results are similar, with the
sole exception of Mandarin (production: 40 and
comprehension: 40). For the production task DD-
OSTIA requires fewer (sometimes dramatically
fewer) samples to converge than OSTIA. How-
ever, even with DD-OSTIA the number of sam-

21

ples is in several cases (Greek, Hindi, Hungarian
and Russian) a rather large fraction (40% or more)
of all 444 possible pairs. Further experimentation
and analysis is required to determine how these re-
sults will scale.

Looking at the sizes of the transducers learned
by OSTIA and DD-OSTIA in the production task,
we see that the numbers of states agree for all lan-
guages except Turkish. (Recall from our discus-
sion in Section 4 that there may be differences in
the behavior of the transducers learned by OSTIA
and DD-OSTIA at convergence.) For the produc-
tion task, Mandarin gives the smallest transducer;
for this fragment of the language, the translation
of correct predicate sequences into utterances can
be achieved with a 1-state transducer. In contrast,
English and Spanish both require 2 states to handle
articles correctly. For example, in the transducer
in Figure 3, the predicate for a circle (ci) is trans-
lated as el circulo if it occurs as the first object (in
state 1) and as circulo if it occurs as second ob-
ject (in state 2) because del has been supplied by
the translation of the intervening binary relation
(le, ler, or ab.) Greek gives the largest transducer
for the production task, with 9 states, and requires
the largest number of samples for DD-OSTIA to
achieve convergence, and one of the largest num-
bers of samples for OSTIA. Despite the evidence
of the extremes of Mandarin and Greek, the rela-
tion between the size of the transducer for a lan-
guage and the number of samples required to con-
verge to it is not monotonic.

In our model, one reason that learning the pro-
duction task may in general be more difficult than
learning the comprehension task is that while the
mapping of a word to a predicate does not depend
on context, the mapping of a predicate to a word
or words does (except in the case of our Mandarin
transducer.) As an example, in the comprehension
task the Russian words triugolnik, triugolnika and
triugonikom are each mapped to the predicate tr,
but the reverse mapping must be sensitive to the
context of the occurrence of tr.

These results suggest that OSTIA or DD-
OSTIA may be an effective method to learn to
translate sequences of predicates into natural lan-
guage utterances in our domain. However, some of
our objectives seem incompatible with the proper-
ties of OSTIA. In particular, it is not clear how
to incorporate the learner’s initial knowledge of
the lexicon and ability to produce “telegraphic

speech” by inverting the lexicon. Also, the in-
termediate results of the learning process do not
seem to have the properties we expect of a learner
who is progressing towards mastery of produc-
tion. That is, the intermediate transducers per-
fectly translate the predicate sequences used to
construct them, but typically produce other trans-
lations that the learner (using the lexicon) would
know to be incorrect. For example, the intermedi-
ate transducer from Figure 1 translates the predi-
cate sequence (ci) as el circulo a la izquierda del
circulo verde, which the learner’s lexicon indicates
should be translated as (ci, le, ci, gr).

6 Future work

Further experiments and analysis are required to
understand how these results will scale with larger
domains and languages. In this connection, it may
be interesting to try the experiments of (Castel-
lanos et al., 1993) in the reverse (production) di-
rection. Finding a way to incorporate the learner’s
initial lexicon seems important. Perhaps by incor-
porating the learner’s knowledge of the input do-
main (the legal sequences of predicates) and using
the domain-aware version, OSTIA-D, the interme-
diate results in the learning process would be more
compatible with our modeling objectives. Coping
with errors will be necessary; perhaps an explic-
itly statistical framework for machine translation
should be considered.

If we can find an appropriate model of how
the learner’s language production process might
evolve, then we will be in a position to model
meaning-preserving corrections. That is, the
learner chooses a sequence of predicates and maps
it to a (flawed) utterance. Despite its flaws, the
learner’s utterance is understood by the teacher
(i.e., the teacher is able to map it to the sequence
of predicates chosen by the learner) and responds
with a correction, that is, a correct utterance for
that meaning. The learner, recognizing that the
teacher’s utterance has the same meaning but a
different form, then uses the correct utterance (as
well as the meaning and the incorrect utterance) to
improve the mapping of sequences of predicates to
utterances.

It is clear that in this model, corrections are not
necessary to the process of learning comprehen-
sion and production; once the learner has a correct
lexicon, the utterances of the teacher can be trans-
lated into sequences of predicates, and the pairs

22

of (predicate sequence, utterance) can be used to
learn (via an appropriate variant of OSTIA) a per-
fect production mapping. However, it seems very
likely that corrections can make the process of
learning a production mapping easier or faster, and
finding a model in which such phenomena can be
studied remains an important goal of this work.

7 Acknowledgments

The authors sincerely thank Prof. Jose Oncina
for the use of his programs for OSTIA and DD-
OSTIA, as well as his helpful and generous ad-
vice. The research of Leonor Becerra-Bonache
was supported by a Marie Curie International
Fellowship within the 6th European Community
Framework Programme.

References
Dana Angluin and Leonor Becerra-Bonache. 2008.

Learning Meaning Before Syntax. ICGI, 281–292.

Leonor Becerra-Bonache, Colin de la Higuera, J.C.
Janodet, and Frederic Tantini. 2007. Learning Balls
of Strings with Correction Queries. ECML, 18–29.

Leonor Becerra-Bonache, Adrian H. Dediu, and
Cristina Tirnauca. 2006. Learning DFA from Cor-
rection and Equivalence Queries. ICGI, 281–292.

Jean Berstel. 1979. Transductions and Context-Free
Languages. PhD Thesis, Teubner, Stuttgart, 1979.

Antonio Castellanos, Enrique Vidal, and Jose Oncina.
1993. Language Understanding and Subsequential
Transducers. ICGI, 11/1–11/10.

Antonio Castellanos, Ismael Galiano, and Enrique Vi-
dal. 1994. Applications of OSTIA to machine trans-
lation tasks. ICGI, 93–105.

Michelle M. Chouinard and Eve V. Clark. 2003. Adult
Reformulations of Child Errors as Negative Evi-
dence. Journal of Child Language, 30:637–669.

Jerome A. Feldman, George Lakoff, Andreas Stolcke,
and Susan Hollback Weber. 1990. Miniature Lan-
guage Acquisition: A touchstone for cognitive sci-
ence. Technical Report, TR-90-009. International
Computer Science Institute, Berkeley, California.
April, 1990.

Efim Kinber. 2008. On Learning Regular Expres-
sions and Patterns Via Membership and Correction
Queries. ICGI, 125–138.

Jose Oncina. 1991. Aprendizaje de lenguajes regu-
lares y transducciones subsecuenciales. PhD Thesis,
Universitat Politecnica de Valencia, Valencia, Spain,
1998.

Jose Oncina. 1998. The data driven approach applied
to the OSTIA algorithm. ICGI, 50–56.

Jose Oncina and Miguel Angel Varo. 1996. Using do-
main information during the learing of a subsequen-
tial transducer. ICGI, 301–312.

Roberto Pieraccini, Esther Levin, and Enrique Vidal.
1993. Learning how to understand language. Eu-
roSpeech’93, 448–458.

23

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 24–32,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

GREAT: a finite-state machine translation toolkit implementing a
Grammatical Inference Approach for Transducer Inference (GIATI)

Jorge Gonzálezand Francisco Casacuberta
Departamento de Sistemas Informáticos y Computación

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

{jgonzalez,fcn}@dsic.upv.es

Abstract

GREAT is a finite-state toolkit which is
devoted to Machine Translation and that
learns structured models from bilingual
data. The training procedure is based on
grammatical inference techniques to ob-
tain stochastic transducers that model both
the structure of the languages and the re-
lationship between them. The inference
of grammars from natural language causes
the models to become larger when a less
restrictive task is involved; even more if
a bilingual modelling is being considered.
GREAT has been successful to implement
the GIATI learning methodology, using
different scalability issues to be able to
deal with corpora of high volume of data.
This is reported with experiments on the
EuroParl corpus, which is a state-of-the-
art task in Statistical Machine Translation.

1 Introduction

Over the last years, grammatical inference tech-
niques have not been widely employed in the ma-
chine translation area. Nevertheless, it is not un-
known that researchers are trying to include some
structured information into their models in order to
capture the grammatical regularities that there are
in languages together with their own relationship.

GIATI (Casacuberta, 2000; Casacuberta et al.,
2005) is a grammatical inference methodology to
infer stochastic transducers in a bilingual mod-
elling approach for statistical machine translation.

From a statistical point of view, the translation
problem can be stated as follows: given a source
sentences = s1 . . . sJ , the goal is to find a target
sentencêt = t1 . . . t

Î
, among all possible target

stringst, that maximises the posterior probability:

t̂ = argmax
t

Pr(t|s) (1)

The conditional probabilityPr(t|s) can be re-
placed by a joint probability distributionPr(s, t)
which is modelled by a stochastic transducer being
inferred through the GIATI methodology (Casacu-
berta et al., 2004; Casacuberta and Vidal, 2004):

t̂ = argmax
t

Pr(s, t) (2)

This paper describes GREAT, a software pack-
age for bilingual modelling from parallel corpus.

GREAT is a finite-state toolkit which was born
to overcome the computational problems that pre-
vious implementations of GIATI (Picó, 2005) had
in practice when huge amounts of data were used.
Even more, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.

Experiments for a state-of-the-art, voluminous
translation task, such as the EuroParl, are re-
ported. In (González and Casacuberta, 2007),
the so called phrase-based finite-state transducers
were concluded to be a better modelling option for
this task than the ones that derive from a word-
based approach. That is why the experiments here
are exclusively related to this particular kind of
GIATI-based transducers.

The structure of this work is as follows: first,
section 2 is devoted to describe the training proce-
dure, which is in turn divided into several lines, for
instance, the finite-state GIATI-based models are
defined and their corresponding grammatical in-
ference methods are described, including the tech-
niques to deal with tasks of high volume of data;
then, section 3 is related to the decodification pro-
cess, which includes an improved smoothing be-
haviour and an analysis algorithm that performs
according to the granularity of the bilingual sym-
bols in the models; to continue, section 4 deals

24

with an exhaustive report on experiments; and fi-
nally, the conclusions are stated in the last section.

2 Finite state models

A stochastic finite-state automatonA is a tuple
(Γ, Q, i, f, P), whereΓ is an alphabet of symbols,
Q is a finite set of states, functionsi : Q → [0, 1]
andf : Q → [0, 1] refer to the probability of each
state to be, respectively, initial and final, and par-
cial functionP : Q × {Γ ∪ ε} × Q → [0, 1] de-
fines a set of transitions between pairs of states in
such a way that each transition is labelled with a
symbol fromΓ (or the empty stringε), and is as-
signed a probability. Moreover, functionsi, f, and
P have to respect theconsistencyproperty in or-
der to define a distribution of probabilities on the
free monoid. Consistent probability distributions
can be obtained by requiring a series of local con-
straints which are similar to the ones for stochastic
regular grammars (Vidal et al., 2005):

•
∑

q∈Q

i(q) = 1

• ∀q ∈ Q :
∑

γ∈{Γ∪ε},q′∈Q

P (q, γ, q′)+f(q) = 1

A stochastic finite-state transducer is defined
similarly to a stochastic finite-state automaton,
with the difference that transitions between states
are labelled with pairs of symbols that belong to
two different (input and output) alphabets, that
is, (Σ ∪ ε) × (∆ ∪ ε). Then, given some in-
put and output strings,s andt, a stochastic finite-
state transducer is able to associate them a joint
probability Pr(s, t). An example of a stochastic
finite-state transducer can be observed in Figure 1.

1

0.2

0.2

0.2

0.3

a : CA

b : ε 0.3

c : C 0.2

c : C 0.2

c : BC 0.5

c : ABC 0.8

ε : ε 0.3 ε : ε 0.3

ε : ε 0.7

ε : ε 0.8

Q
0

Q
1

Q
2

Q
3

Q
4

Figure 1: A stochastic finite-state transducer

2.1 Inference of stochastic transducers

The GIATI methodology (Casacuberta et al.,
2005) has been revealed as an interesting approach

to infer stochastic finite-state transducers through
the modelling of languages. Rather than learn-
ing translations, GIATI first converts every pair
of parallel sentences in the training corpus into a
corresponding extended-symbol string in order to,
straight afterwards, infer a language model from.

More concretely, given a parallel corpus con-
sisting of a finite sampleC of string pairs: first,
each training pair(x̄, ȳ) ∈ Σ⋆×∆⋆ is transformed
into a stringz̄ ∈ Γ⋆ from an extended alphabet,
yielding a string corpusS; then, a stochastic finite-
state automatonA is inferred fromS; finally, tran-
sition labels inA are turned back into pairs of
strings of source/target symbols inΣ⋆ × ∆⋆, thus
converting the automatonA into a transducerT .

The first transformation is modelled by some la-
belling functionL : Σ⋆ ×∆⋆ → Γ⋆, while the last
transformation is defined by an inverse labelling
function Λ(·), such thatΛ(L(C)) = C. Build-
ing a corpus of extended symbols from the original
bilingual corpus allows for the use of many useful
algorithms for learning stochastic finite-state au-
tomata (or equivalent models) that have been pro-
posed in the literature on grammatical inference.

2.2 Phrase-basedn-gram transducers

Phrase-basedn-gram transducers represent an in-
teresting application of the GIATI methodology,
where the extended symbols are actually bilingual
phrase pairs, andn-gram models are employed as
language models (González et al., 2008). Figure 2
shows a general scheme for the representation of
n-grams through stochastic finite state automata.

NULL

TRANSITIONS
BACKOFF

TRANSITIONS
BACKOFF

TRANSITIONS
BIGRAM

TRANSITIONS
BACKOFF

TRANSITIONS
BACKOFF

TRANSITIONS
UNIGRAM

HISTORY LEVEL 0

<s> </s> <unk>

TRANSITIONS
TRIGRAM

TRANSITIONS
(N−1)−GRAM

HISTORY LEVEL N−1

TRANSITIONS
N−GRAM

. . .

. . .

. . .

...

HISTORY LEVEL 2

HISTORY
LEVEL 1

u1 u2 u3 uK1

b1 b2 b3 bK2

n1 n2 n3 nKN

Figure 2: A finite-staten-gram model

25

The states in the model refer to all then-gram
histories that have been seen in the string corpusS
in training time. Consuming transitions jump from
states in a determined layer to the one immediately
above, increasing the history level. Once the top
level has been reached,n-gram transitions allow
for movements inside this layer, from state to state,
updating the history to the lastn − 1 seen events.

Given that an n-gram event
Γn−1Γn−2 . . .Γ2Γ1Γ0 is statistically stated
as Pr(Γ0|Γn−1Γn−2 . . .Γ2Γ1), then it is appro-
priately represented as a finite state transition
between their corresponding up-to-date histories,
which are associated to some states (see Figure 3).

Γn−1Γn−2 . . .Γ2Γ1Γ0

Figure 3: Finite-state representation ofn-grams

Γn−1 . . .Γ3Γ2Γ1 Γn−2 . . .Γ2Γ1Γ0

Γ0

Therefore, transitions are labelled with a sym-
bol from Γ and every extended symbol inΓ is a
translation pair coming from a phrase-based dic-
tionary which is inferred from the parallel corpus.

Nevertheless, backoff transitions to lower his-
tory levels are taken for smoothing purposes. If
the lowest level is reached and no transition has
been found for next wordsj , then a transition to
the<unk> state is fired, thus consideringsj as a
non-starting word for any bilingual phrase in the
model. There is only 1 initial state, which is deno-
ted as<s>, and it is placed at the 1st history level.

The inverse labelling function is applied over
the automaton transitions as in Figure 4, obtaining
a single transducer (Casacuberta and Vidal, 2004).

Q’Q

Q Q’

On demande une activité

Action is required

Pr= p

Pr= p

On/ε demande/ε une/ε

activité/

Action is required

Pr= 1Pr= 1 Pr= 1

Figure 4: Phrase-based inverse labelling function

Intermediate states are artificially created since

they do not belong to the original automaton
model. As a result, they are non-final states, with
only one incoming and one outcoming edge each.

2.3 Transducer pruning via n-gram events

GREAT implements this pruning technique, which
is inspired by some other statistical machine trans-
lation decoders that usually filter their phrase-
based translation dictionaries by means of the
words in the test set sentences (Koehn et al., 2007).

As already seen in Figure 3, anyn-gram event
is represented as a transition between their cor-
responding historical states. In order to be able
to navigate through this transition, the analy-
sis must have reached theΓn−1 . . .Γ3Γ2Γ1 state
and the remaining input must fit the source ele-
ments ofΓ0. In other words, the full source se-
quence from then-gram eventΓn−1 . . .Γ3Γ2Γ1Γ0

has to be present in the test set. Otherwise,
its corresponding transition will not be able to
be employed during the analysis of the test set
sentences. As a result,n-gram events that are
not in the test set can skip their transition gener-
ation, since they will not be affected during de-
coding time, thus reducing the size of the model.
If there is also a backoff probability that is asso-
ciated to the samen-gram event, its correspond-
ing transition generation can be skipped too, since
its source state will never be reached, as it is the
state which represents then-gram event. Nev-
ertheless, since trained extended-symboln-gram
events would typically include more thann source
words, the verification of their presence or their
absence inside the test set would imply hashing all
the test-set word sequences, which is rather im-
practical. Instead, a window size is used to hash
the words in the test set, then the trainedn-gram
events are scanned on their source sequence using
this window size to check if they might be skipped
or not. It should be clear that the bigger the win-
dow size is, the moren-gram rejections there will
be, therefore the transducer will be smaller. How-
ever, the translation results will not be affected as
these disappearing transitions are unreachable us-
ing that test set. As the window size increases, the
resulting filtered transducer is closer to the mini-
mum transducer that reflects the test set sentences.

3 Finite state decoding

Equation 2 expresses the MT problem in terms of
a finite state model that is able to compute the ex-

26

pressionPr(s, t). Given that only the input sen-
tence is known, the model has to be parsed, taking
into account all possiblet that are compatible with
s. The best output hypothesist̂ would be that one
which corresponds to a path through the transduc-
tion model that, with the highest probability, ac-
cepts the input sequence as part of the input lan-
guage of the transducer.

Although the navigation through the model is
constrained by the input sentence, the search space
can be extremely large. As a consequence, only
the most scored partial hypotheses are being con-
sidered as possible candidates to become the solu-
tion. This search process is very efficiently carried
out by a beam-search approach of the well known
Viterbi algorithm (Jelinek, 1998), whose temporal
asymptotic cost isΘ(J · |Q| ·M), whereM is the
average number of incoming transitions per state.

3.1 Parsing strategies: from words to phrases

The trellis structure that is commonly employed
for the analysis of an input sentence through a
stochastic finite state transducer has a variable size
that depends on the beam factor in a dynamic
beam-search strategy. That way, only those nodes
scoring at a predefined threshold from the best one
in every stage will be considered for the next stage.

A word-based parsing strategy would start with
the initial state<s>, looking for the best transi-
tions that are compatible with the first words1.
The corresponding target states are then placed
into the output structure, which will be used for the
analysis of the second words2. Iteratively, every
state in the structure is scanned in order to get the
input labels that match the current analysis word
si, and then to build an output structure with the
best scored partial paths. Finally, the states that
result from the last analysis step are then rescored
by their corresponding final probabilities.

This is the standard algorithm for parsing
a source sentence through an non-deterministic
stochastic finite state transducer. Nevertheless, it
may not be the most appropriate one when dealing
with this type of phrase-basedn-gram transducers.

As it must be observed in Figure 4, a set of
consecutive transitions represent only one phrase
translation probability after a given history. In
fact, the path from Q to Q’ should only be fol-
lowed if the remaining input sentence, which has
not been analysed yet, begins with the full input
sequenceOn demande une activité. Otherwise, it

should not be taken into account. However, as far
as the words in the test sentence are compatible
with the corresponding transitions, and according
to the phrase score, this (word) synchronous pars-
ing algorithm may store these intermediate states
into the trellis structure, even if the full path will
not be accomplished in the end. As a consequence,
these entries will be using a valuable position in-
side the trellis structure to an idle result. This will
be not only a waste of time, but also a distortion
on the best score per stage, reducing the effective
power of the beam parameter during the decoding.
Some other better analysis options may be rejected
because of their a-priori lower score. Therefore,
this decoding algorithm can lead the system to a
worse translation result. Alternatively, the beam
factor can be increased in order to be large enough
to store the successful paths, thus more time will
be required for the decoding of any input sentence.

On the other hand, a phrase-based analysis stra-
tegy would never include intermediate states in-
side a trellis structure. Instead, these artificial
states are tried to be parsed through until an ori-
ginal state is being reached, i.e. Q’ in Figure 4.
Word-based and phrase-based analysis are con-
ceptually compared in Figure 5, by means of their
respective edge generation on the trellis structure.

WORD−BASED EDGES

PHRASE−BASED EDGES

Q Q’

On demande une activité

Figure 5: Word-based and phrase-based analysis

However, in order to be able to use a scrolled
two-stage implementation of a Viterbi phrase-
based analysis, the target states, which may be
positioned at several stages of distance from the
current one, are directly advanced to the next one.
Therefore, the nodes in the trellis must be stored
together with their corresponding last input posi-
tion that was parsed. In the same manner, states
in the structure are only scanned if their posi-
tion indicator is lower than the current analysis
word. Otherwise, they have already taken it into
account so they are directly transfered to the next
stage. The algorithm remains synchronous with
the words in the input sentence, however, on this

27

particular occasion, states in thei-th step of anal-
ysis are guaranteed to have parsedat least until
the i-th word, but maybe they have gone further.
Figure 6 is a graphical diagram about this concept.

Qi

Q′
j Q′

j Q′
j

Q′
j

i j

On demande une activité

Figure 6: A phrase-based analysis implementation

Moreover, all the states that are being stored in
the successive stages, that is, the ones from the ori-
ginal topology of the finite-state representation of
the n-gram model, are also guaranteed to lead to
a final state in the model, because if they are not
final states themselves, then there will always be a
successful path towards a final state.

GREAT incorporates an analysis strategy that
depends on the granularity of the bilingual sym-
bols themselves so that a phrase-based decoding
is applied when a phrase-based transducer is used.

3.2 Backoff smoothing

Two smoothing criteria have been explored in or-
der to parse the input through the GIATI model.
First, a standard backoff behaviour, where back-
off transitions are taken as failure transitions, was
implemented. There, backoff transitions are only
followed if there is not any other successful path
that has been compatible with the remaining input.

However, GREAT also includes another more
refined smoothing behaviour, to be applied over
the same bilingualn-gram transducers, where
smoothing edges are interpreted in a different way.

GREAT suggests to apply the backoff crite-
rion according to its definition in the grammati-
cal inference method which incorporated it into
the language model being learnt and that will be
represented as a stochastic finite-state automaton.
In other words, from then-gram point of view,
backoff weights (or finite-state transitions) should
only be employed if no transitions are found in the
n-gram automaton for a currentbilingual symbol.
Nevertheless, input words in translation applica-
tions do not belong to those bilingual languages.
Instead, input sequences have to be analysed in

such a way as if they could be internally repre-
senting any possible bilingual symbol from the ex-
tended vocabulary that matches their source sides.
That way, bilingual symbols are considered to be a
sort of input, so the backoff smoothing criterion is
then applied to each compatible, bilingual symbol.

For phrase-based transducers, it means that for a
successful transition(x̄, ȳ), there is no need to go
backoff and find other paths consuming that bilin-
gual symbol, but we must try backoff transitions
to look for any other successful transition(x̄′, ȳ′),
which is also compatible with the current position.

Conceptually, this procedure would be as if the
input sentence, rather than a source string, was ac-
tually composed of a left-to-right bilingual graph,
being built from the expansion of every input word
into their compatible, bilingual symbols as in a
category-based approach. Phrase-based bilingual
symbols would be graphically represented as a sort
of skip transitions inside this bilingual input graph.

This new interpretation about the backoff
smoothing weights on bilingualn-gram models,
which is not a priori a trivial feature to be included,
is easily implemented for stochastic transducers
by considering backoff transitions asε/ε transi-
tions and keeping track of a dynamic list of forbid-
den states every time a backoff transition is taken.

An outline about the management of state ac-
tiveness, which is integrated into the parsing algo-
rithm, is shown below:

ALGORITHM

for Q in {states to explore}
for Q-Q’ in {transitions} (a)

if Q’ is active
[...]
set Q’ to inactive

if Q is not NULL
if Q not in the top level
for Q’ in {inactive states}

set Q’ to active
Q’’ := backoff(Q’)
set Q’’ to inactive

Q := backoff(Q)
GoTo (a)

else
[...]
for Q’ in {inactive states}
set Q’ to active

[...]

END ALGORITHM

28

The algorithm will try to translate several con-
secutive input words as a whole phrase, always al-
lowing a backoff transition in order to cover all
the compatible phrases in the model, not only the
ones which have been seen after a given history,
but after all its suffixes as well. A dynamic list
of forbidden states will take care to accomplish an
exploration constraint that has to be included into
the parsing algorithm: a path between two states
Q and Q’ has necessarily to be traced through the
minimum number of backoff transitions; any other
Q-Q’ or Q-Q” paths, where Q” is the destination
of a Q’-Q” backoff path, should be ignored. This
constraint will cause that only one transition per
bilingual symbol will be followed, and that it will
be the highest in the hierarchy of history levels.
Figure 7 shows a parsing example over a finite-
state representation of a smoothed bigram model.

Q

<backoff>
p

1

p
1

p
1

p
2

p
2

p
2

p
3

p
3

ε

Figure 7:Compatible edges for a bigram model.
Given a reaching state Q, let us assume that the
transitions that correspond to certain bilingual
phrase pairsp

1
, p

2
andp

3
are all compatible with

the remaining input. However, the bigram (Q,
p

3
) did not occur throughout the training corpus,

therefore there is no a direct transition from Q to
p

3
. A backoff transition enables the access top

3

because the bigram (Q,p
3
) turns into a unigram

event that is actually inside the model. Unigram
transitions top

1
andp

2
must be ignored because

their corresponding bigram events were success-
fully found one level above.

4 Experiments

GREAT has been successfully employed to work
with the French-English EuroParl corpus, that is,
the benchmark corpus of the NAACL 2006 shared
task of the Workshop on Machine Translation

of the Association for Computational Linguistics.
The corpus characteristics can be seen in Table 1.

Table 1:Characteristics of the Fr-En EuroParl.

French English
Sentences 688031

Training Run. words 15.6 M 13.8 M
Vocabulary 80348 61626
Sentences 2000

Dev-Test Run. words 66200 57951

The EuroParl corpus is built on the proceedings
of the European Parliament, which are published
on its web and are freely available. Because of
its nature, this corpus has a large variability and
complexity, since the translations into the differ-
ent official languages are performed by groups of
human translators. The fact that not all transla-
tors agree in their translation criteria implies that a
given source sentence can be translated in various
different ways throughout the corpus.

Since the proceedings are not available in every
language as a whole, a different subset of the cor-
pus is extracted for every different language pair,
thus evolving into somewhat a different corpus for
each pair of languages.

4.1 System evaluation

We evaluated the performance of our methods by
using the following evaluation measures:

BLEU (Bilingual Evaluation Understudy) score:
This indicator computes the precision of uni-
grams, bigrams, trigrams, and tetragrams
with respect to a set of reference translations,
with a penalty for too short sentences (Pap-
ineni et al., 2001). BLEU measures accuracy,
not error rate.

WER (Word Error Rate): The WER criterion calcu-
lates the minimum number of editions (subs-
titutions, insertions or deletions) that are
needed to convert the system hypothesis into
the sentence considered ground truth. Be-
cause of its nature, this measure is very pes-
simistic.

Time. It refers to the average time (in milliseconds)
to translate one word from the test corpus,
without considering loading times.

29

4.2 Results

A set of experimental results were obtained in or-
der to assess the impact of the proposed techniques
in the work with phrase-basedn-gram transducers.

By assuming an unconstrained parsing, that is,
the successive trellis structure is large enough to
store all the states that are compatible within the
analysis of a source sentence, the results are not
very sensitive to then-gram degree, just showing
that bigrams are powerful enough for this corpus.
However, apart from this, Table 2 is also show-
ing a significant better performance for the second,
more refined behaviour for the backoff transitions.

Table 2:Results for the two smoothing criteria.

n
Backoff 1 2 3 4 5
baseline

BLEU 26.8 26.3 25.8 25.7 25.7
WER 62.3 63.9 64.5 64.5 64.5

GREAT
BLEU 26.8 28.0 27.9 27.9 27.9
WER 62.3 61.9 62.0 62.0 62.0

From now on, the algorithms will be tested on
the phrase-basedbigram transducer, being built
according to the GIATI method, where backoff is
employed asε/ε transitions with forbidden states.

In these conditions, the results, following a
word-based and a phrase-based decoding strategy,
which are in function of the dynamic beam factor,
can be analysed in Tables 3 and 4.

Table 3:Results for a word-based analysis.

beam Time (ms) BLEU WER
1.00 0.1 0.4 94.6
1.02 0.3 12.8 81.9
1.05 5.2 20.0 74.0
1.10 30.0 24.9 68.2
1.25 99.0 27.1 64.6
1.50 147.0 27.5 62.9
2.00 173.6 27.8 62.1
3.50 252.3 28.0 61.9

From the comparison of Tables 3 and 4, it can
be deduced that a word-based analysis is itera-
tively taking into account a quite high percentage
of useless states, thus needing to increase the beam
parameter to include the successful paths into the
analysis. The price for considering such a long list

Table 4:Results for a phrase-based analysis.

beam Time (ms) BLEU WER
1.00 0.2 19.8 71.8
1.02 0.4 22.1 68.6
1.05 0.7 24.3 66.0
1.10 2.4 26.1 64.2
1.25 7.0 27.1 62.8
1.50 9.7 27.5 62.3
2.00 11.4 27.8 62.0
3.50 12.3 28.0 61.9

of states in every iteration of the algorithm is in
terms of temporal requirements.

However, a phrase-based approach only stores
those states that have been successfully reached by
a full phrase compatibility with the input sentence.
Therefore, it takes more time to process an indi-
vidual state, but since the list of states is shorter,
the search method performs at a better speed rate.
Another important element to point out between
Tables 3 and 4, is about the differences on quality
results for a same beam parameter in both tables.
Word-based decoding strategies suffer the effec-
tive reduction on the beam factor that was men-
tioned on section 3.1 because their best scores on
every analysis stage, which determine the explo-
ration boundaries, may refer to a no way out path.
Logically, these differences are progressively re-
duced as the beam parameter increases, since the
search space is explored in a more exhaustive way.

Table 5:Number of trained and survivedn-grams.

n-grams
Window size unigrams bigrams

No filter 1,593,677 4,477,382
2 299,002 512,943
3 153,153 141,883
4 130,666 90,265
5 126,056 78,824
6 125,516 77,341

On the other hand, a phrase-based extended-
symbol bigram model, being learnt by means of
the full training data, computes an overall set of
approximately 6 million events. The application
of the n-gram pruning technique, using a grow-
ing window parameter, can effectively reduce that
number to only 200,000. Thesen-grams, when
represented as transducer transitions, suppose a re-
duction from 20 million transitions to only those

30

500,000 that are affected by the test set sentences.
As a result, the size of the model to be parsed
decreases, therefore, the decoding time also de-
creases. Tables 5 and 6 show the effect of this
pruning method on the size of the transducers, then
on the decoding time with a phrase-based analysis,
which is the best strategy for phrase-based models.

Table 6:Decoding time for several windows sizes.

Window size Edges Time (ms)
No filter 19,333,520 362.4

2 2,752,882 41.3
3 911,054 17.3
4 612,006 12.8
5 541,059 11.9
6 531,333 11.8

Needless to say that BLEU and WER keep on
their best numbers for all the transducer sizes as
the test set is not present in the pruned transitions.

5 Conclusions

GIATI is a grammatical inference technique to
learn stochastic transducers from bilingual data
for their usage in statistical machine translation.
Finite-state transducers are able to model both the
structure of both languages and their relationship.
GREAT is a finite-state toolkit which was born to
overcome the computational problems that previ-
ous implementations of GIATI present in practice
when huge amounts of parallel data are employed.

Moreover, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.

A pruning technique has been designed forn-
gram approaches, which reduces the transducer
size to integrate only those transitions that are re-
ally required for the translation of the test set. That
has allowed us to perform some experiments con-
cerning a state-of-the-art, voluminous translation
task, such as the EuroParl, whose results have been
reported in depth. A better performance has been
found when a phrase-based decoding strategy is
selected in order to deal with those GIATI phrase-
based transducers. Besides, this permits us to ap-
ply a more refined interpretation of backoff transi-
tions for a better smoothing translation behaviour.

Acknowledgments

This work was supported by the “Vicerrectorado
de Innovación y Desarrollo de la Universidad
Politécnica de Valencia”, under grant 20080033.

References

Francisco Casacuberta and Enrique Vidal. 2004.Ma-
chine translation with inferred stochastic finite-state
transducers.Comput. Linguistics, 30(2):205–225.

Francisco Casacuberta, Hermann Ney, Franz Josef
Och, Enrique Vidal, Juan Miguel Vilar, Sergio Bar-
rachina, Ismael García-Varea, David Llorens, César
Martínez, and Sirko Molau. 2004. Some ap-
proaches to statistical and finite-state speech-to-
speech translation.Computer Speech & Language,
18(1):25–47.

Francisco Casacuberta, Enrique Vidal, and David Picó.
2005. Inference of finite-state transducers from reg-
ular languages.Pattern Recognition, 38(9):1431–
1443.

F. Casacuberta. 2000. Inference of finite-state trans-
ducers by using regular grammars and morphisms.
In A.L. Oliveira, editor,Grammatical Inference: Al-
gorithms and Applications, volume 1891 ofLecture
Notes in Computer Science, pages 1–14. Springer-
Verlag. 5th International Colloquium Grammatical
Inference -ICGI2000-. Lisboa. Portugal.

J. González and F. Casacuberta. 2007. Phrase-based
finite state models. InProceedings of the 6th In-
ternational Workshop on Finite State Methods and
Natural Language Processing (FSMNLP), Potsdam
(Germany), September 14-16.

J. González, G. Sanchis, and F. Casacuberta. 2008.
Learning finite state transducers using bilingual
phrases. In9th International Conference on Intel-
ligent Text Processing and Computational Linguis-
tics. Lecture Notes in Computer Science, Haifa, Is-
rael, February 17 to 23.

Frederick Jelinek. 1998. Statistical Methods for
Speech Recognition. The MIT Press, January.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL. The Association for Computer Linguistics.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2001.
Bleu: a method for automatic evaluation of machine
translation.

31

David Picó. 2005.Combining Statistical and Finite-
State Methods for Machine Translation. Ph.D. the-
sis, Departamento de Sistemas Informáticos y Com-
putación. Universidad Politécnica de Valencia, Va-
lencia (Spain), September. Advisor: Dr. F. Casacu-
berta.

E. Vidal, F. Thollard, F. Casacuberta C. de la Higuera,
and R. Carrasco. 2005. Probabilistic finite-state ma-
chines - part I.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 27(7):1013–1025.

32

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 33–40,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

A note on contextual binary feature grammars

Alexander Clark
Department of Computer Science

Royal Holloway, University of London
alexc@cs.rhul.ac.uk

Rémi Eyraud and Amaury Habrard
Laboratoire d’Informatique Fondamentale

de Marseille, CNRS,
Aix-Marseille Université, France

remi.eyraud,amaury.habrard@lif.univ-mrs.fr

Abstract

Contextual Binary Feature Grammars
were recently proposed by (Clark et al.,
2008) as a learnable representation for
richly structured context-free and con-
text sensitive languages. In this pa-
per we examine the representational
power of the formalism, its relationship
to other standard formalisms and lan-
guage classes, and its appropriateness
for modelling natural language.

1 Introduction

An important issue that concerns both natu-
ral language processing and machine learning
is the ability to learn suitable structures of a
language from a finite sample. There are two
major points that have to be taken into ac-
count in order to define a learning method use-
ful for the two fields: first the method should
rely on intrinsic properties of the language it-
self, rather than syntactic properties of the
representation. Secondly, it must be possible
to associate some semantics to the structural
elements in a natural way.

Grammatical inference is clearly an impor-
tant technology for NLP as it will provide a
foundation for theoretically well-founded un-
supervised learning of syntax, and thus avoid
the annotation bottleneck and the limitations
of working with small hand-labelled treebanks.

Recent advances in context-free grammati-
cal inference have established that there are
large learnable classes of context-free lan-
guages. In this paper, we focus on the ba-
sic representation used by the recent approach
proposed in (Clark et al., 2008). The authors
consider a formalism called Contextual Binary
Feature Grammars (CBFG) which defines a
class of grammars using contexts as features

instead of classical non terminals. The use of
features is interesting from an NLP point of
view because we can associate some semantics
to them, and because we can represent com-
plex, structured syntactic categories. The no-
tion of contexts is relevant from a grammatical
inference standpoint since they are easily ob-
servable from a finite sample. In this paper
we establish some basic language theoretic re-
sults about the class of exact Contextual Bi-
nary Feature Grammars (defined in Section 3),
in particular their relationship to the Chomsky
hierarchy: exact CBFGs are those where the
contextual features are associated to all the
possible strings that can appear in the corre-
sponding contexts of the language defined by
the grammar.

The main results of this paper are proofs
that the class of exact CBFGs:
• properly includes the regular languages

(Section 5),
• does not include some context-free lan-

guages (Section 6),
• and does include some non context-free

languages (Section 7).
Thus, this class of exact CBFGs is orthog-

onal to the classic Chomsky hierarchy but
can represent a very large class of languages.
Moreover, it has been shown that this class
is efficiently learnable. This class is therefore
an interesting candidate for modeling natural
language and deserves further investigation.

2 Basic Notation

We consider a finite alphabet Σ, and Σ∗ the
free monoid generated by Σ. λ is the empty
string, and a language is a subset of Σ∗. We
will write the concatenation of u and v as uv,
and similarly for sets of strings. u ∈ Σ∗ is a
substring of v ∈ Σ∗ if there are strings l, r ∈ Σ∗

such that v = lur.

33

A context is an element of Σ∗ × Σ∗. For a
string u and a context f = (l, r) we write f �
u = lur; the insertion or wrapping operation.
We extend this to sets of strings and contexts
in the natural way. A context is also known in
structuralist linguistics as an environment.

The set of contexts, or distribution, of a
string u of a language L is, CL(u) = {(l, r) ∈
Σ∗ × Σ∗|lur ∈ L}. We will often drop the
subscript where there is no ambiguity. We
define the syntactic congruence as u ≡L v iff
CL(u) = CL(v). The equivalence classes un-
der this relation are the congruence classes of
the language. In general we will assume that
λ is not a member of any language.

3 Contextual Binary Feature
Grammars

Most definitions and lemmas of this section
were first introduced in (Clark et al., 2008).

3.1 Definition

Before the presentation of the formalism, we
give some results about contexts to help to
give an intuition of the representation. The
basic insight behind CBFGs is that there is a
relation between the contexts of a string w and
the contexts of its substrings. This is given by
the following trivial lemma:

Lemma 1. For any language L and for any
strings u, u′, v, v′ if C(u) = C(u′) and C(v) =
C(v′), then C(uv) = C(u′v′).

We can also consider a slightly stronger result:

Lemma 2. For any language L and for any
strings u, u′, v, v′ if C(u) ⊆ C(u′) and C(v) ⊆
C(v′), then C(uv) ⊆ C(u′v′).

C(u) ⊆ C(u′) means that we can replace
any occurrence of u in a sentence, with a u′,
without affecting the grammaticality, but not
necessarily vice versa. Note that none of these
strings need to correspond to non-terminals:
this is valid for any fragment of a sentence.

We will give a simplified example from En-
glish syntax: the pronoun it can occur every-
where that the pronoun him can, but not vice
versa1. Thus given a sentence “I gave him
away”, we can substitute it for him, to get the

1This example does not account for a number of syn-
tactic and semantic phenomena, particularly the distri-
bution of reflexive anaphors.

grammatical sentence I gave it away, but we
cannot reverse the process. For example, given
the sentence it is raining, we cannot substi-
tute him for it, as we will get the ungrammat-
ical sentence him is raining. Thus we observe
C(him) (C(it).

Looking at Lemma 2 we can also say that,
if we have some finite set of strings K, where
we know the contexts, then:

Corollary 1.

C(w) ⊇
⋃

u′,v′:
u′v′=w

⋃
u∈K:

C(u)⊆C(u′)

⋃
v∈K:

C(v)⊆C(v′)

C(uv)

This is the basis of the representation: a
word w is characterised by its set of contexts.
We can compute the representation of w, from
the representation of its parts u′, v′, by looking
at all of the other matching strings u and v
where we understand how they combine (with
subset inclusion). In order to illustrate this
concept, we give here a simple example.

Consider the language {anbn|n > 0} and
the set K = {aabb, ab, abb, aab, a, b}. Suppose
we want to compute the set of contexts of
aaabbb, Since C(abb) ⊆ C(aabbb), and vacu-
ously C(a) ⊆ C(a), we know that C(aabb) ⊆
C(aaabbb). More generally, the contexts of ab
can represent anbn, those of aab the strings
an+1bn and the ones of abb the strings anbn+1.

The key relationships are given by context
set inclusion. Contextual binary feature gram-
mars allow a proper definition of the combina-
tion of context inclusion:

Definition 1. A Contextual Binary Feature
Grammar (CBFG) G is a tuple 〈F, P, PL,Σ〉.
F is a finite set of contexts, called features,
where we write C = 2F for the power set of F
defining the categories of the grammar, P ⊆
C × C × C is a finite set of productions that
we write x → yz where x, y, z ∈ C and PL ⊆
C × Σ is a set of lexical rules, written x → a.

Normally PL contains exactly one production
for each letter in the alphabet (the lexicon).

A CBFG G defines recursively a map fG

34

from Σ∗ → C as follows:

fG(λ) = ∅ (1)

fG(w) =
⋃

(c→w)∈PL

c iff |w| = 1

(2)

fG(w) =
⋃

u,v:uv=w

⋃
x→yz∈P :
y⊆fG(u)∧
z⊆fG(v)

x iff |w| > 1.

(3)

We give here more explanation about the
map fG. It defines in fact the analysis of a
string by a CBFG. A rule z → xy is applied
to analyse a string w if there is a cut uv = w
s.t. x ⊆ fG(u) and y ⊆ fG(v), recall that x
and y are sets of contexts. Intuitively, the re-
lation given by the production rule is linked
with Lemma 2: z is included in the set of fea-
tures of w = uv. From this relationship, for
any (l, r) ∈ z we have lwr ∈ L(G).

The complete computation of fG is then jus-
tified by Corollary 1: fG(w) defines all the
possible features associated by G to w with all
the possible cuts uv = w (i.e. all the possible
derivations).

Finally, the natural way to define the mem-
bership of a string w in L(G) is to have the
context (λ, λ) ∈ fG(w) which implies that
λuλ = u ∈ L(G).

Definition 2. The language defined by a
CBFG G is the set of all strings that are as-
signed the empty context: L(G) = {u|(λ, λ) ∈
fG(u)}.

As we saw before, we are interested in cases
where there is a correspondence between the
language theoretic interpretation of a context,
and the occurrence of that context as a feature
in the grammar. From the basic definition of
a CBFG, we do not require any specific con-
dition on the features of the grammar, except
that a feature is associated to a string if the
string appears in the context defined by the
feature. However, we can also require that fG

defines exactly all the possible features that
can be associated to a given string according
to the underlying language.

Definition 3. Given a finite set of contexts
F = {(l1, r1), . . . , (ln, rn)} and a language L
we can define the context feature map FL :

Σ∗ → 2F which is just the map u 7→ {(l, r) ∈
F |lur ∈ L} = CL(u) ∩ F .

Using this definition, we now need a cor-
respondence between the language theoretic
context feature map FL and the representa-
tion in the CBFG fG.

Definition 4. A CBFG G is exact if for all
u ∈ Σ∗, fG(u) = FL(G)(u).

Exact CBFGs are a more limited formalism
than CBFGs themselves; without any limits
on the interpretation of the features, we can
define a class of formalisms that is equal to
the class of Conjunctive Grammars (see Sec-
tion 4). However, exactness is an important
notion because it allows to associate intrinsic
components of a language to strings. Contexts
are easily observable from a sample and more-
over it is only when the features correspond to
the contexts that distributional learning algo-
rithms can infer the structure of the language.
A basic example of such a learning algorithm
is given in (Clark et al., 2008).

3.2 A Parsing Example

To clarify the relationship with CFG
parsing, we will give a simple worked
example. Consider the CBFG G =
〈{(λ, λ), (aab, λ), (λ, b), (λ, abb), (a, λ)(aab, λ)},
P, PL, {a, b}〉 with PL =
{{(λ, b), (λ, abb)} → a, {(a, λ), (aab, λ)} → b}
and P =
{{(λ, λ)} → {(λ, b)}{(aab, λ)},
{(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)},
{(a, λ)} → {(λ, λ)}{(aab, λ)}}.

If we want to parse the string w = aabb the
usual way is to have a bottom-up approach.
This means that we recursively compute the
fG map on the substrings of w in order to
check whether (λ, λ) belongs to fG(w).

The Figure 1 graphically gives the main
steps of the computation of fG(aabb). Ba-
sically there are two ways to split aabb that
allow the derivation of the empty context:
aab|b and a|abb. The first one correspond
to the top part of the figure while the sec-
ond one is drawn at the bottom. We can
see for instance that the empty context be-
longs to fG(ab) thanks to the rule {(λ, λ)} →
{(λ, abb)}{(a, λ)}: {(λ, abb)} ⊆ fG(a) and
{(a, λ)} ⊆ fG(b). But for symmetrical reasons

35

the result can also be obtained using the rule
{(λ, λ)} → {(λ, b)}{(aab, λ)}.

As we trivially have fG(aa) = fG(bb) = ∅,
since no right-hand side contains the concate-
nation of the same two features, an induction
proof can be written to show that (λ, λ) ∈
fG(w) ⇔ w ∈ {anbn : n > 0}.

a a b b

fG

{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

fG fG fG

Rule: (λ,λ) → (λ,b) (aab,λ)

fG(ab) ⊇ {(λ,λ)}

Rule: (a,λ) → (λ,λ) (aab,λ)

fG(abb) ⊇ {(a,λ)}

Rule: (λ,λ) → (λ,abb) (a,λ)

fG(aabb) ⊇ {(λ,λ)}

f G

{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

f G f G f G
Rule: (λ,λ) → (λ,abb) (a,λ)

fG(ab) ⊇ {(λ,λ)}

Rule: (λ,b) → (λ,abb) (λ,λ)

fG(aab) ⊇ {(λ,b)}

Rule: (λ,λ) → (λ,b) (aab,λ)

fG(aabb) ⊇ {(λ,λ)}

Figure 1: The two derivations to obtain (λ, λ)
in fG(aabb) in the grammar G.

This is a simple example that illustrates
the parsing of a string given a CBFG. This
example does not characterize the power of
CBFG since no right handside part is com-
posed of more than one context. A more inter-
esting, example with a context-sensitive lan-
guage, will be presented in Section 7.

4 Non exact CBFGs

The aim here is to study the expressive power
of CBFG compare to other formalism recently
introduced. Though the inference can be done
only for exact CBFG, where features are di-
rectly linked with observable contexts, it is
still worth having a look at the more general
characteristics of CBFG. For instance, it is in-

teresting to note that several formalisms in-
troduced with the aim of representing natural
languages share strong links with CBFG.

Range Concatenation Grammars

Range Concatenation Grammars are a very
powerful formalism (Boullier, 2000), that is a
current area of research in NLP.

Lemma 3. For every CBFG G, there is
a non-erasing positive range concatenation
grammar of arity one, in 2-var form that de-
fines the same language.

Proof. Suppose G = 〈F, P, PL,Σ〉. Define
a RCG with a set of predicates equal to F
and the following clauses, and the two vari-
ables U, V . For each production x → yz in
P , for each f ∈ x, where y = {g1, . . . gi},
z = {h1, . . . hj} add clauses
f(UV) → g1(U), . . . gi(U), h1(V), . . . hj(V).
For each lexical production {f1 . . . fk} → a
add clauses fi(a) → ε. It is straightforward
to verify that f(w) ` ε iff f ∈ fG(w).

Conjunctive Grammar

A more exact correspondence is to the class of
Conjunctive Grammars (Okhotin, 2001), in-
vented independently of RCGs. For every ev-
ery language L generated by a conjunctive
grammar there is a CBFG representing L#
(where the special character # is not included
in the original alphabet).

Suppose we have a conjunctive grammar
G = 〈Σ, N, P, S〉 in binary normal form (as
defined in (Okhotin, 2003)). We construct the
equivalent CBFG G′ = 〈F, P ′, PL,Σ〉 as fol-
lowed:

• For every letter a we add a context (la, ra)
to F such that laara ∈ L;

• For every rules X → a in P , we create a
rule {(la, ra)} → a in PL.

• For every non terminal X ∈ N , for every
rule X → P1Q1& . . .&PnQn we add dis-
tinct contexts {(lPiQi , rPiQi)} to F, such
that for all i it exists ui, lPiQiuirPiQi ∈ L

and PiQi
∗⇒G ui;

• Let FX,j = {(lPiQi , rPiQi) : ∀i} the
set of contexts corresponding to the
jth rule applicable to X. For all

36

(lPiQi , rPiQi) ∈ FX,j , we add to P ′ the
rules (lPiQi , rPiQi) → FPi,kFQi,l (∀k, l).

• We add a new context (w, λ) to F such
that S

∗⇒G w and (w, λ) → # to PL;

• For all j, we add to P ′ the rule (λ, λ) →
FS,j{(w, λ)}.

It can be shown that this construction gives
an equivalent CBFG.

5 Regular Languages

Any regular language can be defined by an ex-
act CBFG. In order to show this we will pro-
pose an approach defining a canonical form for
representing any regular language.

Suppose we have a regular language L, we
consider the left and right residual languages:

u−1L = {w|uw ∈ L} (4)

Lu−1 = {w|wu ∈ L} (5)

They define two congruencies: if l, l′ ∈ u−1L
(resp. r, r′ ∈ Lu−1) then for all w ∈ Σ∗, lw ∈
L iff l′w ∈ L (resp. wr ∈ L iff wr′ ∈ L).

For any u ∈ Σ∗, let lmin(u) be the lexico-
graphically shortest element such that l−1

minL =
u−1L. The number of such lmin is finite by
the Myhil-Nerode theorem, we denote by Lmin

this set, i.e. {lmin(u)|u ∈ Σ∗}. We de-
fine symmetrically Rmin for the right residuals
(Lr−1

min = Lu−1).
We define the set of contexts as:

F (L) = Lmin ×Rmin. (6)

F (L) is clearly finite by construction.
If we consider the regular language de-

fined by the deterministic finite automata
of Figure 2, we obtain Lmin = {λ, a, b}
and Rmin = {λ, b, ab} and thus F (L) =
{(λ, λ), (a, λ), (b, λ), (λ, b), (a, b), (b, b), (λ, ab),
(a, ab), (b, ab)}.

By considering this set of features, we
can prove (using arguments about congruence
classes) that for any strings u, v such that
FL(u) ⊃ FL(v), then CL(u) ⊃ CL(v). This
means the set of feature F is sufficient to rep-
resent context inclusion, we call this property
the fiduciality.

Note that the number of congruence classes
of a regular language is finite. Each congru-
ence class is represented by a set of contexts

Figure 2: Example of a DFA. The left residuals
are defined by λ−1L, a−1L, b−1L and the right
ones by Lλ−1, Lb−1, Lab−1 (note here that
La−1 = Lλ−1).

FL(u). Let KL be finite set of strings formed
by taking the lexicographically shortest string
from each congruence class. The final gram-
mar can be obtained by combining elements
of KL. For every pair of strings u, v ∈ KL, we
define a rule

FL(uv) → FL(u), FL(v) (7)

and we add lexical productions of the form
FL(a) → a, a ∈ Σ.

Lemma 4. For all w ∈ Σ∗, fG(w) = FL(w).

Proof. (Sketch) Proof in two steps: ∀w ∈
Σ∗, FL(w) ⊆ fG(w) and fG(w) ⊆ FL(w). Each
step is made by induction on the length of w
and uses the rules created to build the gram-
mar, the derivation process of a CBFG and
the fiduciality for the second step. The key
point rely on the fact that when a string w is
parsed by a CBFG G, there exists a cut of w
in uv = w (u, v ∈ Σ∗) and a rule z → xy in G
such that x ⊆ fG(u) and y ⊆ fG(v). The rule
z → xy is also obtained from a substring from
the set used to build the grammar using the
FL map. By inductive hypothesis you obtain
inclusion between fG and FL on u and v.

For the language of Figure 2, the following
set is sufficient to build an exact CBGF:
{a, b, aa, ab, ba, aab, bb, bba} (this corresponds
to all the substrings of aab and bba). We have:
FL(a) = F (L)\{(λ, λ), (a, λ)} → a

FL(b) = F (L) → b

FL(aa) = FL(a) → FL(a), FL(a)

FL(ab) = F (L) → FL(a), FL(b) = FL(a), F (L)

FL(ba) = F (L) → FL(b), FL(a) = F (L), FL(a)

FL(bb) = F (L) → FL(b), FL(b) = F (L), F (L)

37

FL(aab) = FL(bba) = FL(ab) = FL(ba)

The approach presented here gives a canon-
ical form for representing a regular language
by an exact CBFG. Moreover, this is is com-
plete in the sense that every context of every
substring will be represented by some element
of F (L): this CBFG will completely model the
relation between contexts and substrings.

6 Context-Free Languages

We now consider the relationship between
CFGs and CBFGs.

Definition 5. A context-free grammar (CFG)
is a quadruple G = (Σ, V, P, S). Σ is a fi-
nite alphabet, V is a set of non terminals
(Σ ∩ V = ∅), P ⊆ V × (V ∪ Σ)+ is a finite
set of productions, S ∈ V is the start symbol.

In the following, we will suppose that a CFG
is represented in Chomsky Normal Form, i.e.
every production is in the form N → UW with
N,U, W ∈ V or N → a with a ∈ Σ.
We will write uNv ⇒G uαv if there is a pro-
duction N → α ∈ P . ∗⇒G is the reflexive tran-
sitive closure of ⇒G. The language defined by
a CFG G is L(G) = {w ∈ Σ∗|S ∗⇒G w}.

6.1 A Simple Characterization

A simple approach to try to represent a CFG
by a CBFG is to define a bijection between the
set of non terminals and the set of context fea-
tures. Informally we define each non terminal
by a single context and rewrite the productions
of the grammar in the CBFG form.

To build the set of contexts F , it is sufficient
to choose |V | contexts such that a bijection bC

can be defined between V and F with bC(N) =
(l, r) implies that S

∗⇒ lNr. Note that we fix
bT (S) = (λ, λ).

Then, we can define a CBFG
〈F, P ′, P ′

L,Σ〉, where P ′ = {bT (N) →
bT (U)bT (W)|N → UW ∈ P} and
P ′

L = {bT (N) → a|N → a ∈ P, a ∈ Σ}.
A similar proof showing that this construction
produces an equivalent CBFG can be found
in (Clark et al., 2008).

If this approach allows a simple syntactical
convertion of a CFG into a CBFG, it is not
relevant from an NLP point of view. Though
we associate a non-terminal to a context, this

may not correspond to the intrinsic property
of the underlying language. A context could
be associated with many non-terminals and we
choose only one. For example, the context
(He is, λ) allows both noun phrases and ad-
jective phrases. In formal terms, the resulting
CBFG is not exact. Then, with the bijection
we introduced before, we are not able to char-
acterize the non-terminals by the contexts in
which they could appear. This is clearly what
we don’t want here and we are more interested
in the relationship with exact CBFG.

6.2 Not all CFLs have an exact CBFG

We will show here that the class of context-
free grammars is not strictly included in the
class of exact CBFGs. First, the grammar
defined in Section 3.2 is an exact CBFG for
the context-free and non regular language
{anbn|n > 0}, showing the class of exact
CBFG has some elements in the class of CFGs.

We give now a context-free language L that
can not be defined by an exact CBFG:

L = {anb|n > 0} ∪ {amcn|n > m > 0}.

Suppose that there exists an exact CBFG that
recognizes it and let N be the length of the
biggest feature (i.e. the longuest left part of
the feature). For any sufficiently large k >
N , the sequences ck and ck+1 share the same
features: FL(ck) = FL(ck+1). Since the CBFG
is exact we have FL(b) ⊆ FL(ck). Thus any
derivation of ak+1b could be a derivation of
ak+1ck which does not belong to the language.

However, this restriction does not mean that
the class of exact CBFG is too restrictive for
modelling natural languages. Indeed, the ex-
ample we have given is highly unnatural and
such phenomena appear not to occur in at-
tested natural languages.

7 Context-Sensitive Languages

We now show that there are some exact
CBFGs that are not context-free. In particu-
lar, we define a language closely related to the
MIX language (consisting of strings with an
equal number of a’s, b’s and c’s in any order)
which is known to be non context-free, and
indeed is conjectured to be outside the class
of indexed grammars (Boullier, 2003).

38

Let M = {(a, b, c)∗}, we consider the language
L = Labc∪Lab∪Lac∪{a′a, b′b, c′c, dd′, ee′, ff ′}:
Lab = {wd|w ∈ M, |w|a = |w|b},
Lac = {we|w ∈ M, |w|a = |w|c},
Labc = {wf |w ∈ M, |w|a = |w|b = |w|c}.
In order to define a CBFG recognizing L, we
have to select features (contexts) that can rep-
resent exactly the intrinsic components of the
languages composing L. We propose to use the
following set of features for each sublanguages:

• For Lab: (λ, d) and (λ, ad), (λ, bd).

• For Lac: (λ, e) and (λ, ae), (λ, ce).

• For Labc: (λ, f).

• For the letters a′, b′, c′, a, b, c we add:
(λ, a), (λ, b), (λ, c), (a′, λ), (b′, λ), (c′, λ).

• For the letters d, e, f, d′, e′, f ′ we add;
(λ, d′), (λ, e′), (λ, f ′), (d, λ), (e, λ), (f, λ).

Here, Lab will be represented by (λ, d), but we
will use (λ, ad), (λ, bd) to define the internal
derivations of elements of Lab. The same idea
holds for Lac with (λ, e) and (λ, ae), (λ, ce).

For the lexical rules and in order to have an
exact CBFG, note the special case for a, b, c:
{(λ, bd), (λ, ce), (a′, λ)} → a
{(λ, ad), (b′, λ)} → b
{(λ, ad), (λ, ae), (c′, λ)} → c
For the nine other letters, each one is defined
with only one context like {(λ, d′)} → d.

For the production rules, the most impor-
tant one is: (λ, λ) → {(λ, d), (λ, e)}, {(λ, f ′)}.

Indeed, this rule, with the presence of two
contexts in one of categories, means that an
element of the language has to be derived
so that it has a prefix u such that fG(u) ⊇
{(λ, d), (λ, e)}. This means u is both an ele-
ment of Lab and Lac. This rule represents the
language Labc since {(λ, f ′)} can only repre-
sent the letter f .

The other parts of the language will be
defined by the following rules:
(λ, λ) → {(λ, d)}, {(λ, d′)},
(λ, λ) → {(λ, e)}, {(λ, e′)},
(λ, λ) → {(λ, a)}, {(λ, bd), (λ, ce), (a′, λ)},
(λ, λ) → {(λ, b)}, {(λ, ad), (b′, λ)},
(λ, λ) → {(λ, c)}, {(λ, ad), (λ, ae), (c′, λ)},
(λ, λ) → {(λ, d′)}, {(d, λ)},
(λ, λ) → {(λ, e′)}, {(e, λ)},

(λ, λ) → {(λ, f ′)}, {(f, λ)}.

This set of rules is incomplete, since for rep-
resenting Lab, the grammar must contain the
rules ensuring to have the same number of a’s
and b’s, and similarly for Lac. To lighten the
presentation here, the complete grammar is
presented in Annex.

We claim this is an exact CBFG for a
context-sensitive language. L is not context-
free since if we intersect L with the regular
language {Σ∗d}, we get an instance of the
non context-free MIX language (with d ap-
pended). The exactness comes from the fact
that we chose the contexts in order to ensure
that strings belonging to a sublanguage can
not belong to another one and that the deriva-
tion of a substring will provide all the possible
correct features with the help of the union of
all the possible derivations.

Note that the Mix language on its own is
probably not definable by an exact CBFG: it
is only when other parts of the language can
distributionally define the appropriate partial
structures that we can get context sensitive
languages. Far from being a limitation of this
formalism (a bug), we argue this is a feature:
it is only in rather exceptional circumstances
that we will get properly context sensitive lan-
guages. This formalism thus potentially ac-
counts not just for the existence of non context
free natural language but also for their rarity.

8 Conclusion

The chart in Figure 3 summarises the different
relationship shown in this paper. The substi-
tutable languages (Clark and Eyraud, 2007)
and the very simple ones (Yokomori, 2003)
form two different learnable class of languages.
There is an interesting relationship with Mar-
cus External Contextual Grammars (Mitrana,
2005): if we defined the language of a CBFG
to be the set {fG(u) � u : u ∈ Σ∗} we would
be taking some steps towards contextual gram-
mars.

In this paper we have discussed the weak
generative power of Exact Contextual Binary
Feature Grammars; we conjecture that the
class of natural language stringsets lie in this
class. ECBFGs are efficiently learnable (see
(Clark et al., 2008) for details) which is a com-

39

Context-free

Regular

Context sensitive

very
simple

substi-
tutable

Range Concatenation

 Conjunctive = CBFG

Exact CBFG

Figure 3: The relationship between CBFG and
other classes of languages.

pelling technical advantage of this formalism
over other more traditional formalisms such as
CFGs or TAGs.

References

Pierre Boullier. 2000. A Cubic Time Extension
of Context-Free Grammars. Grammars, 3:111–
131.

Pierre Boullier. 2003. Counting with range con-
catenation grammars. Theoretical Computer
Science, 293(2):391–416.

Alexander Clark and Rémi Eyraud. 2007. Polyno-
mial identification in the limit of substitutable
context-free languages. Journal of Machine
Learning Research, 8:1725–1745, Aug.

Alexander Clark, Rémi Eyraud, and Amaury
Habrard. 2008. A polynomial algorithm for the
inference of context free languages. In Proceed-
ings of International Colloquium on Grammati-
cal Inference, pages 29–42. Springer, September.

V. Mitrana. 2005. Marcus external contextual
grammars: From one to many dimensions. Fun-
damenta Informaticae, 54:307–316.

Alexander Okhotin. 2001. Conjunctive grammars.
J. Autom. Lang. Comb., 6(4):519–535.

Alexander Okhotin. 2003. An overview of con-
junctive grammars. Formal Language Theory
Column, bulletin of the EATCS, 79:145–163.

Takashi Yokomori. 2003. Polynomial-time iden-
tification of very simple grammars from pos-
itive data. Theoretical Computer Science,
298(1):179–206.

Annex

(λ, λ) → {(λ, d), (λ, e)}, {(λ, f ′)}
(λ, λ) → {(λ, d)}, {(λ, d′)}
(λ, λ) → {(λ, e)}, {(λ, e′)}
(λ, λ) → {(λ, a)}, {(λ, bd), (λ, ce), (a′, λ)}
(λ, λ) → {(λ, b)}, {(λ, ad), (b′, λ)}
(λ, λ) → {(λ, c)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, λ) → {(λ, d′)}, {(d, λ)}
(λ, λ) → {(λ, e′)}, {(e, λ)}
(λ, λ) → {(λ, f ′)}, {(f, λ)}

(λ, d) → {(λ, d)}, {(λ, d)}
(λ, d) → {(λ, ad)}, {(λ, bd)}
(λ, d) → {(λ, bd)}, {(λ, ad)}
(λ, d) → {(λ, d)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, d) → {(λ, ad), (λ, ae), (c′, λ)}, {(λ, d)}

(λ, ad) → {(λ, ad), (λ, ae), (c′, λ)}, {(λ, ad)}
(λ, ad) → {(λ, ad)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, ad) → {(λ, ad), (b′, λ)}, {(λ, d)}
(λ, ad) → {(λ, d)}, {(λ, ad), (b′, λ)}

(λ, bd) → {(λ, ad), (λ, ae), (c′, λ)}, {(λ, bd)}
(λ, bd) → {(λ, bd)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, bd) → {(λ, bd), (λ, ce), (a′, λ)}, {(λ, d)}
(λ, bd) → {(λ, d)}, {(λ, bd), (λ, ce), (a′, λ)}
(λ, e) → {(λ, e)}, {(λ, e)}
(λ, e) → {(λ, ae)}, {(λ, ce)}
(λ, e) → {(λ, ce)}, {(λ, ae)}
(λ, e) → {(λ, e)}, {(λ, ad), (b′, λ)}
(λ, e) → {(λ, ad), (b′, λ)}, {(λ, e)}
(λ, ae) → {(λ, ad), (b′, λ)}, {(λ, ae)}
(λ, ae) → {(λ, ae)}, {(λ, ad), (b′, λ)}
(λ, ae) → {(λ, ad), (λ, ae), (c′, λ)}, {(λ, e)}
(λ, ae) → {(λ, e)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, ce) → {(λ, ad), (b′, λ)}, {(λ, ce)}
(λ, ce) → {(λ, ce)}, {(λ, ad), (b′, λ)}
(λ, ce) → {(λ, bd), (λ, ce), (a′, λ)}, {(λ, e)}
(λ, ce) → {(λ, e)}, {(λ, bd), (λ, ce), (a′, λ)}
{(λ, bd), (λ, ce), (a′, λ)} → a
{(λ, ad), (b′, λ)} → b
{(λ, ad), (λ, ae), (c′, λ)} → c
{(λ, d′)} → d
{(λ, e′)} → e
{(λ, f ′)} → f
{(λ, a)} → a′

{(λ, b)} → b′

{(λ, c)} → c′

{(d, λ)} → d′

{(e, λ)} → e′

{(f, λ)} → f ′

40

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 41–48,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Language models for contextual error detection and correction

Herman Stehouwer
Tilburg Centre for Creative Computing

Tilburg University
Tilburg, The Netherlands

j.h.stehouwer@uvt.nl

Menno van Zaanen
Tilburg Centre for Creative Computing

Tilburg University
Tilburg, The Netherlands
mvzaanen@uvt.nl

Abstract

The problem of identifying and correcting
confusibles, i.e. context-sensitive spelling
errors, in text is typically tackled using
specifically trained machine learning clas-
sifiers. For each different set of con-
fusibles, a specific classifier is trained and
tuned.

In this research, we investigate a more
generic approach to context-sensitive con-
fusible correction. Instead of using spe-
cific classifiers, we use one generic clas-
sifier based on a language model. This
measures the likelihood of sentences with
different possible solutions of a confusible
in place. The advantage of this approach
is that all confusible sets are handled by
a single model. Preliminary results show
that the performance of the generic clas-
sifier approach is only slightly worse that
that of the specific classifier approach.

1 Introduction

When writing texts, people often use spelling
checkers to reduce the number of spelling mis-
takes in their texts. Many spelling checkers con-
centrate on non-word errors. These errors can be
easily identified in texts because they consist of
character sequences that are not part of the lan-
guage. For example, in Englishwoord is is not
part of the language, hence a non-word error. A
possible correction would beword.

Even when a text does not contain any non-
word errors, there is no guarantee that the text is
error-free. There are several types of spelling er-
rors where the words themselves are part of the
language, but are used incorrectly in their context.
Note that these kinds of errors are much harder
to recognize, as information from the context in

which they occur is required to recognize and cor-
rect these errors. In contrast, non-word errors can
be recognized without context.

One class of such errors, calledconfusibles,
consists of words that belong to the language, but
are used incorrectly with respect to their local,
sentential context. For example,She owns to cars
contains the confusibleto. Note that this word is
a valid token and part of the language, but used
incorrectly in the context. Considering the con-
text, a correct and very likely alternative would be
the wordtwo. Confusibles are grouped together in
confusible sets. Confusible sets are sets of words
that are similar and often used incorrectly in con-
text. Too is the third alternative in this particular
confusible set.

The research presented here is part of a
larger project, which focusses on context-sensitive
spelling mistakes in general. Within this project
all classes of context-sensitive spelling errors are
tackled. For example, in addition to confusibles,
a class of pragmatically incorrect words (where
words are incorrectly used within the document-
wide context) is considered as well. In this arti-
cle we concentrate on the problem of confusibles,
where the context is only as large as a sentence.

2 Approach

A typical approach to the problem of confusibles
is to train a machine learning classifier to a specific
confusible set. Most of the work in this area has
concentrated on confusibles due to homophony
(to, too, two) or similar spelling (desert, dessert).
However, some research has also touched upon in-
flectional or derivational confusibles such asI ver-
susme (Golding and Roth, 1999). For instance,
when word forms are homophonic, they tend to
get confused often in writing (cf. the situation with
to, too, andtwo, affect andeffect, or there, their,
and they’re in English) (Sandra et al., 2001; Van
den Bosch and Daelemans, 2007).

41

Most work on confusible disambiguation using
machine learning concentrates on hand-selected
sets of notorious confusibles. The confusible sets
are typically very small (two or three elements)
and the machine learner will only see training
examples of the members of the confusible set.
This approach is similar to approaches used in ac-
cent restoration (Yarowsky, 1994; Golding, 1995;
Mangu and Brill, 1997; Wu et al., 1999; Even-
Zohar and Roth, 2000; Banko and Brill, 2001;
Huang and Powers, 2001; Van den Bosch, 2006).

The task of the machine learner is to decide, us-
ing features describing information from the con-
text, which word taken from the confusible set re-
ally belongs in the position of the confusible. Us-
ing the example above, the classifier has to decide
which word belongs on the position of theX in
She ownsX cars, where the possible answers for
X are to, too, or two. We call X, the confusible
that is under consideration, thefocus word.

Another way of looking at the problem of con-
fusible disambiguation is to see it as a very spe-
cialized case of word prediction. The problem is
then to predict which word belongs at a specific
position. Using similarities between these cases,
we can use techniques from the field of language
modeling to solve the problem of selecting the best
alternative from confusible sets. We will investi-
gate this approach in this article.

Language models assign probabilities to se-
quences of words. Using this information, it
is possible to predict the most likely word in
a certain context. If a language model gives
us the probability for a sequence ofn words
PLM (w1, . . . , wn), we can use this to predict the
most likely wordw following a sequence ofn− 1
words arg maxw PLM (w1, . . . , wn−1, w). Obvi-
ously, a similar approach can be taken withw in
the middle of the sequence.

Here, we will use a language model as a classi-
fier to predict the correct word in a context. Since
a language model models the entire language, it is
different from a regular machine learning classifier
trained on a specific set of confusibles. The advan-
tage of this approach to confusible disambiguation
is that the language model can handle all potential
confusibles without any further training and tun-
ing. With the language model it is possible to take
the words from any confusible set and compute the
probabilities of those words in the context. The
element from the confusible set that has the high-

est probability according to the language model is
then selected. Since the language model assigns
probabilities to all sequences of words, it is pos-
sible to define new confusible sets on the fly and
let the language model disambiguate them with-
out any further training. Obviously, this is not
possible for a specialized machine learning clas-
sifier approach, where a classifier is fine-tuned to
the features and classes of a specific confusible set.

The expected disadvantage of the generic (lan-
guage model) classifier approach is that the accu-
racy is expected to be less than that of the specific
(specialized machine learning classifier) approach.
Since the specific classifiers are tuned to each spe-
cific confusible set, the weights for each of the
features may be different for each set. For in-
stance, there may be confusibles for which the cor-
rect word is easily identified by words in a specific
position. If a determiner, likethe, occurs in the po-
sition directly before the confusible,to or too are
very probably not the correct answers. The spe-
cific approach can take this into account by assign-
ing specific weights to part-of-speech and position
combinations, whereas the generic approach can-
not do this explicitly for specific cases; the weights
follow automatically from the training corpus.

In this article, we will investigate whether it is
possible to build a confusible disambiguation sys-
tem that is generic for all sets of confusibles using
language models as generic classifiers and investi-
gate in how far this approach is useful for solving
the confusible problem. We will compare these
generic classifiers against specific classifiers that
are trained for each confusible set independently.

3 Results

To measure the effectiveness of the generic clas-
sifier approach to confusible disambiguation, and
to compare it against a specific classifier approach
we have implemented several classification sys-
tems. First of these is a majority class baseline sys-
tem, which selects the word from the confusible
set that occurs most often in the training data.1

We have also implemented several generic classi-
fiers based on different language models. We com-
pare these against two machine learning classi-
fiers. The machine learning classifiers are trained
separately for each different experiment, whereas

1This baseline system corresponds to the simplest lan-
guage model classifier. In this case, it only usesn-grams with
n = 1.

42

the parameters and the training material of the lan-
guage model are kept fixed throughout all the ex-
periments.

3.1 System description

There are many different approaches that can be
taken to develop language models. A well-known
approach is to usen-grams, or Markov models.
These models take into account the probability
that a word occurs in the context of the previous
n − 1 words. The probabilities can be extracted
from the occurrences of words in a corpus. Proba-
bilities are computed by taking the relative occur-
rence count of then words in sequence.

In the experiments described below, we will use
a tri-gram-based language model and where re-
quired this model will be extended with bi-gram
and uni-gram language models. The probability
of a sequence is computed as the combination of
the probabilities of the tri-grams that are found in
the sequence.

Especially whenn-grams with largen are used,
data sparseness becomes an issue. The training
data may not contain any occurrences of the par-
ticular sequence ofn symbols, even though the
sequence is correct. In that case, the probability
extracted from the training data will be zero, even
though the correct probability should be non-zero
(albeit small). To reduce this problem we can ei-
ther use back-off or smoothing when the probabil-
ity of an n-gram is zero. In the case of back-off,
the probabilities of lower ordern-grams are taken
into account when needed. Alternatively, smooth-
ing techniques (Chen and Goodman, 1996) redis-
tribute the probabilities, taking into account previ-
ously unseen word sequences.

Even though the language models provide us
with probabilities of entire sequences, we are
only interested in then-grams directly around the
confusible when using the language models in
the context of confusible disambiguation. The
probabilities of the rest of the sequence will re-
main the same whichever alternative confusible
is inserted in the focus word position. Fig-
ure 1 illustrates that the probability of for example
P (analysts had expected) is irrelevant for the de-
cision betweenthenandthanbecause it occurs in
both sequences.

The different language models we will consider
here are essentially the same. The differences lie
in how they handle sequences that have zero prob-

ability. Since the probabilities of then-grams are
multiplied, having an-gram probability of zero re-
sults in a zero probability for the entire sequence.
There may be two reasons for ann-gram to have
probability zero: there is not enough training data,
so this sequence has not been seen yet, or this se-
quence is not valid in the language.

When it is known that a sequence is not valid
in the language, this information can be used to
decide which word from the confusible set should
be selected. However, when the sequence simply
has not been seen in the training data yet, we can-
not rely on this information. To resolve the se-
quences with zero probability, we can use smooth-
ing. However, this assumes that the sequence is
valid, but has not been seen during training. The
other solution, back-off, tries not to make this as-
sumption. It checks whether subsequences of the
sequence are valid, i.e. have non-zero probabili-
ties. Because of this, we will not use smoothing to
reach non-zero probabilities in the current exper-
iments, although this may be investigated further
in the future.

The first language model that we will investi-
gate here is a linear combination of the differ-
ent n-grams. The probability of a sequence is
computed by a linear combination of weightedn-
gram probabilities. We will report on two different
weight settings, one system using uniform weight-
ing, called uniform linear, and one where uni-
grams receive weight 1, bi-grams weight 138, and
tri-grams weight 437.2 These weights are normal-
ized to yield a final probability for the sequence,
resulting in the second system calledweighted lin-
ear.

The third system uses the probabilities of the
different n-grams separately, instead of using the
probabilities of alln-grams at the same time as is
done in the linear systems. Thecontinuous back-
off method uses only one of the probabilities at
each position, preferring the higher-level probabil-
ities. This model provides a step-wise back-off.
The probability of a sequence is that of the tri-
grams contained in that sequence. However, if the
probability of a trigram is zero, a back-off to the
probabilities of the two bi-grams of the sequence
is used. If that is still zero, the uni-gram probabil-
ity at that position is used. Note that this uni-gram
probability is exactly what the baseline system

2These weights are selected by computing the accuracy of
all combinations of weights on a held out set.

43

. . . much stronger most analysts had expected .

than then
P (much stronger than) P (much stronger then)
×P (stronger than most) ×P (stronger then most)
×P (than most analysts) ×P (then most analysts)

Figure 1: Computation of probabilities using the language model.

uses. With this approach it may be the case that
the probability for one word in the confusible set
is computed based on tri-grams, whereas the prob-
ability of another word in the set of confusibles is
based on bi-grams or even the uni-gram probabil-
ity. Effectively, this means that different kinds of
probabilities are compared. The same weights as
in the weighted linear systems are used.

To resolve the problem of unbalanced probabil-
ities, a fourth language model, calledsynchronous
back-off, is proposed. Whereas in the case of the
continuous back-off model, two words from the
confusible set may be computed using probabil-
ities of different leveln-grams, the synchronous
back-off model uses probabilities of the same level
of n-grams for all words in the confusible set, with
n being the highest value for which at least one of
the words has a non-zero probability. For instance,
when worda has a tri-gram probability of zero and
wordb has a non-zero tri-gram probability,b is se-
lected. When both have a zero tri-gram probabil-
ity, a back-off to bi-grams is performed for both
words. This is in line with the idea that if a proba-
bility is zero, the training data is sufficient, hence
the sequence is not in the language.

To implement the specific classifiers, we used
the TiMBL implementation of ak-NN classifier
(Daelemans et al., 2007). This implementation of
thek-NN algorithm is calledIB1. We have tuned
the different parameter settings for thek-NN clas-
sifier using Paramsearch (Van den Bosch, 2004),
which resulted in ak of 35.3 To describe the in-
stances, we try to model the data as similar as pos-
sible to the data used by the generic classifier ap-
proach. Since the language model approaches use
n-grams withn = 3 as the largestn, the features
for the specific classifier approach use words one
and two positions left and right of the focus word.

3We note thatk is handled slightly differently in TiMBL
than usual,k denotes the number of closest distances consid-
ered. So if there are multiple instances that have the same
(closest) distance they are all considered.

The focus word becomes the class that needs to
be predicted. We show an example of both train-
ing and testing in figure 2. Note that the features
for the machine learning classifiers could be ex-
panded with, for instance, part-of-speech tags, but
in the current experiments only the word forms are
used as features.

In addition to thek-NN classifier, we also run
the experiments using the IGTree classifier, which
is denotedIGTreein the rest of the article, which is
also contained in the TiMBL distribution. IGTree
is a fast, trie based, approximation ofk-nearest
neighbor classification (Knuth, 1973; Daelemans
et al., 1997). IGTree allows for fast training and
testing even with millions of examples. IGTree
compresses a set of labeled examples into a deci-
sion tree structure similar to the classic C4.5 algo-
rithm (Quinlan, 1993), except that throughout one
level in the IGTree decision tree, the same feature
is tested. Classification in IGTree is a simple pro-
cedure in which the decision tree is traversed from
the root node down, and one path is followed that
matches the actual values of the new example to
be classified. If a leaf is found, the outcome stored
at the leaf of the IGTree is returned as the clas-
sification. If the last node is not a leaf node, but
there are no outgoing arcs that match a feature-
value combination of the instance, the most likely
outcome stored at that node is produced as the re-
sulting classification. This outcome is computed
by collating the outcomes of all leaf nodes that can
be reached from the node.

IGTree is typically able to compress a large
example set into a lean decision tree with high
compression factors. This is done in reasonably
short time, comparable to other compression al-
gorithms. More importantly, IGTree’s classifica-
tion time depends only on the number of features
(O(f)). Indeed, in our experiments we observe
high compression rates. One of the unique char-
acteristics of IGTree compared to basick-NN is
its resemblance to smoothing of a basic language

44

Training . . . much stronger thanmost analysts had expected .

〈much, stronger, most, analysts〉 ⇒than

Testing . . . much stronger most analysts had expected .

〈much, stronger, most, analysts〉 ⇒?

Figure 2: During training, a classified instance (in this case for the confusible pair{then, than}) are
generated from a sentence. During testing, a similar instance is generated. The classifier decides what
the corresponding class, and hence, which word should be thefocus word.

model (Zavrel and Daelemans, 1997), while still
being a generic classifier that supports any number
and type of features. For these reasons, IGTree is
also included in the experiments.

3.2 Experimental settings

The probabilities used in the language models of
the generic classifiers are computed by looking at
occurrences ofn-grams. These occurrences are
extracted from a corpus. The training instances
used in the specific machine learning classifiers
are also extracted from the same data set. For
training purposes, we used the Reuters news cor-
pus RCV1 (Lewis et al., 2004). The Reuters cor-
pus contains about 810,000 categorized newswire
stories as published by Reuters in 1996 and 1997.
This corpus contains around 130 million tokens.

For testing purposes, we used the Wall Street
Journal part of the Penn Treebank corpus (Marcus
et al., 1993). This well-known corpus contains ar-
ticles from the Wall Street Journal in 1987 to 1989.
We extract our test-instances from this corpus in
the same way as we extract our training data from
the Reuters corpus. There are minor tokenization
differences between the corpora. The data is cor-
rected for these differences.

Both corpora are in the domain of English lan-
guage news texts, so we expect them to have simi-
lar properties. However, they are different corpora
and hence are slightly different. This means that
there are also differences between the training and
testing set. We have selected this division to cre-
ate a more realistic setting. This should allow for a
more to real-world use comparison than when both
training and testing instances are extracted from
the same corpus.

For the specific experiments, we selected a
number of well-known confusible sets to test
the different approaches. In particular, we
look at {then, than}, {its, it’s}, {your, you’re},

{their, there, they’re}. To compare the difficulty
of these problems, we also selected two words at
random and used them as a confusible set.

The random category consists of two words that
where randomly selected from all words in the
Reuters corpus that occurred more than a thousand
times. The words that where chosen, and used for
all experiments here arerefugeesandeffect. They
occur around 27 thousand times in the Reuters cor-
pus.

3.3 Empirical results

Table 1 sums up the results we obtained with the
different systems. The baseline scores are gen-
erally very high, which tells us that the distribu-
tion of classes in a single confusible set is severely
skewed, up to a ten to one ratio. This also makes
the task hard. There are many examples for one
word in the set, but only very few training in-
stances for the other(s). However, it is especially
important to recognize the important aspects of the
minority class.

The results clearly show that the specific clas-
sifier approaches outperform the other systems.
For instance, on the first task ({then, than}) the
classifier achieves an accuracy slightly over 98%,
whereas the language model systems only yield
around 96%. This is as expected. The classifier
is trained on just one confusible task and is there-
fore able to specialize on that task.

Comparing the two specific classifiers, we see
that the accuracy achieved by IB1 and IGTree is
quite similar. In general, IGTree performs a bit
worse than IB1 on all confusible sets, which is
as expected. However, in general it is possible
for IGTree to outperform IB1 on certain tasks. In
our experience this mainly happens on tasks where
the usage of IGTree, allowing for more compact
internal representations, allows one to use much
more training data. IGTree also leads to improved

45

{then, than} {its, it’s} {your, you’re} {their, there, they’re} random
Baseline 82.63 92.42 78.55 68.36 93.16
IB1 98.01 98.67 96.36 97.12 97.89
IGTree 97.07 96.75 96.00 93.02 95.79
Uniform linear 68.27 50.70 31.64 32.72 38.95
Weighted linear 94.43 92.88 93.09 93.25 88.42
Continuous back-off 81.49 83.22 74.18 86.01 63.68
Synchronous back-off 96.42 94.10 92.36 93.06 87.37
Number of cases 2,458 4,830 275 3,053 190

Table 1: This table shows the performance achieved by the different systems, shown in accuracy (%).
TheNumber of casesdenotes the number of instances in the testset.

performance in cases where the features have a
strong, absolute ordering of importance with re-
spect to the classification problem at hand.

The generic language model approaches per-
form reasonably well. However, there are clear
differences between the approaches. For instance
the weighted linear and synchronous back-off ap-
proaches work well, but uniform linear and con-
tinuous back-off perform much worse. Especially
the synchronous back-off approach achieves de-
cent results, regardless of the confusible problem.

It is not very surprising to see that the contin-
uous back-off method performs worse than the
synchronous back-off method. Remember that
the continuous back-off method always uses lower
level n-grams when zero probabilities are found.
This is done independently of the probabilities of
the other words in the confusible set. The contin-
uous back-off method prefersn-grams with larger
n, however it does not penalize backing off to an
n-gram with smallern. Combine this with the fact
thatn-gram probabilities with largen are compar-
atively lower than those forn-grams with smaller
n and it becomes likely that a bi-gram contributes
more to the erroneous option than the correct tri-
gram does to the correct option. Tri-grams are
more sparse than bi-grams, given the same data.

The weighted linear approach outperforms the
uniform linear approach by a large margin on all
confusible sets. It is likely that the contribution
from then-grams with largen overrules the prob-
abilities of then-grams with smallern in the uni-
form linear method. This causes a bias towards the
more frequent words, compounded by the fact that
bi-grams, and uni-grams even more so, are less
sparse and therefore contribute more to the total
probability.

We see that the both generic and specific clas-

sifier approaches perform consistently across the
different confusible sets. The synchronous back-
off approach is the best performing generic clas-
sifier approach we tested. It consistently outper-
forms the baseline, and overall performs better
than the weighted linear approach.

The experiments show that generic classifiers
based on language model can be used in the con-
text of confusible disambiguation. However, the
n in the differentn-grams is of major importance.
Exactly whichn grams should be used to com-
pute the probability of a sequence requires more
research. The experiments also show that ap-
proaches that concentrate onn-grams with larger
n yield more encouraging results.

4 Conclusion and future work

Confusibles are spelling errors that can only be de-
tected within their sentential context. This kind
of errors requires a completely different approach
compared to non-word errors (errors that can be
identified out of context, i.e. sequences of char-
acters that do not belong to the language). In
practice, most confusible disambiguation systems
are based on machine learning classification tech-
niques, where for each type of confusible, a new
classifier is trained and tuned.

In this article, we investigate the use of language
models in the context of confusible disambigua-
tion. This approach works by selecting the word
in the set of confusibles that has the highest prob-
ability in the sentential context according to the
language model. Any kind of language model can
be used in this approach.

The main advantage of using language models
as generic classifiers is that it is easy to add new
sets of confusibles without retraining or adding ad-
ditional classifiers. The entire language is mod-

46

eled, which means that all the information on
words in their context is inherently present.

The experiments show that using generic clas-
sifiers based on simplen-gram language models
yield slightly worse results compared to the spe-
cific classifier approach, where each classifier is
specifically trained on one confusible set. How-
ever, the advantage of the generic classifier ap-
proach is that only one system has to be trained,
compared to different systems for each confusible
in the specific classifier case. Also, the exact com-
putation of the probabilities using then-grams, in
particular the means of backing-off, has a large
impact on the results.

As future work, we would like to investigate the
accuracy of more complex language models used
as classifiers. Then-gram language models de-
scribed here are relatively simple, but more com-
plex language models could improve performance.
In particular, instead of back-off, smoothing tech-
niques could be investigated to reduce the impact
of zero probability problems (Chen and Goodman,
1996). This assumes that the training data we are
currently working with is not enough to properly
describe the language.

Additionally, language models that concentrate
on more structural descriptions of the language,
for instance, using grammatical inference tech-
niques (de la Higuera, 2005), or models that ex-
plicitly take long distance dependencies into ac-
count (Griffiths et al., 2005) can be investigated.
This leads to much richer language models that
could, for example, check whether there is already
a verb in the sentence (which helps in cases such
as{its, it’s}).

A different route which we would also like to in-
vestigate is the usage of a specific classifier, such
as TiMBL’s IGTree, as a language model. If a
classifier is trained to predict the next word in the
sentence or to predict the word at a given position
with both left and right context as features, it can
be used to estimate the probability of the words in
a confusible set, just like the language models we
have looked at so far. Another type of classifier
might estimate the perplexity at a position, or pro-
vide some other measure of “surprisedness”. Ef-
fectively, these approaches all take a model of the
entire language (as described in the training data)
into account.

References

Banko, M. and Brill, E. (2001). Scaling to very very
large corpora for natural language disambiguation.
In Proceedings of the 39th Annual Meeting of the As-
sociation for Computational Linguistics, pages 26–
33. Association for Computational Linguistics.

Chen, S. and Goodman, J. (1996). An empirical study
of smoothing techniques for language modelling. In
Proceedings of the 34th Annual Meeting of the ACL,
pages 310–318. ACL.

Daelemans, W., Van den Bosch, A., and Weijters, A.
(1997). IGTree: using trees for compression and
classification in lazy learning algorithms.Artificial
Intelligence Review, 11:407–423.

Daelemans, W., Zavrel, J., Van der Sloot, K., and Van
den Bosch, A. (2007). TiMBL: Tilburg Memory
Based Learner, version 6.1, reference guide. Techni-
cal Report ILK 07-07, ILK Research Group, Tilburg
University.

de la Higuera, C. (2005). A bibliographical study
of grammatical inference. Pattern Recognition,
38(9):1332 – 1348. Grammatical Inference.

Even-Zohar, Y. and Roth, D. (2000). A classification
approach to word prediction. InProceedings of the
First North-American Conference on Computational
Linguistics, pages 124–131, New Brunswick, NJ.
ACL.

Golding, A. and Roth, D. (1999). A Winnow-Based
Approach to Context-Sensitive Spelling Correction.
Machine Learning, 34(1–3):107–130.

Golding, A. R. (1995). A Bayesian hybrid method for
context-sensitive spelling correction. InProceed-
ings of the 3rd workshop on very large corpora,
ACL-95.

Griffiths, T. L., Steyvers, M., Blei, D. M., and Tenen-
baum, J. B. (2005). Integrating topics and syntax. In
In Advances in Neural Information Processing Sys-
tems 17, pages 537–544. MIT Press.

Huang, J. H. and Powers, D. W. (2001). Large scale ex-
periments on correction of confused words. InAus-
tralasian Computer Science Conference Proceed-
ings, pages 77–82, Queensland AU. Bond Univer-
sity.

Knuth, D. E. (1973). The art of computer program-
ming, volume 3: Sorting and searching. Addison-
Wesley, Reading, MA.

Lewis, D. D., Yang, Y., Rose, T. G., Dietterich, G., Li,
F., and Li, F. (2004). Rcv1: A new benchmark col-
lection for text categorization research.Journal of
Machine Learning Research, 5:361–397.

Mangu, L. and Brill, E. (1997). Automatic rule ac-
quisition for spelling correction. InProceedings of
the International Conference on Machine Learning,
pages 187–194.

47

Marcus, M., Santorini, S., and Marcinkiewicz, M.
(1993). Building a Large Annotated Corpus of En-
glish: the Penn Treebank.Computational Linguis-
tics, 19(2):313–330.

Quinlan, J. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA.

Sandra, D., Daems, F., and Frisson, S. (2001). Zo
helder en toch zoveel fouten! wat leren we uit psy-
cholinguı̈stisch onderzoek naar werkwoordfouten
bij ervaren spellers?Tijdschrift van de Vereniging
voor het Onderwijs in het Nederlands, 30(3):3–20.

Van den Bosch, A. (2004). Wrapped progressive
sampling search for optimizing learning algorithm
parameters. In Verbrugge, R., Taatgen, N., and
Schomaker, L., editors,Proceedings of the Sixteenth
Belgian-Dutch Conference on Artificial Intelligence,
pages 219–226, Groningen, The Netherlands.

Van den Bosch, A. (2006). Scalable classification-
based word prediction and confusible correction.
Traitement Automatique des Langues, 46(2):39–63.

Van den Bosch, A. and Daelemans, W. (2007).Tussen
Taal, Spelling en Onderwijs, chapter Dat gebeurd
mei niet: Computationele modellen voor verwarbare
homofonen, pages 199–210. Academia Press.

Wu, D., Sui, Z., and Zhao, J. (1999). An information-
based method for selecting feature types for word
prediction. InProceedings of the Sixth European
Conference on Speech Communication and Technol-
ogy, EUROSPEECH’99, Budapest.

Yarowsky, D. (1994). Decision lists for lexical ambi-
guity resolution: application to accent restoration in
Spanish and French. InProceedings of the Annual
Meeting of the ACL, pages 88–95.

Zavrel, J. and Daelemans, W. (1997). Memory-based
learning: Using similarity for smoothing. InPro-
ceedings of the 35th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 436–443.

48

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 49–57,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

On statistical parsing of French with supervised and semi-supervised
strategies

Marie Candito*, Benoît Crabbé* and Djamé Seddah⋄

* Université Paris 7
UFRL et INRIA (Alpage)

30 rue du Château des Rentiers
F-75013 Paris — France

⋄ Université Paris 4
LALIC et INRIA (Alpage)

28 rue Serpente
F-75006 Paris — France

Abstract

This paper reports results on grammati-
cal induction for French. We investigate
how to best train a parser on the French
Treebank (Abeillé et al., 2003), viewing
the task as a trade-off between generaliz-
ability and interpretability. We compare,
for French, a supervised lexicalized pars-
ing algorithm with a semi-supervised un-
lexicalized algorithm (Petrov et al., 2006)
along the lines of (Crabbé and Candito,
2008). We report the best results known
to us on French statistical parsing, that we
obtained with the semi-supervised learn-
ing algorithm. The reported experiments
can give insights for the task of grammat-
ical learning for a morphologically-rich
language, with a relatively limited amount
of training data, annotated with a rather
flat structure.

1 Natural language parsing

Despite the availability of annotated data, there
have been relatively few works on French statis-
tical parsing. Together with a treebank, the avail-
ability of several supervised or semi-supervised
grammatical learning algorithms, primarily set up
on English data, allows us to figure out how they
behave on French.

Before that, it is important to describe the char-
acteristics of the parsing task. In the case of sta-
tistical parsing, two different aspects of syntactic
structures are to be considered : their capacity to
capture regularities and their interpretability for
further processing.
Generalizability Learning for statistical parsing

requires structures that capture best the underlying

regularities of the language, in order to apply these
patterns to unseen data.

Since capturing underlying linguistic rules is
also an objective for linguists, it makes sense
to use supervised learning from linguistically-
defined generalizations. One generalization is
typically the use of phrases, and phrase-structure
rules that govern the way words are grouped to-
gether. It has to be stressed that these syntactic
rules exist at least in part independently of seman-
tic interpretation.
Interpretability But the main reason to use su-

pervised learning for parsing, is that we want
structures that are asinterpretableas possible, in
order to extract some knowledge from the anal-
ysis (such as deriving a semantic analysis from
a parse). Typically, we need a syntactic analysis
to reflect how wordsrelate to each other. This
is our main motivation to use supervised learn-
ing : the learnt parser will output structures as
defined by linguists-annotators, and thus inter-
pretable within the linguistic theory underlying the
annotation scheme of the treebank. It is important
to stress that this is more than capturing syntactic
regularities : it has to do with themeaningof the
words.
It is not certain though that both requirements
(generalizability / interpretability) are best met in
the same structures. In the case of supervised
learning, this leads to investigate different instan-
tiations of the training trees, to help the learning,
while keeping the maximum interpretability of the
trees. As we will see with some of our experi-
ments, it may be necessary to find a trade-off be-
tween generalizability and interpretability.

Further, it is not guaranteed that syntactic rules
infered from a manually annotated treebank pro-
duce the best language model. This leads to

49

methods that use semi-supervised techniques on
a treebank-infered grammar backbone, such as
(Matsuzaki et al., 2005; Petrov et al., 2006).

The plan of the paper is as follows : in the
next section, we describe the available treebank
for French, and how its structures can be inter-
preted. In section 3, we describe the typical prob-
lems encountered when parsing using a plain prob-
abilistic context-free grammar, and existing algo-
rithmic solutions that try to circumvent these prob-
lems. Next we describe experiments and results
when training parsers on the French data. Finally,
we discuss related work and conclude.

2 Interpreting the French trees

The French Treebank (Abeillé et al., 2003) is a
publicly available sample from the newspaperLe
Monde, syntactically annotated and manually cor-
rected for French.

<SENT>
<NP fct="SUJ">

<w cat="D" lemma="le" mph="ms" subcat="def">le</w>
<w cat="N" lemma="bilan" mph="ms" subcat="C">bilan</w>

</NP>
<VN>

<w cat="ADV" lemma="ne" subcat="neg">n’</w>
<w cat="V" lemma="être" mph="P3s" subcat="">est</w>

</VN>
<AdP fct="MOD">

<w compound="yes" cat="ADV" lemma="peut-être">
<w catint="V">peut</w>
<w catint="PONCT">-</w>
<w catint="V">être</w>

</w>
<w cat="ADV" lemma="pas" subcat="neg">pas</w>

</AdP>
<AP fct="ATS">

<w cat="ADV" lemma="aussi">aussi</w>
<w cat="A" lemma="sombre" mph="ms" subcat="qual">sombre </w>

</AP>
<w cat="PONCT" lemma="." subcat="S">.</w>

</SENT>

Figure 1: Simplified example of the FTB

To encode syntactic information, it uses a com-
bination of labeled constituents, morphological
annotations and functional annotation for verbal
dependents as illustrated in Figure 1. This con-
stituent and functional annotation was performed
in two successive steps : though the original re-
lease (Abeillé et al., 2000) consists of 20,648 sen-
tences (hereafter FTB-V0), the functional annota-
tion was performed later on a subset of 12351 sen-
tences (hereafter FTB). This subset has also been
revised, and is known to be more consistently an-
notated. This is the release we use in our experi-
ments. Its key properties, compared with the Penn
Treebank, (hereafter PTB) are the following :
Size: The FTB is made of 385 458 tokens and

12351 sentences, that is the third of the PTB. The
average length of a sentence is 31 tokens in the

FTB, versus 24 tokens in the PTB.
Inflection : French morphology is richer than En-
glish and leads to increased data sparseness for
statistical parsing. There are 24098 types in the
FTB, entailing an average of 16 tokens occurring
for each type (versus 12 for the PTB).
Flat structure : The annotation scheme is flatter
in the FTB than in the PTB. For instance, there
are no VPs for finite verbs, and only one sentential
level for sentences whether introduced by comple-
mentizer or not. We can measure the corpus flat-
ness using the ratio between tokens and non ter-
minal symbols, excluding preterminals. We obtain
0.69 NT symbol per token for FTB and 1.01 for the
PTB.
Compounds: Compounds are explicitly annotated
(see the compoundpeut-êtrein Figure 1) and very
frequent : 14,52% of tokens are part of a com-
pound. They include digital numbers (written with
spaces in French10 000), very frozen compounds
pomme de terre (potato)but also named entities
or sequences whose meaning is compositional but
where insertion is rare or difficult (garde d’enfant
(child care)).
Now let us focus on what is expressed in the
French annotation scheme, and why syntactic in-
formation is split between constituency and func-
tional annotation.
Syntactic categories and constituentscapture dis-
tributional generalizations. A syntactic category
groups forms that share distributional properties.
Nonterminal symbols that label the constituents
are a further generalizations over sequences of cat-
egories or constituents. For instance about any-
where it is grammatical to have a given NP, it is
implicitly assumed that it will also be grammati-
cal - though maybe nonsensical - to have instead
any other NPs. Of course this is known to be false
in many cases : for instance NPs with or with-
out determiners have very different distributions in
French (that may justify a different label) but they
also share a lot. Moreover, if words are taken into
account, and not just sequences of categories, then
constituent labels are a very coarse generalization.
Constituents also encode dependencies : for in-
stance the different PP-attachment for the sen-
tencesI ate a cake with cream / with a forkre-
flects thatwith creamdepends oncake, whereas
with a fork depends onate. More precisely, a
syntagmatic tree can be interpreted as a depen-
dency structure using the following conventions :

50

for each constituent, given the dominating symbol
and the internal sequence of symbols, (i) a head
symbol can be isolated and (ii) the siblings of that
head can be interpreted as containing dependents
of that head. Given these constraints, the syntag-
matic structure may exhibit various degree of flat-
ness for internal structures.

Functional annotation Dependencies are en-
coded in constituents. While X-bar inspired con-
stituents are supposed to contain all the syntac-
tic information, in the FTB the shape of the con-
stituents does not necessarily express unambigu-
ously thetypeof dependency existing between a
head and a dependent appearing in the same con-
stituent. Yet this is crucial for example to ex-
tract the underlying predicate-argument structures.
This has led to a “flat” annotation scheme, com-
pleted with functional annotations that inform on
the type of dependency existing between a verb
and its dependents. This was chosen for French
to reflect, for instance, the possibility to mix post-
verbal modifiers and complements (Figure 2), or
to mix post-verbal subject and post-verbal indi-
rect complements : a post verbal NP in the FTB

can correspond to a temporal modifier, (most of-
ten) a direct object, or an inverted subject, and in
the three cases other subcategorized complements
may appear.

SENT

NP-SUJ

D

une

N

lettre

VN

V

avait

V

été

V

envoyée

NP-MOD

D

la

N

semaine

A

dernière

PP-AOBJ

P

aux

NP

N

salariés
SENT

NP-SUJ

D

Le

N

Conseil

VN

V

a

V

notifié

NP-OBJ

D

sa

N

décision

PP-AOBJ

P

à

NP

D

la

N

banque

Figure 2: Two examples of post-verbal NPs : a
direct object and a temporal modifier

3 Algorithms for probabilistic grammar
learning

We propose here to investigate how to apply statis-
tical parsing techniques mainly tested on English,
to another language – French –. In this section we
briefly introduce the algorithms investigated.

Though Probabilistic Context Free Grammars
(PCFG) is a baseline formalism for probabilistic
parsing, it suffers a fundamental problem for the

purpose of natural language parsing : the inde-
pendence assumptions made by the model are too
strong. In other words all decisions are local to a
grammar rule.

However as clearly pointed out by (Johnson,
1998) decisions have to take into account non lo-
cal grammatical properties: for instance a noun
phrase realized in subject position is more likely to
be realized by a pronoun than a noun phrase real-
ized in object position. Solving this first method-
ological issue, has led to solutions dubbed here-
after asunlexicalized statistical parsing(Johnson,
1998; Klein and Manning, 2003a; Matsuzaki et
al., 2005; Petrov et al., 2006).

A second class of non local decisions to be
taken into account while parsing natural languages
are related to handling lexical constraints. As
shown above the subcategorization properties of
a predicative word may have an impact on the de-
cisions concerning the tree structures to be asso-
ciated to a given sentence. Solving this second
methodological issue has led to solutions dubbed
hereafter aslexicalized parsing(Charniak, 2000;
Collins, 1999).

In a supervised setting, a third and practical
problem turns out to be critical: that ofdata
sparsenesssince available treebanks are generally
too small to get reasonable probability estimates.
Three class of solutions are possible to reduce data
sparseness: (1) enlarging the data manually or au-
tomatically (e.g. (McClosky et al., 2006) uses self-
training to perform this step) (2) smoothing, usu-
ally this is performed using a markovization pro-
cedure (Collins, 1999; Klein and Manning, 2003a)
and (3) make the data more coarse (i.e. clustering).

3.1 Lexicalized algorithm

The first algorithm we use is the lexicalized parser
of (Collins, 1999). It is called lexicalized, as it
annotates non terminal nodes with an additional
latent symbol: the head word of the subtree. This
additional information attached to the categories
aims at capturing bilexical dependencies in order
to perform informed attachment choices.

The addition of these numerous latent sym-
bols to non terminals naturally entails an over-
specialization of the resulting models. To en-
sure generalization, it therefore requires to add
additional simplifying assumptions formulated as
a variant of usual naïve Bayesian-style simplify-
ing assumptions: the probability of emitting a non

51

head node is assumed to depend on the head and
the mother node only, and not on other sibling
nodes1.

Since Collins demonstrated his models to sig-
nificantly improve parsing accuracy over bare
PCFG, lexicalization has been thought as a ma-
jor feature for probabilistic parsing. However two
problems are worth stressing here: (1) the reason
why these models improve over bare PCFGs is not
guaranteed to be tied to the fact that they capture
bilexical dependencies and (2) there is no guar-
antee that capturing non local lexical constraints
yields an optimal language model.

Concerning (1) (Gildea, 2001) showed that full
lexicalization has indeed small impact on results :
he reimplemented an emulation of Collins’ Model
1 and found that removing all references to bilex-
ical dependencies in the statistical model2, re-
sulted in a very small parsing performance de-
crease (PARSEVAL recall on WSJ decreased from
86.1 to 85.6). Further studies conducted by (Bikel,
2004a) proved indeed that bilexical information
were used by the most probable parses. The idea
is that most bilexical parameters are very similar
to their back-off distribution and have therefore a
minor impact. In the case of French, this fact can
only be more true, with one third of training data
compared to English, and with a much richer in-
flection that worsens lexical data sparseness.

Concerning (2) the addition of head word an-
notations is tied to the use of manually defined
heuristics highly dependent on the annotation
scheme of the PTB. For instance, Collins’ mod-
els integrate a treatment of coordination that is not
adequate for the FTB-like coordination annotation.

3.2 Unlexicalized algorithms

Another class of algorithms arising from (John-
son, 1998; Klein and Manning, 2003a) attempts
to attach additional latent symbols to treebank cat-
egories without focusing exclusively on lexical
head words. For instance the additional annota-
tions will try to capture non local preferences like

1This short description cannot do justice to (Collins,
1999) proposal which indeed includes more fine grained in-
formations and a backoff model. We only keep here the key
aspects of his work relevant for the current discussion.

2Let us consider a dependent constituent C with head
word Chw and head tag Cht, and let C be governed by a con-
stituent H, with head word Hhw and head tag Hht. Gildea
compares Collins model, where the emission of Chw is con-
ditioned on Hhw, and a “mono-lexical” model, where the
emission of Chw is not conditioned on Hhw.

the fact that an NP in subject position is more
likely realized as a pronoun.

The first unlexicalized algorithms set up in this
trend (Johnson, 1998; Klein and Manning, 2003a)
also use language dependent and manually de-
fined heuristics to add the latent annotations. The
specialization induced by this additional annota-
tion is counterbalanced by simplifying assump-
tions, dubbed markovization (Klein and Manning,
2003a).

Using hand-defined heuristics remains prob-
lematic since we have no guarantee that the latent
annotations added in this way will allow to extract
an optimal language model.

A further development has been first introduced
by (Matsuzaki et al., 2005) who recasts the prob-
lem of adding latent annotations as an unsuper-
vised learning problem: given an observed PCFG

induced from the treebank, the latent grammar is
generated by combining every non terminal of the
observed grammar to a predefined setH of latent
symbols. The parameters of the latent grammar
are estimated from theobserved treesusing a spe-
cific instantiation ofEM.

This first procedure however entails a combi-
natorial explosion in the size of the latent gram-
mar as|H| increases. (Petrov et al., 2006) (here-
after BKY) overcomes this problem by using the
following algorithm: given a PCFG G0 induced
from the treebank, iteratively createn grammars
G1 . . . Gn (with n = 5 in practice), where each
iterative step is as follows :

• SPLIT Create a new grammarGi from Gi−1

by splitting every non terminal ofGi in
two new symbols. EstimateGi’s parameters
on the observed treebank using a variant of
inside-outside. This step adds the latent an-
notation to the grammar.

• MERGE For each pair of symbols obtained
by a previous split, try to merge them back.
If the likelihood of the treebank does not
get significantly lower (fixed threshold) then
keep the symbol merged, otherwise keep the
split.

• SMOOTH This step consists in smoothing the
probabilities of the grammar rules sharing the
same left hand side.

This algorithm yields state-of-the-art results on

52

English3. Its key interest is that it directly aims
at finding an optimal language model without (1)
making additional assumptions on the annotation
scheme and (2) without relying on hand-defined
heuristics. This may be viewed as a case of semi-
supervised learning algorithm since the initial su-
pervised learning step is augmented with a second
step of unsupervised learning dedicated to assign
the latent symbols.

4 Experiments and Results

We investigate how some treebank features impact
learning. We describe first the experimental pro-
tocol, next we compare results of lexicalized and
unlexicalized parsers trained on various “instan-
tiations” of the xml source files of the FTB, and
the impact of training set size for both algorithms.
Then we focus on studying how words impact the
results of the BKYalgorithm.

4.1 Protocol

Treebank settingFor all experiments, the tree-
bank is divided into 3 sections : training (80%),
development (10%) and test (10%), made of
respectively 9881, 1235 and 1235 sentences.
We systematically report the results with the
compounds merged. Namely, we preprocess the
treebank in order to turn each compound into a
single token both for training and test.

Software and adaptation to FrenchFor the
Collins algorithm, we use Bikel’s implementation
(Bikel, 2004b) (hereafter BIKEL), and we report
results using Collins model 1 and model 2, with
internal tagging. Adapting model 1 to French
requires to design French specific head propaga-
tion rules. To this end, we adapted those de-
scribed by (Dybro-Johansen, 2004) for extracting
a Stochastic Tree Adjoining Grammar parser on
French. And to adapt model 2, we have further
designed French specific argument/adjunct identi-
fication rules.

For the BKY approach, we use the Berkeley
implementation, with an horizontal markovization
h=0, and 5 split/merge cycles. All the required
knowledge is contained in the treebank used for
training, except for the treatment of unknown or
rare words. It clusters unknown words using ty-
pographical and morphological information. We

3(Petrov et al., 2006) obtain an F-score=90.1 for sentences
of less than 40 words.

adapted these clues to French, following (Arun
and Keller, 2005).

Finally we use as a baseline a standard PCFG
algorithm, coupled with a trigram tagger (we refer
to this setup as TNT/LNCKY algorithm4).

MetricsFor evaluation, we use the standard PAR-
SEVAL metric of labeled precision/recall, along
with unlabeled dependency evaluation, which is
known as a more annotation-neutral metric. Unla-
beled dependencies are computed using the (Lin,
1995) algorithm, and the Dybro-Johansen’s head
propagation rules cited above5. The unlabeled
dependency F-score gives the percentage of in-
put words (excluding punctuation) that receive the
correct head.
As usual for probabilistic parsing results, the re-
sults are given for sentences of the test set of less
than 40 words (which is true for 992 sentences of
the test set), and punctuation is ignored for F-score
computation with both metrics.

4.2 Comparison using minimal tagsets

We first derive from the FTB a minimally-
informed treebank, TREEBANKM IN, instantiated
from the xml source by using only the major syn-
tactic categories and no other feature. In each ex-
periment (Table 1) we observe that the BKY al-
gorithm significantly outperforms Collins models,
for both metrics.

parser BKY BIKEL BIKEL TNT/
metric M1 M2 LNCKY

PARSEVAL LP 85.25 78.86 80.68 68.74
PARSEVAL LR 84.46 78.84 80.58 67.93
PARSEVAL F1 84.85 78.85 80.63 68.33
Unlab. dep. Prec. 90.23 85.74 87.60 79.50
Unlab. dep. Rec. 89.95 85.72 86.90 79.37
Unlab. dep. F1 90.09 85.73 87.25 79.44

Table 1: Results for parsers trained on FTB with
minimal tagset

4The tagger is TNT (Brants, 2000), and the parser
is LNCKY , that is distributed by Mark Johnson
(http://www.cog.brown.edu/ ∼mj/Software.htm).
Formally because of the tagger, this is not a strict PCFG
setup. Rather, it gives a practical trade-off, in which the
tagger includes the lexical smoothing for unknown and rare
words.

5For this evaluation, the gold constituent trees are con-
verted into pseudo-gold dependency trees (that may con-
tain errors). Then parsed constituent trees are converted
into parsed dependency trees, that are matched against the
pseudo-gold trees.

53

4.3 Impact of training data size

How do the unlexicalized and lexicalized ap-
proaches perform with respect to size? We com-
pare in figure 3 the parsing performance BKY and
COLLINSM1, on increasingly large subsets of the
FTB, in perfect tagging mode6 and using a more
detailed tagset (CC tagset, described in the next
experiment). The same 1235-sentences test set
is used for all subsets, and the development set’s
size varies along with the training set’s size. BKY

outperforms the lexicalized model even with small
amount of data (around 3000 training sentences).
Further, the parsing improvement that would re-
sult from more training data seems higher for BKY

than for Bikel.

2000 4000 6000 8000 10000

76
78

80
82

84
86

88

Number of training sentences

F
−

sc
or

e

Bikel
Berkeley

Figure 3: Parsing Learning curve on FTB with CC-
tagset, in perfect-tagging

This potential increase for BKY results if we
had more French annotated data is somehow con-
firmed by the higher results reported for BKY

training on the Penn Treebank (Petrov et al., 2006)
: F1=90.2. We can show though that the 4 points
increase when training on English data is not only
due to size : we extracted from the Penn Treebank
a subset comparable to the FTB, with respect to
number of tokens and average length of sentences.
We obtain F1=88.61 with BKY training.

4.4 Symbol refinements

It is well-known that certain treebank transfor-
mations involving symbol refinements improve

6For BKY , we simulate perfect tagging by changing
words into word+tag in training, dev and test sets. We ob-
tain around 99.8 tagging accuracy, errors are due to unknown
words.

PCFGs (see for instance parent-transformation of
(Johnson, 1998), or various symbol refinements in
(Klein and Manning., 2003b)). Lexicalization it-
self can be seen as symbol refinements (with back-
off though). For BKY , though the key point is to
automatize symbol splits, it is interesting to study
whether manual splits still help.
We have thus experimented BKY training with
various tagsets. The FTB contains rich mor-
phological information, that can be used to split
preterminal symbols : main coarse category (there
are 13), subcategory (subcat feature refining the
main cat), and inflectional information (mph fea-
ture).
We report in Table 2 results for the four tagsets,
where terminals are made of :MIN : main cat,
SUBCAT: main cat + subcat feature,MAX : cat +
subcat + all inflectional information,CC: cat + ver-
bal mood + wh feature.

Tagset Nb of tags Parseval Unlab. dep Tagging
F1 F1 Acc

MIN 13 84.85 90.09 97.35
SUBCAT 34 85.74 – 96.63
MAX 250 84.13 – 92.20
CC 28 86.41 90.99 96.83

Table 2: Tagset impact on learning with BKY (own
tagging)

The corpus instantiation withCC tagset is our
best trade-off between tagset informativeness and
obtained parsing performance7. It is also the best
result obtained for French probabilistic parsing.
This demonstrates though that the BKY learning
is not optimal since manual a priori symbol refine-
ments significantly impact the results.
We also tried to learn structures with functional
annotation attached to the labels : we obtain PAR-
SEVAL F1=78.73 with tags from the CC tagset +
grammatical function. This degradation, due to
data sparseness and/or non local constraints badly
captured by the model, currently constrains us to
use a language model without functional informa-
tions. As stressed in the introduction, this limits
the interpretability of the parses and it is a trade-
off between generalization and interpretability.

4.5 Lexicon and Inflection impact

French has a rich morphology that allows some
degree of word order variation, with respect to

7The differences are statistically significant : using a stan-
dard t-test, we obtain p-value=0.015 betweenMIN andSUB-
CAT, and p-value=0.002 betweenCC andSUBCAT.

54

English. For probabilistic parsing, this can have
contradictory effects : (i) on the one hand, this
induces more data sparseness : the occurrences
of a French regular verb are potentially split into
more than 60 forms, versus 5 for an English
verb; (ii) on the other hand, inflection encodes
agreements, that can serve as clues for syntactic
attachments.

Experiment In order to measure the impact
of inflection, we have tested to cluster word
forms on a morphological basis, namely to partly
cancel inflection. Using lemmas as word form
classes seems too coarse : it would not allow to
distinguish for instance between a finite verb and
a participle, though they exhibit different distri-
butional properties. Instead we use as word form
classes, the couple lemma + syntactic category.
For example for verbs, given the CC tagset, this
amounts to keeping 6 different forms (for the 6
moods).
To test this grouping, we derive a treebank where
words are replaced by the concatenation of lemma
+ category for training and testing the parser.
Since it entails a perfect tagging, it has to be
compared to results in perfect tagging mode :
more precisely, we simulate perfect tagging
by replacing word forms by the concatenation
form+tag.
Moreover, it is tempting to study the impact of
a more drastic clustering of word forms : that of
using the sole syntactic category to group word
forms (we replace each word by its tag). This
amounts to test a pure unlexicalized learning.

Discussion Results are shown in Figure 4.
We make three observations : First, comparing
the terminal=tag curves with the other two, it
appears that the parser does take advantage of
lexical information to rank parses, even for this
“unlexicalized” algorithm. Yet the relatively small
increase clearly shows that lexical information
remains underused, probably because of lexical
data sparseness.
Further, comparing terminal=lemma+tag and ter-
minal=form+tag curves, we observe that grouping
words into lemmas helps reducing this sparseness.
And third, the lexicon impact evolution (i.e.
the increment between terminal=tag and termi-
nal=form+tag curves) is stable, once the training

size is superior to approx. 3000 sentences8.
This suggests that only very frequent words
matter, otherwise words’ impact should be more
and more important as training material augments.

0 2000 4000 6000 8000 10000
76

78
80

82
84

86
88

Number of training sentences

P
ar

se
va

l F
−

sc
or

e

Bky terminal=form+tag
Bky terminal=lemma+tag
Bky terminal=tag

Figure 4: Impact of clustering word forms (train-
ing on FTB with CC-tagset, in perfect-tagging)

5 Related Work

Previous works on French probabilistic parsing are
those of (Arun and Keller, 2005), (Schluter and
van Genabith, 2007), (Schluter and van Genabith,
2008). One major difficulty for comparison is that
all three works use a different version of the train-
ing corpus. Arun reports results on probabilistic
parsing, using an older version of the FTB and us-
ing lexicalized models (Collins M1 and M2 mod-
els, and the bigram model). It is difficult to com-
pare our results with Arun’s work, since the tree-
bank he has used is obsolete (FTB-V0). He obtains
for Model 1 : LR=80.35 / LP=79.99, and for the
bigram model : LR=81.15 / LP=80.84, with min-
imal tagset and internal tagging. The results with
FTB (revised subset of FTB-V0) with minimal

8 This is true for all points in the curves, except for
the last step, i.e. when full training set is used. We per-
formed a 10-fold cross validation to limit sample effects. For
the BKY training with CC tagset, and own tagging, we ob-
tain an average F-score of 85.44 (with a rather high stan-
dard deviationσ=1.14). For the clustering word forms ex-
periment, using the full training set, we obtain : 86.64 for
terminal=form+tag (σ=1.15), 87.33 for terminal=lemma+tag
(σ=0.43), and 85.72 for terminal=tag (σ=0.43). Hence our
conclusions (words help even with unlexicalized algorithm,
and further grouping words into lemmas helps) hold indepen-
dently of sampling.

55

tagset (Table 1) are comparable for COLLINSM1,
and nearly 5 points higher for BKY .

It is also interesting to review (Arun and Keller,
2005) conclusion, built on a comparison with the
German situation : at that time lexicalization was
thought (Dubey and Keller, 2003) to have no siz-
able improvement on German parsing, trained on
the Negra treebank, that uses a flat structures. So
(Arun and Keller, 2005) conclude that since lex-
icalization helps much more for parsing French,
with a flat annotation, then word-order flexibility
is the key-factor that makes lexicalization useful
(if word order is fixed, cf. French and English)
and useless (if word order is flexible, cf. German).
This conclusion does not hold today. First, it can
be noted that as far as word order flexibility is con-
cerned, French stands in between English and Ger-
man. Second, it has been proven that lexicalization
helps German probabilistic parsing (Kübler et al.,
2006). Finally, these authors show that markoviza-
tion of the unlexicalized Stanford parser gives al-
most the same increase in performance than lex-
icalization, both for the Negra treebank and the
Tüba-D/Z treebank. This conclusion is reinforced
by the results we have obtained : the unlexicalized,
markovized, PCFG-LA algorithm outperforms the
Collins’ lexicalized model.

(Schluter and van Genabith, 2007) aim at learn-
ing LFG structures for French. To do so, and in
order to learn first a Collins parser, N. Schluter
created a modified treebank, the MFT, in order (i)
to fit her underlying theoretical requirements, (ii)
to increase the treebank coherence by error min-
ing and (iii) to improve the performance of the
learnt parser. The MFT contains 4739 sentences
taken from the FTB, with semi-automatic trans-
formations. These include increased rule stratifi-
cation, symbol refinements (for information prop-
agation), coordination raising with some manual
re-annotation, and the addition of functional tags.
MFT has also undergone a phase of error min-
ing, using the (Dickinson and Meurers, 2005) soft-
ware, and following manual correction. She re-
ports a 79.95% F-score on a 400 sentence test
set, which compares almost equally with Arun’s
results on the original 20000 sentence treebank.
So she attributes her results to the increased co-
herence of her smaller treebank. Indeed, we ran
the BKY training on the MFT, and we get F-
score=84.31. While this is less in absolute than
the BKY results obtained with FTB (cf. results in

table 2), it is indeed very high if training data size
is taken into account (cf. the BKY learning curve
in figure 3). This good result raises the open ques-
tion of identifying which modifications in the MFT

(error mining and correction, tree transformation,
symbol refinements) have the major impact.

6 Conclusion

This paper reports results in statistical parsing
for French with both unlexicalized (Petrov et al.,
2006) and lexicalized parsers. To our knowledge,
both results are state of the art on French for each
paradigm.

Both algorithms try to overcome PCFG’s sim-
plifying assumptions by some specialization of the
grammatical labels. For the lexicalized approach,
the annotation of symbols with lexical head is
known to be rarely fully used in practice (Gildea,
2001), what is really used being the category of
the lexical head.

We observe that the second approach (BKY)
constantly outperforms the lexicalist strategyà la
(Collins, 1999). We observe however that (Petrov
et al., 2006)’s semi-supervised learning procedure
is not fully optimal since a manual refinement of
the treebank labelling turns out to improve the
parsing results.

Finally we observe that the semi-supervised
BKY algorithm does take advantage of lexical in-
formation : removing words degrades results. The
preterminal symbol splits percolates lexical dis-
tinctions. Further, grouping words into lemmas
helps for a morphologically rich language such as
French. So, an intermediate clustering standing
between syntactic category and lemma is thought
to yield better results in the future.

7 Acknowledgments

We thank N. Schluter and J. van Genabith for
kindly letting us run BKY on the MFT, and A.
Arun for answering our questions. We also thank
the reviewers for valuable comments and refer-
ences. The work of the second author was partly
funded by the “Prix Diderot Innovation 2007”,
from University Paris 7.

56

References

Anne Abeillé, Lionel Clément, and Alexandra Kinyon.
2000. Building a treebank for french. InProceed-
ings of the 2nd International Conference Language
Resources and Evaluation (LREC’00).

Anne Abeillé, Lionel Clément, and François Toussenel,
2003.Building a treebank for French. Kluwer, Dor-
drecht.

Abhishek Arun and Frank Keller. 2005. Lexicalization
in crosslinguistic probabilistic parsing: The case of
french. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 306–313, Ann Arbor, MI.

Daniel M. Bikel. 2004a. A distributional analysis
of a lexicalized statistical parsing model. InProc.
of Empirical Methods in Natural Language Pro-
cessing (EMNLP 2004), volume 4, pages 182–189,
Barcelona, Spain.

Daniel M. Bikel. 2004b. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4):479–511.

Thorsten Brants. 2000. Tnt – a statistical part-of-
speech tagger. InProceedings of the 6th Applied
NLP Conference (ANLP), Seattle-WA.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of the Annual Meet-
ing of the North American Association for Com-
putational Linguistics (NAACL-00), pages 132–139,
Seattle, Washington.

Michael Collins. 1999.Head driven statistical models
for natural language parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. In
Actes de la 15ème Conférence sur le Traitement Au-
tomatique des Langues Naturelles (TALN’08), pages
45–54, Avignon.

Markus Dickinson and W. Detmar Meurers. 2005.
Prune diseased branches to get healthy trees! how
to find erroneous local trees in treebank and why
it matters. InProceedings of the 4th Workshop
on Treebanks and Linguistic Theories (TLT 2005),
Barcelona, Spain.

Amit Dubey and Frank Keller. 2003. Probabilis-
tic parsing for german using sister-head dependen-
cies. In In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 96–103.

Ane Dybro-Johansen. 2004. Extraction automatique
de grammaires á partir d’un corpus français. Mas-
ter’s thesis, Université Paris 7.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. InProceedings of the First Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 167–202.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations.Computational Linguistics,
24(4):613–632.

Dan Klein and Christopher D. Manning. 2003a. Ac-
curate unlexicalized parsing. InProceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics Morristown,
NJ, USA.

Dan Klein and Christopher D. Manning. 2003b. Ac-
curate unlexicalized parsing. InProceedings of the
41st Meeting of the Association for Computational
Linguistics.

Sandra Kübler, Erhard W. Hinrichs, and Wolfgang
Maier. 2006. Is it really that difficult to parse ger-
man? InProceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 111–119, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InInternational
Joint Conference on Artificial Intelligence, pages
1420–1425, Montreal.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic cfg with latent annotations. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
75–82.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages
152–159, New York City, USA, June. Association
for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. InProceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics, Sydney, Aus-
tralia, July. Association for Computational Linguis-
tics.

Natalie Schluter and Josef van Genabith. 2007.
Preparing, restructuring, and augmenting a french
treebank: Lexicalised parsers or coherent treebanks?
In Proceedings of PACLING 07.

Natalie Schluter and Josef van Genabith. 2008.
Treebank-based acquisition of lfg parsing resources
for french. In European Language Resources As-
sociation (ELRA), editor,Proceedings of the Sixth
International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, may.

57

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 58–65,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Upper Bounds for Unsupervised Parsing with Unambiguous
Non-Terminally Separated Grammars

Franco M. Luque and Gabriel Infante-Lopez
Grupo de Procesamiento de Lenguaje Natural

Universidad Nacional de Córdoba & CONICET
Argentina

{francolq|gabriel}@famaf.unc.edu.ar

Abstract

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that
make them attractive for grammatical in-
ference. However, these properties do not
state the maximal performance they can
achieve when they are evaluated against a
gold treebank that is not produced by an
UNTS grammar. In this paper we inves-
tigate such an upper bound. We develop
a method to find an upper bound for the
unlabeledF1 performance that any UNTS
grammar can achieve over a given tree-
bank. Our strategy is to characterize all
possible versions of the gold treebank that
UNTS grammars can produce and to find
the one that optimizes a metric we define.
We show a way to translate this score into
an upper bound for theF1. In particular,
we show that theF1 parsing score of any
UNTS grammar can not be beyond82.2%
when the gold treebank is the WSJ10 cor-
pus.

1 Introduction

Unsupervised learning of natural language has re-
ceived a lot of attention in the last years, e.g., Klein
and Manning (2004), Bod (2006a) and Seginer
(2007). Most of them use sentences from a tree-
bank for training and trees from the same treebank
for evaluation. As such, the best model for un-
supervised parsing is the one that reports the best
performance.

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that make
them attractive for grammatical inference. These
grammars have been shown to be PAC-learnable
in polynomial time (Clark, 2006), meaning that
under certain circumstances, the underlying
grammar can be learned from a sample of the

underlying language. Moreover, UNTS grammars
have been successfully used to induce grammars
from unannotated corpora in competitions of
learnability of formal languages (Clark, 2007).

UNTS grammars can be used for modeling nat-
ural language. They can be induced using any
training material, the induced models can be eval-
uated using trees from a treebank, and their per-
formance can be compared against state-of-the-
art unsupervised models. Different learning al-
gorithms might produce different grammars and,
consequently, different scores. The fact that the
class of UNTS grammars is PAC learnable does
not convey any information on the possible scores
that different UNTS grammars might produce.
From a performance oriented perspective it might
be possible to have an upper bound over the set
of possible scores of UNTS grammars. Knowing
an upper bound is complementary to knowing that
the class of UNTS grammars is PAC learnable.

Such upper bound has to be defined specifically
for UNTS grammars and has to take into account
the treebank used as test set. The key question
is how to compute it. Suppose that we want to
evaluate the performance of a given UNTS gram-
mar using a treebank. The candidate grammar pro-
duces a tree for each sentence and those trees are
compared to the original treebank. We can think
that the candidate grammar has produced a new
version of the treebank, and that the score of the
grammar is a measure of the closeness of the new
treebank to the original treebank. Finding the best
upper bound is equivalent to finding the closest
UNTS version of the treebank to the original one.

Such bounds are difficult to find for most classes
of languages because the search space is the
set of all possible versions of the treebank that
might have been produced by any grammar in the
class under study. In order to make the problem
tractable, we need the formalism to have an easy
way to characterize all the versions of a treebank

58

it might produce. UNTS grammars have a special
characterization that makes the search space easy
to define but whose exploration is NP-hard.

In this paper we present a way to characterize
UNTS grammars and a metric function to mea-
sure the closeness between two different version
of a treebank. We show that the problem of find-
ing the closest UNTS version of the treebank can
be described as Maximum Weight Independent Set
(MWIS) problem, a well known NP-hard problem
(Karp, 1972). The exploration algorithm returns
a version of the treebank that is the closest to the
gold standard in terms of our own metric.

We show that theF1-measure is related to our
measure and that it is possible to find and upper
bound of theF1-performance for all UNTS gram-
mars. Moreover, we compute this upper bound for
the WSJ10, a subset of the Penn Treebank (Mar-
cus et al., 1994) using POS tags as the alphabet.
The upper bound we found is82.2% for the F1
measure. Our result suggest that UNTS grammars
are a formalism that has the potential to achieve
state-of-the-art unsupervised parsing performance
but does not guarantee that there exists a grammar
that can actually achieve the82.2%.

To the best of our knowledge, there is no pre-
vious research on finding upper bounds for perfor-
mance over a concrete class of grammars. In Klein
and Manning (2004), the authors compute an up-
per bound for parsing with binary trees a gold tree-
bank that is not binary. This upper bound, that is
88.1% for the WSJ10, is for any parser that returns
binary trees, including the concrete models devel-
oped in the same work. But their upper bound does
not use any specific information of the concrete
models that may help them to find better ones.

The rest of the paper is organized as follows.
Section 2 presents our characterization of UNTS
grammars. Section 3 introduces the metric we op-
timized and explains how the closest version of the
treebank is found. Section 4 explains how the up-
per bound for our metric is translated to an up-
per bound of theF1 score. Section 5 presents our
bound for UNTS grammars using the WSJ10 and
finally Section 6 concludes the paper.

2 UNTS Grammars and Languages

Formally, a context free grammarG =
(Σ, N, S, P) is said to be Non-Terminally Sepa-
rated (NTS) if, for allX, Y ∈ N andα, β, γ ∈
(Σ ∪ N)∗ such thatX

∗
⇒ αβγ andY

∗
⇒ β, we

have thatX
∗
⇒ αY γ (Clark, 2007). Unambiguous

NTS (UNTS) grammars are those NTS grammars
that parses unambiguously every instance of the
language.

Given any grammarG, a substrings of r ∈
L(G) is called aconstituent of r if and only if there
is anX in N such thatS

∗
⇒ uXv

∗
⇒ usv = r.

In contrast, a strings is called a non-constituent or
distituent of r ∈ L(G) if s is not a constituent ofr.
We say thats is a constituent of a languageL(G)
if for every r that containss, s is a constituent of
r. In contrast,s is a distituent ofL(G) if for every
r wheres occurs,s is a distituent ofr.

An interesting characterization of finite UNTS
grammars is that every substring that appear in
some string of the language is always a constituent
or always a distituent. In other words, if there is a
stringr in L(G) for which s is a constituent, then
s is a constituent ofL(G). By means of this prop-
erty, if we ignore the non-terminal labels, a finite
UNTS language is fully determined by its set of
constituentsC. We can show this property for fi-
nite UNTS languages. We believe that it can also
be shown for non-finite cases, but for our purposes
the finite cases suffices, because we use grammars
to parse finite sets of sentences, specifically, the
sentences of test treebanks. We know that for ev-
ery finite subset of an infinite language produced
by a UNTS grammarG, there is a UNTS gram-
mar G′ whose language is finite and that parses
the finite subset asG. If we look for the upper
bound among the grammars that produce a finite
language, this upper bound is also an upper bound
for the class of infinite UNTS grammars.

The UNTS characterization plays a very im-
portant role in the way we look for the upper
bound. Our method focuses on how to determine
which of the constituents that appear in the gold
are actually the constituents that produce the up-
per bound. Suppose that a given gold treebank
contains two stringsα andβ such that theyoccur
overlapped. That is, there exist non-empty strings
α′, γ, β′ such thatα = α′γ and β = γβ′ and
α′γβ′ occurs in the treebank. IfC is the set of
constituents of a UNTS grammar it can not have
bothα andβ. It might have one or the other, but
if both belong toC the resulting language can not
be UNTS. In order to find the closest UNTS gram-
mar we design a procedure that looks for the sub-
set of all substrings that occur in the sentences of
the gold treebank that can be the constituent setC

59

of a grammar. We do not explicitly build a UNTS
grammar, but find the setC that produces the best
score.

We say that two stringsα andβ arecompatible
in a languageL if they do not occur overlapped
in L, and hence they both can be members ofC.
If we think of L as a subset of an infinite lan-
guage, it is not possible to check that two overlap-
ping strings do not appear overlapped in the “real”
language and hence that they are actually com-
patible. Nevertheless, we can guarantee compat-
ibility between two stringsα, β by requiring that
they do not overlap at all, this is, that there are
no non-empty stringsα′, γ, β′ such thatα = α′γ

andβ = γβ′. We call this type of compatibility
strong compatibility. Strong compatibility ensures
that two strings can belong toC regardless ofL.
In our experiments we focus on finding the best set
C of compatible strings.

Any set of compatible stringsC extracted from
the gold treebank can be used to produce a new
version of the treebank. For example, Figure 1
shows two trees from the WSJ Penn Treebank.
The string “in the dark” occurs as a constituent in
(a) and as a distituent in (b). IfC contains “in the
dark”, it can not contain “the dark clouds” given
that they overlap in the yield of (b). As a con-
sequence, the new treebank correctly contains the
subtree in (a) but not the one in (b). Instead, the
yield of (b) is described as in (c) in the new tree-
bank.

C defines a new version of the treebank that sat-
isfies the UNTS property. Our goal is to obtain a
treebankT ′ such that (a)T ′ andT are treebanks
over the same set of sentences, (b)T ′ is UNTS,
and (c)T ′ is the closest treebank toT in terms of
performance. The three of them imply that any
other UNTS grammar is not as similar as the one
we found.

3 Finding the Best UNTS Grammar

As our goal is to find the closest grammar in terms
of performance, we need to define first a weight
for each possible grammar and second, an algo-
rithm that searches for the grammar with the best
weight. Ideally, the weight of a candidate gram-
mar should be in terms ofF1, but we can show
that optimization of this particular metric is com-
putationally hard. Instead of definingF1 as their
score, we introduce a new metric that is easier to
optimize, we find the best grammar for this met-

ric, and we show that the possible values ofF1
can be bounded by a function that takes this score
as argument. In this section we present our metric
and the technique we use to find a grammar that
reports the best value for our metric.

If the original treebankT is not produced by any
UNTS grammar, then there are strings inT that
are constituents in some sentences and that are dis-
tituents in some other sentences. For each one of
them we need a procedure to decide whether they
are members ofC or not. If a stringα appears a
significant number of times more as a constituent
than as a distituent the procedure may choose to
include it inC at the price of being wrong a few
times. That is, the new version ofT has all occur-
rences ofα either as constituents or as distituents.
The treebank that has all of its occurrences as con-
stituents differs from the original in that there are
some occurrences ofα that were originally dis-
tituents and are marked as constituents. Similarly,
if α is marked as distituent in the new treebank, it
has occurrences ofα that were constituents inT .

The decision procedure becomes harder when
all the substrings that appear in the treebank are
considered. The increase in complexity is a con-
sequence of the number of decisions the procedure
needs to take and the way these decisions interfere
one with another. We show that the problem of
determining the setC is naturally embedded in a
graph NP-hard problem. We define a way to look
for the optimal grammars by translating our prob-
lem to a well known graph problem. LetL be the
the set of sentences in a treebank, and letS(L) be
all the possible non-empty proper substrings ofL.
We build a weighted undirected graphG in terms
of the treebank as follows. Nodes inG correspond
to strings inS(L). The weight of a node is a func-
tion w(s) that models our interest of havings se-
lected as a constituent;w(s) is defined in terms of
some information derived from the gold treebank
T and we discuss it later in this section. Finally,
two nodesa andb are connected by an edge if their
two corresponding strings conflict in a sentence of
T (i.e., they are not compatible inL).

Not all elements ofL are inS(L). We did not
includeL in S(L) for two practical reasons. The
first one is that to requireL in S(L) is too re-
strictive. It states that all strings inL are in fact
constituents. If two stringab and bc of L oc-
cur overlapped in a third stringabc then there is
no UNTS grammar capable of having the three of

60

(a)

PRP

we

VBP

’re
IN

in
DT

the

JJ

dark

(b)
IN

in DT

the

JJ

dark

NNS

clouds

(c)

IN

in

DT

the

JJ

dark

NNS

clouds

Figure 1: (a) and (b) are two subtrees that show “in the dark” as a constituent and as a distituent respec-
tively. (c) shows the result of choosing “in the dark” as a constituent.

them as constituents. The second one is that in-
cluding them produces graphs that are too sparse.
If they are included in the graph, we know that
any solution should contain them, consequently,
all their neighbors do not belong to any solution
and they can be removed from the graph. Our ex-
periments show that the graph that results from re-
moving nodes related to nodes representing strings
in L are too small to produce any interesting result.

By means of representing the treebank as a
graph, selecting a set of constituentsC ⊆ S(L)
is equivalent to selecting an independent set of
nodes in the graph. Anindependent set is a sub-
set of the set of nodes that do not have any pair
of nodes connected by an edge. Clearly, there are
exponentially many possible ways to select an in-
dependent set, and each of these sets represents a
set of constituents. But, since we are interested in
the best set of constituents, we associate to each
independent setC the weightW (C) defined as
∑

s∈C w(s). Our aim is then to find a setCmax

that maximizes this weight. This problem is a well
known problem of graph theory known in the lit-
erature as the Maximum Weight Independent Set
(MWIS) problem. This problem is also known to
be NP-hard (Karp, 1972).

We still have to choose a definition forw(s).
We want to find the grammar that maximizesF1.
Unfortunately,F1 can not be expressed in terms of
a sum of weights. Maximization ofF1 is beyond
the expressiveness of our model, but our strategy
is to define a measure that correlates withF1 and
that can be expressed as a sum of weights.

In order to introduce our measure, we first de-
fine c(s) andd(s) as the number of times a string
s appears in the gold treebankT as a constituent
and as a distituent respectively. Observe that if
we choose to includes as a constituent ofC, the
resulting treebankT ′ contains all thec(s) + d(s)
occurrences ofs as a constituent.c(s) of thes oc-
currences inT ′ are constituents as they are inT

andd(s) of the occurrences are constituents inT ′

but are in fact distituents inT . We want to max-

imize c(s) and minimized(s) at the same time.
This can be done by defining the contribution of a
strings to the overall score as

w(s) = c(s) − d(s).

With this definition ofw, the weightW (C) =
∑

s∈C w(s) becomes the number of constituents
of T ′ that are inT minus the number of con-
stituents that do not. If we define the number of
hits to beH(C) =

∑

s∈C c(s) and the number of
misses to beM(C) =

∑

s∈C d(s) we have that

W (C) = H(C) − M(C). (1)

As we confirm in Section 5, graphs tend to be
very big. In order to reduce the size of the graphs,
if a string s hasw(s) ≤ 0, we do not include its
corresponding node in the graph. An independent
set that does not includes has an equal or higher
W than the same set includings.

For example, letT be the treebank in Fig-
ure 2 (a). The sets of substrings such that
w(c) ≥ 0 is {da, cd, bc, cda, ab, bch}. The
graph that corresponds to this set of strings is
given in Figure 3. Nodes corresponding to
strings {dabch, bcda, abe, abf, abg, bci, daj} are
not shown in the figure because the strings do
not belong toS(L). The figure also shows the
weights associated to the substrings according to
their counts in Figure 2 (a). The shadowed nodes
correspond to the independent set that maximizes
W . The trees in the Figure 2 (b) are the sentences
of the treebank parsed according the optimal inde-
pendent set.

4 An Upper Bound for F1

Even though finding the independent set that max-
imizes W is an NP-Hard problem, there are in-
stances where it can be effectively computed, as
we show in the next section. The setCmax max-
imizes W for the WSJ10 and we know that all
othersC produces a lower value ofW . In other
words, the setCmax produce a treebankTmax that

61

(a)

d a
b c h

(da)((bc)h)

b
c d a

b((cd)a)

a b e

(ab)e
a b f

(ab)f
a b g

(ab)g
b c i

(bc)i
d a j

(da)j

(b)

d a b c h

d(ab)ch

b
c d a

b((cd)a)

a b e

(ab)e
a b f

(ab)f
a b g

(ab)g
b c i
bci

d a j
daj

Figure 2: (a) A gold treebank. (b) The treebank generated by the grammar C = L ∪ {cd, ab, cda}.

Figure 3: Graph for the treebank of Figure 2.

is the closest UNTS version to the WSJ10 in terms
of W . We can compute the precision, recall and
F1 for Cmax but there is no warranty that theF1
score is the best for all the UNTS grammars. This
is the case becauseF1 andW do not define the
same ordering over the family of candidate con-
stituent setsC: there are gold treebanksT (used
for computing the metrics), and setsC1, C2 such
that F1(C1) < F1(C2) andW (C1) > W (C2).
For example, consider the gold treebankT in Fig-
ure 4 (a). The table in Figure 4 (b) displays two
setsC1 andC2, the treebanks they produce, and
their values ofF1 andW . Note thatC2 is the re-
sult of adding the stringef to C1, also note that
c(ef) = 1 andd(ef) = 2. This improves theF1
score but produces a lowerW .

The F1 measure we work with is the one de-
fined in the recent literature of unsupervised pars-
ing (Klein and Manning, 2004).F1 is defined in
terms of Precision and Recall as usual, and the last
two measures are micro-averaged measures that
include full-span brackets, and that ignore both
unary branches and brackets of span one. For sim-
plicity, the previous example does not count the
full-span brackets.

As the example shows, the upper bound forW

might not be an upper bound ofF1, but it is pos-
sible to find a way to define an upper bound of
F1 using the upper bound ofW . In this section
we define a functionf with the following prop-
erty. LetX andY be the sets ofW -weights and

F1-weights for all possible UNTS grammars re-
spectively. Then, ifw is an upper bound ofX,
thenf(w) is an upper bound ofY . The functionf
is defined as follows:

f(w) = F1

(

1

2 − w
K

, 1

)

(2)

whereF1(p, r) = 2pr
p+r

, andK =
∑

s∈ST
c(s) is

the total number of constituents in the gold tree-
bank T . From it, we can also derive values for
precision and recall: precision1

2− w

K

and recall1.

A recall of 1 is clearly an upper bound for all the
possible values of recall, but the value given for
precision is not necessarily an upper bound for all
the possible values of precision. It might exist a
grammar having a higher value of precision but
whoseF1 has to be below our upper bound.

The rest of section shows thatf(W) is an up-
per bound forF1, the reader not interested in the
technicalities can skip it.

The key insight for the proof is that both metrics
F1 andW can be written in terms of precision and
recall. LetT be the treebank that is used to com-
pute all the metrics. And letT ′ be the treebank
produced by a given constituent setC. If a string
s belongs toC, then itsc(s) + d(s) occurrences
in T ′ are marked as constituents. Moreover,s is
correctly tagged ac(s) number of times while it
is incorrectly tagged ad(s) number of times. Us-
ing this,P , R andF1 can be computed forC as
follows:

P (C) =
P

s∈C
c(s)

P

s∈C
c(s)+d(s)

= H(C)
H(C)+M(C) (3)

R(C) =
P

s∈C
c(s)

K

= H(C)
K

(4)

F1(C) = 2P (C)R(C)
P (C)+R(C)

= 2H(C)
K+H(C)+M(C)

62

(a)

a b c

(ab)c

a b d
a(bd)

e f g

(ef)g

e f h
efh

e f i
efi

(b)
C T ′

C P R F1 W

C1 = {abc, abd, efg, efh, efi, ab} {(ab)c, (ab)d, efg, efh, efi} 50% 33% 40% 1 − 1 = 0
C2 = {abc, abd, efg, efh, efi, ab, ef} {(ab)c, (ab)d, (ef)g, (ef)h, (ef)i} 40% 67% 50% 2 − 3 = −1

Figure 4: (a) A gold treebank. (b) Two grammars, the treebanks they generate, and their scores.

W can also be written in terms ofP andR as

W (C) = (2 −
1

P (C)
)R(C)K (5)

This formula is proved to be equivalent to Equa-
tion (1) by replacingP (C) andR(C) with equa-
tions (3) and (4) respectively. Using the last two
equations, we can rewriteF1 andW takingp and
r, representing values of precision and recall, as
parameters:

F1(p, r) =
2pr

p + r

W (p, r) = (2 −
1

p
)rK (6)

Using these equations, we can prove thatf

correctly translates upper bounds ofW to upper
bounds ofF1 using calculus. In contrast toF1,
W not necessarily take values between0 and1. In-
stead, it takes values betweenK and−∞. More-
over, it is negative whenp < 1

2 , and goes to−∞
whenp goes to0. Let C be an arbitrary UNTS
grammar, and letpC , rC andwC be its precision,
recall andW -weight respectively. Letw be our
upper bound, so thatwC ≤ w. If f1C is defined
asF1(pC , rC) we need to show thatf1C ≤ f(w).
We boundf1C in two steps. First, we show that

f1C ≤ f(wC)

and second, we show that

f(wC) ≤ f(w).

The first inequality is proved by observing that
f1C andf(wC) are the values of the function

f1(r) = F1

(

1

2 − wC

Kr

, r

)

at the pointsr = rC and r = 1 respectively.
This function corresponds to the line defined by
the F1 values of all possible models that have a

fixed weightW = wC . The function is monoton-
ically increasing inr, so we can apply it to both
sides of the following inequalityrC ≤ 1, which is
trivially true. As result, we getf1C ≤ f(wC) as
required. The second inequality is proved by ob-
serving thatf(w) is monotonically increasing in
w, and by applying it to both sides of the hypothe-
siswc ≤ w.

5 UNTS Bounds for the WSJ10 Treebank

In this section we focus on trying to find real upper
bounds building the graph for a particular treebank
T . We find the best independent set, we build the
UNTS versionTmax of T and we compute the up-
per bound forF1. The treebank we use for exper-
iments is the WSJ10, which consists of the sen-
tences of the WSJ Penn Treebank whose length
is at most 10 words after removing punctuation
marks (Klein and Manning, 2004). We also re-
moved lexical entries transforming POS tags into
our terminal symbols as it is usually done (Klein
and Manning, 2004; Bod, 2006a).

We start by finding the best independent set. To
solve the problem in the practice, we convert it
into an Integer Linear Programming (ILP) prob-
lem. ILP is also NP-hard (Karp, 1972), but there
is software that implements efficient strategies for
solving some of its instances (Achterberg, 2004).

ILP problems are defined by three parameters.
First, there is a set of variables that can take val-
ues from a finite set. Second, there is an objective
function that has to be maximized, and third, there
is a set of constraints that must be satisfied. In our
case, we define a binary variablexs ∈ {0, 1} for
every nodes in the graph. Its value is 1 or 0, that
respectively determines the presence or absence of
s in the setCmax. The objective function is

∑

s∈S(L)

xsw(s)

The constraints are defined using the edges of the

63

graph. For every edge(s1, s2) in the graph, we
add the following constraint to the problem:

xs1
+ xs2

≤ 1

The 7422 trees of the WSJ10 treebank have a
total of 181476 substrings of length≥ 2, that
form the setS(L) of 68803 different substrings.
The number of substrings inS(L) does not grow
too much with respect to the number of strings in
L because substrings are sequences of POS tags,
meaning that each substring is very frequent in the
corpus. If substrings were made out of words in-
stead of POS tags, the number of substrings would
grow much faster, making the problem harder to
solve. Moreover, removing the stringss such that
w(s) ≤ 0 gives a total of only7029 substrings.
Since there is a node for each substring, the result-
ing graph contains7029 nodes. Recall that there
is an edge between two strings if they occur over-
lapped. Our graph contains1204 edges. The ILP
version has7029 variables,1204 constraints and
the objective function sums over7029 variables.
These numbers are summarized in Table 1.

The solution of the ILP problem is a set of
6583 variables that are set to one. This set corre-
sponds to a setCmax of nodes in our graph of the
same number of elements. UsingCmax we build
a new versionTmax of the WSJ10, and compute
its weightW , precision, recall andF1. Their val-
ues are displayed in Table 2. Since the elements
of L were not introduced inS(L), elements ofL
are not necessarily inCmax, but in order to com-
pute precision and recall, we add them by hand.
Strictly speaking, the set of constituents that we
use for buildingTmax is Cmax plus the full span
brackets.

We can, using equation (2), compute the up-
per bound ofF1 for all the possible scores of all
UNTS grammars that use POS tags as alphabet:

f(wmax) = F1

(

1

2 − wmax

K

, 1

)

= 82.2%

The precision for this upper bound is

P (wmax) =
1

2 − wmax

K

= 69.8%

while its recall isR = 100%. Note from the pre-
vious section thatP (wmax) is not an upper bound
for precision but just the precision associated to
the upper boundf(wmax).

Gold constituents K 35302
Strings |S(L)| 68803
Nodes 7029
Edges 1204

Table 1: Figures for the WSJ10 and its graph.

Hits H 22169
Misses M 2127
Weight W 20042
Precision P 91.2%
Recall R 62.8%
F1 F1 74.4%

Table 2: Summary of the scores forCmax.

Table 3 shows results that allow us to com-
pare the upper bounds with state-of-the-art pars-
ing scores. BestW corresponds to the scores of
Tmax and UBoundF1 is the result of our transla-
tion functionf . From the table we can see that
an unsupervised parser based on UNTS grammars
may reach a sate-of-the-art performance over the
WSJ10. RBranch is a WSJ10 version where all
trees are binary and right branching. DMV, CCM
and DMV+CCM are the results reported in Klein
and Manning (2004). U-DOP and UML-DOP
are the results reported in Bod (2006b) and Bod
(2006a) respectively. Incremental refers to the re-
sults reported in Seginer (2007).

We believe that our upper bound is a generous
one and that it might be difficult to achieve it for
two reasons. First, since the WSJ10 corpus is
a rather flat treebank, from the68803 substrings
only 10% of them are such thatc(s) > d(s). Our
procedure has to decide among this10% which
of the strings are constituents. An unsupervised
method has to choose the set of constituents from
the set of all68803 possible substrings. Second,
we are supposing a recall of100% which is clearly
too optimistic. We believe that we can find a
tighter upper bound by finding an upper bound for
recall, and by rewritingf in equation (2) in terms
of the upper bound for recall.

It must be clear the scope of the upper bound
we found. First, note that it has been computed
over the WSJ10 treebank using the POS tags as
the alphabet. Any other alphabet we use, like for
example words, or pairs of words and POS tags,
changes the relation of compatibility among the
substrings, making a completely different universe

64

Model UP UR F1

RBranch 55.1 70.0 61.7
DMV 46.6 59.2 52.1
CCM 64.2 81.6 71.9
DMV+CCM 69.3 88.0 77.6
U-DOP 70.8 88.2 78.5
UML-DOP 82.9
Incremental 75.6 76.2 75.9

BestW(UNTS) 91.2 62.8 74.4
UBoundF1(UNTS) 69.8 100.0 82.2

Table 3: Performance on the WSJ10 of the most
recent unsupervised parsers, and our upper bounds
on UNTS.

of UNTS grammars. Second, our computation of
the upper bound was not made for supersets of the
WSJ10. Supersets such as the entire Penn Tree-
bank produce bigger graphs because they contain
longer sentences and various different sequences
of substrings. As the maximization ofW is an
NP-hard problem, the computational cost of solv-
ing bigger instances grows exponentially. A third
limitation that must be clear is about the models
affected by the bound. The upper bound, and in
general the method, is only applicable to the class
of formal UNTS grammars, with only some very
slight variants mentioned in the previous sections.
Just moving to probabilistic or weighted UNTS
grammars invalidates all the presented results.

6 Conclusions

We present a method for assessing the potential of
UNTS grammars as a formalism for unsupervised
parsing of natural language. We assess their po-
tential by finding an upper bound of their perfor-
mance when they are evaluated using the WSJ10
treebank. We show that any UNTS grammars can
achieve at most82.2% of F1 measure, a value
comparable to most state-of-the-art models. In or-
der to compute this upper bound we introduced
a measure that does not define the same ordering
among UNTS grammars as theF1, but that has
the advantage of being computationally easier to
optimize. Our measure can be used, by means of
a translation function, to find an upper bound for
F1. We also showed that the optimization proce-
dure for our metric maps into an NP-Hard prob-
lem, but despite this fact we present experimen-
tal results that compute the upper bound for the
WSJ10 when POS tags are treated as the grammar

alphabet.
From a more abstract perspective, we intro-

duced a different approach to assess the usefulness
of a grammatical formalism. Usually, formalism
are proved to have interesting learnability proper-
ties such as PAC-learnability or convergence of a
probabilistic distribution. We present an approach
that even though it does not provide an effective
way of computing the best grammar in an unsu-
pervised fashion, it states the upper bound of per-
formance for all the class of UNTS grammars.

Acknowledgments

This work was supported in part by grant PICT
2006-00969, ANPCyT, Argentina. We would like
to thank Pablo Rey (UDP, Chile) for his help
with ILP, and Demetrio Martín Vilela (UNC, Ar-
gentina) for his detailed review.

References

Tobias Achterberg. 2004. SCIP - a framework to in-
tegrate Constraint and Mixed Integer Programming.
Technical report.

Rens Bod. 2006a. An all-subtrees approach to unsu-
pervised parsing. InProceedings of COLING-ACL
2006.

Rens Bod. 2006b. Unsupervised parsing with U-DOP.
In Proceedings of CoNLL-X.

Alexander Clark. 2006. PAC-learning unambiguous
NTS languages. InProceedings of ICGI-2006.

Alexander Clark. 2007. Learning deterministic con-
text free grammars: The Omphalos competition.
Machine Learning, 66(1):93–110.

Richard M. Karp. 1972. Reducibility among com-
binatorial problems. In R. E. Miller and J. W.
Thatcher, editors,Complexity of Computer Compu-
tations, pages 85–103. Plenum Press.

Dan Klein and Christopher D. Manning. 2004.
Corpus-based induction of syntactic structure: Mod-
els of dependency and constituency. InProceedings
of ACL 42.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1994. Building a large annotated
corpus of english: The Penn treebank.Computa-
tional Linguistics, 19(2):313–330.

Yoav Seginer. 2007. Fast unsupervised incremental
parsing. InProceedings of ACL 45.

65

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 66–74,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Comparing learners for Boolean partitions:
implications for morphological paradigms ∗

Katya Pertsova
University of North Carolina,

Chapel Hill
pertsova@email.unc.edu

Abstract

In this paper, I show that a problem of
learning a morphological paradigm is sim-
ilar to a problem of learning a partition
of the space of Boolean functions. I de-
scribe several learners that solve this prob-
lem in different ways, and compare their
basic properties.

1 Introduction

Lately, there has been a lot of work on acquir-
ing paradigms as part of the word-segmentation
problem (Zeman, 2007; Goldsmith, 2001; Snover
et al., 2002). However, the problem of learning
the distribution of affixes within paradigms as a
function of their semantic (or syntactic) features is
much less explored to my knowledge. This prob-
lem can be described as follows: suppose that the
segmentation has already been established. Can
we now predict what affixes should appear in
what contexts, where by a ‘context’ I mean some-
thing quite general: some specification of seman-
tic (and/or syntactic) features of the utterance. For
example, one might say that the nominal suffix -
z in English (as in apple-z) occurs in contexts that
involve plural or possesive nouns whose stems end
in a voiced segment.

In this paper, I show that the problem of learn-
ing the distribution of morphemes in contexts
specified over some finite number of features
is roughly equivalent to the problem of learn-
ing Boolean partitions of DNF formulas. Given
this insight, one can easily extend standard DNF-
learners to morphological paradigm learners. I
show how this can be done on an example of
the classical k-DNF learner (Valiant, 1984). This
insight also allows us to bridge the paradigm-
learning problem with other similar problems in

∗This paper ows a great deal to the input from Ed Stabler.
As usual, all the errors and shortcomings are entirely mine.

the domain of cognitive science for which DNF’s
have been used, e.g., concept learning. I also de-
scribe two other learners proposed specifically for
learning morphological paradigms. The first of
these learners, proposed by me, was designed to
capture certain empirical facts about syncretism
and free variation in typological data (Pertsova,
2007). The second learner, proposed by David
Adger, was designed as a possible explanation of
another empirical fact - uneven frequencies of free
variants in paradigms (Adger, 2006).

In the last section, I compare the learners on
some simple examples and comment on their mer-
its and the key differences among the algorithms.
I also draw connections to other work, and discuss
directions for further empirical tests of these pro-
posals.

2 The problem

Consider a problem of learning the distribution
of inflectional morphemes as a function of some
set of features. Using featural representations, we
can represent morpheme distributions in terms of
a formula. The DNF formulas are commonly used
for such algebraic representation. For instance,
given the nominal suffix -z mentioned in the in-
troduction, we can assign to it the following rep-
resentation: [(noun; +voiced]stem; +plural) ∨
(noun; +voiced]stem; +possesive)]. Presum-
ably, features like [plural] or [+voiced] or]stem
(end of the stem) are accessible to the learners’
cognitive system, and can be exploited during
the learning process for the purpose of “ground-
ing” the distribution of morphemes.1 This way
of looking at things is similar to how some re-
searchers conceive of concept-learning or word-

1Assuming an a priori given universal feature set, the
problem of feature discovery is a subproblem of learning
morpheme distributions. This is because learning what fea-
ture condition the distribution is the same as learning what
features (from the universal set) are relevant and should be
paid attention to.

66

learning (Siskind, 1996; Feldman, 2000; Nosofsky
et al., 1994).

However, one prominent distinction that sets
inflectional morphemes apart from words is that
they occur in paradigms, semantic spaces defin-
ing a relatively small set of possible distinctions.
In the absence of free variation, one can say that
the affixes define a partition of this semantic space
into disjoint blocks, in which each block is asso-
ciated with a unique form. Consider for instance
a present tense paradigm of the verb “to be” in
standard English represented below as a partition
of the set of environments over the following fea-
tures: class (with values masc, fem, both (masc
& fem),inanim,), number (with values +sg and
−sg), and person (with values 1st, 2nd, 3rd).2

am 1st. person; fem; +sg.
1st. person; masc; +sg.

are 2nd. person; fem; +sg.
2nd. person; masc; +sg.
2nd. person; fem; −sg.
2nd. person; masc; −sg.
2nd. person; both; −sg.
1st. person; fem; −sg.
1st. person; masc; −sg.
1st. person; both; −sg.
3rd. person; masc; −sg
3rd. person; fem; −sg
3rd. person; both; −sg
3rd. person; inanim; −sg

is 3rd person; masc; +sg
3rd person; fem; +sg
3rd person; inanim; +sg

Each block in the above partition can be rep-
resented as a mapping between the phonological
form of the morpheme (a morph) and a DNF for-
mula. A single morph will be typically mapped to
a DNF containing a single conjunction of features
(called a monomial). When a morph is mapped
to a disjunction of monomials (as the morph [-z]
discussed above), we think of such a morph as
a homonym (having more than one “meaning”).
Thus, one way of defining the learning problem is
in terms of learning a partition of a set of DNF’s.

2These particular features and their values are chosen just
for illustration. There might be a much better way to repre-
sent the distinctions encoded by the pronouns. Also notice
that the feature values are not fully independent: some com-
binations are logically ruled out (e.g. speakers and listeners
are usually animate entities).

Alternatively, we could say that the learner has
to learn a partition of Boolean functions associated
with each morph (a Boolean function for a morph
m maps the contexts in which m occurs to true,
and all other contexts to false).

However, when paradigms contain free varia-
tion, the divisions created by the morphs no longer
define a partition since a single context may be as-
sociated with more than one morph. (Free vari-
ation is attested in world’s languages, although
it is rather marginal (Kroch, 1994).) In case a
paradigm contains free variation, it is still possible
to represent it as a partition by doing the follow-
ing:

(1) Take a singleton partition of morph-
meaning pairs (m, r) and merge any cells
that have the same meaning r. Then merge
those blocks that are associated with the
same set of morphs.

Below is an example of how we can use this trick
to partition a paradigm with free-variation. The
data comes from the past tense forms of “to be” in
Buckie English.

was 1st. person; fem; +sg.
1st. person; masc; +sg.
3rd person; masc; +sg
3rd person; fem; +sg
3rd person; inanim; +sg

was/were 2nd. person; fem; +sg.
2nd. person; masc; +sg.
2nd. person; fem; −sg.
2nd. person; masc; −sg.
2nd. person; both; −sg.
1st. person; fem; −sg.
1st. person; masc; −sg.
1st. person; both; −sg.

were 3rd. person; masc; −sg
3rd. person; fem; −sg
3rd. person; both; −sg
3rd. person; inanim; −sg

In general, then, the problem of learning the
distribution of morphs within a single inflectional
paradigm is equivalent to learning a Boolean par-
tition.

In what follows, I consider and compare several
learners for learning Boolean partitions. Some of
these learners are extensions of learners proposed
in the literature for learning DNFs. Other learners

67

were explicitly proposed for learning morphologi-
cal paradigms.

We should keep in mind that all these learners
are idealizations and are not realistic if only be-
cause they are batch-learners. However, because
they are relatively simple to state and to under-
stand, they allow a deeper understanding of what
properties of the data drive generalization.

2.1 Some definitions

Assume a finite set of morphs, Σ, and a finite set
of features F . It would be convenient to think of
morphs as chunks of phonological material cor-
responding to the pronounced morphemes.3 Ev-
ery feature f ∈ F is associated with some set
of values Vf that includes a value [∗], unspec-
ified. Let S be the space of all possible com-
plete assignments over F (an assignment is a set
{fi → Vf |∀fi ∈ F}). We will call those assign-
ments that do not include any unspecified features
environments. Let the set S′ ⊆ S correspond to
the set of environments.

It should be easy to see that the set S forms a
Boolean lattice with the following relation among
the assignments, ≤R: for any two assignments a1

and a2, a1 ≤R a2 iff the value of every feature fi

in a1 is identical to the value of fi in a2, unless fi

is unspecified in a2. The top element of the lattice
is an assignment in which all features are unspec-
ified, and the bottom is the contradiction. Every
element of the lattice is a monomial corresponding
to the conjunction of the specified feature values.
An example lattice for two binary features is given
in Figure 1.

Figure 1: A lattice for 2 binary features

A language L consists of pairs from Σ × S′.
That is, the learner is exposed to morphs in differ-
ent environments.

3However, we could also conceive of morphs as functions
specifying what transformations apply to the stem without
much change to the formalism.

One way of stating the learning problem is to
say that the learner has to learn a grammar for the
target language L (we would then have to spec-
ify what this grammar should look like). Another
way is to say that the learner has to learn the lan-
guage mapping itself. We can do the latter by us-
ing Boolean functions to represent the mapping of
each morph to a set of environments. Depending
on how we state the learning problem, we might
get different results. For instance, it’s known that
some subsets of DNF’s are not learnable, while
the Boolean functions corresponding to them are
learnable (Valiant, 1984). Since I will use Boolean
functions for some of the learners below, I intro-
duce the following notation. Let B be the set of
Boolean functions mapping elements of S′ to true
or false. For convenience, we say that bm corre-
sponds to a Boolean function that maps a set of en-
vironments to true when they are associated with
m in L, and to false otherwise.

3 Learning Algorithms

3.1 Learner 1: an extension of the Valiant
k-DNF learner

An observation that a morphological paradigm can
be represented as a partition of environments in
which each block corresponds to a mapping be-
tween a morph and a DNF, allows us to easily con-
vert standard DNF learning algorithms that rely
on positive and negative examples into paradigm-
learning algorithms that rely on positive examples
only. We can do that by iteratively applying any
DNF learning algorithm treating instances of in-
put pairs like (m, e) as positive examples for m
and as negative examples for all other morphs.

Below, I show how this can be done by ex-
tending a k-DNF4 learner of (Valiant, 1984) to a
paradigm-learner. To handle cases of free varia-
tion we need to keep track of what morphs occur
in exactly the same environments. We can do this
by defining the partition Π on the input following
the recipe in (1) (substituting environments for the
variable r).

The original learner learns from negative exam-
ples alone. It initializes the hypothesis to the dis-
junction of all possible conjunctions of length at
most k, and subtracts from this hypothesis mono-
mials that are consistent with the negative ex-
amples. We will do the same thing for each

4k-DNF formula is a formula with at most k feature val-
ues in each conjunct.

68

morph using positive examples only (as described
above), and forgoing subtraction in a cases of free-
variation. The modified learner is given below.
The following additional notation is used: Lex is
the lexicon or a hypothesis. The formula D is a
disjunction of all possible conjunctions of length
at most k. We say that two assignments are con-
sistent with each other if they agree on all specified
features. Following standard notation, we assume
that the learner is exposed to some text T that con-
sists of an infinite sequence of (possibly) repeating
elements from L. tj is a finite subsequence of the
first j elements from T . L(tj) is the set of ele-
ments in tj .

Learner 1 (input: tj)

1. set Lex := {〈m,D〉| ∃〈m, e〉 ∈
L(tj)}

2. For each 〈m, e〉 ∈ L(tj), for each
m′ s.t. ¬∃ block bl ∈ Π of L(tj),
〈m, e〉 ∈ bl and 〈m′, e〉 ∈ bl:
replace 〈m′, f〉 in Lex by 〈m′, f ′〉
where f ′ is the result of removing
every monomial consistent with e.

This learner initially assumes that every morph
can be used everywhere. Then, when it hears one
morph in a given environment, it assumes that no
other morph can be heard in exactly that environ-
ment unless it already knows that this environment
permits free variation (this is established in the
partition Π).

4 Learner 2:

The next learner is an elaboration on the previous
learner. It differs from it in only one respect: in-
stead of initializing lexical representations of ev-
ery morph to be a disjunction of all possible mono-
mials of length at most k, we initialize it to be the
disjunction of all and only those monomials that
are consistent with some environment paired with
the morph in the language. This learner is simi-
lar to the DNF learners that do something on both
positive and negative examples (see (Kushilevitz
and Roth, 1996; Blum, 1992)).

So, for every morph m used in the language, we
define a disjunction of monomials Dm that can be
derived as follows. (i) Let Em be the enumeration
of all environments in which m occurs in L (ii)
let Mi correspond to a set of all subsets of feature

values in ei, ei ∈ E (iii) let Dm be
∨

M , where a
set s ∈M iff s ∈Mi, for some i.

Learner 2 can now be stated as a learner that
is identical to Learner 1 except for the initial set-
ting of Lex. Now, Lex will be set to Lex :=
{〈m,Dm〉| ∃〈m, e〉 ∈ L(ti)}.

Because this learner does not require enumer-
ation of all possible monomials, but just those
that are consistent with the positive data, it can
handle “polynomially explainable” subclass of
DNF’s (for more on this see (Kushilevitz and Roth,
1996)).

5 Learner 3: a learner biased towards
monomial and elsewhere distributions

Next, I present a batch version of a learner I pro-
posed based on certain typological observations
and linguists’ insights about blocking. The typo-
logical observations come from a sample of verbal
agreement paradigms (Pertsova, 2007) and per-
sonal pronoun paradigms (Cysouw, 2003) show-
ing that majority of paradigms have either “mono-
mial” or “elsewhere” distribution (defined below).

Roughly speaking, a morph has a monomial dis-
tribution if it can be described with a single mono-
mial. A morph has an elsewhere distribution if
this distribution can be viewed as a complement
of distributions of other monomial or elsewhere-
morphs. To define these terms more precisely I
need to introduce some additional notation. Let⋂

ex be the intersection of all environments in
which morph x occurs (i.e., these are the invariant
features of x). This set corresponds to a least up-
per bound of the environments associated with x in
the lattice 〈S,≤R〉, call it lubx. Then, let the min-
imal monomial function for a morph x, denoted
mmx, be a Boolean function that maps an envi-
ronment to true if it is consistent with lubx and
to false otherwise. As usual, an extension of a
Boolean function, ext(b) is the set of all assign-
ments that b maps to true.

(2) Monomial distribution
A morph x has a monomial distribution iff
bx ≡ mmx.

The above definition states that a morph has a
monomial distribution if its invariant features pick
out just those environments that are associated
with this morph in the language. More concretely,
if a monomial morph always co-occurs with the
feature +singular, it will appear in all singular en-

69

vironments in the language.

(3) Elsewhere distribution
A morph x has an elsewhere distribution

iff bx ≡ mmx − (mmx1 ∨mmx2 ∨ . . . ∨
(mmxn)) for all xi 6= x in Σ.

The definition above amounts to saying that a
morph has an elsewhere distribution if the envi-
ronments in which it occurs are in the extension
of its minimal monomial function minus the min-
imal monomial functions of all other morphs. An
example of a lexical item with an elsewhere distri-
bution is the present tense form are of the verb “to
be”, shown below.

Table 1: The present tense of “to be” in English

sg. pl
1p. am are
2p. are are
3p. is are

Elsewhere morphemes are often described in
linguistic accounts by appealing to the notion of
blocking. For instance, the lexical representation
of are is said to be unspecified for both person
and number, and is said to be “blocked” by two
other forms: am and is. My hypothesis is that
the reason why such non-monotonic analyses ap-
pear so natural to linguists is the same reason for
why monomial and elsewhere distributions are ty-
pologically common: namely, the learners (and,
apparently, the analysts) are prone to generalize
the distribution of morphs to minimal monomi-
als first, and later correct any overgeneralizations
that might arise by using default reasoning, i.e. by
positing exceptions that override the general rule.
Of course, the above strategy alone is not sufficient
to capture distributions that are neither monomial,
nor elsewhere (I call such distributions “overlap-
ping”, cf. the suffixes -en and -t in the German
paradigm in Table 2), which might also explain
why such paradigms are typologically rare.

Table 2: Present tense of some regular verbs in
German

sg. pl
1p. -e -en
2p. -st -t
3p. -t -en

The original learner I proposed is an incre-
mental learner that calculates grammars similar
to those proposed by linguists, namely grammars
consisting of a lexicon and a filtering “blocking”
component. The version presented here is a sim-
pler batch learner that learns a partition of Boolean
functions instead.5 Nevertheless, the main proper-
ties of the original learner are preserved: specifi-
cally, a bias towards monomial and elsewhere dis-
tributions.

To determine what kind of distribution a morph
has, I define a relation C. A morph m stands in a
relation C to another morph m′ if ∃〈m, e〉 ∈ L,
such that lubm′ is consistent with e. In other
words, mCm′ if m occurs in any environment
consistent with the invariant features of m′. Let
C+ be a transitive closure of C.

Learner 3 (input: tj)

1. Let S(tj) be the set of pairs in tj containing
monomial- or elsewhere-distribution morphs.
That is, 〈m, e〉 ∈ S(tj) iff ¬∃m′ such that
mC+m′ and m′C+m.

2. Let O(tj) = tj − S(tj) (the set of all other
pairs).

3. A pair 〈m, e〉 ∈ S is a least element of S
iff ¬∃〈m′, e′〉 ∈ (S − {〈m, e〉}) such that
m′C+m.

4. Given a hypothesis Lex, and for any expres-
sion 〈m, e〉 ∈ Lex: let rem((m, e), Lex) =
(m, (mmm − {b|〈m′, b〉 ∈ Lex}))6

1. set S := S(tj) and Lex := ∅

2. While S 6= ∅: remove a least x
from S and set Lex := Lex ∪
rem(x, Lex)

3. Set Lex := Lex ∪O(tj).

This learner initially assumes that the lexicon is
empty. Then it proceeds adding Boolean functions
corresponding to minimal monomials for morphs
that are in the set S(tj) (i.e., morphs that have ei-
ther monomial or elsewhere distributions). This

5I thank Ed Stabler for relating this batch learner to me
(p.c.).

6For any two Boolean functions b, b′: b−b′ is the function
that maps e to 1 iff e ∈ ext(b) and e 6∈ ext(b′). Similarly,
b + b′ is the function that maps e to 1 iff e ∈ ext(b) and
e ∈ ext(b′).

70

is done in a particular order, namely in the or-
der in which the morphs can be said to block
each other. The remaining text is learned by rote-
memorization. Although this learner is more com-
plex than the previous two learners, it generalizes
fast when applied to paradigms with monomial
and elsewhere distributions.

5.1 Learner 4: a learner biased towards
shorter formulas

Next, I discuss a learner for morphological
paradigms, proposed by another linguist, David
Adger. Adger describes his learner informally
showing how it would work on a few examples.
Below, I formalize his proposal in terms of learn-
ing Boolean partitions. The general strategy of
this learner is to consider simplest monomials first
(those with the fewer number of specified features)
and see how much data they can unambiguously
and non-redundantly account for. If a monomial
is consistent with several morphs in the text - it is
discarded unless the morphs in question are in free
variation. This simple strategy is reiterated for the
next set of most simple monomials, etc.

Learner 4 (input tj)

1. Let Mi be the set of all monomials over F
with i specified features.

2. Let Bi be the set of Boolean functions from
environments to truth values corresponding
to Mi in the following way: for each mono-
mial mn ∈ Mi the corresponding Boolean
function b is such that b(e) = 1 if e is an
environment consistent with mn; otherwise
b(e) = 0.

3. Uniqueness check:
For a Boolean function b, morph m, and text
tj let unique(b, m, tj) = 1 iff ext(bm) ⊆
ext(b) and ¬∃〈m′, e〉 ∈ L(tj), s.t. e ∈
ext(b) and e 6∈ ext(bm).

1. set Lex := Σ× ∅ and i := 0;

2. while Lex does not correspond to
L(tj) AND i ≤ |F | do:
for each b ∈ Bi, for each m, s.t.
∃〈m, e〉 ∈ L(tj):

• if unique(b, m, tj) = 1 then
replace 〈m, f〉 with 〈m, f + b〉
in Lex

i← i + 1

This learner considers all monomials in the or-
der of their simplicity (determined by the num-
ber of specified features), and if the monomial in
question is consistent with environments associ-
ated with a unique morph then these environments
are added to the extension of the Boolean function
for that morph. As a result, this learner will con-
verge faster on paradigms in which morphs can be
described with disjunctions of shorter monomials
since such monomials are considered first.

6 Comparison

6.1 Basic properties

First, consider some of the basic properties of the
learners presented here. For this purpose, we will
assume that we can apply these learners in an iter-
ative fashion to larger and larger batches of data.
We say that a learner is consistent if and only if,
given a text tj , it always converges on the gram-
mar generating all the data seen in tj (Osherson
et al., 1986). A learner is monotonic if and only
if for every text t and every point j < k, the hy-
pothesis the learner converges on at tj is a subset
of the hypothesis at tk (or for learners that learn
by elimination: the hypothesis at tj is a superset
of the hypothesis at tk). And, finally, a learner is
generalizing if and only if for some tj it converges
on a hypothesis that makes a prediction beyond the
elements of tj .

The table below classifies the four learners ac-
cording to the above properties.

Learner consist. monoton. generalizing
Learner 1 yes yes yes
Learner 2 yes yes yes
Learner 3 yes no yes
Learner 4 yes yes yes

All learners considered here are generalizing
and consistent, but they differ with respect to
monotonicity. Learner 3 is non-monotonic while
the remaining learners are monotonic. While
monotonicity is a nice computational property,
some aspects of human language acquisition are
suggestive of a non-monotonic learning strategy,
e.g. the presence of overgeneralization errors and
their subsequent corrections by children(Marcus et
al., 1992). Thus, the fact that Learner 3 is non-
monotonic might speak in its favor.

71

6.2 Illustration

To demonstrate how the learners work, consider
this simple example. Suppose we are learning the
following distribution of morphs A and B over 2
binary features.

(4) Example 1

+f1 −f1
+f2 A B
−f2 B B

Suppose further that the text t3 is:
A +f1;+f2
B −f1;+f2
B +f1;−f2

Learner 1 generalizes right away by assuming
that every morph can appear in every environment
which leads to massive overgeneralizations. These
overgeneralizations are eventually eliminated as
more data is discovered. For instance, after pro-
cessing the first pair in the text above, the learner
“learns” that B does not occur in any environ-
ment consistent with (+f1;+f2) since it has just
seen A in that environment. After processing t3,
Learner 1 has the following hypothesis:

A (+f1;+f2) ∨ (−f1;−f2)
B (−f1) ∨ (−f2)

That is, after seeing t3, Learner 2 correctly pre-
dicts the distribution of morphs in environments
that it has seen, but it still predicts that both A
and B should occur in the not-yet-observed en-
vironment, (−f1;−f2). This learner can some-
times converge before seeing all data-points, es-
pecially if the input includes a lot of free varia-
tion. If fact, if in the above example A and B were
in free variation in all environments, Learner 1
would have converged right away on its initial set-
ting of the lexicon. However, in paradigms with no
free variation convergence is typically slow since
the learner follows a very conservative strategy of
learning by elimination.

Unlike Learner 1, Learner 2 will converge after
seeing t3. This is because this learner’s initial hy-
pothesis is more restricted. Namely, the initial hy-
pothesis for A includes disjunction of only those
monomials that are consistent with (+f1;+f2).
Hence, A is never overgeneralized to (−f1;−f2).
Like Learner 1, Learner 2 also learns by elimina-

tion, however, on top of that it also restricts its ini-
tial hypothesis which leads to faster convergence.

Let’s now consider the behavior of learner 3 on
example 1. Recall that this learner first computes
minimal monomials of all morphs, and checks
in they have monomial or elsewhere distributions
(this is done via the relation C+). In this case, A
has a monomial distribution, and B has an else-
where distribution. Therefore, the learner first
computes the Boolean function for A whose exten-
sion is simply (+f1;+f2); and then the Boolean
function for B, whose extension includes environ-
ments consistent with (*;*) minus those consistent
with (+f1;+f2), which yields the following hy-
pothesis:

ext(bA) [+f1;+f2]
ext(bB) [−f1;+f2][+f1;−f2][−f1;−f2]

That is, Learner 3 generalizes and converges on
the right language after seeing text t3.

Learner 4 also converges at this point. This
learner first considers how much data can be un-
ambiguously accounted for with the most minimal
monomial (*;*). Since both A and B occur in en-
vironments consistent with this monomial, noth-
ing is added to the lexicon. On the next round,
it considers all monomials with one specified fea-
ture. 2 such monomials, (−f1) and (−f2), are
consistent only with B, and so we predict B to ap-
pear in the not-yet-seen environment (−f1;−f2).
Thus, the hypothesis that Learner 4 arrives at is the
same as the hypothesis Learners 3 arrives at after
seeing t3.

6.3 Differences

While the last three learners perform similarly on
the simple example above, there are significant
differences between them. These differences be-
come apparent when we consider larger paradigms
with homonymy and free variation.

First, let’s look at an example that involves a
more elaborate homonymy than example 1. Con-
sider, for instance, the following text.

(5) Example 2
A [+f1;+f2;+f3]
A [+f1;−f2;−f3]
A [+f1;+f2;−f3]
A [−f1;+f2;+f3]
B [−f1;−f2;−f3]

72

Given this text, all three learners will differ in
their predictions with respect to the environ-
ment (−f1;+f2;−f3). Learner 2 will pre-
dict both A and B to occur in this environment
since not enough monomials will be removed
from representations of A or B to rule out ei-
ther morph from occurring in (−f1;+f2;−f3).
Learner 3 will predict A to appear in all envi-
ronments that haven’t been seen yet, including
(−f1;+f2;−f3). This is because in the cur-
rent text the minimal monomial for A is (∗; ∗; ∗)
and A has an elsewhere distribution. On the
other hand, Learner 4 predicts B to occur in
(−f1;+f2;−f3). This is because the exten-
sion of the Boolean function for B includes
any environments consistent with (−f1;−f3) or
(−f1;−f2) since these are the simplest monomi-
als that uniquely pick out B.

Thus, the three learners follow very different
generalization routes. Overall, Learner 2 is more
cautious and slower to generalize. It predicts free
variation in all environments for which not enough
data has been seen to converge on a single morph.
Learner 3 is unique in preferring monomial and
elsewhere distributions. For instance, in the above
example it treats A as a ‘default’ morph. Learner
4 is unique in its preference for morphs describ-
able with disjunction of simpler monomials. Be-
cause of this preference, it will sometimes gener-
alize even after seeing just one instance of a morph
(since several simple monomials can be consistent
with this instance alone).

One way to test what the human learners do
in a situation like the one above is to use artifi-
cial grammar learning experiments. Such experi-
ments have been used for learning individual con-
cepts over features like shape, color, texture, etc.
Some work on concept learning suggests that it is
subjectively easier to learn concepts describable
with shorter formulas (Feldman, 2000; Feldman,
2004). Other recent work challenges this idea (La-
fond et al., 2007), showing that people don’t al-
ways converge on the most minimal representa-
tion, but instead go for the more simple and gen-
eral representation and learn exceptions to it (this
approach is more in line with Learner 3).

Some initial results from my pilot experiments
on learning partitions of concept spaces (using ab-
stract shapes, rather than language stimuli) also
suggest that people find paradigms with else-
where distributions easier to learn than the ones

with overlapping distributions (like the German
paradigms in 2). However, I also found a bias to-
ward paradigms with the fewer number of relevant
features. This bias is consistent with Learner 4
since this learner tries to assume the smallest num-
ber of relevant features possible. Thus, both learn-
ers have their merits.

Another area in which the considered learn-
ers make somewhat different predictions has to
do with free variation. While I can’t discuss
this at length due to space constraints, let me
comment that any batch learner can easily de-
tect free-variation before generalizing, which is
exactly what most of the above learners do (ex-
cept Learner 3, but it can also be changed to do
the same thing). However, since free variation
is rather marginal in morphological paradigms,
it is possible that it would be rather problem-
atic. In fact, free variation is more problematic if
we switch from the batch learners to incremental
learners.

7 Directions for further research

There are of course many other learners one could
consider for learning paradigms, including ap-
proaches quite different in spirit from the ones
considered here. In particular, some recently pop-
ular approaches conceive of learning as matching
probabilities of the observed data (e.g., Bayesian
learning). Comparing such approaches with the
algorithmic ones is difficult since the criteria for
success are defined so differently, but it would
still be interesting to see whether the kinds of
prior assumptions needed for a Bayesian model
to match human performance would have some-
thing in common with properties that the learn-
ers considered here relied on. These properties
include the disjoint nature of paradigm cells, the
prevalence of monomial and elsewhere morphs,
and the economy considerations. Other empirical
work that might help to differentiate Boolean par-
tition learners (besides typological and experimen-
tal work already mentioned) includes finding rele-
vant language acquisition data, and examining (or
modeling) language change (assuming that learn-
ing biases influence language change).

References

David Adger. 2006. Combinatorial variation. Journal
of Linguistics, 42:503–530.

73

Avrim Blum. 1992. Learning Boolean functions in an
infinite attribute space. Machine Learning, 9:373–
386.

Michael Cysouw. 2003. The Paradigmatic Structure
of Person Marking. Oxford University Press, NY.

Jacob Feldman. 2000. Minimization of complexity in
human concept learning. Nature, 407:630–633.

Jacob Feldman. 2004. How surprising is a simple pat-
tern? Quantifying ‘Eureka!’. Cognition, 93:199–
224.

John Goldsmith. 2001. Unsupervised learning of a
morphology of a natural language. Computational
Linguistics, 27:153–198.

Anthony Kroch. 1994. Morphosyntactic variation. In
Katharine Beals et al., editor, Papers from the 30th
regional meeting of the Chicago Linguistics Soci-
ety: Parasession on variation and linguistic theory.
Chicago Linguistics Society, Chicago.

Eyal Kushilevitz and Dan Roth. 1996. On learning vi-
sual concepts and DNF formulae. Machine Learn-
ing, 24:65–85.

Daniel Lafond, Yves Lacouture, and Guy Mineau.
2007. Complexity minimization in rule-based cat-
egory learning: revising the catalog of boolean con-
cepts and evidence for non-minimal rules. Journal
of Mathematical Psychology, 51:57–74.

Gary Marcus, Steven Pinker, Michael Ullman,
Michelle Hollander, T. John Rosen, and Fei Xu.
1992. Overregularization in language acquisition.
Monographs of the Society for Research in Child
Development, 57(4). Includes commentary by
Harold Clahsen.

Robert M. Nosofsky, Thomas J. Palmeri, and S.C.
McKinley. 1994. Rule-plus-exception model
of classification learning. Psychological Review,
101:53–79.

Daniel Osherson, Scott Weinstein, and Michael Stob.
1986. Systems that Learn. MIT Press, Cambridge,
Massachusetts.

Katya Pertsova. 2007. Learning Form-Meaning Map-
pings in the Presence of Homonymy. Ph.D. thesis,
University of California, Los Angeles.

Jeffrey Mark Siskind. 1996. A computational study
of cross-situational techniques for learning word-to-
meaning mappings. Cognition, 61(1-2):1–38, Oct-
Nov.

Matthew G. Snover, Gaja E. Jarosz, and Michael R.
Brent. 2002. Unsupervised learning of morphology
using a novel directed search algorithm: taking the
first step. In Proceedings of the ACL-02 workshop
on Morphological and phonological learning, pages
11–20, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Leslie G. Valiant. 1984. A theory of the learnable.
CACM, 17(11):1134–1142.

Daniel Zeman. 2007. Unsupervised acquiring of mor-
phological paradigms from tokenized text. In Work-
ing Notes for the Cross Language Evaluation Forum,
Budapest. Madarsko. Workshop.

74

Author Index

Angluin, Dana, 16

Becerra-Bonache, Leonor, 16

Candito, Marie, 49
Casacuberta, Francisco, 24
Ćavar, Damir, 5
Clark, Alexander, 33
Crabbé, Benoit, 49

de la Higuera, Colin, 1

Eyraud, Remi, 33

Geertzen, Jeroen, 7
González, Jorge, 24

Habrard, Amaury, 33

Infante-Lopez, Gabriel, 58

Luque, Franco M., 58

Pertsova, Katya, 66

Seddah, Djamé, 49
Stehouwer, Herman, 41

van Zaanen, Menno, 1, 41

75

	Grammatical Inference and Computational Linguistics
	On Bootstrapping of Linguistic Features for Bootstrapping Grammars
	Dialogue Act Prediction Using Stochastic Context-Free Grammar Induction
	Experiments Using OSTIA for a Language Production Task
	GREAT: A Finite-State Machine Translation Toolkit Implementing a Grammatical Inference Approach for Transducer Inference (GIATI)
	A Note on Contextual Binary Feature Grammars
	Language Models for Contextual Error Detection and Correction
	On Statistical Parsing of French with Supervised and Semi-Supervised Strategies
	Upper Bounds for Unsupervised Parsing with Unambiguous Non-Terminally Separated Grammars
	Comparing Learners for Boolean partitions: Implications for Morphological Paradigms

