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Grammatical Inference and Computational Linguistics

Menno van Zaanen Colin de la Higuera
Tilburg Centre for Creative Computing University of SaintEtienne
Tilburg University France
Tilburg, The Netherlands cdl h@ni v-st-etienne.fr

mvzaanen@vt . nl

1 Grammatical inference and its linksto  larly, stemming from computational linguistics,
natural language processing one can point out the work relating language learn-
ing with more complex grammatical formalisms
When dealing with language, (machine) learning(kanazawa, 1998), the more statistical approaches
can take many different faces, of which the Mosthased on bu||d|ng |anguage models (Goodman,
important are those concerned with learning lan2001), or the different systems introduced to au-
guages and grammars from data. Questions ifpmatically build grammars from sentences (van
this context have been at the intersection of thezaanen, 2000; Adriaans and Vervoort, 2002). Sur-
fields of inductive inference and Computational\/eys of related work in Speciﬁc fields can also
linguistics for the past fifty years. To go back pe found (Natarajan, 1991; Kearns and Vazirani,

to the pioneering work, Chomsky (1955; 1957)1994; Sakakibara, 1997; Adriaans and van Zaa-
and Solomonoff (1960; 1964) were interested, fomen, 2004; de la Higuera, 2005; Wolf, 2006).

very different reasons, in systems or programs that _ _ _
could deduce a language when presented inform& Meeting points between grammatical
tion about it. inference and natural language

Gold (1967; 1978) proposed a little later a uni- ~ Processing

fying paradigm called identification in the limit, Grammatical inference scientists belong to a num-
and the term of grammatical inference S€ems t@qr of |arger communities: machine learning (with
have appeared in Horning’s PhD thesis (1969).  gpecial emphasis on inductive inference), com-

Out of the scope of linguistics, researchers angyytational linguistics, pattern recognition (within
engineers dealing with pattern recognition, undegnhe structural and syntactic sub-group). There is
the impulsion of Fu (1974; 1975), invented algo-5 specific conference called I1CGlnfernational
rithms and studied subclasses of languages andolioquium on Grammatical Inferengelevoted
grammars from the point of view of what could tg the subject. These conferences have been held
or could not be learned. at Alicante (Carrasco and Oncina, 1994), Mont-

Researchers in machine learning tackled relategellier (Miclet and de la Higuera, 1996), Ames
problems (the most famous being that of infer-(Honavar and Slutski, 1998), Lisbon (de Oliveira,
ring a deterministic finite automaton, given ex-2000), Amsterdam (Adriaans et al., 2002), Athens
amples and counter-examples of strings). An{Paliouras and Sakakibara, 2004), Tokyo (Sakak-
gluin (1978; 1980; 1981; 1982; 1987) introducedibara et al., 2006) and Saint-Malo (Clark et al.,
the important setting of active learning, or learn-2008). In the proceedings of this event it is pos-
ing for queries, whereas Pitt and his colleaguessible to find a number of technical papers. Within
(1988; 1989; 1993) gave several complexity in-this context, there has been a growing trend to-
spired results with which the hardness of the dif-wards problems of language learning in the field
ferent learning problems was exposed. of computational linguistics.

Researchers working in more applied areas, The formal objects in common between the
such as computational biology, also deal withtwo communities are the different types of au-
strings. A number of researchers from thattomata and grammars. Therefore, another meet-
field worked on learning grammars or automatang point between these communities has been the
from string data (Brazma and Cerans, 1994different workshops, conferences and journals that
Brazma, 1997; Brazma et al.,, 1998). Simi-focus on grammars and automata, for instance,
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FSMNLP,&RAMMARS, CIAA, ... e Unsupervised parsing

3 Goal for the workshop e Language modelling

There has been growing interest over the last few e Transducers, for instance, for
years in learning grammars from natural language — morphology,

text (and structured or semi-structured text). The
family of technigues enabling such learning is usu-
ally called “grammatical inference” or “grammar
induction”.

The field of grammatical inference is often sub-
divided into formal grammatical inference, where o | earning syntax with semantics,
researchers aim to proof efficient learnability of
classes of grammars, and empirical grammatical ® Unsupervised or semi-supervised learning of
inference, where the aim is to learn structure from  linguistic knowledge,
data. In this case the existence of an underlying
grammar is just regarded as a hypothesis and what
is sought is to better describe the language through
some automatically learned rules.

Both formal and empirical grammatical infer- e Comparing learning results in different
ence have been linked with (computational) lin- frameworks (e.g. membership vs. correction
guistics. Formal learnability of grammars has queries),
been used in discussions on how people learn lan-
guage. Some people mention proofs of (hon-
)learnability of certain classes of grammars as ar-
guments in the empiricist/nativist discussion. On
the more practical side, empirical systems that ¢ Grammars and finite state machines in ma-
learn grammars have been applied to natural lan-  chine translation,
guage. Instead of proving whether classes of
grammars can be learnt, the aim here is to pro-
vide practical learning systems that automatically o cognitive aspects of grammar acquisition,
introduce structure in language. Example fields  oyering, among others,
where initial research has been done are syntac-
tic parsing, morphological analysis of words, and
bilingual modelling (or machine translation).

— text to speech,
— automatic translation,
— transliteration,
— spelling correction, . ..

e Learning (classes of) grammars (e.g. sub-
classes of the Chomsky Hierarchy) from lin-
guistic inputs,

e Learning linguistic structures (e.g. phonolog-
ical features, lexicon) from the acoustic sig-
nal,

e Learning setting of Chomskyan parameters,

— developmental trajectories as studied by
psycholinguists working with children,

This workshop organized at EACL 2009 aimed — characteristics of child-directed speech
to explore the state-of-the-art in these topics. In as they are manifested in corpora such
particular, we aimed at bringing formal and empir- as CHILDES, ...

ical grammatical inference researchers closer to-
gether with researchers in the field of computa-
tional linguistics.

The topics put forward were to cover research4d The papers
on all aspects of grammatical inference in rela-

tion to natural language (such as, syntax, SemanThe workshop was glad to have as invited speaker

tics, morphology, phonology, phonetics), includ_Dam|r_Cava]|:,I\_/vho_pr_es](canted atr;tlkt;)tle@n bOOt._
ing, but not limited to strapping of linguistic features for bootstrapping

¢ (Unsupervised) Computational language ac-
quisition (experimental or observational),

grammars
e Automatic grammar engineering, including, The papers submitted to the workshop and re-
for example, viewed by at least three reviewers each, covered a

very wide range of problems and techniques. Ar-
ranging them into patterns was not a simple task!

— parameter estimation, There were three papers focussing on transduc-
— smoothing, ... ers:

— parser construction,



used for very different tasks:

e Jeroen Geertzen shows in his papélogue
Act Prediction Using Stochastic Context-Free
Grammar Inductionhow grammar induction
can be used in dialogue act prediction.

In their paper Experiments Using OSTIA for
a Language Production TagkDana Angluin
and Leonor Becerra-Bonache build on previ-
ous work to see the transducer learning algo-

e In A comparison of several learners for
Boolean partitions: implications for morpho-
logical paradigm Katya Pertsova compares a
rote learner to three morphological paradigm
learners.

References

rithm OSTIA as capable of translating syn- P. Adriaans and M. van Zaanen. 2004. Computational

tax to semantics.
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Grammatical Inference Approach for Trans-
ducer Inference (GIAT]Porge Gonzalez and P
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arated Grammars
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On bootstrapping of linguistic features for bootstrapping grammars

Damir Cavar
University of Zadar
Zadar, Croatia
dcavar@unizd.hr

Abstract

We discuss a cue-based grammar induc-
tion approach based on a parallel theory of
grammar. Our model is based on the hy-
potheses of interdependency between lin-
guistic levels (of representation) and in-
ductability of specific structural properties
at a particular level, with consequences
for the induction of structural properties at
other linguistic levels. We present the re-
sults of three different cue-learning exper-
iments and settings, covering the induc-
tion of phonological, morphological, and
syntactic properties, and discuss potential
consequences for our general grammar in-
duction model.!

1 Introduction

We assume that individual linguistic levels of nat-
ural languages differ with respect to their for-
mal complexity. In particular, the assumption is
that structural properties of linguistic levels like
phonology or morphology can be characterized
fully by Regular grammars, and if not, at least a
large subset can. Structural properties of natural
language syntax on the other hand might be char-
acterized by Mildly context-free grammars (Joshi
etal., 1991), where at least a large subset could be
characterized by Regular and Context-free gram-

mars .2

IThis article is builds on joint work and articles with K.
Elghamri, J. Herring, T. Ikuta, P. Rodrigues, G. Schrementi
and colleagues at the Institute of Croatian Language and Lin-
guistics and the University of Zadar. The research activities
were partially funded by several grants over a couple of years,
at Indiana University and from the Croatian Ministry of Sci-
ence, Education and Sports of the Republic of Croatia.

2We are abstracting away from concrete linguistic models
and theories, and their particular complexity, as discussed e.g.
in (Ristad, 1990) or (Tesar and Smolensky, 2000).

Ignoring for the time being extra-linguistic con-
ditions and cues for linguistic properties, and in-
dependent of the complexity of specific linguis-
tic levels for particular languages, we assume
that specific properties at one particular linguistic
level correlate with properties at another level. In
natural languages certain phonological processes
might be triggered at morphological boundaries
only, e.g. (Chomsky and Halle, 1968), or prosodic
properties correlate with syntactic phrase bound-
aries and semantic properties, e.g. (Inkelas and
Zec, 1990). Similarly, lexical properties, as for
example stress patterns and morphological struc-
ture tend to be specific to certain word types (e.g.
substantives, but not function words). i.e. corre-
late with the lexical morpho-syntactic properties
used in grammars of syntax. Other more informal
correlations that are discussed in linguistics, that
rather lack a formal model or explanation, are for
example the relation between morphological rich-
ness and the freedom of word order in syntax.

Thus, it seems that specific regularities and
grammatical properties at one linguistic level
might provide cues for structural properties at an-
other level. We expect such correlations to be lan-
guage specific, given that languages qualitatively
significantly differ at least at the phonetic, phono-
logical and morphological level, and at least quan-
titatively also at the syntactic level.

Thus in our model of grammar induction, we
favor the view expressed e.g. in (Frank, 2000)
that complex grammars are bootstrapped (or grow)
from less complex grammars. On the other hand,
the intuition that structural or inherent proper-
ties at different linguistic levels correlate, i.e. they
seem to be used as cues in processing and acquisi-
tion, might require a parallel model of language
learning or grammar induction, as for example
suggested in (Jackendoff, 1996) or the Competi-
tion Model (MacWhinney and Bates, 1989).

In general, we start with the observation that

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 5-6,
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natural languages are learnable. In principle, the
study of how this might be modeled, and what the
minimal assumptions about the grammar proper-
ties and the induction algorithm could be, could
start top-down, by assuming maximal knowledge
of the target grammar, and subsequently eliminat-
ing elements that are obviously learnable in an un-
supervised way, or fall out as side-effects. Alter-
natively, a bottom-up approach could start with the
question about how much supervision has to be
added to an unsupervised model in order to con-
verge to a concise grammar.

Here we favor the bottom-up approach, and ask
how simple properties of grammar can be learned
in an unsupervised way, and how cues could be
identified that allow for the induction of higher
level properties of the target grammar, or other lin-
guistic levels, by for example favoring some struc-
tural hypotheses over others.

In this article we will discuss in detail sev-
eral experiments of morphological cue induction
for lexical classification (Cavar et al., 2004a) and
(Cavar et al., 2004b) using Vector Space Models
for category induction and subsequent rule for-
mation. Furthermore, we discuss structural cohe-
sion measured via Entropy-based statistics on the
basis of distributional properties for unsupervised
syntactic structure induction (éavar et al., 2004c)
from raw text, and compare the results with syn-
tactic corpora like the Penn Treebank. We ex-
pand these results with recent experiments in the
domain of unsupervised induction of phonotactic
regularities and phonological structure (Cavar and
Cavar, 2009), providing cues for morphological
structure induction and syntactic phrasing.
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Dialogue Act Prediction Using Stochastic Context-Free Grammar
I nduction

Jeroen Geertzen
Research Centre for English & Applied Linguistics
University of Cambridge, UK
] g532@am ac. uk

Abstract

This paper presents a model-based ap-
proach to dialogue management that is
guided by data-driven dialogue act predic-
tion. The statistical prediction is based on
stochastic context-free grammars that have
been obtained by means of grammatical
inference. The prediction performance of
the method compares favourably to that of
a heuristic baseline and to that @fgram
language models.

The act prediction is explored both for
dialogue acts without realised semantic
content (consisting only of communicative
functions) and for dialogue acts with re-
alised semantic content.

I ntroduction

implies that dialogue is modelled as a sequential
decision task in which each contribution (action)
results in a transition from one state to another.

The latter assumption allows to assigreward
for action-state pairs, and to determine the dia-
logue management strategy that results in the max-
imum expected reward by finding for each state
the optimal action by usingeinforcement learn-
ing (cf. (Sutton and Barto, 1998)). Reinforce-
ment learning approaches to dialogue manage-
ment have proven to be successful in several task
domains (see for example (Paek, 2006; Lemon et
al., 2006)). In this process there is no supervision,
but what is optimal depends usually on factors that
require human action, such as task completion or
user satisfaction.

The remainder of this paper describes and eval-
uates a model-based approach to dialogue man-
agement in which the decision process of taking

Dialogue management is the activity of determin-a particular action given a dialogue state is guided
ing how to behave as an interlocutor at a specifiby data-driven dialogue act prediction. The ap-
moment of time in a conversation: whiefttion
can or should be taken at whstiate of the dia-
logue. The systematic way in which an interlocu-tion, without yet providing a full alternative to re-
tor chooses among the options for continuing a diinforcement learning.

alogue is often called dialogue strategy
Coming up with suitable dialogue management? Using structural properties of
strategies for dialogue systems is not an easy task. task-oriented dialogue

Traditional methods typically involve manually gne of the best known regularities that are ob-

crafting and tuning frames or hand-crafted rules

proach improves oven-gram language models
and can be used in isolation or for user simula-

served in dialogue are the two-part structures,

requiring considerable implementation time andynown asadjacency pairgSchegloff, 1968), like

cost.

More recently, statistical methods are be

QUESTION-ANSWER Or GREETING-GREETING.

ing used to semi-automatically obtain models that simple model of predicting a plausible next
can be trained and optimised using dialogue data.yjaj0gue act that deals with such regularities could
These methods are usually based on two assUMBg pased on bigrams, and to include more context
tions. First, the training data is assumed to beg g, higher-order.-grams could be used. For in-
representative of the communication that may b&isnce Stolcke et al. (2000) exploregram mod-

encountered in interaction. Second,

itis assumed|s pased on transcribed words and prosodic in-

that dialogue can be modelled as a Markov Desqrmation for swep-pamstL dialogue acts in the
cision Process (MDP) (Levin et al., 1998), which g\yitchhoard corpus (Godfrey et al., 1992). After

!See e.g. (Young, 2002) for an overview.

training back-offn-gram models (Katz, 1987) of

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 7-15,
Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics



different order using frequency smoothing (Wittenthe number of reoccurring patterns which could be

and Bell, 1991), it was concluded that trigrams andused in the prediction.

higher-ordern-grams offer a small gain in predi-  In compiling the symbols for the prediction ex-

cation performance with respect to bigrams. periments, three aspects are important: the identi-
Apart from adjacency pairs, there is a varietyfication of interlocutors, the definition of dialogue

of more complex re-occurring interaction patterns.acts, and multifunctionality in dialogue.

For instance, the following utterances with cor- The dialogue act taxonomy that is used in the

responding dialogue act types illustrate a clarifi-prediction experiments is that ofT (Bunt, 2000).

cation sub-dialogue within an information-requestA dialogue act is defined as a pair consisting of a

dialogue: communicative function (CF) and a semantic con-
tent (SC):a =< CF,SC >. TheDIT taxonomy

1 A:Howdo Idoafax? QUESTION distinguishes 11 dimensions of communicative

2 B: Do you want to send QUESTION functions, addressing information about the task

or print one? domain, feedback, turn management, and other

3 A:lwant to print it ANSWER generic aspects of dialogue (Bunt, 2006). There
4 B:Just press the grey button ANSWER are also functions, calledhe general-purpose

functions that may occur in any dimension. In

. . uite some cases, particularly when dialogue con-
Such structures have received considerable af* . . . o )

) . rol is addressed and dimension-specific functions
tention and their models are often referred to as

. , ) are realised, the SC is empty. General-purpose
discourse/dialogue grammars (Polanyi and Sch%nctions by contrast, are aFI)V\yays used inpcorrr)1bi-

;224“)/'O%rre?olnglgeé)s.atlonalld|alogue games (Levmnation with a realised SC. For example:

As also remarked by Levin (1999), predict-
ing and recognising dialogue games usingram
models is not really successful. There are vari
ous causes for this. The flat horizontal structure of
n-grams does not allow (hierarchical) grouping of Press the button.  SETANSWER Ertetss(Y) A
symbols. This may weaken the predictive power- ut ton(y)
and reduces the power of the representation since _ _ _ _
nested structures such as exemplified above cannot,The SC —if real!sed— descrlbes objects, prop-
be represented in a straightforward way. ertles,_and events in thg dpmam _of con_\/ersatlon.

A better solution would be to express the struc- In d|a_tlogu_e ‘?‘Ct prediction Wh_'le taking multi-
ture of dialogue games by a context-free gramma?j'mens'on‘"lllty Into account, a dlalogufe.can b_e
(CFG) representation in which the terminals arerepres_ented as a sequence of events in \{vhlch.an
dialogue acts and the non-terminals denote conSVentis a set of one dlglogue act or multlpl'e di-
versational games. Construction of a CFG Woulcx""log!ue acts occurring simultaneously. The mfor-
require explicit specification of a discourse gram—m_at'?n concerning mt_erlocutor and multifunction-
mar, which could be done by hand, but it would beallty is encoded in a single _symbol and denoted by
a great advantage if CFGs could automatically pdneans of an-tuple. As_sumlng that at most three_
induced from the data. An additional advantagefunctIons pan occur simultaneously, a 4-tuple is
of grammar induction is the possibility to assesd'eeded: (i nterlocutor, dal, da2, da3) . An ex-
the frequency of typical patterns and a stochastit‘:?‘mIOIe of a bigram of 4-tuples would then look as
context-free grammar (SCFG) may be produce&OHOWS:
which can be used for parsing the dialogue data.

dialogue act

utterance function semantic content

What to do next? SET-QUESTION next -step(X)

(A, <SETQ, "next-step(X)">, , ),
(B, <SETA, "press(Y) A button(Y)">, )

3 Seguencing dialogue acts

Both n-gram language models and SCFG basedwo symbols are considered to be identical when
models work on sequences of symbols. Usinghe same speaker is involved and when the sym-
more complex symbols increases data sparsitypols both address the same functions. To make
encoc_hng more mfor_matlon increases the number 2|gnoring the half percent of occurrences with four simul-
of unique symbols in the dataset and decreaseasneous functions.



it easy to determine if two symbols are identical,5 Dialogue grammars

the order of elements in a tuple is fixed: func- . . .

: ) : To automatically induce patterns from dialogue
tions that occur simultaneously are first ordered on . . o
. . . data in an unsupervised way, grammatical infer-
importance of dimension, and subsequently on al-

phabet. The task-related functions are considered. °° (GI) techniques can be used. Gl is a branch

the most important, followed by feedback—relatedOf unsupemsed ma'\chlne Iear_n ing that a|m§to find
. o structure in symbolic sequential data. In this case,
functions, followed by any other remaining func-

tions. This raises the question how recognitionthe Input of the GI algorithm will be sequences of

. . . dialogue acts.
performance using multifunctional symbols com-

pares against recognition performance using syms.1 Dialogue Grammars |nducer

bols that only encode the primary function For the induction of structure, a Gl algorithm has

been implemented that will be referred to as Dia-

logue Grammars Inducer (DGI). This algorithm is
4 N-gram language models based on distributional clustering and alignment-

based learning (van Zaanen and Adriaans, 2001;

There exists a significant body of work on the use/an Zaanen, 2002; Geertzen and van Zaanen,
of language models in relation to dialogue man-2004). Alignment-based learning (ABL) is a sym-

agement. Nagata and Morimoto (1994) describe Rolic grammar inference framework that has suc-
statistical model of discourse based on trigrams of€Ssfully been applied to several unsupervised ma-
utterances classified by custom speech act type§hine learning tasks in natural language process-
They report39.7% prediction accuracy for the top ing. The framework accepts sequences with sym-

candidate an@1.7% for the top three candidates. PoIs, aligns them with each other, and compares
i them to find interchangeable subsequences that
In the context of the dialogue component of the e srycture. As a result, the input sequences

speech-to-speech translation system VERBMOgq 5,gmented with the induced structure.
BIL, Reithinger and Maier (1995) usegramdia- 1o g algorithm takes as input time series of

logue act probabilities to suggest the most ”kelydialogue acts, and gives as output a set of SCFGs.
dialogue act. In later work, Alexandersson andy . algorithm has five phases:

Reithinger (1997) describe an approach which

comes close to the work reported in this paper: Us- 1. SEGMENTATION:. In the first phase of DGI,

ing grammar induction, plan operators are semi-  the time series are —if necessary— seg-
automatically derived and combined with a statis- mented in smaller sequences based on a spe-
tical disambiguation component. This system is  cific time interval in which no communica-
claimed to have an accuracy score of around 70%  tion takes place. This is a necessary step in
on turn management classes. task-oriented conversation in which there is
ample time to discuss (and carry out) several
related tasks, and an interaction often con-
sists of a series of short dialogues.

Another study is that of Poesio and Mikheev
(1998), in which prediction based on the previous
dialogue act is compared with prediction based on
the context of dialogue games. Using the Map 2. ALIGNMENT LEARNING: In the second
Task corpus annotated with ‘moves’ (dialogue  phase a search space of possible structures,
acts) and ‘transactions’ (games) they showed that  called hypotheses, is generated by compar-

by using higher dialogue structures it was possi-  ing all input sequences with each other and
ble to perform significantly better than a bigram by clustering sub-sequences that share simi-
model approach. Using bigram§.6% accuracy lar context. To illustrate the alignment learn-

was achieved. Additionally taking game structure ing, consider the following input sequences:
into account resulted iK0.6%; adding informa-

tion about speaker change resulted in an accuracy AISET-Q, BIPRO-Q, AIPROA, BISETA.

. . . A:SET-Q, B:PAUSE B:RESUME B:SETA.
0 0
of 41.8% with bigrams, 54% with game structure. A-SETQ. B:SETA.

All studies discussed so far are only concerned
with sequences of communicative functions, and  The alignment learning compares all input
disregard the semantic content of dialogue acts. sequences with each other, and produces the



hypothesised structures depicted below. Thenay be recognised, which can in turn be used ben-
induced structure is represented using brackeficially in dialogue management.
eting.

5.2 A worked example

[ A:SETQ, [; BIPRO-Q, AIPRO-A, |; BISETA. J; In testing the algorithm, DGI has been used to
[ AiSETQ, [; B:PAUSE A:RESUME, |; B:SETA. |;

[ A'SETQ, [, |; BiSETA. |; infer a set of SCFGs from a development set of
250 utterances of the DIAMOND corpus (see also
The hypothesig is generated because of the Section 6.1). Already for this small dataset, DGI
similar context (which is underlined). The Produced, using default parameters, 45 ‘dialogue
hypothesisi, the full span, is introduced by 9ames’. One of the largest produced structures
default, as it might be possible that the se-Was the following:

guence is in itself a part of a longer sequence

4 S A:SET-Q,NTAX ,NTBT , B:SET-A
_ 4 NTAX B:PRO-Q, NTFJ
. SELECTION LEARNING The set of hypothe 2 NTED A PROA

ses that is generated during alignment learn- 1  NTEJ
ing contains hypotheses that are unlikely to 2 NTBT
be correct. These hypotheses are filtered out 2 NTBT
overlapping hypotheses are eliminated to as-

sure that it is possible to extract a context- In this figure, each CFG rule has a number in-

free grammar, and the remaining hypothesegicating how many times the rules has been used.
are selected and remain in the bracketed outOne of the dialogue fragments that was used to in-
put. The decision of which hypotheses to seduce this structure is the following excerpt:

lect and which to discard is based on a Viterbi

A:PRO-A , A:CLARIFY
B:PRO-Q, A:PRO-A
0

LR R

beam search (Viterbi, 1967). utterance dialogue act
A1 howdo | do ashort code? SET-Q
. EXTRACTION: In the fourth phase, SCFG El do you want to program one? PRO-Q
. no SET-A
grammars are extracted from the_ remaining Az | want to enter a kie* a short code CLARIFY
hypotheses by means of recursive descents, youwant to use a short code? PRO-Q
parsing. Ignoring the stochastic informa- A« yes PRO-A
Bs  press the VK button SET-A

tion, a CFG of the above-mentioned example
looks in terms of grammar rules as depicted

below: Unfortunately, many of the 45 induced struc-
tures were very small or involved generalisations

S = AISETQ J BISETA already based on only two input samples. To en-

J = BPPROQ APROA sure that the grammars produced by DGI gen-

J = BIPAUSE A!RESUME i g P y g

J = 0 eralise better and are less fragmented, a post-

processing step has been added which traverses
the grammars and eliminates generalisations based
. FILTERING: In the last phase, the SCFG on a low number of samples. In practice, this
grammars that have small coverage or involvemeans that the post-processing requires the re-
many non-terminals are filtered out, and themaining grammatical structure to be presentéd
remaining SCFG grammars are presented agmes or more in the dath. The algorithm without

the output of DGI. post-processing will be referred to as DGI1; the

Depending on the mode of working, the DGI algorithm with post-processing as DGI2.

algorithm can generate a SCFG covering the comg At prediction experiments

plete input or can generate a set of SCFGs. In the

former mode, the grammar that is generated can b&o determine how to behave as an interlocutor at
used for parsing sequences of dialogue acts and & specific moment of time in a conversation, the
doing so suggests ways to continue the dialogud?Gl algorithm can be used to infer a SCFG that
In the latter mode, by parsing each grammar in thénodels the structure of the interaction. The SCFG
set of grammars that are expected to represent di- a5 _ 5 v 4

= 2 by default, but may increase with the size of the

alogue games in parallel, specific dialogue gamesaining data.
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can then be used to suggest a next dialogue aguished: action predicates, element predicates,
to continue the dialogue. In this section, the perand property predicates. These types have a fixed
formance of the proposed SCFG based dialoguerder. The action predicates appear before element
model is compared with the performance of thepredicates, which appear in turn before property
well-knownn-gram language models, both trainedpredicates. This allows to simplify the semantic
on intentional level, i.e. on sequences of sets of dicontent for the purpose of reducing data sparsity
alogue acts. in act prediction experiments, by stripping away
e.g. property predicates. For instance, if desired
6.1 Data the SC of utterance 3 in the example could be sim-
The task-oriented dialogues used in the dialoguglified to that of utterance 2, making the semantics
act prediction tasks were drawn from the DIA- less detailed but still meaningful.
MOND corpus (Geertzen et al., 2004), which con-
tains human-machine and human-human Dutc#.2 Methodology and metrics

dialogues that have an assistance seeking Ngyajuation of overall performance in communi-
ture. The dataset used in the experiments CoMsation is problematic; there are no generally ac-
tains 1,214 utterances representing 592 func-  cepted criteria as to what constitutes an objective
tional segments from the human-human part ofng sound way of comparative evaluation. An
corpus. In the domain of the DIAMOND data, often-used paradigm for dialogue system evalua-
i.e. operating a fax device, the predicates and argujon js PARADISE (Walker et al., 2000), in which
ments in the logical expressions of the SC of thene performance metric is derived as a weighted
dialogue acts refer to entities, properties, eventg,omhination of subjectively rated user satisfac-
anql tasks m_the application d_omgln. The applition, task-success measures and dialogue cost.
cation domain of the fax device is complex butgya|yating if the predicted dialogue acts are con-
small: the domain model consists of 70 entitiessijered as positive contributions in such a way
with at most 10 properties, 72 higher-level actions,gid require the model to be embedded in a fully
or tasks, and 45 different settings. working dialogue system.

Representations of semantic content are often 15 5ssess whether the models that are learned

expressed in some form of predicate logic typeyroquce human-like behaviour without resorting
formula. Examples are Quasi Logical Forms (Al-q ¢ostly user interaction experiments, it is needed

shawi, 1990), Dynamic Predicate Logic (Groe-y, compare their output with real human responses
nendijk and Stokhof, 1991), and Underspecifiedyiyen in the same contexts. This will be done by
Discourse Representation Theory (Reyle, 1993)4eriying a model from one part of a dialogue cor-
The SC in the dataset is in a simplified first orderIOUS and applying the model on an 'unseen’ part
logic similar to guasi Iogica_ll forms, aqd is suitable of the corpus, comparing the suggested next dia-
to support feasible reasoning, for which also theoyy e act with the observed next dialogue act. To
rem provers, model builders, and model ChECker?neasure the performanaegcuracyis used, which
can be used. The following utterances and theifg gefined as the proportion of suggested dialogue
corresponding SC characterise the dataset: acts that match the observed dialogue acts.

In addition to the accuracy, alguerplexityis

1 wat moet ik nu doen?

(what do I have to do now?) used as metric. Perplexity is widely used in re-
Az . next-step) lation to speech recognition and language models,
2 druk op een toets and can in this context be understood as a metric
(press a button) that measures the number of equiprobable possi-
Az . pressg) A buttong) ble choices that a model faces at a given moment.
3 druk op de groene toets Perplexity, being related to entropy is defined as
(press the green button) follows:

Az . pressg) A button) A color(z,'green’)

4 wat zit er boven de starttoets?
(what is located above the starttoets?)
Az . loc-aboveg, button041’)

Entropy = p(wilh) - logs p(w;|h)

(2

Three types of predicate groups are distin- Perplexity = 2Fmropry
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whereh denotes the conditioned part, i.es;_;  function results in better accuracy scores®P6

in the case of bigrams and;_»,w; 1 in the case on average, despite the increase in data sparsity. A

of trigrams, et cetera. In sum, accuracy could besimilar effect has also been reported by Stolcke et

described as a measure of correctness of the hgl. (2000).

pothesis and perplexity could be described as how Only for the 5-gram language model, the data

probable the correct hypothesis is. become too sparse to learn reliably a language
For all n-gram language modelling tasks re-model from. There is again an increase in per-

ported, good-turing smoothing was used (Katzformance when also the last two positions in the

1987). To reduce the effect of imbalances in thed-tuple are used and all available dialogue act as-

dialogue data, the results were obtained using 5signments are available. It should be noted, how-

fold cross-validation. ever, that this increase has less impact than adding
To have an idea how the performance of botrthe speaker identity. The best performinggram

the n-gram language models and the SCFG modlanguage model achieve@6.4% accuracy; the

els relate to the performance of a simple heurisbest SCFG model achiev&8.9% accuracy.

tic, a baseline has been computed which suggests

a majority class label according to the interlocutor6.4 Resultsfor dialogue acts

role in the d'alpgue' T_he mformanon seeker hasl'he scores for prediction of dialogue acts, includ-
SET,'Q,and the information provider haETA as ing SC, are presented in the left part of Table 2.
majority class label. The presentation is similar to Table 1: for each of
the three kinds of symbols, accuracy and perplex-
ity were calculated. For dialogue acts that may in-
The scores for communicative function predictionclude semantic content, computing a useful base-
are presented in Table 1. For each of the threéne is not obvious. The same baseline as for com-
kinds of symbols, accuracy and perplexity are calimunicative functions was used, which results in
culated: the first two columns are for the main CFower scores.
the second two columns are for the combination The table shows that the attempts to learn to
of speaker identitandmain CF, and the third two predict additionally the semantic content of utter-
columns are for the combination of speaker idenances quickly run into data sparsity problems. It
tity and all CFs. The scores for the latter two cod-turned out to be impossible to make predictions
ings could not be calculated for the 5-gram modelfrom 4-grams and 5-grams, and for 3-grams the
as the data were too sparse. combination of speaker and all dialogue acts could
As was expected, there is an improvement imot be computed. Training the SCFGs, by con-
both accuracy (increasing) and perplexity (de-rast, resulted in fewer problems with data sparsity,
creasing) for increasing-gram order. After the as the models abstract quickly.
4-gram language model, the scores drop again. As with predicting communicative functions,
This could well be the result of insufficient train- the SCFG models show better performance than
ing data, as the more complex symbols could nothe n-gram language models, for which the 2-
be predicted well. grams show slightly better results than the 3-
Both language models and SCFG models pergrams. Where there was a notable performance
form better than the baseline, for all three groupsdifference between DGI1 and DGI2 for CF pre-
The two SCFG models, DGI1 and DGI2, clearly diction, for dialogue act prediction there is only a
outperform then-gram language models with a very little difference, which is insignificant con-
substantial difference in accuracy. Also the persidering the relatively high standard deviation.
plexity tends to be lower. Furthermore, modelThis small difference is explained by the fact that
DGI2 performs clearly better than model DGI1, DGI2 becomes less effective as the size of the
which indicates that the ‘flattening’ of non- training data decreases.
terminals which is described in Section 5 results As with CF prediction, it can be concluded that
in better inductions. providing the speaker identity with the main dia-
When comparing the three groups of sequence$ogue act results in better scores, but the difference
it can be concluded that providing the speakels less big than observed with CF prediction due to
identity combined with the main communicative the increased data sparsity.

6.3 Resaultsfor communicative functions
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Table 1: Communicative function prediction scoresifegram language models and SCFGs in accuracy
(acg in percent) and perplexitypf). CF,,.:» denotes the main communicative function, SPK speaker
identity, and CE;; all occurring communicative functions.

CFrain SPK + CEain SPK + CR,;
acc pp acc pp acc pp

baseline 39.£0.23 24.2:0.19 44.6:0.92 22.2:0.25 42.%1.33 23.40.41

2-gram 53.#+0.88 17.%0.35 58.3:1.84 16.80.31 61.1%#1.65 16.3:0.59
3-gram 58.60.85 17.1#0.47 63.2:1.98 14.5:0.26 65.9:1.92 14.6£0.23
4-gram 60.41.12 16.#40.15 65.4:1.62 15.2£1.07 66.4:2.03 14.2:0.44
5-gram 60.30.43 18.6:0.21 - - - -

DGI1 67.4£3.05 18.3:1.28 74.6:1.94 14.81.47 76.52.13 13.9£0.35
DGI2 71.8:2.67 16.%1.25 78.32.50 14.G:2.39 78.%1.98 13.6:0.35

Table 2: Dialogue act prediction scores fogram language models and SCFGs. DA, denotes the
dialogue act with the main communicative function, and,pAll occurring dialogue acts.

DA main SPK + DAnain SPK + DA,

full SC simplified SC
acc pp acc pp acc pp acc pp

baseline 18.%2.01 31.¢:1.64 19.31.79 27.6£0.93 18.221.93 31.6:1.38 18.221.93 31.6:1.38

2-gram 31.21.42 28.51.03 34.6:1.51 24.%40.62 35.%1.30 26.9-0.47 37.51.34 26.22.37
3-gram 29.61.14 344282 31.%1.21 30.5:2.06 - - 29.11.28 28.@:2.59
4-gram - - - - - - - -
5-gram - - - - - - - -
DGI1 38.8£3.27 25.%#0.94 42.50.96 25.:1.14 42.9£2.44 27.3:1.98 46.6:2.01 24.6:2.24
DGI2 39.2+2.45 25.:1.28 42.#1.03 25.3:0.99 42.4-2.19 28.6£1.57 46.4:1.94 24.#2.55

The prediction scores of dialogue acts with fullbased model can capture regularities that have
semantic content and simplified semantic contenjaps, and allow to model long(er) distance rela-
are presented in the right part of Table 2. For botftions. Both algorithms work on sequences and
cases multifunctionality is taken into account byhence are easily susceptible to data-sparsity when
including all occurring communicative functions the symbols in the sequences get more complex.
in each symbol. As can be seen from the tableThe SCFG approach, though, has the advantage
the simplification of the semantic content leads tahat symbols can be clustered in the non-terminals
improvements in the prediction performance forof the grammar, which allows more flexibility.

both types of model. The bestgram language  The multidimensional nature of theiT+*
model improved with2.4% accuracy fron85.1%  functions can be adequately encoded in the sym-
to 37.5%; the best SCFG-based model improvedyols of the sequences. Keeping track of the inter-
with 3.7% from 42.9% t0 46.6%. locutor and including not only the main commu-
Moreover, the simplification of the semantic njcative function but also other functions that oc-
content reduced the problem of data-sparsity, makcur simultaneously results in better performance

ing it also possible to predict based on 3-gramseven though it decreases the amount of data to
although the accuracy is considerably lower thanearn from.

that of the 2-gram model. The prediction experiments based on main com-

municative functions assume that in case of multi-
functionality, a main function can clearly be iden-
Both n-gram language models and SCFG basedified. Moreover, it is assumed that task-related
models have their strengths and weaknesses. functions are more important than feedback func-
gram models have the advantage of being very rations or other functions. For most cases, these as-
bust and they can be easily trained. The SCFGumptions are justified, but in some cases they are

7 Discussion
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problematic. For instance, in a heated discussiorgluded that the algorithm outperforms thegram
the turn management function could be consideredhodels: on the task of predicting the communica-
more important for the dialogue than a simultanetive functions, the best performinggram model
ously occurring domain specific function. In otherachieved 66.4% accuracy; the best SCFG model
cases, it is impossible to clearly identify a mainachieved 78.9% accuracy. Predicting the seman-
function as all functions occurring simultaneouslytic content in combination with the communica-
are equally important to the dialogue. tive functions is difficult, as evidenced by moder-
In general,n-grams of a higher order have a ate scores. Obtaining lower degreegram lan-
higher predictability and therefore a lower per-guage models is feasible, whereas higher degree
plexity. However, using high order-grams is models are not trainable. Prediction works better
problematic due to sparsity of training data, whichwith the SCFG models, but does not result in con-
clearly is the case with 4-grams, and particularlyvincing scores. As the corpus is small, it is ex-
with 5-grams in combination with complex sym- pected that with scaling up the available training
bols as for CF prediction. data, scores will improve for both tasks.
Considerably more difficult is the prediction of ~ Future work in this direction can go in sev-
dialogue acts with realised semantic content, asral directions. First, the grammar induction ap-
is evidenced in the differences in accuracy androach shows potential of learning dialogue game-
perplexity for all models. Considering that the like structures unsupervised. The performance on
data set, with about, 600 functional segments, this task could be tested and measured by applying
is rather small, the statistical prediction of logical the algorithm on corpus data that have been anno-
expressions increases data sparsity to such a deted with dialogue games. Second, the models
gree that from thes-gram language models, only could also be extended to incorporate more infor-
2-gram (and 3-grams to some extent) could benation than dialogue acts alone. This could make
trained. The SCFG models can be trained for botlfomparisons with the performance obtained with
CF prediction and dialogue act prediction. reinforcement learning or with Bayesian networks
As noted in Section 6.2, objective evaluation ofinteresting. Third, it would be interesting to learn
dialogue strategies and behaviour is difficult. Theand apply the same models on other kinds of con-
evaluation approach used here compares the sugersation, such as dialogue with more than two in-
gested next dialogue act with the next dialogue acierlocutors. Fourth, datasets could be drawn from
as observed. This is done for each dialogue act i@t large corpus that covers dialogues on a small
the test set. This evaluation approach has the adut complex domain. This makes it possible to
vantage that the evaluation metric can easily be urevaluate according to the possible continuations
derstood and computed. The approach, howeve@s found in the data for situations with similar di-
is also very strict: in a given dialogue context, con-alogue context, rather than to evaluate according
tinuations with various types of dialogue acts mayto a single possible continuation. Last, the rather
all be equally appropriate. To also take other postinexplored parameter space of the DGI algorithm
sible contributions into account, a rich dataset ignight be worth exploring in optimising the sys-
required in which interlocutors act differently in tem’s performance.
similar dialogue context with a similar established
common ground. Moreover, such a dataset shoul
contain for each of these cases with similar dia-

logue context a representative set of samples. Jan Alexandersson and Norbert Reithinger. 1997.
Learning dialogue structures from a corpus. In
Proceedings of Eurospeech 199ages 2231-2234,
Rhodes, Greece, September.

An approach to 'the prediction of CommunlcatlVeHiyan Alshawi. 1990. Resolving quasi logical forms.
functions and dialogue acts has been presented computational Linguisticsl6(3):133-144.

that makes use of grammatical inference to auto- _ _

matically extract structure from corpus data. TheHarry B_fl%”t-t, 200|O.HD|an§uetpre:}lg\%{:lmlt_lcs "’g;d ‘|3(°”tdeXt
. . _ . Speciiication. In Harry buntan llllam black, ea-

algorithm, based. on allgnme.nt based learning, has itors, Abduction, Belief and Context in Dialogue;

been tested against a baseline and sevegagam Studies in Computational Pragmatjcpages 81—

language models. From the results it can be con- 150. John Benjamins, Amsterdam, The Netherlands.
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Abstract

The phenomenon of meaning-preserving
corrections given by an adult to a child
involves several aspects: (1) the child
produces an incorrect utterance, which
the adult nevertheless understands, (2) the
adult produces a correct utterance with the
same meaning and (3) the child recognizes
the adult utterance as having the same
meaning as its previous utterance, and
takes that as a signal that its previous ut-
terance is not correct according to the adult
grammar. An adequate model of this phe-
nomenon must incorporate utterances and
meanings, account for how the child and
adult can understand each other’s mean-
ings, and model how meaning-preserving
corrections interact with the child’s in-
creasing mastery of language production.
In this paper we are concerned with how
a learner who has learned to comprehend
utterances might go about learning to pro-
duce them.

We consider a model of language com-
prehension and production based on finite
sequential and subsequential transducers.
Utterances are modeled as finite sequences
of words and meanings as finite sequences
of predicates. Comprehension is inter-
preted as a mapping of utterances to mean-
ings and production as a mapping of mean-
ings to utterances. Previous work (Castel-
lanos et al., 1993; Pieraccini et al., 1993)
has applied subsequential transducers and
the OSTIA algorithm to the problem of
learning to comprehend language; here we
apply them to the problem of learning to
produce language. For ten natural lan-
guages and a limited domain of geomet-
ric shapes and their properties and rela-

tions we define sequential transducers to
produce pairs consisting of an utterance
in that language and its meaning. Using
this data we empirically explore the prop-
erties of the OSTIA and DD-OSTIA al-
gorithms for the tasks of learning compre-
hension and production in this domain, to
assess whether they may provide a basis
for a model of meaning-preserving correc-
tions.

1 Introduction

The role of corrections in language learning has
recently received substantial attention in Gram-
matical Inference. The kinds of corrections con-
sidered are mainly syntactic corrections based on
proximity between strings. For example, a cor-
rection of a string may be given by using edit
distance (Becerra-Bonache et al., 2007; Kinber,
2008) or based on the shortest extension of the
queried string (Becerra-Bonache et al., 20006),
among others. In these approaches semantic in-
formation is not used.

However, in natural situations, a child’s er-
roneous utterances are corrected by her parents
based on the meaning that the child intends to ex-
press; typically, the adult’s corrections preserve
the intended meaning of the child. Adults use cor-
rections in part as a way of making sure they have
understood the child’s intentions, in order to keep
the conversation “on track”. Thus the child’s ut-
terance and the adult’s correction have the same
meaning, but the form is different. As Chouinard
and Clark point out (2003), because children at-
tend to contrasts in form, any change in form that
does not mark a different meaning will signal to
children that they may have produced something
that is not acceptable in the target language. Re-
sults in (Chouinard and Clark, 2003) show that
adults reformulate erroneous child utterances of-
ten enough to help learning. Moreover, these re-

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 16-23,
Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics
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sults show that children can not only detect differ-
ences between their own utterance and the adult
reformulation, but that they do make use of that
information.

Thus in some natural situations, corrections
have a semantic component that has not been taken
into account in previous Grammatical Inference
studies. Some interesting questions arise: What
are the effects of corrections on learning syntax?
Can corrections facilitate the language learning
process? One of our long-term goals is to find a
formal model that gives an account of this kind
of correction and in which we can address these
questions. Moreover, such a model might allow us
to show that semantic information can simplify the
problem of learning formal languages.

A simple computational model of semantics and
context for language learning incorporating se-
mantics was proposed in (Angluin and Becerra-
Bonache, 2008). This model accommodates two
different tasks: comprehension and production.
That paper focused only on the comprehension
task and formulated the learning problem as fol-
lows. The teacher provides to the learner several
example pairs consisting of a situation and an ut-
terance denoting something in the situation; the
goal of the learner is to learn the meaning func-
tion, allowing the learner to comprehend novel ut-
terances. The results in that paper show that under
certain assumptions, a simple algorithm can learn
to comprehend an adult’s utterance in the sense of
producing the same sequence of predicates, even
without mastering the adult’s grammar. For exam-
ple, receiving the utterance the blue square above
the circle, the learner would be able to produce the
sequence of predicates (bl, sq, ab, ci).

In this paper we focus on the production task,
using sequential and subsequential transducers to
model both comprehension and production. Adult
production can be modeled as converting a se-
quence of predicates into an utterance, which can
be done with access to the meaning transducer for
the adult’s language.

However, we do not assume that the child ini-
tially has access to the meaning transducer for
the adult’s language; instead we assume that the
child’s production progresses through different
stages. Initially, child production is modeled as
consisting of two different tasks: finding a correct
sequence of predicates, and inverting the meaning
function to produce a kind of “telegraphic speech”.
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For example, from (gr, tr, le, sq) the child may
produce green triangle left square. Our goal is to
model how the learner might move from this tele-
graphic speech to speech that is grammatical in the
adult’s sense. Moreover, we would like to find a
formal framework in which corrections (in form of
expansions, for example, the green triangle to the
left of the square) can be given to the child dur-
ing the intermediate stages (before the learner is
able to produce grammatically correct utterances)
to study their effect on language learning.

We thus propose to model the problem of
child language production as a machine trans-
lation problem, that is, as the task of translat-
ing a sequence of predicate symbols (representing
the meaning of an utterance) into a correspond-
ing utterance in a natural language. In this pa-
per we explore the possibility of applying existing
automata-theoretic approaches to machine transla-
tion to model language production. In Section 2,
we describe the use of subsequential transducers
for machine translation tasks and review the OS-
TIA algorithm to learn them (Oncina, 1991). In
Section 3, we present our model of how the learner
can move from telegraphic to adult speech. In Sec-
tion 4, we present the results of experiments in the
model made using OSTIA. Discussion of these re-
sults is presented in Section 5 and ideas for future
work are in Section 6.

2 Learning Subsequential Transducers

Subsequential transducers (SSTs) are a formal
model of translation widely studied in the liter-
ature. SSTs are deterministic finite state mod-
els that allow input-output mappings between lan-
guages. Each edge of an SST has an associated
input symbol and output string. When an in-
put string is accepted, an SST produces an out-
put string that consists of concatenating the out-
put substrings associated with sequence of edges
traversed, together with the substring associated
with the last state reached by the input string. Sev-
eral phenomena in natural languages can be eas-
ily represented by means of SSTs, for example,
the different orders of noun and adjective in Span-
ish and English (e.g., un cuadrado rojo - a red
square). Formal and detailed definitions can be
found in (Berstel, 1979).

For any SST it is always possible to find an
equivalent SST that has the output strings assigned
to the edges and states so that they are as close to



the initial state as they can be. This is called an
Onward Subsequential Transducer (OST).

It has been proved that SSTs are learnable in
the limit from a positive presentation of sentence
pairs by an efficient algorithm called OSTIA (On-
ward Subsequential Transducer Inference Algo-
rithm) (Oncina, 1991). OSTIA takes as input a fi-
nite training set of input-output pairs of sentences,
and produces as output an OST that generalizes
the training pairs. The algorithm proceeds as fol-
lows (this description is based on (Oncina, 1998)):

e A prefix tree representation of all the input
sentences of the training set is built. Empty
strings are assigned as output strings to both
the internal nodes and the edges of this tree,
and every output sentence of the training set
is assigned to the corresponding leaf of the
tree. The result is called a tree subsequential
transducer.

An onward tree subsequential transducer
equivalent to the tree subsequential trans-
ducer is constructed by moving the longest
common prefixes of the output strings, level
by level, from the leaves of the tree towards
the root.

Starting from the root, all pairs of states of
the onward tree subsequential transducer are
considered in order, level by level, and are
merged if possible (i.e., if the resulting trans-
ducer is subsequential and does not contra-
dict any pair in the training set).

SSTs and OSTIA have been successfully ap-
plied to different translation tasks: Roman numer-
als to their decimal representations, numbers writ-
ten in English to their Spanish spelling (Oncina,
1991) and Spanish sentences describing simple
visual scenes to corresponding English and Ger-
man sentences (Castellanos et al., 1994). They
have also been applied to language understanding
tasks (Castellanos et al., 1993; Pieraccini et al.,
1993).

Moreover, several extensions of OSTIA have
been introduced. For example, OSTIA-DR incor-
porates domain (input) and range (output) mod-
els in the learning process, allowing the algorithm
to learn SSTs that accept only sentences compat-
ible with the input model and produce only sen-
tences compatible with the output model (Oncina
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and Varo, 1996). Experiments with a language un-
derstanding task gave better results with OSTIA-
DR than with OSTIA (Castellanos et al., 1993).
Another extension is DD-OSTIA (Oncina, 1998),
which instead of considering a lexicographic order
to merge states, uses a heuristic order based on a
measure of the equivalence of the states. Experi-
ments in (Oncina, 1998) show that better results
can be obtained by using DD-OSTIA in certain
translation tasks from Spanish to English.

3 From telegraphic to adult speech

To model how the learner can move from tele-
graphic speech to adult speech, we reduce this
problem to a translation problem, in which the
learner has to learn a mapping from sequences of
predicates to utterances. As we have seen in the
previous section, SSTs are an interesting approach
to machine translation. Therefore, we explore the
possibility of modeling language production using
SSTs and OSTIA, to see whether they may pro-
vide a good framework to model corrections.

As described in (Angluin and Becerra-Bonache,
2008), after learning the meaning function the
learner is able to assign correct meanings to ut-
terances, and therefore, given a situation and an
utterance that denotes something in the situation,
the learner is able to point correctly to the object
denoted by the utterance. To simplify the task
we consider, we make two assumptions about the
learner at the start of the production phase: (1)
the learner’s lexicon represents a correct meaning
function and (2) the learner can generate correct
sequences of predicates.

Therefore, in the initial stage of the production
phase, the learner is able to produce a kind of
“telegraphic speech” by inverting the lexicon con-
structed during the comprehension stage. For ex-
ample, if the sequence of predicates is (bl, sq, ler,
ci), and in the lexicon blue is mapped to bl, square
to sq, right to ler and circle to ci, then by invert-
ing this mapping, the learner would produce blue
square right circle.

In order to explore the capability of SSTs and
OSTIA to model the next stage of language pro-
duction (from telegraphic to adult speech), we take
the training set to be input-output pairs each of
which contains as input a sequence of predicates
(e.g., (b, sq, ler, ci)) and as output the correspond-
ing utterance in a natural language (e.g., the blue
square to the right of the circle). In this example,



the learner must learn to include appropriate func-
tion words. In other languages, the learner may
have to learn a correct choice of words determined
by gender, case or other factors. (Note that we are
not yet in a position to consider corrections.)

4 Experiments

Our experiments were made for a limited domain
of geometric shapes and their properties and re-
lations. This domain is a simplification of the
Miniature Language Acquisition task proposed by
Feldman et al. (Feldman et al., 1990). Previous
applications of OSTIA to language understanding
and machine translation have also used adapta-
tions and extensions of the Feldman task.

In our experiments, we have predicates for three
different shapes (circle (ci), square (sq) and tri-
angle (¢r)), three different colors (blue (bl), green
(gr) and red (re)) and three different relations (to
the left of (/e), to the right of (ler), and above (ab)).
We consider ten different natural languages: Ara-
bic, English, Greek, Hebrew, Hindi, Hungarian,
Mandarin, Russian, Spanish and Turkish.

We created a data sequence of input-output
pairs, each consisting of a predicate sequence and
a natural language utterance. For example, one
pair for Spanish is ((ci, re, ler, tr), el circulo rojo
a la derecha del triangulo). We ran OSTIA on ini-
tial segments of the sequence of pairs, of lengths
10,20, 30, ..., to produce a sequence of subse-
quential transducers. The whole data sequence
was used to test the correctness of the transducers
generated during the process. An error is counted
whenever given a data pair (z,y), the subsequen-
tial transducer translates x to ¢/, and v # y. We
say that OSTIA has converged to a correct trans-
ducer if all the transducers produced afterwards
have the same number of states and edges, and O
errors on the whole data sequence.

To generate the sequences of input-output pairs,
for each language we constructed a meaning trans-
ducer capable of producing the 444 different pos-
sible meanings involving one or two objects. We
randomly generated 400 unique (non-repeated)
input-output pairs for each language. This process
was repeated 10 times. In addition, to investigate
the effect of the order of presentation of the input-
output pairs, we repeated the data generation pro-
cess for each language, sorting the pairs according
to a length-lex ordering of the utterances.

We give some examples to illustrate the trans-
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ducers produced. Figure 1 shows an example of
a transducer produced by OSTIA after just ten
pairs of input-output examples for Spanish. This
transducer correctly translates the ten predicate se-
quences used to construct it, but the data is not
sufficient for OSTIA to generalize correctly in all
cases, and many other correct meanings are still
incorrectly translated. For example, the sequence
(ci, bl) is translated as el circulo a la izquierda del
circulo verde azul instead of el circulo azul.

The transducers produced after convergence by
OSTIA and DD-OSTIA correctly translate all 444
possible correct meanings. Examples for Spanish
are shown in Figure 2 (OSTIA) and Figure 3 (DD-
OSTIA). Note that although they correctly trans-
late all 444 correct meanings, the behavior of these
two transducers on other (incorrect) predicate se-
quences is different, for example on (tr, tr).

sql
bl/ azul ci/

sq/ el cuadrado bl/ azul
ci/el circulo a la gr/

izquierda del ler/ a la derecha
circulo verde

tr/ encima del triangulo
ci/ verde encima del
circulo azul

) bl/
tr/ el triangulo re/ rojo

le/

C—2 C3 .
al

° re/ rojo a la derecha ° °

del cuadrado

del cuadrado

Figure 1: Production task, OSTIA. A transducer
produced using 10 random unique input-output
pairs (predicate sequence, utterance) for Spanish.

le/ a la izquierda del
ler/ a la derecha del
ab/ encima del

bl/ azul

le/ a la izquierda del re/ rojo

ler/ a la derecha del gr/ verde

ab/ encima del sq/ cuadrado

bl/ azul re/ rojo ci/ circulo

sg/ el cuadrado gr/ verde tr/ triangulo
ci/ el circulo
1 tr/ el triangulo S

Figure 2: Production task, OSTIA. A transducer
produced (after convergence) by using random
unique input-output pairs (predicate sequence, ut-
terance) for Spanish.

Different languages required very different
numbers of data pairs to converge. Statistics on
the number of pairs needed until convergence for
OSTIA for all ten languages for both random
unique and random unique sorted data sequences
are shown in Table 1. Because better results were
reported using DD-OSTIA in machine translation



bl/ azul
re/ rojo
gr/ verde
sg/ el cuadrado
ci/ el circulo
tr/ el triangulo

le/ a la izquierda del
ler/ a la derecha del
ab/ encima del

sg/ cuadrado
ci/ circulo
tr/ triangulo

Figure 3: Production task, DD-OSTIA. A trans-
ducer produced (after convergence) using random
unique input-output pairs (predicate-sequence, ut-
terance) for Spanish.

Language | # Pairs | # Sorted Pairs
Arabic 150 200
English 200 235
Greek 375 400
Hebrew 195 30
Hindi 380 350
Hungarian 365 395
Mandarin 45 150
Russian 270 210
Spanish 190 150
Turkish 185 80

Table 1: Production task, OSTIA. The entries give
the median number of input-output pairs until con-
vergence in 10 runs. For Greek, Hindi and Hun-
garian, the median for the unsorted case is calcu-

lated using all 444 random unique pairs, instead of
400.

tasks (Oncina, 1998), we also tried using DD-
OSTIA for learning to translate a sequence of
predicates to an utterance. We used the same se-
quences of input-output pairs as in the previous
experiment. The results obtained are shown in Ta-
ble 2.

We also report the sizes of the transducers
learned by OSTIA and DD-OSTIA. Table 3 and
Table 4 show the numbers of states and edges
of the transducers after convergence for each lan-
guage. In case of disagreements, the number re-
ported is the mode.

To answer the question of whether production
is harder than comprehension in this setting, we
also considered the comprehension task, that is,
to translate an utterance in a natural language
into the corresponding sequence of predicates.
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Language | # Pairs | # Sorted Pairs
Arabic 80 140
English 85 180
Greek 350 400
Hebrew 65 80
Hindi 175 120
Hungarian 245 140
Mandarin 40 150
Russian 185 210
Spanish 80 150
Turkish 50 40

Table 2: Production task, DD-OSTIA. The entries
give the median number of input-output pairs un-
til convergence in 10 runs. For Greek, Hindi and
Hungarian, the median for the unsorted case is cal-

culated using all 444 random unique pairs, instead
of 400.

Languages | #states | #edges
Arabic 2 20
English 2 20
Greek 9 65
Hebrew 2 20
Hindi 7 58
Hungarian 3 20
Mandarin 1 10
Russian 3 30
Spanish 2 20
Turkish 4 31

Table 3: Production task, OSTIA. Sizes of trans-
ducers at convergence.

The comprehension task was studied by Oncina
et al. (Castellanos et al., 1993). They used En-
glish sentences, with a more complex version of
the Feldman task domain and more complex se-
mantic representations than we use. Our results
are presented in Table 5. The number of states
and edges of the transducers after convergence is
shown in Table 6.

5 Discussion

It should be noted that because the transducers
output by OSTIA and DD-OSTIA correctly repro-
duce all the pairs used to construct them, once ei-
ther algorithm has seen all 444 possible data pairs
in either the production or the comprehension task,
the resulting transducers will correctly translate all
correct inputs. However, state-merging in the al-



Languages | #states | #edges
Arabic 2 17
English 2 16
Greek 9 45
Hebrew 2 13
Hindi 7 40
Hungarian 3 20
Mandarin 1 10
Russian 3 23
Spanish 2 13
Turkish 3 18

Table 4: Production task, DD-OSTIA. Sizes of
transducers at convergence.

Languages | OSTIA | DD-OSTIA
Arabic 65 65
English 60 20
Greek 325 60
Hebrew 90 45
Hindi 60 35
Hungarian 40 45
Mandarin 60 40
Russian 280 55
Spanish 45 30
Turkish 60 35

Table 5: Comprehension task, OSTIA and DD-
OSTIA. Median number (in 10 runs) of input-
output pairs until convergence using a sequence of
400 random unique pairs of (utterance, predicate
sequence).

gorithms induces compression and generalization,
and the interesting questions are how much data
is required to achieve correct generalization, and
how that quantity scales with the complexity of
the task. This are very difficult questions to ap-
proach analytically, but empirical results can offer
valuable insights.

Considering the comprehension task (Tables 5
and 6), we see that OSTIA generalizes correctly
from at most 15% of all 444 possible pairs except
in the cases of Greek, Hebrew and Russian. DD-
OSTIA improves the OSTIA results, in some cases
dramatically, for all languages except Hungarian.
DD-OSTIA achieves correct generalization from
at most 15% of all possible pairs for all ten lan-
guages. Because the meaning function for all ten
language transducers is independent of the state,
in each case there is a 1-state sequential trans-
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Languages | #states | #edges
Arabic 1 15
English 1 13
Greek 2 25
Hebrew 1 13
Hindi 1 13
Hungarian 1 14
Mandarin 1 17
Russian 1 24
Spanish 1 14
Turkish 1 13

Table 6: Comprehension task, OSTIA and DD-
OSTIA. Sizes of transducers at convergence using
400 random unique input-output pairs (utterance,
predicate sequence). In cases of disagreement, the
number reported is the mode.

ducer that achieves correct translation of correct
utterances into predicate sequences. OSTIA and
DD-OSTIA converged to 1-state transducers for
all languages except Greek, for which they con-
verged to 2-state transducers. Examining one such
transducer for Greek, we found that the require-
ment that the transducer be “onward” necessitated
two states. These results are broadly compatible
with the results obtained by Oncina et al. (Castel-
lanos et al., 1993) on language understanding; the
more complex tasks they consider also give evi-
dence that this approach may scale well for the
comprehension task.

Turning to the production task (Tables 1, 2, 3
and 4), we see that providing the random samples
with a length-lex ordering of utterances has incon-
sistent effects for both OSTIA and DD-OSTIA,
sometimes dramatically increasing or decreasing
the number of samples required. We do not fur-
ther consider the sorted samples.

Comparing the production task with the com-
prehension task for OSTIA, the production task
generally requires substantially more random
unique samples than the comprehension task for
the same language. The exceptions are Mandarin
(production: 45 and comprehension: 60) and Rus-
sian (production: 270 and comprehension: 280).
For DD-OSTIA the results are similar, with the
sole exception of Mandarin (production: 40 and
comprehension: 40). For the production task DD-
OSTIA requires fewer (sometimes dramatically
fewer) samples to converge than OSTIA. How-
ever, even with DD-OSTIA the number of sam-



ples is in several cases (Greek, Hindi, Hungarian
and Russian) a rather large fraction (40% or more)
of all 444 possible pairs. Further experimentation
and analysis is required to determine how these re-
sults will scale.

Looking at the sizes of the transducers learned
by OSTIA and DD-OSTIA in the production task,
we see that the numbers of states agree for all lan-
guages except Turkish. (Recall from our discus-
sion in Section 4 that there may be differences in
the behavior of the transducers learned by OSTIA
and DD-OSTIA at convergence.) For the produc-
tion task, Mandarin gives the smallest transducer;
for this fragment of the language, the translation
of correct predicate sequences into utterances can
be achieved with a 1-state transducer. In contrast,
English and Spanish both require 2 states to handle
articles correctly. For example, in the transducer
in Figure 3, the predicate for a circle (ci) is trans-
lated as el circulo if it occurs as the first object (in
state 1) and as circulo if it occurs as second ob-
ject (in state 2) because del has been supplied by
the translation of the intervening binary relation
(le, ler, or ab.) Greek gives the largest transducer
for the production task, with 9 states, and requires
the largest number of samples for DD-OSTIA to
achieve convergence, and one of the largest num-
bers of samples for OSTIA. Despite the evidence
of the extremes of Mandarin and Greek, the rela-
tion between the size of the transducer for a lan-
guage and the number of samples required to con-
verge to it is not monotonic.

In our model, one reason that learning the pro-
duction task may in general be more difficult than
learning the comprehension task is that while the
mapping of a word to a predicate does not depend
on context, the mapping of a predicate to a word
or words does (except in the case of our Mandarin
transducer.) As an example, in the comprehension
task the Russian words triugolnik, triugolnika and
triugonikom are each mapped to the predicate tr,
but the reverse mapping must be sensitive to the
context of the occurrence of tr.

These results suggest that OSTIA or DD-
OSTIA may be an effective method to learn to
translate sequences of predicates into natural lan-
guage utterances in our domain. However, some of
our objectives seem incompatible with the proper-
ties of OSTIA. In particular, it is not clear how
to incorporate the learner’s initial knowledge of
the lexicon and ability to produce “telegraphic
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speech” by inverting the lexicon. Also, the in-
termediate results of the learning process do not
seem to have the properties we expect of a learner
who is progressing towards mastery of produc-
tion. That is, the intermediate transducers per-
fectly translate the predicate sequences used to
construct them, but typically produce other trans-
lations that the learner (using the lexicon) would
know to be incorrect. For example, the intermedi-
ate transducer from Figure 1 translates the predi-
cate sequence (ci) as el circulo a la izquierda del
circulo verde, which the learner’s lexicon indicates
should be translated as (ci, le, ci, gr).

6 Future work

Further experiments and analysis are required to
understand how these results will scale with larger
domains and languages. In this connection, it may
be interesting to try the experiments of (Castel-
lanos et al., 1993) in the reverse (production) di-
rection. Finding a way to incorporate the learner’s
initial lexicon seems important. Perhaps by incor-
porating the learner’s knowledge of the input do-
main (the legal sequences of predicates) and using
the domain-aware version, OSTIA-D, the interme-
diate results in the learning process would be more
compatible with our modeling objectives. Coping
with errors will be necessary; perhaps an explic-
itly statistical framework for machine translation
should be considered.

If we can find an appropriate model of how
the learner’s language production process might
evolve, then we will be in a position to model
meaning-preserving corrections.  That is, the
learner chooses a sequence of predicates and maps
it to a (flawed) utterance. Despite its flaws, the
learner’s utterance is understood by the teacher
(i.e., the teacher is able to map it to the sequence
of predicates chosen by the learner) and responds
with a correction, that is, a correct utterance for
that meaning. The learner, recognizing that the
teacher’s utterance has the same meaning but a
different form, then uses the correct utterance (as
well as the meaning and the incorrect utterance) to
improve the mapping of sequences of predicates to
utterances.

It is clear that in this model, corrections are not
necessary to the process of learning comprehen-
sion and production; once the learner has a correct
lexicon, the utterances of the teacher can be trans-
lated into sequences of predicates, and the pairs



of (predicate sequence, utterance) can be used to
learn (via an appropriate variant of OSTIA) a per-
fect production mapping. However, it seems very
likely that corrections can make the process of
learning a production mapping easier or faster, and
finding a model in which such phenomena can be
studied remains an important goal of this work.
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Abstract

GREAT is a finite-state toolkit which is
devoted to Machine Translation and that
learns structured models from bilingual
data. The training procedure is based on
grammatical inference techniques to ob-
tain stochastic transducers that model both
the structure of the languages and the re-
lationship between them. The inference
of grammars from natural language causes
the models to become larger when a less
restrictive task is involved; even more if
a bilingual modelling is being considered.
GREAT has been successful to implement
the GIATI learning methodology, using
different scalability issues to be able to
deal with corpora of high volume of data.
This is reported with experiments on the
EuroParl corpus, which is a state-of-the-
art task in Statistical Machine Translation.

Introduction

The conditional probabilityPr(t|s) can be re-
placed by a joint probability distributioRr(s,t)
which is modelled by a stochastic transducer being
inferred through the GIATI methodology (Casacu-
berta et al., 2004; Casacuberta and Vidal, 2004):
t= argtmaxPr(s, t) 2)
This paper describes GREAT, a software pack-
age for bilingual modelling from parallel corpus.
GREAT is a finite-state toolkit which was born
to overcome the computational problems that pre-
vious implementations of GIATI (Pico, 2005) had
in practice when huge amounts of data were used.
Even more, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.
Experiments for a state-of-the-art, voluminous
translation task, such as the EuroParl, are re-
ported. In (Gonzélez and Casacuberta, 2007),

Over the last years, grammatical inference teChg,e g4 called phrase-based finite-state transducers

nigues have not been widely employed in the ma

were concluded to be a better modelling option for

chine translation area. Nevertheless, it is not UNthis task than the ones that derive from a word-
known that researchers are trying to include somg,¢qq approach. That is why the experiments here

structured information into their models in order to

are exclusively related to this particular kind of

capture the grammatical regularities that there argy| aT1-based transducers.
in languages together with their own relationship. The structure of this work is as follows: first,

GIATI (Casacuberta, 2000; Casacuberta et al

'section 2 is devoted to describe the training proce-

2005) is a grammatical inference methodology todure, which is in turn divided into several lines, for

infer stochastic transducers in a bilingual mod-

instance, the finite-state GIATI-based models are

elling approach for statistical machine translation.deﬁned and their corresponding grammatical in-

From a statistical point of V'eW’.th? translation oo ce methods are described, including the tech-
problem can be stated as follows: given a sourc%iqueS to deal with tasks of high volume of data;

sentences = s; ...y, the goal is to find a target
sentencé = t;...t;, among all possible target

then, section 3 is related to the decodification pro-
cess, which includes an improved smoothing be-

stringst, that maximises the posterior probability: haviour and an analysis algorithm that performs

t = argmaxPr(t|s) (1)
t

according to the granularity of the bilingual sym-
bols in the models; to continue, section 4 deals
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with an exhaustive report on experiments; and fito infer stochastic finite-state transducers through
nally, the conclusions are stated in the last sectiorthe modelling of languages. Rather than learn-
ing translations, GIATI first converts every pair

of parallel sentences in the training corpus into a

A stochastic finite-state automato# is a tuple corresponding extended-symbol string in order to,
(T, Q,1, f, P), whereTl is an alphabet of symbols, straight afterwards, infer a language model from.
Q is a finite set of states, functions Q — [0, 1] More concretely, given a parallel corpus con-
andf : Q — [0,1] refer to the probability of each sisting of a finite sampl€” of string pairs: first,
state to be, respectively, initial and final, and par€ach training paifz, ) € X* x A* is transformed
cial functionP : Q x {T Ue} x Q — [0,1] de- into a stringz € I'* from an extended alphabet,
fines a set of transitions between pairs of states ifielding a string corpus’; then, a stochastic finite-
such a way that each transition is labelled with sstate automatos is inferred froms; finally, tran-
symbol fromT (or the empty string), and is as- sition labels in.A are turned back into pairs of
signed a probability. Moreover, functionsf, and ~ strings of source/target symbolsiit x A*, thus

P have to respect theonsistencyroperty in or- converting the automatoA into a transduce? .

der to define a distribution of probabilities on the The first transformation is modelled by some la-
free monoid. Consistent probability distributions belling functionZ : ¥* x A* — I'*, while the last
can be obtained by requiring a series of local contransformation is defined by an inverse labelling
straints which are similar to the ones for stochastidunction A(-), such thatA(£(C)) = C. Build-

2 Finite state models

regular grammars (Vidal et al., 2005): ing a corpus of extended symbols from the original
(o) = 1 bilingual corpus allows for the use of many useful
* Z ilg) = algorithms for learning stochastic finite-state au-
el tomata (or equivalent models) that have been pro-
e Vge@: Z P(g,v,d)+flq) =1 posed in the literature on grammatical inference.

ve{lUe},¢'€Q
L , . 2.2 Phrase-based-gram transducers
A stochastic finite-state transducer is defined

similarly to a stochastic finite-state automaton,Phrase-based-gram transducers represent an in-
with the difference that transitions between statederesting application of the GIATI methodology,
are labelled with pairs of symbols that belong towhere the extended symbols are actually bilingual
two different (input and output) alphabets, thatPhrase pairs, and-gram models are employed as
is, (U ¢) x (AUe). Then, given some in- language models (Gonzalez et al., 2008). Figure 2
put and output strings andt, a stochastic finite- shows a general scheme for the representation of
state transducer is able to associate them a joist-9rams through stochastic finite state automata.
probability Pr(s,t). An example of a stochastic
finite-state transducer can be observed in Figure 1.

N-GRAM
TRANSITIONS

HISTORY LEVEL N-1
c:ABC 0.8

(N-1)-GRAM
TRANSITIONS

BACKOFF
TRANSITIONS

c:C 02 a:CA
O%
e
1 c:BC 05
0.2 \\ /\
b:e 0.

TRIGRAM BACKOFF
TRANSITIONS TRANSITIONS

HISTORY LEVEL 2

BIGRAM
TRANSITIONS

BACKOFF
TRANSITIONS

HISTORY
LEVEL 1

UNIGRAM
TRANSITIONS

BACKOFF
TRANSITIONS

2.1 Inference of stochastic transducers

HISTORY LEVEL 0

The GIATI methodology (Casacuberta et al., _ o
2005) has been revealed as an interesting approach ~ Figure 2: A finite-state:-gram model
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The states in the model refer to all thegram they do not belong to the original automaton
histories that have been seen in the string cofhus model. As a result, they are non-final states, with
in training time. Consuming transitions jump from only one incoming and one outcoming edge each.
states in a determined layer to the one immediately
above, increasing the history level. Once the to2-3 Transducer pruning vian-gram events

level has been reached;gram transitions allow = GREAT implements this pruning technique, which
for movements inside this layer, from state to statejs inspired by some other statistical machine trans-
updating the history to the last— 1 seen events. |ation decoders that usually filter their phrase-

Given that an  n-gram event phased translation dictionaries by means of the
Ip1ln—z...T2Ihly is statistically stated wordsin the test set sentences (Koehn et al., 2007).
as Pr(Lo[l',1Tn—2...T2I'), then it is appro- g ajready seen in Figure 3, anygram event

priately represented as a finite state transitiofs represented as a transition between their cor-
between their corresponding up-to-date historiesesponding historical states. In order to be able
which are associated to some states (see Figure ), navigate through this transition, the analy-

sis must have reached thg,_; ... I'sI';I"; state

I'_1Ty—o... oI and the remaining input must fit the source ele-
ments ofly. In other words, the full source se-
guence from the-gram event’,, 1 ...T'3sI'sT" T

has to be present in the test set. Otherwise,
its corresponding transition will not be able to
Lo be employed during the analysis of the test set
Figure 3: Finite-state representationrefjrams  sentences. As a result-gram events that are
not in the test set can skip their transition gener-

ation, since they will not be affected during de-

Therefore, transitions are labelled with a sym-coding time, thus reducing the size of the model.
bol from I" and every extended symbol Ihis a If there is also a backoff probability that is asso-
translation pair coming from a phrase-based dicciated to the same-gram event, its correspond-
tionary which is inferred from the parallel corpus. ing transition generation can be skipped too, since

Nevertheless, backoff transitions to lower his-its source state will never be reached, as it is the
tory levels are taken for smoothing purposes. Ifstate which represents thegram event. Nev-
the lowest level is reached and no transition hagrtheless, since trained extended-symbgram
been found for next word;, then a transition to €vents would typically include more tharsource
the <unk> state is fired, thus considerirg as a words, the verification of their presence or their
non-starting word for any bilingual phrase in theabsence inside the test set would imply hashing all
model. There is only 1 initial state, which is deno-the test-set word sequences, which is rather im-
ted as<s>, and itis placed at the 1st history level. practical. Instead, a window size is used to hash

The inverse labelling function is applied over the words in the test set, then the trainedram
the automaton transitions as in Figure 4, obtaining@Vvents are scanned on their source sequence using

a single transducer (Casacuberta and Vidal, 2004$his window size to check if they might be skipped
or not. It should be clear that the bigger the win-

dow size is, the more-gram rejections there will

On demande une activité

@/P’p\ e be, therefore the transducer will be smaller. How-
Action s requred ever, the translation results will not be affected as
these disappearing transitions are unreachable us-

@ activie ing that test set. As the window size increases, the

resulting filtered transducer is closer to the mini-

On /e demandgse  une/e Action is required
@ O O O mum transducer that reflects the test set sentences.
Pr=p Pr=1 Pr=1 Pr=1

3 Finite state decoding

Figure 4: Phrase-based inverse labelling function . _
Equation 2 expresses the MT problem in terms of

Intermediate states are artificially created since finite state model that is able to compute the ex-
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pressionPr(s,t). Given that only the input sen- should not be taken into account. However, as far
tence is known, the model has to be parsed, takings the words in the test sentence are compatible
into account all possiblethat are compatible with with the corresponding transitions, and according
s. The best output hypothedisvould be that one to the phrase score, this (word) synchronous pars-
which corresponds to a path through the transdudng algorithm may store these intermediate states
tion model that, with the highest probability, ac- into the trellis structure, even if the full path will
cepts the input sequence as part of the input lamot be accomplished in the end. As a consequence,
guage of the transducer. these entries will be using a valuable position in-
Although the navigation through the model is side the trellis structure to an idle result. This will
constrained by the input sentence, the search spabe not only a waste of time, but also a distortion
can be extremely large. As a consequence, onl9n the best score per stage, reducing the effective
the most scored partial hypotheses are being corpower of the beam parameter during the decoding.
sidered as possible candidates to become the solGome other better analysis options may be rejected
tion. This search process is very efficiently carriedoecause of their a-priori lower score. Therefore,
out by a beam-search approach of the well knowrthis decoding algorithm can lead the system to a
Viterbi algorithm (Jelinek, 1998), whose temporalworse translation result. Alternatively, the beam
asymptotic cost i®(J - |Q| - M), whereM is the factor can be increased in order to be large enough
average number of incoming transitions per statefo store the successful paths, thus more time will
be required for the decoding of any input sentence.
3.1 Parsing strategies: from words to phrases ~ On the other hand, a phrase-based analysis stra-

. . tegy would never include intermediate states in-
The trellis structure that is commonly employed _. . e
side a trellis structure. Instead, these artificial

for the a_lna_ly_3|s of an input sentence th_rough Zitates are tried to be parsed through until an ori-
stochastic finite state transducer has a variable size . . ) S
_ginal state is being reached, i.e. Q’ in Figure 4.

that depends on the beam factor in & dynamiy, g pageq and phrase-based analysis are con-
beam-search strategy. That way, only those nodes

. ) ceptually compared in Figure 5, by means of their
scoring ata preo_leflned thr'eshold from the best on espective edge generation on the trellis structure.
in every stage will be considered for the next stage.

A word-based parsing strategy would start with On demande une activité
the initial state<s>, looking for the best transi-
tions that are compatible with the first wosgl. O Q O

The corresponding target _state_s are then placed WORD-BASED EDGES
into the output structure, which will be used for the
analysis of the second wosd. lIteratively, every

state in the structure is scanned in order to get th@
) . PHRASE-BASED EDGES

input labels that match the current analysis word

s;, and then to build an output structure with the rigyre 5: Word-based and phrase-based analysis
best scored partial paths. Finally, the states that

result from the last analysis step are then rescored However, in order to be able to use a scrolled
by their corresponding final probabilities. two-stage implementation of a Viterbi phrase-
This is the standard algorithm for parsing based analysis, the target states, which may be
a source sentence through an non-deterministigositioned at several stages of distance from the
stochastic finite state transducer. Nevertheless, gurrent one, are directly advanced to the next one.
may not be the most appropriate one when dealingherefore, the nodes in the trellis must be stored
with this type of phrase-basedgram transducers. together with their corresponding last input posi-
As it must be observed in Figure 4, a set oftion that was parsed. In the same manner, states
consecutive transitions represent only one phrase the structure are only scanned if their posi-
translation probability after a given history. In tion indicator is lower than the current analysis
fact, the path from Q to Q' should only be fol- word. Otherwise, they have already taken it into
lowed if the remaining input sentence, which hasaccount so they are directly transfered to the next
not been analysed yet, begins with the full inputstage. The algorithm remains synchronous with
sequenc®n demande une activitéOtherwise, it the words in the input sentence, however, on this
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particular occasion, states in th¢h step of anal- such a way as if they could be internally repre-
ysis are guaranteed to have parsgdeastuntil  senting any possible bilingual symbol from the ex-
the i-th word, but maybe they have gone further.tended vocabulary that matches their source sides.
Figure 6 is a graphical diagram about this conceptThat way, bilingual symbols are considered to be a
sort of input, so the backoff smoothing criterion is
i j then applied to each compatible, bilingual symbol.
On demande une actvitt  For phrase-based transducers, it means that for a
successful transitiofiz, ), there is no need to go
backoff and find other paths consuming that bilin-
gual symbol, but we must try backoff transitions
/ \ to look for any other successful transiti¢®, '),
@ which is also compatible with the current position.
Conceptually, this procedure would be as if the
Figure 6: A phrase-based analysis implementationUt sentence, rather than asource string, was ac-
tually composed of a left-to-right bilingual graph,
Moreover, all the states that are being stored irPeing built from the expansion of every input word

the successive stages, that is, the ones from the ofto their compatible, bilingual symbols as in a

ginal topology of the finite-state representation Ofcategory—based approac_h. Phrase-based bilingual
the n-gram model, are also guaranteed to lead t(§ymbols would be graphically represented as a sort

a final state in the model, because if they are no?f skip transitions inside this bilingual input graph.

final states themselves, then there will always be a This _new |_nterpretat|p_n about the backoff
successful path towards a final state. smoothing weights on bilinguat-gram models,

GREAT incorporates an analysis strategy thawhlch is n'otaprlorlatrlwal feature tq be included,
Is easily implemented for stochastic transducers

depends on the granularity of the bilingual sym- o . .
bols themselves so that a phrase-based decodir? conscljdf ring batckofkf t][an;ltlons'alg.{zst tr?fns; q
is applied when a phrase-based transducer is use NS and keeping frack ot a dynamic ist of forbid-

en states every time a backoff transition is taken.
3.2 Backoff smoothing An outline about the management of state ac-

) o i tiveness, which is integrated into the parsing algo-
Two smoothing criteria have been explored in Ofithm. is shown below:

der to parse the input through the GIATI model.
First, a standard backoff behaviour, where backA
off transitions are taken as failure transitions, was
implemented. There, backoff transitions are onlyf O Q in {states to expl ore}
followed if there is not any other successful path for QQ in {transitions} (a)

LGORITHM

that has been compatible with the remaining input. if Q is active
However, GREAT also includes another more [...] _ _
refined smoothing behaviour, to be applied over set Q to inactive
the same bilingual-gram transducers, where |f Q1S not NULL
smoothing edges are interpreted in a different way. if Qnot in the top level

for @ in {inactive states}
set Q@ to active
Q' := backoff(Q)
set @’ to inactive
Q : = backoff(Q
GoTo (a)
el se

GREAT suggests to apply the backoff crite-
rion according to its definition in the grammati-
cal inference method which incorporated it into
the language model being learnt and that will be
represented as a stochastic finite-state automaton.
In other words, from the:-gram point of view,
backoff weights (or finite-state transitions) should
only be employed if no transitions are found in the [...] _ _ _
n-gram automaton for a currebilingual symbol. for Q@ in {inactive states}
Nevertheless, input words in translation applica- set Q to active
tions do not belong to those bilingual languages! - - -

Instead, input sequences have to be analysed EBND ALGORITHM
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The algorithm will try to translate several con- of the Association for Computational Linguistics.
secutive input words as a whole phrase, always alfhe corpus characteristics can be seen in Table 1.
lowing a backoff transition in order to cover all
the compatible phrases in the model, not only the Table 1:Characteristics of the Fr-En EuroParl.
ones which have been seen after a given history,
but after all its suffixes as well. A dynamic list
of forbidden states will take care to accomplish an
exploration constraint that has to be included into
the parsing algorithm: a path between two states
Q and Q’ has necessarily to be traced through the
minimum number of backoff transitions; any other
Q-Q’ or Q-Q” paths, where Q” is the destination
of a Q-Q” backoff path, should be ignored. This The EuroParl corpus is built on the proceedings
constraint will cause that only one transition perof the European Parliament, which are published
bilingual symbol will be followed, and that it will ©On its web and are freely available. Because of
be the highest in the hierarchy of history levels.its nature, this corpus has a large variability and
Figure 7 shows a parsing example over a finitecomplexity, since the translations into the differ-

state representation of a smoothed bigram model€nt official languages are performed by groups of
human translators. The fact that not all transla-

French | English
Sentences 688031
Training | Run. words| 15.6 M| 13.8 M
Vocabulary | 80348| 61626
Sentences 2000
Dev-Test| Run. words| 66200 57951

D, tors agree in their translation criteria implies that a
/—\ given source sentence can be translated in various
different ways throughout the corpus.

@ AT @ @ @ Since the proceedings are not available in every
language as a whole, a different subset of the cor-

pus is extracted for every different language pair,
thus evolving into somewhat a different corpus for

<backoff>\_ P2 D, each pair of languages.
4.1 System evaluation
We evaluated the performance of our methods by

using the following evaluation measures:
Figure 7:Compatible edges for a bigram model
Given a reaching state Q, let us assume thatBh€U (Bilingual Evaluation Understudy) scare
transitions that correspond to certain bilingual This indicator computes the precision of uni-

phrase pairg,, p, andp, are all compatible with grams, bigrams, trigrams, and tetragrams
the remaining input. However, the bigram (Q, with respect to a set of reference translations,
p,) did not occur throughout the training corpus,  with a penalty for too short sentences (Pap-
therefore there is no a direct transition from Q to ineni et al., 2001). BLEU measures accuracy,
p,. A backoff transition enables the accesto not error rate.

because the bigram (@,) turns into a unigram
event that is actually inside the model. UnigrafyER (Word Error Rate) The WER criterion calcu-

transitions top, andp, must be ignored because lates the minimum number of editions (subs-
their corresponding bigram events were success- tjtutions, insertions or deletions) that are
fully found one level above. needed to convert the system hypothesis into

the sentence considered ground truth. Be-
: cause of its nature, this measure is very pes-
4 Experiments simistic.
GREAT has been successfully employed to work . o

with the French-English EuroParl corpus, that i§ime. It refers to the average time (in milliseconds)
the benchmark corpus of the NAACL 2006 shared ~ to translate one word from the test corpus,

task of the Workshop on Machine Translation  Without considering loading times.
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4.2 Results Table 4:Results for a phrase-based analysis.

A set of experimental results were obtained in or- beam| Time (ms) BLEU WER
der to assess the impact of the proposed techniques 1.00 0.2 198 718
in the work with phrase-basedgram transducers. 1.02 0.4 221 68.6

By assuming an unconstrained parsing, that is, 1.05 0.7 24.3 66.0
the successive trellis structure is large enough to 1.10 2.4 26.1 64.2
store all the states that are compatible within the 1.25 7.0 27.1 628
analysis of a source sentence, the results are not 1.50 9.7 27.5 62.3
very sensitive to the-gram degree, just showing 2.00 114 27.8 62.0
that bigrams are powerful enough for this corpus. 3.50 12.3 28.0 61.9

However, apart from this, Table 2 is also show-
ing a significant better performance for the second,

more refined behaviour for the backoff transitions O States in every iteration of the algorithm is in
terms of temporal requirements.

Table 2:Results for the two smoothing criteria. However, a phrase-based approach only stores
those states that have been successfully reached by
a full phrase compatibility with the input sentence.
Therefore, it takes more time to process an indi-
vidual state, but since the list of states is shorter,
the search method performs at a better speed rate.
Another important element to point out between
Tables 3 and 4, is about the differences on quality
results for a same beam parameter in both tables.
Word-based decoding strategies suffer the effec-
tive reduction on the beam factor that was men-

From now on, the algorithms will be tested ontioned on section 3.1 because their best scores on
the phrase-basedigram transducer, being built every analysis stage, which determine the explo-
according to the GIATI method, where backoff is ration boundaries, may refer to a no way out path.
employed as /¢ transitions with forbidden states. Logically, these differences are progressively re-

In these conditions, the results, following aduced as the beam parameter increases, since the
word-based and a phrase-based decoding strateggarch space is explored in a more exhaustive way.
which are in function of the dynamic beam factor,

n
Backoff | 1 2 3 4 5
baseline
BLEU | 26.8 26.3 25.8 25.7 25.
WER | 62.3 63.9 645 645 64.
GREAT
BLEU | 26.8 28.0 279 279 279
WER | 62.3 619 62.0 62.0 62.0

OoT

can be analysed in Tables 3 and 4. Table 5:Number of trained and survivedgrams.
Table 3:Results for a word-based analysis. _ _ __n-grams
Window size| unigrams bigrams
beam| Time (ms) BLEU WER No filter 1,593,677 4,477,382
1.00 0.1 0.4 94.6 2 299,002 512,943
1.02 0.3 12.8 81.9 3 153,153 141,883
1.05 5.2 20.0 74.0 4 130,666 90,2685
1.10 30.0 24.9 68.2 5 126,056 78,824
1.25 99.0 27.1 64.6 6 125,516 77,341
1.50 147.0 27.5 62.9
200 | 173.6 278 621 On the other hand, a phrase-based extended-
3.50 | 252.3 28.0 619 symbol bigram model, being learnt by means of

the full training data, computes an overall set of
From the comparison of Tables 3 and 4, it canapproximately 6 million events. The application
be deduced that a word-based analysis is iteraf the n-gram pruning technique, using a grow-
tively taking into account a quite high percentageing window parameter, can effectively reduce that
of useless states, thus needing to increase the beamamber to only 200,000. Thesegrams, when
parameter to include the successful paths into theepresented as transducer transitions, suppose a re-
analysis. The price for considering such a long lisduction from 20 million transitions to only those
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Abstract

Contextual Binary Feature Grammars
were recently proposed by (Clark et al.,
2008) as a learnable representation for
richly structured context-free and con-
text sensitive languages. In this pa-
per we examine the representational
power of the formalism, its relationship
to other standard formalisms and lan-
guage classes, and its appropriateness
for modelling natural language.

1 Introduction

An important issue that concerns both natu-
ral language processing and machine learning
is the ability to learn suitable structures of a
language from a finite sample. There are two
major points that have to be taken into ac-
count in order to define a learning method use-
ful for the two fields: first the method should
rely on intrinsic properties of the language it-
self, rather than syntactic properties of the
representation. Secondly, it must be possible
to associate some semantics to the structural
elements in a natural way.

Grammatical inference is clearly an impor-
tant technology for NLP as it will provide a
foundation for theoretically well-founded un-
supervised learning of syntax, and thus avoid
the annotation bottleneck and the limitations
of working with small hand-labelled treebanks.

Recent advances in context-free grammati-
cal inference have established that there are
large learnable classes of context-free lan-
guages. In this paper, we focus on the ba-
sic representation used by the recent approach
proposed in (Clark et al., 2008). The authors
consider a formalism called Contextual Binary
Feature Grammars (CBFG) which defines a

class of grammars using contexts as features

instead of classical non terminals. The use of
features is interesting from an NLP point of
view because we can associate some semantics
to them, and because we can represent com-
plex, structured syntactic categories. The no-
tion of contexts is relevant from a grammatical
inference standpoint since they are easily ob-
servable from a finite sample. In this paper
we establish some basic language theoretic re-
sults about the class of exact Contextual Bi-
nary Feature Grammars (defined in Section 3),
in particular their relationship to the Chomsky
hierarchy: exact CBFGs are those where the
contextual features are associated to all the
possible strings that can appear in the corre-
sponding contexts of the language defined by
the grammar.

The main results of this paper are proofs
that the class of exact CBFGs:

e properly includes the regular languages
(Section 5),

e does not include some context-free lan-
guages (Section 6),

e and does include some non context-free
languages (Section 7).

Thus, this class of exact CBFGs is orthog-
onal to the classic Chomsky hierarchy but
can represent a very large class of languages.
Moreover, it has been shown that this class
is efficiently learnable. This class is therefore
an interesting candidate for modeling natural
language and deserves further investigation.

2 Basic Notation

We consider a finite alphabet ¥, and X* the
free monoid generated by Y. A is the empty
string, and a language is a subset of X*. We
will write the concatenation of u and v as uv,
and similarly for sets of strings. u € X* is a
substring of v € ¥* if there are strings [, r € ¥*
such that v = lur.

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 33—40,
Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics
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A context is an element of ¥* x ¥*. For a
string u and a context f = (I,r) we write f ®
u = lur; the insertion or wrapping operation.
We extend this to sets of strings and contexts
in the natural way. A context is also known in
structuralist linguistics as an environment.

The set of contexts, or distribution, of a
string u of a language L is, Cpr(u) = {(l,r) €
Y* x ¥*|lur € L}. We will often drop the
subscript where there is no ambiguity. We
define the syntactic congruence as u =y, v iff
Cr(u) = Cr(v). The equivalence classes un-
der this relation are the congruence classes of
the language. In general we will assume that
A is not a member of any language.

3 Contextual Binary Feature
Grammars

Most definitions and lemmas of this section
were first introduced in (Clark et al., 2008).

3.1 Definition

Before the presentation of the formalism, we
give some results about contexts to help to
give an intuition of the representation. The
basic insight behind CBFGs is that there is a
relation between the contexts of a string w and
the contexts of its substrings. This is given by
the following trivial lemma:

Lemma 1. For any language L and for any
strings u,u’,v,v" if C(u) = C(v') and C(v) =
C(v'), then C(uv) = C(u'0').

We can also consider a slightly stronger result:

Lemma 2. For any language L and for any
strings u,u’,v,v" if C(u) C C(u') and C(v) C
C(v'), then C(uv) C C(u'0').

C(u) € C(u') means that we can replace
any occurrence of u in a sentence, with a /,
without affecting the grammaticality, but not
necessarily vice versa. Note that none of these
strings need to correspond to non-terminals:
this is valid for any fragment of a sentence.

We will give a simplified example from En-
glish syntax: the pronoun ¢t can occur every-
where that the pronoun him can, but not vice
versa'. Thus given a sentence “I gave him

away”, we can substitute it for him, to get the

!This example does not account for a number of syn-
tactic and semantic phenomena, particularly the distri-
bution of reflexive anaphors.
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grammatical sentence I gave it away, but we
cannot reverse the process. For example, given
the sentence it is raining, we cannot substi-
tute him for i, as we will get the ungrammat-
ical sentence him s raining. Thus we observe
C(him) € C(it).

Looking at Lemma 2 we can also say that,
if we have some finite set of strings K, where
we know the contexts, then:

Corollary 1.

C(w) D U U U C(uv)

' ueK: veK:
wv'=w C(u)CC(u") C(v)CC(v')

This is the basis of the representation: a
word w is characterised by its set of contexts.
We can compute the representation of w, from
the representation of its parts u’, v’, by looking
at all of the other matching strings u and v
where we understand how they combine (with
subset inclusion). In order to illustrate this
concept, we give here a simple example.

Consider the language {a"b"|n > 0} and
the set K = {aabb, ab, abb, aab,a,b}. Suppose
we want to compute the set of contexts of
aaabbb, Since C(abb) C C(aabbb), and vacu-
ously C(a) C C(a), we know that C(aabb) C
C(aaabbb). More generally, the contexts of ab
can represent a’b", those of aab the strings
a"t1b" and the ones of abb the strings a”b" 1.

The key relationships are given by context
set inclusion. Contextual binary feature gram-
mars allow a proper definition of the combina-
tion of context inclusion:

Definition 1. A Contextual Binary Feature
Grammar (CBFG) G is a tuple (F, P, P, %).
F is a finite set of contexts, called features,
where we write C = 2 for the power set of F
defining the categories of the grammar, P C
C x C x C is a finite set of productions that
we write x — yz where x,y,z € C and P, C
C x X is a set of lexical rules, written x — a.

Normally Pj, contains exactly one production
for each letter in the alphabet (the lexicon).

A CBFG G defines recursively a map fg



from >X* — C as follows:

fa(A) =10 (1)
fowy= J ¢ iff |w) =1
(c—w)€ePy,
(2)
fo(w) = U U x iff jw| > 1.
UVUV=W  x—yzEeP:
yCfa(u)n
2Cfa(v)

(3)

We give here more explanation about the
map fg. It defines in fact the analysis of a
string by a CBFG. A rule z — xy is applied
to analyse a string w if there is a cut uv = w
st. x C fg(u) and y C fu(v), recall that x
and y are sets of contexts. Intuitively, the re-
lation given by the production rule is linked
with Lemma 2: z is included in the set of fea-
tures of w = wwv. From this relationship, for
any (I,7) € z we have lwr € L(Q).

The complete computation of fg is then jus-
tified by Corollary 1: fg(w) defines all the
possible features associated by G to w with all
the possible cuts uv = w (i.e. all the possible
derivations).

Finally, the natural way to define the mem-
bership of a string w in L(G) is to have the
context (A\,\) € fg(w) which implies that
Aul =u € L(G).

Definition 2. The language defined by a
CBFG G is the set of all strings that are as-
signed the empty context: L(G) = {u|(\,A) €
fa(u)}.

As we saw before, we are interested in cases
where there is a correspondence between the
language theoretic interpretation of a context,
and the occurrence of that context as a feature
in the grammar. From the basic definition of
a CBFG, we do not require any specific con-
dition on the features of the grammar, except
that a feature is associated to a string if the
string appears in the context defined by the
feature. However, we can also require that fg
defines exactly all the possible features that
can be associated to a given string according
to the underlying language.

Definition 3. Given a finite set of contexts
F ={(ly,m), ..., (ln,m)} and a language L
we can define the context feature map Fp :
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¥* — 2F which is just the map v — {(I,r) €
Fllure L} =Cr(u)NF.

Using this definition, we now need a cor-
respondence between the language theoretic
context feature map Fj and the representa-
tion in the CBFG fg.

Definition 4. A CBFG G is exact if for all
ue X, fa(u) = Frg(u).

Exact CBFGs are a more limited formalism
than CBFGs themselves; without any limits
on the interpretation of the features, we can
define a class of formalisms that is equal to
the class of Conjunctive Grammars (see Sec-
tion 4). However, exactness is an important
notion because it allows to associate intrinsic
components of a language to strings. Contexts
are easily observable from a sample and more-
over it is only when the features correspond to
the contexts that distributional learning algo-
rithms can infer the structure of the language.
A basic example of such a learning algorithm
is given in (Clark et al., 2008).

3.2 A Parsing Example

To clarify the relationship with CFG
parsing, we will give a simple worked
example. Consider the CBFG G =

(A A), (aab, N), (A, b), (X, abb), (a, A)(aab, A)},
P, PL, {a, b}> with PL =

{{(\,b), (A, abb)} — a,{(a, ), (aab,\)} — b}
and P =

O} = {0 b)H(aab, M)},

[N} — O abb) (@, M)}

{(X,0)} = {(A, abb) H{ (X, M)},

{(a, )} = {(A M) }H{(aab, A)}}

If we want to parse the string w = aabb the
usual way is to have a bottom-up approach.
This means that we recursively compute the
fo map on the substrings of w in order to
check whether (A, \) belongs to fg(w).

The Figure 1 graphically gives the main
steps of the computation of fs(aabb). Ba-
sically there are two ways to split aabb that
allow the derivation of the empty context:
aablb and alabb. The first one correspond
to the top part of the figure while the sec-
ond one is drawn at the bottom. We can
see for instance that the empty context be-
longs to fg(ab) thanks to the rule {(A\,A\)} —
{(abb)H(a, N} {(\abb)} € fo(a) and
{(a,\)} C fg(b). But for symmetrical reasons



the result can also be obtained using the rule
{A A} = {(A, ) }{(aab, A)}.

As we trivially have fg(aa) = fo(bb) = 0,
since no right-hand side contains the concate-
nation of the same two features, an induction
proof can be written to show that (\,\) €
fa(w) & w e {a"b™ : n > 0}.

 (aabb) 2 {(AA)}
A

- Rule: (M) — (Ab) (aab,A) N
£ (aab) 2 {(Ab)}
A
- Rule: (A,b) — (A,abb) (A,A) D
f(ab) 2 {(AA)}
AL

" Rule: (\A) — (habb) (ah) >

(AbLAaDbY  {(Ab)(Aabb))  {@A)(aabA}  {(@N),(aabA)

|

a

-
o

|

b

—
|

<

b

-
3

|

da
~

{(Ab),(\abb)}  {(Ab),(A.abb)}  {(a,A).(aab,A)}  {(a,A),(aab,\)}

LRule: (ALA) — (A,b) (aab,A)
Y
fi(ab) = {(AA)}

Rule: (a,A) — (A,A) (aab,A)

—
f_(abb) 2 {(a,A)}

—

Rule: (A,A) — (A,abb) (a,A)
V
f (aabb) = {(A,A)}

Figure 1: The two derivations to obtain (\, A)
in fg(aabd) in the grammar G.

This is a simple example that illustrates
the parsing of a string given a CBFG. This
example does not characterize the power of
CBFG since no right handside part is com-
posed of more than one context. A more inter-
esting, example with a context-sensitive lan-
guage, will be presented in Section 7.

4 Non exact CBFGs

The aim here is to study the expressive power
of CBFG compare to other formalism recently
introduced. Though the inference can be done
only for exact CBFG, where features are di-
rectly linked with observable contexts, it is
still worth having a look at the more general
characteristics of CBFG. For instance, it is in-
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teresting to note that several formalisms in-
troduced with the aim of representing natural
languages share strong links with CBFG.

Range Concatenation Grammars

Range Concatenation Grammars are a very
powerful formalism (Boullier, 2000), that is a
current area of research in NLP.

Lemma 3. For every CBFG G, there is
a nomn-erasing positive range concatenation
grammar of arity one, in 2-var form that de-
fines the same language.

Proof. Suppose G (F,P,Pr,%). Define
a RCG with a set of predicates equal to F'
and the following clauses, and the two vari-
ables U,V. For each production x — yz in
P, for each f € z, where y = {g1,...9i},
z={h1,...h;} add clauses

fOV) = g1(U),...gi(U), ha(V),... hi(V).
For each lexical production {f...fx} — a
add clauses fij(a) — €. It is straightforward
to verify that f(w) F e iff f € fa(w). O

Conjunctive Grammar

A more exact correspondence is to the class of
Conjunctive Grammars (Okhotin, 2001), in-
vented independently of RCGs. For every ev-
ery language L generated by a conjunctive
grammar there is a CBFG representing L#
(where the special character # is not included
in the original alphabet).

Suppose we have a conjunctive grammar
G = (X,N,P,S) in binary normal form (as
defined in (Okhotin, 2003)). We construct the
equivalent CBFG G' = (F,P’, P1,%) as fol-
lowed:

e For every letter a we add a context (I, 74)
to F such that l,ar, € L;

For every rules X — a in P, we create a
rule {(lq,74)} — a in Pr.

For every non terminal X € N, for every
rule X — PQ1&...&P,Q, we add dis-
tinct contexts {(lp,Q,,rr,Q;)} to F, such
that for all 7 it exists u;, Ip,Q,uiTp,Q, € L
and PQ; =¢ u;

Let Fx; = {(lPiinrPiQi) Vi} the
set of contexts corresponding to the

4™ rule applicable to X. For all



(Ipg, Trq,) € Fxj, we add to P’ the
rules (Ip,q;»PQ,) — Fp, 1k FqQ,; (Vk,1).

e We add a new context (w,\) to F' such
that S =¢ w and (w,\) — # to Pr;

e For all j, we add to P’ the rule (A\,\) —
Fsj{(w, \)}.

It can be shown that this construction gives
an equivalent CBFG.

5 Regular Languages

Any regular language can be defined by an ex-
act CBFG. In order to show this we will pro-
pose an approach defining a canonical form for
representing any regular language.

Suppose we have a regular language L, we
consider the left and right residual languages:

(4)
Lu™' = {w|wu € L} (5)

They define two congruencies: if {,I' € u='L
(resp. 7,7 € Lu~') then for all w € ¥*, lw €
Liff 'w e L (resp. wr € L iff wr' € L).

For any u € ¥*, let L, (u) be the lexico-
graphically shortest element such that l;ﬁnL =
w!L. The number of such I, is finite by
the Myhil-Nerode theorem, we denote by L,,ip
this set, i.e. {lnin(u)lu € X*}. We de-
fine symmetrically R,,;, for the right residuals
(Lr;ﬁn = Lu™1).

We define the set of contexts as:

uw 'L = {w|luw € L}

F(L) is clearly finite by construction.

If we consider the regular language de-
fined by the deterministic finite automata
of Figure 2, we obtain Ly, = {\a,b}
and Rpyin = {A,b,ab} and thus F(L)
{(AA), (@, ), (b, A), (A, b), (a,b), (b, b), (A, ab),
(a,ab), (b,ab)}.

By considering this set of features,
can prove (using arguments about congruence
classes) that for any strings u,v such that
Fr(u) D Fr(v), then Cr(u) D Cr(v). This
means the set of feature F' is sufficient to rep-
resent context inclusion, we call this property
the fiduciality.

Note that the number of congruence classes
of a regular language is finite. Each congru-
ence class is represented by a set of contexts

we
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Figure 2: Example of a DFA. The left residuals
are defined by A™'L, a= 'L, b='L and the right
ones by LA™, Lb~!, Lab~! (note here that
La=t = LA™Y,

Fr(u). Let K, be finite set of strings formed
by taking the lexicographically shortest string
from each congruence class. The final gram-
mar can be obtained by combining elements
of Ky,. For every pair of strings u,v € K, we
define a rule

Fr(w) — Fr(u), FL(v) (7)
and we add lexical productions of the form
Fr(a) —a,a€X.

Lemma 4. For allw € ¥*, fo(w) = Fr(w).

Proof. (Sketch) Proof in two steps: Yw €
3, F(w) € fo(w) and fo(w) € Fy(w). Bach
step is made by induction on the length of w
and uses the rules created to build the gram-
mar, the derivation process of a CBFG and
the fiduciality for the second step. The key
point rely on the fact that when a string w is
parsed by a CBFG G, there exists a cut of w
inuv=w (u,v € X)) andarule z —» 2y in G
such that z C fg(u) and y C fg(v). The rule
z — xy is also obtained from a substring from
the set used to build the grammar using the
Fr, map. By inductive hypothesis you obtain
inclusion between fo and Fr, on v and v. [

For the language of Figure 2, the following
set is sufficient to build an exact CBGEF:
{a, b, aa,ab, ba, aab, bb,bba} (this corresponds
to all the substrings of aab and bba). We have:
Fr(a) = F(L)\{(A, ), (a,A)} — a

FrL(b)=F(L)—b

Fr(aa) = Fr(a) — Fr(a), Fr(a)

Fr(ab) = F(L) — Fr(a), FL(b) = Fr(a), F(L)
Fr(ba) = F(L) — Fp(b), Fr(a) = F(L), Fr(a)
Fr(bb) = F(L) — Fr(b), Fr(b) = F(L), F(L)



Fr.(aab) = Fr,(bba) = Fr(ab) = Fr.(ba)

The approach presented here gives a canon-
ical form for representing a regular language
by an exact CBFG. Moreover, this is is com-
plete in the sense that every context of every
substring will be represented by some element
of F(L): this CBFG will completely model the
relation between contexts and substrings.

6 Context-Free Languages

We now consider the relationship between
CFGs and CBFGs.

Definition 5. A context-free grammar (CFG)
is a quadruple G = (X,V,P,S). ¥ is a fi-
nite alphabet, V' is a set of non terminals
ENV =0), PCVx(VUX)" is a finite
set of productions, S € V' is the start symbol.

In the following, we will suppose that a CFG
is represented in Chomsky Normal Form, i.e.
every production is in the form N — UW with
N, UW €V or N — a with a € 2.
We will write ulNv = uawv if there is a pro-
duction N — «a € P. = is the reflexive tran-
sitive closure of =G. The language defined by
a CFG G is L(G) = {w € *|S =¢ w}.

6.1 A Simple Characterization

A simple approach to try to represent a CFG
by a CBFG is to define a bijection between the
set of non terminals and the set of context fea-
tures. Informally we define each non terminal
by a single context and rewrite the productions
of the grammar in the CBFG form.

To build the set of contexts F, it is sufficient
to choose |V| contexts such that a bijection b¢
can be defined between V' and F with bc(N) =
(1,7) implies that S = INr. Note that we fix

br(S) = (\A).

Then, we can define a CBFG
(F,P',P/,¥), where P' = {bp(N) —
br(U)bpr(W)IN — UW € P} and

P, = {br(N) — a|[N — a € P,a € %}.
A similar proof showing that this construction

produces an equivalent CBFG can be found
in (Clark et al., 2008).

If this approach allows a simple syntactical
convertion of a CFG into a CBFG, it is not
relevant from an NLP point of view. Though
we associate a non-terminal to a context, this
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may not correspond to the intrinsic property
of the underlying language. A context could
be associated with many non-terminals and we
choose only one. For example, the context
(He is,A) allows both noun phrases and ad-
jective phrases. In formal terms, the resulting
CBFG is not exact. Then, with the bijection
we introduced before, we are not able to char-
acterize the non-terminals by the contexts in
which they could appear. This is clearly what
we don’t want here and we are more interested
in the relationship with exact CBFG.

6.2 Not all CFLs have an exact CBFG

We will show here that the class of context-
free grammars is not strictly included in the
class of exact CBFGs. First, the grammar
defined in Section 3.2 is an exact CBFG for
the context-free and non regular language
{a"V"|n > 0}, showing the class of exact
CBFG has some elements in the class of CFGs.

We give now a context-free language L that
can not be defined by an exact CBFG:

L ={a"bln >0} U{a"c"|n >m > 0}.

Suppose that there exists an exact CBFG that
recognizes it and let N be the length of the
biggest feature (i.e. the longuest left part of
the feature). For any sufficiently large k >
N, the sequences ¢* and ¢**! share the same
features: Fr(c¥) = Fr(c*1). Since the CBFG
is exact we have Fr(b) C Fr(ck). Thus any
derivation of a*t1b could be a derivation of
a**1ck which does not belong to the language.

However, this restriction does not mean that
the class of exact CBFG is too restrictive for
modelling natural languages. Indeed, the ex-
ample we have given is highly unnatural and
such phenomena appear not to occur in at-
tested natural languages.

7 Context-Sensitive Languages

We now show that there are some exact
CBFGs that are not context-free. In particu-
lar, we define a language closely related to the
MIX language (consisting of strings with an
equal number of a’s, b’s and ¢’s in any order)
which is known to be non context-free, and
indeed is conjectured to be outside the class
of indexed grammars (Boullier, 2003).



Let M = {(a,b,c)*}, we consider the language
L = LypcULypULyU{d'a,b'b, e, dd  ee, f f'}:
Lab = {wd|w €M, ”LU|(Z = |w‘b}7

— {welw € M, [w], = [wlc},

Lape ={wflw € M, |wl|qs = [wlp = |w]c}.

In order to define a CBFG recognizing L, we
have to select features (contexts) that can rep-
resent exactly the intrinsic components of the
languages composing L. We propose to use the
following set of features for each sublanguages:

For Lap: (A, d) and (A, ad), (A, bd).

For Lsc: (A e) and (A, ae), (A, ce).

For Lgpe: (>‘7 f)

For the letters d',V,c,a,b,c we add:
(A a), (A, 0), (A, 0), (d', A), (', A), (¢, A).

e For the letters d,e, f,d' e, f/ we add;
()\’ dl)? (A7 el)? ()\7 fl)7 (d7 A)? (67 )\)7 (f? >\)'

Here, L, will be represented by (A, d), but we

will use (A, ad), (A, bd) to define the internal

derivations of elements of L,,. The same idea

holds for L, with (A, e) and (X, ae), (A, ce).
For the lexical rules and in order to have an

exact CBFG, note the special case for a, b, c:

{(\,bd), (A ce), (a,N)} —a

{(\yad), (b, N} —b

{(A\yad), (N ae), (N} — ¢

For the nine other letters, each one is defined

with only one context like {(\,d')} — d.

For the production rules, the most impor-
tant one is: (A, \) = {(\,d), (A, e)}, {(\, f))}.

Indeed, this rule, with the presence of two
contexts in one of categories, means that an
element of the language has to be derived
so that it has a prefix u such that fg(u) D
{(\,d), (N e)}. This means u is both an ele-
ment of Ly, and Lg.. This rule represents the
language Lgpe since {(A, f')} can only repre-
sent the letter f.

The other parts of the language will be
defined by the following rules:

A A) = {3 {(Ad)},

A A) = A{(h e} LA €)

(A 2) = 4(X )}, {(A, bd), (A, ce), (a', M)},
(A A) = {(X0)}, {(A, ad), (V' )},

(A A) =X A} (A ad), (A ae), (¢ N)},
(A A) =\ d)}{(d, M)},

A A) = A{(n e {le, M
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A A) = BN}

This set of rules is incomplete, since for rep-
resenting L., the grammar must contain the
rules ensuring to have the same number of a’s
and b’s, and similarly for L,.. To lighten the
presentation here, the complete grammar is
presented in Annex.

We claim this is an exact CBFG for a
context-sensitive language. L is not context-
free since if we intersect L with the regular
language {¥*d}, we get an instance of the
non context-free MIX language (with d ap-
pended). The exactness comes from the fact
that we chose the contexts in order to ensure
that strings belonging to a sublanguage can
not belong to another one and that the deriva-
tion of a substring will provide all the possible
correct features with the help of the union of
all the possible derivations.

Note that the Mix language on its own is
probably not definable by an exact CBFG: it
is only when other parts of the language can
distributionally define the appropriate partial
structures that we can get context sensitive
languages. Far from being a limitation of this
formalism (a bug), we argue this is a feature:
it is only in rather exceptional circumstances
that we will get properly context sensitive lan-
guages. This formalism thus potentially ac-
counts not just for the existence of non context
free natural language but also for their rarity.

8 Conclusion

The chart in Figure 3 summarises the different
relationship shown in this paper. The substi-
tutable languages (Clark and Eyraud, 2007)
and the very simple ones (Yokomori, 2003)
form two different learnable class of languages.
There is an interesting relationship with Mar-
cus External Contextual Grammars (Mitrana,
2005): if we defined the language of a CBFG
to be the set {fg(u) ® u : u € ¥*} we would
be taking some steps towards contextual gram-
mars.

In this paper we have discussed the weak
generative power of Exact Contextual Binary
Feature Grammars; we conjecture that the
class of natural language stringsets lie in this
class. ECBFGs are efficiently learnable (see
(Clark et al., 2008) for details) which is a com-



Context sensitive

substi-
tutable

ange Concatenation

Figure 3: The relationship between CBFG and
other classes of languages.

pelling technical advantage of this formalism
over other more traditional formalisms such as

CFGs or TAGs.
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Abstract

The problem of identifying and correcting

confusibles, i.e. context-sensitive spelling
errors, in text is typically tackled using

specifically trained machine learning clas-
sifiers. For each different set of con-
fusibles, a specific classifier is trained and
tuned.

In this research, we investigate a more
generic approach to context-sensitive con-
fusible correction. Instead of using spe-
cific classifiers, we use one generic clas-
sifier based on a language model. This
measures the likelihood of sentences with
different possible solutions of a confusible

in place. The advantage of this approach
is that all confusible sets are handled by
a single model. Preliminary results show
that the performance of the generic clas-
sifier approach is only slightly worse that

that of the specific classifier approach.

I ntroduction

Tilburg University
Tilburg, The Netherlands
m/zaanen@vt . nl

which they occur is required to recognize and cor-
rect these errors. In contrast, non-word errors can
be recognized without context.

One class of such errors, calladnfusibles
consists of words that belong to the language, but
are used incorrectly with respect to their local,
sentential context. For exampl8he owns to cars
contains the confusibléo. Note that this word is
a valid token and part of the language, but used
incorrectly in the context. Considering the con-
text, a correct and very likely alternative would be
the wordtwo. Confusibles are grouped together in
confusible sets. Confusible sets are sets of words
that are similar and often used incorrectly in con-
text. Too is the third alternative in this particular
confusible set.

The research presented here is part of a
larger project, which focusses on context-sensitive
spelling mistakes in general. Within this project
all classes of context-sensitive spelling errors are
tackled. For example, in addition to confusibles,
a class of pragmatically incorrect words (where
words are incorrectly used within the document-
wide context) is considered as well. In this arti-
cle we concentrate on the problem of confusibles,

When writing texts, people often use spellingWhere the context is only as large as a sentence.
checkers to reduce the number of spelling mis—2 A h
takes in their texts. Many spelling checkers con- pproac
centrate on non-word errors. These errors can ba typical approach to the problem of confusibles
easily identified in texts because they consist ofs to train a machine learning classifier to a specific
character sequences that are not part of the laronfusible set. Most of the work in this area has
guage. For example, in Englishoord is is not  concentrated on confusibles due to homophony
part of the language, hence a non-word error. Ato, too, two) or similar spelling ¢lesert desser.
possible correction would beord. However, some research has also touched upon in-

Even when a text does not contain any nonflectional or derivational confusibles suchlager-
word errors, there is no guarantee that the text isusme (Golding and Roth, 1999). For instance,
error-free. There are several types of spelling erwhen word forms are homophonic, they tend to
rors where the words themselves are part of thget confused often in writing (cf. the situation with
language, but are used incorrectly in their contextto, too, andtwo, affect andeffect, or therg their,
Note that these kinds of errors are much hardeand they're in English) (Sandra et al., 2001; Van
to recognize, as information from the context inden Bosch and Daelemans, 2007).

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 41-48,
Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics
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Most work on confusible disambiguation using est probability according to the language model is
machine learning concentrates on hand-selectetthen selected. Since the language model assigns
sets of notorious confusibles. The confusible setprobabilities to all sequences of words, it is pos-
are typically very small (two or three elements)sible to define new confusible sets on the fly and
and the machine learner will only see traininglet the language model disambiguate them with-
examples of the members of the confusible setout any further training. Obviously, this is not
This approach is similar to approaches used in agossible for a specialized machine learning clas-
cent restoration (Yarowsky, 1994; Golding, 1995;sifier approach, where a classifier is fine-tuned to
Mangu and Brill, 1997; Wu et al., 1999; Even- the features and classes of a specific confusible set.
Zohar and Roth, 2000; Banko and Brill, 2001; The expected disadvantage of the generic (lan-
Huang and Powers, 2001; Van den Bosch, 2006).guage model) classifier approach is that the accu-

The task of the machine learner is to decide, ustacy is expected to be less than that of the specific
ing features describing information from the con-(specialized machine learning classifier) approach.
text, which word taken from the confusible set re-Since the specific classifiers are tuned to each spe-
ally belongs in the position of the confusible. Us-cific confusible set, the weights for each of the
ing the example above, the classifier has to decid¢atures may be different for each set. For in-
which word belongs on the position of thein  Stance, there may be confusibles for which the cor-
She ownsX cars where the possible answers for rect word is easily identified by words in a specific
X areto, too, or two. We call X, the confusible Position. If a determiner, likéhe, occurs in the po-
that is under consideration, tf@cus word sition directly before the confusiblégo or too are
very probably not the correct answers. The spe-
cific approach can take this into account by assign-

cialized case of word prediction. The problem ising sp_ecif_ic weights to part—of—spegch and position
then to predict which word belongs at a specificcombmat'ons’ whereas the generic approach can-

position. Using similarities between these casegt do this explicitly for specific cases; the weights
we can use techniques from the field of Ianguagéouow automatically from the training corpus.

modeling to solve the problem of selecting the best !N this article, we will investigate whether it is
alternative from confusible sets. We will investi- POSSible to build a confusible disambiguation sys-
gate this approach in this article. tem that is generic for all sets of confusibles using

. - language models as generic classifiers and investi-
Language models assign probabilities to se- . . : :

. L . .. gate in how far this approach is useful for solving
quences of words. Using this information, it

. ) : ) . the confusible problem. We will compare these
is possible to predict the most likely word in . o . o o
. . generic classifiers against specific classifiers that
a certain context. If a language model gives . . :
o are trained for each confusible set independently.
us the probability for a sequence af words
Pry(wy,...,w,), we can use this to predict the 3 Results

most likely wordw following a sequence of — 1

Another way of looking at the problem of con-
fusible disambiguation is to see it as a very spe

words arg max,, Pry(wi,...,w,—1,w). Obvi-  To measure the effectiveness of the generic clas-
ously, a similar approach can be taken within  sifier approach to confusible disambiguation, and
the middle of the sequence. to compare it against a specific classifier approach

Here, we will use a language model as a classiwe have implemented several classification sys-
fier to predict the correct word in a context. Sincetems. First of these is a majority class baseline sys-
a language model models the entire language, it item, which selects the word from the confusible
different from a regular machine learning classifierset that occurs most often in the training data.
trained on a specific set of confusibles. The advanWe have also implemented several generic classi-
tage of this approach to confusible disambiguatiorfiers based on different language models. We com-
is that the language model can handle all potentiapare these against two machine learning classi-
confusibles without any further training and tun- fiers. The machine learning classifiers are trained
ing. With the language model it is possible to takeseparately for each different experiment, whereas
the words from any confusible set and compute the—— ; _

e . This baseline system corresponds to the simplest lan-
probabilities of those words in the context. Theguage model classifier. In this case, it only usegrams with
element from the confusible set that has the highn = 1.
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the parameters and the training material of the lanability. Since the probabilities of the-grams are
guage model are kept fixed throughout all the exmultiplied, having a:-gram probability of zero re-

periments. sults in a zero probability for the entire sequence.
There may be two reasons for argram to have
3.1 System description probability zero: there is not enough training data,

There are many different approaches that can ba’ this sequence has not been seen yet, or this se-

taken to develop language models. A weII-knownquence 'S_ n.ot valid in the language. ) )
approach is to use-grams, or Markov models. When it is known that a sequence is not valid

These models take into account the probabilit))n the language, this information can be used to

that a word occurs in the context of the previousdec'de which word from the confusible set should

n — 1 words. The probabilities can be extractedP® Selected. However, when the sequence simply

from the occurrences of words in a corpus. Probahas not been seen in the training data yet, we can-

bilities are computed by taking the relative occur-"°t rély on this information. - To resolve the se-
rence count of the words in sequence. guences with zero probability, we can use smooth-

In the experiments described below, we will usen9: However, this assumes that the sequence is

a tri-gram-based language model and where re\{ahd, but has not been seen during training. The

. . , . . other solution, back-off, tries not to make this as-
quired this model will be extended with bi-gram .
. .. sumption. It checks whether subsequences of the
and uni-gram language models. The probability L .
. o equence are valid, i.e. have non-zero probabili-
of a sequence is computed as the combination Q

the probabilities of the tri-grams that are found inuieS: Because of this, we will not use smoothing to
reach non-zero probabilities in the current exper-
the sequence. . ) : .
. . iments, although this may be investigated further
Especially whem-grams with largen are used, in the future
data sparseness becomes an issue. The training o - .
. The first language model that we will investi-
data may not contain any occurrences of the par-

ticular sequence of, symbols, even though the gate here is a linear combination of the differ-

sequence is correct. In that case, the probabilit)? ntn-grams. The probability of a sequence is

extracted from the training data will be zero, evenCompUteCI by a linear combination of weighted

though the correct probability should be non-zercdram probabilities. We will report on two different

(albeit small). To reduce this problem we can ei_yveight settings, one system using uniform weight-

ther use back-off or smoothing when the probabil—mg’ called gnlform Imear,_ and one \(vhere uni-
ity of an n-gram is zero. In the case of back-off grams receive weight 1, bi-grams weight 138, and

o ' " tri-grams weight 437. These weights are normal-
the probabilities of lower ordet-grams are taken

into account when needed. Alternatively, SmOOth_erees?JI:[[i?l ylienl(:hi zgilcﬁ;o:i?g'g cfZ[k;ZT rsueeq dus:_ce,
ing techniques (Chen and Goodman, 1996) redis- 9 y 9

tribute the probabilities, taking into account previ- ) .
The third system uses the probabilities of the

ously unseen word sequences. _ ) ,
: different n-grams separately, instead of using the
Even though the language models provide us . .
robabilities of alln-grams at the same time as is

with probabilities of entire sequences, we ar . . .
. ) ) done in the linear systems. Thkentinuous back-
only interested in the-grams directly around the _
off method uses only one of the probabilities at

confusible when using the language models in

the context of confusible disambiguation. The.eaCh position, preferring the higher-level probabil-

probabilities of the rest of the sequence will re-1ies. This model provides a step-wise back-off.

main the same whichever alternative confusibIeThe probability of a sequence is that of the tri-

is inserted in the focus word position. Fig- 9/2MS contained in that sequence. However, if the

ure 1 illustrates that the probability of for example probab!l!t_y of  trigram IS z€10, & back-off to the
P(analysts had expecteds irelevant for the de- probabilities of the two bi-grams of the sequence

. : . isused. If that is still zero, the uni-gram probabil-
cision betweerthenandthanbecause it occurs in . L . .
ity at that position is used. Note that this uni-gram
both sequences.

. . . robability is exactly what the baseline system
The different language models we will conS|derp Y y y

_here are essentially the same. The differences lie 2These weights are selected by computing the accuracy of
in how they handle sequences that have zero protal combinations of weights on a held out set.
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... much stronger most analysts had expected .

than/ \ then

P(much stronger than P(much stronger then
x P(stronger than mo$t  x P(stronger then mogt
x P(than most analysts  x P(then most analysis

Figure 1: Computation of probabilities using the languageleh.

uses. With this approach it may be the case thathe focus word becomes the class that needs to
the probability for one word in the confusible setbe predicted. We show an example of both train-

is computed based on tri-grams, whereas the probag and testing in figure 2. Note that the features

ability of another word in the set of confusibles is for the machine learning classifiers could be ex-

based on bi-grams or even the uni-gram probabilpanded with, for instance, part-of-speech tags, but
ity. Effectively, this means that different kinds of in the current experiments only the word forms are

probabilities are compared. The same weights assed as features.

in the weighted linear systems are used. In addition to thek-NN classifier, we also run

To resolve the problem of unbalanced probabil-the experiments using the IGTree classifier, which
ities, a fourth language model, callegnchronous  is denotedGTreein the rest of the article, which is
back-off is proposed. Whereas in the case of thealso contained in the TiMBL distribution. 1GTree
continuous back-off model, two words from the is a fast, trie based, approximation bfnearest
confusible set may be computed using probabilneighbor classification (Knuth, 1973; Daelemans
ities of different leveln-grams, the synchronous et al., 1997). IGTree allows for fast training and
back-off model uses probabilities of the same levetesting even with millions of examples. 1GTree
of n-grams for all words in the confusible set, with compresses a set of labeled examples into a deci-
n being the highest value for which at least one ofsion tree structure similar to the classic C4.5 algo-
the words has a non-zero probability. For instancesithm (Quinlan, 1993), except that throughout one
when worda has a tri-gram probability of zero and |evel in the IGTree decision tree, the same feature
word b has a non-zero tri-gram probabilityjs se- s tested. Classification in IGTree is a simple pro-
lected. When both have a zero tri-gram probabil-cedure in which the decision tree is traversed from
ity, a back-off to bi-grams is performed for both the root node down, and one path is followed that
words. This is in line with the idea that if a proba- matches the actual values of the new example to
bility is zero, the training data is sufficient, hencepe classified. If a leaf is found, the outcome stored
the sequence is not in the language. at the leaf of the IGTree is returned as the clas-

To implement the specific classifiers, we usedsification. If the last node is not a leaf node, but
the TiIMBL implementation of &-NN classifier there are no outgoing arcs that match a feature-
(Daelemans et al., 2007). This implementation ofvalue combination of the instance, the most likely
the k-NN algorithm is calledB1. We have tuned outcome stored at that node is produced as the re-
the different parameter settings for theNN clas-  sulting classification. This outcome is computed
sifier using Paramsearch (Van den Bosch, 2004)yy collating the outcomes of all leaf nodes that can
which resulted in & of 352 To describe the in- be reached from the node.

sf[ances, we try to model the data as similar_a}s POS- |GTree is typically able to compress a large
sible to the data used by the generic classifier alsxample set into a lean decision tree with high
proach. Since the language model approaches uggmpression factors. This is done in reasonably
n-grams withn = 3 as the largest, the features  short time, comparable to other compression al-
for the specific classifier approach use words ongorithms. More importantly, IGTree’s classifica-
and two positions left and right of the focus word. tjon time depends only on the number of features
- (O(f)). Indeed, in our experiments we observe
3W9 note that is handled S|Ight|y differently in TIMBL h|gh Compression rates. One of the unique Char-
than usualk denotes the number of closest distances consid- teristi fIGT d to bagidNN i
ered. So if there are multiple instances that have the sam_@C enstcs o ree compare 0 ba X 1S
(closest) distance they are all considered. its resemblance to smoothing of a basic language
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Training ... much stronger thamost analysts had expected .
(much, stronger, most, analysts-than
Testing ... much stronger most analysts had expected .

(much, stronger, most, analysts-?

Figure 2: During training, a classified instance (in thisecés the confusible paifthen, than}) are
generated from a sentence. During testing, a similar instégenerated. The classifier decides what
the corresponding class, and hence, which word should Kedhs word.

model (Zavrel and Daelemans, 1997), while still{ their, there, they're. To compare the difficulty
being a generic classifier that supports any numbeof these problems, we also selected two words at
and type of features. For these reasons, IGTree imndom and used them as a confusible set.

also included in the experiments. The random category consists of two words that
_ _ where randomly selected from all words in the
32 Experimental settings Reuters corpus that occurred more than a thousand

The probabilities used in the language models ofimes. The words that where chosen, and used for
the generic classifiers are computed by looking agll experiments here arefugeesandeffect. They
occurrences ofi-grams. These occurrences areoccur around 27 thousand times in the Reuters cor-
extracted from a corpus. The training instancegUus.
used in the specific machine learning classifiers
are also extracted from the same data set. F
training purposes, we used the Reuters news coffable 1 sums up the results we obtained with the
pus RCV1 (Lewis et al., 2004). The Reuters cor-different systems. The baseline scores are gen-
pus contains about 810,000 categorized newswirerally very high, which tells us that the distribu-
stories as published by Reuters in 1996 and 199%ion of classes in a single confusible set is severely
This corpus contains around 130 million tokens. skewed, up to a ten to one ratio. This also makes
For testing purposes, we used the Wall Streethe task hard. There are many examples for one
Journal part of the Penn Treebank corpus (Marcus/ord in the set, but only very few training in-
et al., 1993). This well-known corpus contains ar-stances for the other(s). However, it is especially
ticles from the Wall Street Journal in 1987 to 1989.important to recognize the important aspects of the
We extract our test-instances from this corpus irminority class.
the same way as we extract our training data from The results clearly show that the specific clas-
the Reuters corpus. There are minor tokenizatiosifier approaches outperform the other systems.
differences between the corpora. The data is corFor instance, on the first tasKthen, thaf) the
rected for these differences. classifier achieves an accuracy slightly over 98%,
Both corpora are in the domain of English lan-whereas the language model systems only vyield
guage news texts, so we expect them to have simaround 96%. This is as expected. The classifier
lar properties. However, they are different corporais trained on just one confusible task and is there-
and hence are slightly different. This means thafore able to specialize on that task.
there are also differences between the training and Comparing the two specific classifiers, we see
testing set. We have selected this division to crethat the accuracy achieved by IB1 and IGTree is
ate a more realistic setting. This should allow for aquite similar. In general, IGTree performs a bit
more to real-world use comparison than when botlworse than IB1 on all confusible sets, which is
training and testing instances are extracted fronas expected. However, in general it is possible
the same corpus. for IGTree to outperform IB1 on certain tasks. In
For the specific experiments, we selected aur experience this mainly happens on tasks where
number of well-known confusible sets to testthe usage of IGTree, allowing for more compact
the different approaches. In particular, weinternal representations, allows one to use much
look at {then, thaf, {its, it's}, {your, your¢, more training data. IGTree also leads to improved

Empirical results
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{then, tha® {its, it's} {your, yourg {their, there, theyrp random
Baseline 82.63 92.42 78.55 68.36  93.16
IB1 98.01 98.67 96.36 97.12  97.89
IGTree 97.07 96.75 96.00 93.02  95.719
Uniform linear 68.27 50.70 31.64 32.72  38.95
Weighted linear 94.43 92.88 93.09 93.25 8842
Continuous back-off 81.49 83.22 74.18 86.01 63.68
Synchronous back-off 96.42 94.10 92.36 93.06 87.37
Number of cases 2,458 4,830 275 3,053 190

Table 1: This table shows the performance achieved by therelift systems, shown in accuracy (%).
TheNumber of casedenotes the number of instances in the testset.

performance in cases where the features have sifier approaches perform consistently across the
strong, absolute ordering of importance with re-different confusible sets. The synchronous back-
spect to the classification problem at hand. off approach is the best performing generic clas-
The generic language model approaches pesifier approach we tested. It consistently outper-
form reasonably well. However, there are cleafforms the baseline, and overall performs better
differences between the approaches. For instandban the weighted linear approach.
the weighted linear and synchronous back-off ap- The experiments show that generic classifiers
proaches work well, but uniform linear and con-based on language model can be used in the con
tinuous back-off perform much worse. Especiallytext of confusible disambiguation. However, the
the synchronous back-off approach achieves dez in the differentn-grams is of major importance.
cent results, regardless of the confusible problemExactly whichn grams should be used to com-
It is not very surprising to see that the contin-pute the probability of a sequence requires more
uous back-off method performs worse than thgesearch. The experiments also show that ap-
synchronous back-off method. Remember thaproaches that concentrate argrams with larger
the continuous back-off method always uses lower Yield more encouraging results.
level n-grams when zero probabilities are found.
This is done independently of the probabilities of

the other words in the confusible set. The contin-Confusibles are spelling errors that can only be de-
uous back-off method prefersgrams with larger  tected within their sentential context. This kind
n, however it does not penalize backing off to anof errors requires a completely different approach
n-gram with smaller,. Combine this with the fact compared to non-word errors (errors that can be
thatn-gram probabilities with large are compar-  jdentified out of context, i.e. sequences of char-
atively lower than those for-grams with smaller  acters that do not belong to the language). In
n and it becomes likely that a bi-gram contributespractice, most confusible disambiguation systems
more to the erroneous option than the correct triare based on machine learning classification tech-
gram does to the correct option. Tri-grams areniques, where for each type of confusible, a new
more sparse than bi-grams, given the same data.c|assifier is trained and tuned.

The weighted linear approach outperforms the In this article, we investigate the use of language
uniform linear approach by a large margin on allmodels in the context of confusible disambigua-
confusible sets. It is likely that the contribution tion. This approach works by selecting the word
from then-grams with large: overrules the prob- in the set of confusibles that has the highest prob-
abilities of then-grams with smaller. in the uni-  ability in the sentential context according to the
form linear method. This causes a bias towards thieanguage model. Any kind of language model can
more frequent words, compounded by the fact thabe used in this approach.
bi-grams, and uni-grams even more so, are less The main advantage of using language models
sparse and therefore contribute more to the totads generic classifiers is that it is easy to add new
probability. sets of confusibles without retraining or adding ad-

We see that the both generic and specific clasditional classifiers. The entire language is mod-

4 Conclusion and futurework
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Abstract regularities of the language, in order to apply these
_ _ patterns to unseen data.
This paper reports results on grammati- Since capturing underlying linguistic rules is

cal induction for French. We investigate 5150 an objective for linguists, it makes sense
how to best train a parser on the French  , yse supervised learning from linguistically-

Treebank (Abeille et al., 2003), viewing  gefined generalizations. One generalization is
the task as a trade-off between generaliz-  yhically the use of phrases, and phrase-structure

ability and interpreta_bility. We compare, rules that govern the way words are grouped to-
for French, a supervised lexicalized pars-  gether. It has to be stressed that these syntactic
ing algorithm with a semi-supervised un- a5 exist at least in part independently of seman-

lexicalized algorithm (Petrov et al.,, 2006) ¢ interpretation.
along the lines of (Crabbé and Candito,
2008). We report the best results known
to us on French statistical parsing, that we
obtained with the semi-supervised learn-
ing algorithm. The reported experiments
can give insights for the task of grammat-
ical learning for a morphologically-rich
language, with a relatively limited amount
of training data, annotated with a rather
flat structure.

Interpretability But the main reason to use su-
pervised learning for parsing, is that we want
structures that are asterpretableas possible, in
order to extract some knowledge from the anal-
ysis (such as deriving a semantic analysis from
a parse). Typically, we need a syntactic analysis
to reflect how wordgelate to each other. This
iS our main motivation to use supervised learn-
ing : the learnt parser will output structures as
defined by linguists-annotators, and thus inter-
pretable within the linguistic theory underlying the
annotation scheme of the treebank. It is important
Despite the availability of annotated data, therelo stress that this is more than capturing syntactic
have been relatively few works on French statistegularities : it has to do with theeaningof the
tical parsing. Together with a treebank, the avail-words.
ability of several supervised or semi-supervisedt is not certain though that both requirements
grammatical learning algorithms, primarily set up(generalizability / interpretability) are best met in
on English data, allows us to figure out how theythe same structures. In the case of supervised
behave on French. learning, this leads to investigate different instan-

Before that, it is important to describe the char-tiations of the training trees, to help the learning,
acteristics of the parsing task. In the case of stawhile keeping the maximum interpretability of the
tistical parsing, two different aspects of syntactictrees. As we will see with some of our experi-
structures are to be considered : their capacity tonents, it may be necessary to find a trade-off be-
capture regularities and their interpretability fortween generalizability and interpretability.
further processing. Further, it is not guaranteed that syntactic rules

Generalizability Learning for statistical parsing infered from a manually annotated treebank pro-
requires structures that capture best the underlyinduce the best language model. This leads to

1 Natural language parsing

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 49-57,
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methods that use semi-supervised techniques dfrB, versus 24 tokens in theTB.

a treebank-infered grammar backbone, such asflection : French morphology is richer than En-
(Matsuzaki et al., 2005; Petrov et al., 2006). glish and leads to increased data sparseness for
The plan of the paper is as follows : in the statistical parsing. There are 24098 types in the
next section, we describe the available treebankTB, entailing an average of 16 tokens occurring

for French, and how its structures can be interfor each type (versus 12 for the'B).

preted. In section 3, we describe the typical probFlat structure : The annotation scheme is flatter
lems encountered when parsing using a plain probn the FrB than in the BB. For instance, there
abilistic context-free grammar, and existing algo-are no VPs for finite verbs, and only one sentential
rithmic solutions that try to circumvent these prob-level for sentences whether introduced by comple-
lems. Next we describe experiments and resultgnentizer or not. We can measure the corpus flat-
when training parsers on the French data. Finallypness using the ratio between tokens and non ter-

we discuss related work and conclude. minal symbols, excluding preterminals. We obtain
0.69 NT symbol per token foris and 1.01 for the
2 Interpreting the French trees PTB.

Compounds Compounds are explicitly annotated

The_French. Treebank (Abeillé et al., 2003) is a(See the compoureut-étrein Figure 1) and very
publicly available sample from the newspager frequent : 14,52% of tokens are part of a com-

Monde syntactically annotated and manually Cor'pound. They include digital numbers (written with

rected for French. spaces in FrenchO 000, very frozen compounds

SENT sl pomme de terre (potatd)ut also named entities
S o e e S or sequences whose meaning is compositional but
<INP> where insertion is rare or difficulg@rde d'enfant
<w cat="ADV" Iemma}:”ne" subcat="neg">n'</w> (Ch||d Care)_
<w cat="V" lemma="étre" mph="P3s" subcat="">est</w> . .
M o Now let us focus on what is expressed in the
< ct=" "> . . .
<w compot_md:\”/yes" cat/:"ADV" lemma="peut-étre"> French annotation SCheme, and Why SyntaCUC n-
<w catint="V">peut</w> . . . -
<w catint="PONCT">-</w> formation is split between constituency and func-
<w catint="V">étre</w> . .
<iw> tional annotation.
="ADV" | =" " bcat=" " 9’ . . . .
ciadps DY (eMMASpaST SbcaZegmpas<hi> Syntactic categories and constituentapture dis-
AP fct="ATS" . . . . .
W At APV lommasaussaussi> tributional generalizations. A syntactic category
iy TR lemmassombre” mph=ims” subcat=iqualsombre <> groups forms that share distributional properties.
oy CA=PONCT" lemmas." subcat='s>.<hv> Nonterminal symbols that label the constituents

are a further generalizations over sequences of cat-
egories or constituents. For instance about any-
where it is grammatical to have a given NP, it is

To encode syntactic information, it uses a com+implicitly assumed that it will also be grammati-
bination of labeled constituents, mOfphO'Ogicalca| - though maybe nonsensical - to have instead
annotations and functional annotation for verbalany other NPs. Of course this is known to be false
dependents as illustrated in Figure 1. This coNin many cases : for instance NPs with or with-
stituent and functional annotation was performechyt determiners have very different distributions in
in two successive steps : though the original refrench (that may justify a different label) but they
lease (Abeillé et al., 2000) consists of 20,648 seng|so share a lot. Moreover, if words are taken into
tences (hereafterm-v0), the functional annota- account, and not just sequences of categories, then
tion was performed later on a subset of 12351 serconstituent labels are a very coarse generalization.
tences (hereafter®). This subset has also been Constituents also encode dependencies : for in-
revised, and is known to be more consistently anstance the different PP-attachment for the sen-
notated. This is the release we use in our experiencesl ate a cake with cream / with a forke-
ments. Its key properties, compared with the Penflects thatwith creamdepends orcake whereas
Treebank, (hereafter) are the following : with a fork depends orate More precisely, a
Size: The FrB is made of 385 458 tokens and syntagmatic tree can be interpreted as a depen-
12351 sentences, that is the third of tteBPThe  dency structure using the following conventions :
average length of a sentence is 31 tokens in the

Figure 1: Simplified example of theTB
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for each constituent, given the dominating symbolpurpose of natural language parsing : the inde-
and the internal sequence of symbols, (i) a heagendence assumptions made by the model are too
symbol can be isolated and (i) the siblings of thatstrong. In other words all decisions are local to a
head can be interpreted as containing dependenggammar rule.
of that head. Given these constraints, the syntag- However as clearly pointed out by (Johnson,
matic structure may exhibit various degree of flat-1998) decisions have to take into account non lo-
ness for internal structures. cal grammatical properties: for instance a noun
Functional annotation Dependencies are en- phrase realized in subject position is more likely to
coded in constituents. While X-bar inspired con-pe realized by a pronoun than a noun phrase real-
stituents are supposed to contain all the syntadzed in object position. Solving this first method-
tic information, in the FB the shape of the con- ological issue, has led to solutions dubbed here-
stituents does not necessarily express unambigifter asunlexicalized statistical parsinJohnson,
ously thetype of dependency existing between a1998; Klein and Manning, 2003a; Matsuzaki et
head and a dependent appearing in the same coat., 2005; Petrov et al., 2006).
stituent. Yet this is crucial for example to ex- A second class of non local decisions to be
tract the underlying predicate-argument structuresaken into account while parsing natural languages
This has led to a “flat” annotation scheme, com-gre related to handling lexical constraints. As
pleted with functional annotations that inform on shown above the subcategorization properties of
the type of dependency existing between a verly predicative word may have an impact on the de-
and its dependents. This was chosen for Frenchisions concerning the tree structures to be asso-
to reflect, for instance, the possibility to mix post- ciated to a given sentence. Solving this second
verbal modifiers and complements (Figure 2), ofimethodological issue has led to solutions dubbed
to mix post-verbal subject and post-verbal indi-nereafter agexicalized parsingCharniak, 2000;
rect complements : a post verbal NP in thesF cg|lins, 1999).
can correspond to a temporal modifier, (most of- |, 5 gupervised setting, a third and practical
ten) a direct object, or an inverted subject, and inyohlem turns out to be critical: that afata

the three cases other subcategorized complements ; senessince available treebanks are generally

may appear. too small to get reasonable probability estimates.
SENT Three class of solutions are possible to reduce data

NPSUJ VN NP-.MOD __ PP-AOBJ Sparseness: (1) enlarging the data manually or au-

D N VV VvV D N A P nNp tomaticall(e.g. (McClosky etal., 2006) uses self-

une lettre avait 6té envoyéda semainedemiereaux N training to perform this step) (2) smoothing, usu-
salariés ally this is performed using a markovization pro-

SENT cedure (Collins, 1999; Klein and Manning, 2003a)
- = . .
NP-SUJ VN  NP-OBJ PP-AOBJ and (3) make the data more coarse (i.e. clustering).
— T~ T~ — T~ —
D N V V D N P NP
L'e Conseil a notifié sa décision 4 D N 3.1 Lexicalized algorithm
| |
la banque

The first algorithm we use is the lexicalized parser
Figure 2: Two examples of post-verbal NPs : aof (Collins, 1999). It is called lexicalized, as it
direct object and a temporal modifier annotates non terminal nodes with an additional
latent symbol: the head word of the subtree. This
additional information attached to the categories
aims at capturing bilexical dependencies in order
to perform informed attachment choices.
We propose here to investigate how to apply statis- The addition of these numerous latent sym-
tical parsing techniques mainly tested on Englishpols to non terminals naturally entails an over-
to another language — French —. In this section wepecialization of the resulting models. To en-
briefly introduce the algorithms investigated. sure generalization, it therefore requires to add
Though Probabilistic Context Free Grammarsadditional simplifying assumptions formulated as
(PcFg@) is a baseline formalism for probabilistic a variant of usual naive Bayesian-style simplify-
parsing, it suffers a fundamental problem for theing assumptions: the probability of emitting a non

3 Algorithms for probabilistic grammar
learning
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head node is assumed to depend on the head atfte fact that an NP in subject position is more
the mother node only, and not on other siblinglikely realized as a pronoun.
nodes. The first unlexicalized algorithms set up in this
Since Collins demonstrated his models to sigtrend (Johnson, 1998; Klein and Manning, 2003a)
nificantly improve parsing accuracy over barealso use language dependent and manually de-
PCFG, lexicalization has been thought as a mafined heuristics to add the latent annotations. The
jor feature for probabilistic parsing. However two specialization induced by this additional annota-
problems are worth stressing here: (1) the reasotion is counterbalanced by simplifying assump-
why these models improve over bare PCFGs is ndions, dubbed markovization (Klein and Manning,
guaranteed to be tied to the fact that they captur@003a).
bilexical dependencies and (2) there is no guar- Using hand-defined heuristics remains prob-
antee that capturing non local lexical constraintdematic since we have no guarantee that the latent
yields an optimal language model. annotations added in this way will allow to extract
Concerning (1) (Gildea, 2001) showed that fullan optimal language model.
lexicalization has indeed small impact on results : A further development has been first introduced
he reimplemented an emulation of Collins’ Model by (Matsuzaki et al., 2005) who recasts the prob-
1 and found that removing all references to bilex-lem of adding latent annotations as an unsuper-
ical dependencies in the statistical mddele- vised learning problem: given an observedr@
sulted in a very small parsing performance dedinduced from the treebank, the latent grammar is
crease (RRSEVAL recall on WsJdecreased from generated by combining every non terminal of the
86.1 to 85.6). Further studies conducted by (Bikelpbserved grammar to a predefined Beof latent
2004a) proved indeed that bilexical informationsymbols. The parameters of the latent grammar
were used by the most probable parses. The idesre estimated from thebserved treeasing a spe-
is that most bilexical parameters are very similarcific instantiation ofgm.
to their back-off distribution and have therefore a This first procedure however entails a combi-
minor impact. In the case of French, this fact camatorial explosion in the size of the latent gram-
only be more true, with one third of training data mar as|H| increases. (Petrov et al., 2006) (here-
compared to English, and with a much richer in-after Bky) overcomes this problem by using the
flection that worsens lexical data sparseness. following algorithm: given a BFG G| induced
Concerning (2) the addition of head word an-from the treebank, iteratively creategrammars
notations is tied to the use of manually definedG; ...G,, (with n = 5 in practice), where each
heuristics highly dependent on the annotatioriterative step is as follows :
scheme of the . For instance, Collins’ mod-
els integrate a treatment of coordination that is not e SpLIT Create a new gramma¥; from G;_;

adequate for the 8-like coordination annotation. by splitting every non terminal of5; in
two new symbols. Estimat&’;'s parameters
3.2 Unlexicalized algorithms on the observed treebank using a variant of

inside-outside. This step adds the latent an-

Another class of algorithms arising from (John- _
notation to the grammar.

son, 1998; Klein and Manning, 2003a) attempts
to attach additional latent symbols to treebank cat-
egories without focusing exclusively on lexical
head words. For instance the additional annota-
tions will try to capture non local preferences like

e MERGE For each pair of symbols obtained
by a previous split, try to merge them back.
If the likelihood of the treebank does not
get significantly lower (fixed threshold) then

This short description cannot do justice to (Collins, keep the symbol merged, otherwise keep the

1999) proposal which indeed includes more fine grained in- split.

formations and a backoff model. We only keep here the key

aspects of his work relevant for the current discussion. . . . .
2Let us consider a dependent constituent C with head © SMOOTH This step consists in smoothing the

word Chw and head tag Cht, and let C be governed by acon-  probabilities of the grammar rules sharing the

stituent H, W|th head word Hhw and ht_aao! tag Hht. (_3|Idea same left hand side.

compares Collins model, where the emission of Chw is con-

ditioned on Hhw, and a “mono-lexical” model, where the

emission of Chw is not conditioned on Hhw. This algorithm yields state-of-the-art results on
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Englist®. Its key interest is that it directly aims adapted these clues to French, following (Arun
at finding an optimal language model without (1)and Keller, 2005).

making additional assumptions on the annotation Finally we use as a baseline a standard PCFG
scheme and (2) without relying on hand-definedalgorithm, coupled with a trigram tagger (we refer
heuristics. This may be viewed as a case of semio this setup as TT/LNCKY algorithnt).

supervised learning algorithm since the initial su-

pervised learning step is augmented with a seconqetrics For evaluation, we use the standamrkP
step of unsupervised learning dedicated to assiggeyaL metric of labeled precision/recall, along
the latent symbols. with unlabeled dependency evaluation, which is
known as a more annotation-neutral metric. Unla-
beled dependencies are computed using the (Lin,

We investigate how some treebank features impact995) algorithm, and the Dybro-Johansen's head
learning. We describe first the experimental pro{ropagation rules cited above The unlabeled
tocol, next we compare results of lexicalized angdependency F-score gives the percentage of in-
unlexicalized parsers trained on various “instanPut words (excluding punctuation) that receive the
tiations” of the xml source files of theT®, and correct head.

the impact of training set size for both algorithms.AS usual for probabilistic parsing results, the re-
Then we focus on studying how words impact theSults are given for sentences of the test set of less

4 Experiments and Results

results of the By algorithm. than 40 words (which is true for 992 sentences of
the test set), and punctuation is ignored for F-score
4.1 Protocol computation with both metrics.

Treebank settingFor all experiments, the tree- ) ) o
bank is divided into 3 sections : training (80%), 42 Comparison using minimal tagsets

development (10%) and test (10%), made ofye first derive from the ¥8 a minimally-
respectively 9881, 1235 and 1235 sentencesnformed treebank, RFEEBANKMIN, instantiated
We systematically report the results with thefrom the xml source by using only the major syn-
compounds merged. Namely, we preprocess thgctic categories and no other feature. In each ex-
treebank in order to turn each compound into &eriment (Table 1) we observe that theB al-
single token both for training and test. gorithm significantly outperforms Collins models,

for both metrics.
Software and adaptation to FrenchFor the

Collins algorithm, we use Bikel's implementation ~ parser | BKy BIKEL BIKEL ~ TNT/
(Bikel, 2004b) (hereafter BEL), and we report |-metric M1 M2__ LNCKky

! . - ! . PARSEVAL LP 85.25 78.86 80.68 68.74
results using Collins model 1 and model 2, with[ ParsEvaL LR 84.46 78.84 8058 6703
internal tagging. Adapting model 1 to French| PARSEVAL Fy 8485 7885 80.63  68.33
requires to design French specific head propag'i-gﬂ:ag- gep. Erec gg-gg gg-;‘zl gg-gg ;g-gg
tion rules. To this end, we adapted those defjoo —ob: T€C| &% : ' '

. ) Unlab. dep. I 90.09 85.73 87.25 79.44
scribed by (Dybro-Johansen, 2004) for extractin

a Stochastic Tree Adjoining Grammar parser ofrgple 1: Results for parsers trained ongFwith
French. And to adapt model 2, we have furtherinimal tagset

designed French specific argument/adjunct identi-
fication rules.

For the B<y approach, we use the Berkeley “The tagger is WT (Brants, 2000), and the parser
implementation, with an horizontal markovizationis LNCKky, that is distributed by Mark Johnson

_ : . (http://lwww.cog.brown.edu/ ~mj/Software.htm ).
h=0, and 5 splitmerge cycles. All the required Formally because of the tagger, this is not a strict PCFG

knowledge is contained in the treebank used fogetup. Rather, it gives a practical trade-off, in which the
training, except for the treatment of unknown ortagger includes the lexical smoothing for unknown and rare

rare words. It clusters unknown words using ty-"""e _ _
| For this evaluation, the gold constituent trees are con-

pographical and morphological information. Weverted into pseudo-gold dependency trees (that may con-
- tain errors). Then parsed constituent trees are converted

3(Petrov et al., 2006) obtain an F-score=90.1 for sentenceimto parsed dependency trees, that are matched against the
of less than 40 words. pseudo-gold trees.
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4.3 Impact of training data size PCFGs (see for instance parent-transformation of
How do the unlexicalized and lexicalized aIO_(Johnson, 1998), or various symbol refinements in

proaches perform with respect to size? We com(Kl€in and Manning., 2003b)). Lexicalization it-
pare in figure 3 the parsing performanceyBand self can be seen as symbol refinements (with back-

COLLINSM1, on increasingly large subsets of the ©ff though). For By, though the key point is to
FTg, in perfect tagging modeand using a more automatize symbol splits, it is interesting to study
detailed tagset (CC tagset, described in the nexthether manual splits still help. .
experiment). The same 1235-sentences test s¥f€ have thus experimentedkB training with

is used for all subsets, and the development set¥2rious tagsets. TheTB contains rich mor-
size varies along with the training set's sizex\8 phological information, that can be used to split

outperforms the lexicalized model even with smallPrétérminal symbols : main coarse category (there

amount of data (around 3000 training sentencesfi'® 13), subcategorgibcat feature refining the
Further, the parsing improvement that would re-main cat), and inflectional informatiomnfph fea-

sult from more training data seems higher for8 ture). .
than for Bikel. We report in Table 2 results for the four tagsets,

where terminals are made of MIN: main cat,
SUBCAT: main cat + subcat featur@Aax: cat +
subcat + all inflectional informatiort,c: cat + ver-

/A bal mood + wh feature.

© | ,A/AEA

h j— Tagset | Nboftags Parseval Unlab. dep Taggihg

. e Fi Fi Acc

2 1 N e PO MIN 13 84.85 90.09 97.35
0 R SUBCAT 34 85.74 - 96.63
g8 o7 MAX 250 84.13 - 92.20
. ° /A cc 28 86.41 90.99 96.83

/ Table 2: Tagsetimpact on learning wittkkB (own
®1/ tagging)
A Berkeley

w w w w w The corpus instantiation witkhc tagset is our
- . = e - best trade-off between tagset informativeness and
obtained parsing performarfcelt is also the best
result obtained for French probabilistic parsing.
This demonstrates though that theB learning
is not optimal since manual a priori symbol refine-
This potential increase for Br results if we ments S|gn.|f|cantly Impact the result_s. .

We also tried to learn structures with functional

had more French annotated data is somehow con- i )
. . annotation attached to the labels : we obtairP
firmed by the higher results reported forkB

training on the Penn Treebank (Petrov et al., ZOOGzEVAL F1=78.73 with tags from the CC tagset +

. F,=90.2. We can show though that the 4 points rammatical function. This degradatlon,_ due to
data sparseness and/or non local constraints badly

increase when training on English data is not only aptured by the model, currently constrains us to

due to size : we extracted from the Penn Treeban& . : )
. use a language model without functional informa-
a subset comparable to the#; with respect to

tions. As stressed in the introduction, this limits
number of tokens and average length of sentenceﬁﬁe interpretability of the parses and it is a trade-
We obtain F=88.61 with EXY training. P y P

off between generalization and interpretability.

Number of training sentences

Figure 3: Parsing Learning curve oméwith CC-
tagset, in perfect-tagging

4.4 Symbol refinements ) .
4.5 Lexicon and Inflection impact

It is well-known that certain treebank transfor-

mations involving symbol refinements improve FT€nch has a rich morphology that allows some

degree of word order variation, with respect to
SFor Bky, we simulate perfect tagging by changing -

words into word+tag in training, dev and test sets. We ob-  “The differences are statistically significant : using astan

tain around 99.8 tagging accuracy, errors are due to unknowdard t-test, we obtain p-value=0.015 betwean andsus-

words. CAT, and p-value=0.002 betwe@t and SUBCAT.
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English. For probabilistic parsing, this can havesize is superior to approx. 3000 sentefices
contradictory effects : (i) on the one hand, thisThis suggests that only very frequent words
induces more data sparseness : the occurrencestter, otherwise words’ impact should be more
of a French regular verb are potentially split intoand more important as training material augments.
more than 60 forms, versus 5 for an English
verb; (ii) on the other hand, inflection encodes
agreements, that can serve as clues for syntactic
attachments.

88
1

Experiment In order to measure the impact “ AT T
of inflection, we have tested to cluster word S
forms on a morphological basis, namely to partly{ | /

cancel inflection. Using lemmas as word form & d
classes seems too coarse : it would not allow to £ « By terminaletormetag
distinguish for instance between a finite verb and ¢ / o Botermnaitag
a participle, though they exhibit different distri-

butional properties. Instead we use as word form
classes, the couple lemma + syntactic category. : oo oo a0 oo 10000

For example for verbs, given the CC tagset, this Number of raining sentences
amounts to keeping 6 different forms (for the 6

moods). _ _ Figure 4: Impact of clustering word forms (train-
To test this grouping, we derive a treebank where;ng on Fre with CC-tagset, in perfect-tagging)
words are replaced by the concatenation of lemma

+ category for training and testing the parser.
Since it entails a perfect tagging, it has to be5 Related Work
compared to results in perfect tagging mode :

more precisely, we simulate perfect taggingprevious works on French probabilistic parsing are
by replacing word forms by the concatenationthose of (Arun and Keller, 2005), (Schluter and
form+tag. van Genabith, 2007), (Schluter and van Genabith,
Moreover, it is tempting to study the impact of 2008). One major difficulty for comparison is that
a more drastic clustering of word forms : that of | three works use a different version of the train-
using the sole syntactic category to group wordng corpus. Arun reports results on probabilistic
forms (we replace each word by its tag). Thisparsing, using an older version of theg=and us-
amounts to test a pure unlexicalized learning. ing lexicalized models (Collins M1 and M2 mod-
els, and the bigram model). It is difficult to com-
pare our results with Arun’s work, since the tree-
Discussion Results are shown in Figure 4. phank he has used is obsoleta&Fv0). He obtains
We make three observations : First, comparingor Model 1 : LR=80.35 / LP=79.99, and for the
the terminal=tag curves with the other two, it bigram model : LR=81.15 / LP=80.84, with min-
appears that the parser does take advantage pha tagset and internal tagging. The results with

lexical information to rank parses, even for thisprg (revised subset of #8-v0) with minimal
“unlexicalized” algorithm. Yet the relatively small

increase clearly shows that lexical information ° This is true for all points in the curves, except for

; ; e last step, i.e. when full training set is used. We per-
remains underused, probably because of IeXICégrmed a 10-fold cross validation to limit sample effecter F

data sparseness. the Bkytraining with CC tagset, and own tagging, we ob-
Further, comparing terminal=lemma-+tag and ter{ain an average F-score of 85.44 (with a rather high stan-

oo — . _dard deviationo=1.14). For the clustering word forms ex-
minal=form+tag curves, we observe that grOUpInggeriment, using the full training set, we obtain : 86.64 for

words into lemmas helps reducing this sparsenessrminal=form+tag ¢=1.15), 87.33 for terminal=lemmatag
And third, the lexicon impact evolution (i.e. (0=0.43), and 85.72 for terminal=tag$0.43). Hence our

the i t bet t inal=t dt . conclusions (words help even with unlexicalized algorithm
€ Increment between terminal=tag and termis,ng qyiher grouping words into lemmas helps) hold indepen-

nal=form+tag curves) is stable, once the trainingdently of sampling.

5
D

core

© |
2
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tagset (Table 1) are comparable foo@INSM1, table 2), it is indeed very high if training data size
and nearly 5 points higher forigr . is taken into account (cf. the® learning curve

in figure 3). This good result raises the open ques-
tion of identifying which modifications in the Fr
(error mining and correction, tree transformation,
symbol refinements) have the major impact.

It is also interesting to review (Arun and Keller,
2005) conclusion, built on a comparison with the
German situation : at that time lexicalization was
thought (Dubey and Keller, 2003) to have no siz-
able improvement on German parsing, trained oy conclusion
the Negra treebank, that uses a flat structures. So
(Arun and Keller, 2005) conclude that since lex-This paper reports results in statistical parsing
icalization helps much more for parsing French,for French with both unlexicalized (Petrov et al.,
with a flat annotation, then word-order flexibility 2006) and lexicalized parsers. To our knowledge,
is the key-factor that makes lexicalization usefulboth results are state of the art on French for each
(if word order is fixed, cf. French and English) paradigm.
and useless (if word order is flexible, cf. German). Both algorithms try to overcome PCFG's sim-
This conclusion does not hold today. First, it canplifying assumptions by some specialization of the
be noted that as far as word order flexibility is con-grammatical labels. For the lexicalized approach,
cerned, French stands in between English and Gethe annotation of symbols with lexical head is
man. Second, it has been proven that lexicalizatioknown to be rarely fully used in practice (Gildea,
helps German probabilistic parsing (Kiibler et al.,2001), what is really used being the category of
2006). Finally, these authors show that markovizathe lexical head.
tion of the unlexicalized Stanford parser gives al- We observe that the second approachYB
most the same increase in performance than lexconstantly outperforms the lexicalist stratefyja
icalization, both for the Negra treebank and the(Collins, 1999). We observe however that (Petrov
Tiiba-D/Z treebank. This conclusion is reinforcedet al., 2006)’s semi-supervised learning procedure
by the results we have obtained : the unlexicalizedis not fully optimal since a manual refinement of
markovized, PCFG-LA algorithm outperforms thethe treebank labelling turns out to improve the
Collins’ lexicalized model. parsing results.

. . Finally we observe that the semi-supervised
. (Schiuter and van Genabith, 2007) aim at Iear_n-BKY algorithm does take advantage of lexical in-
Ing LFG structu_res for Frgnch. To do so, and "Nformation : removing words degrades results. The
order to learn first a Collins parser, N. Schluter

terminal bol split lates lexical dis-
created a modified treebank, the~¥ in order (i) preterminal symool spiits percoiates fexical dis

. . . ) ... tinctions. Further, grouping words into lemmas
to fit her underlying theoretical requirements, (ii) helps for a morphologically rich language such as

Io increase the ireebank coherence by error M rench. So, an intermediate clustering standing

:ng atnd (if) to_llr;prlsr\r/e thf .perf;);r;; nee tOf the between syntactic category and lemma is thought
earnt parset. © contains SENtences yield better results in the future.

taken from the FB, with semi-automatic trans-
formations. These include increased rule stratifi7 ~ Acknowledgments

cation, symbol refinements (for information prop- _
agation), coordination raising with some manualVe thank N. Schiuter and J. van Genabith for
re-annotation, and the addition of functional tagskindly letting us run &y on the MrT, and A.
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results on the original 20000 sentence treebank.
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score=84.31. While this is less in absolute than

the BKY results obtained with 8 (cf. results in
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Abstract

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that
make them attractive for grammatical in-
ference. However, these properties do not
state the maximal performance they can
achieve when they are evaluated against a
gold treebank that is not produced by an
UNTS grammar. In this paper we inves-
tigate such an upper bound. We develop
a method to find an upper bound for the
unlabeledr'1 performance that any UNTS
grammar can achieve over a given tree-
bank. Our strategy is to characterize all
possible versions of the gold treebank that
UNTS grammars can produce and to find
the one that optimizes a metric we define.
We show a way to translate this score into
an upper bound for thé'l. In particular,
we show that thé'1 parsing score of any
UNTS grammar can not be beyog#l.2%
when the gold treebank is the WSJ10 cor-
pus.

I ntroduction

underlying language. Moreover, UNTS grammars
have been successfully used to induce grammars
from unannotated corpora in competitions of
learnability of formal languages (Clark, 2007).
UNTS grammars can be used for modeling nat-
ural language. They can be induced using any
training material, the induced models can be eval-
uated using trees from a treebank, and their per-
formance can be compared against state-of-the-
art unsupervised models. Different learning al-
gorithms might produce different grammars and,
consequently, different scores. The fact that the
class of UNTS grammars is PAC learnable does
not convey any information on the possible scores
that different UNTS grammars might produce.
From a performance oriented perspective it might
be possible to have an upper bound over the set
of possible scores of UNTS grammars. Knowing
an upper bound is complementary to knowing that
the class of UNTS grammars is PAC learnable.
Such upper bound has to be defined specifically
for UNTS grammars and has to take into account
the treebank used as test set. The key question
is how to compute it. Suppose that we want to
evaluate the performance of a given UNTS gram-
mar using a treebank. The candidate grammar pro-

Unsupervised learning of natural language has reduces a tree for each sentence and those trees are
ceived alot of attention in the last years, e.g., Kleincompared to the original treebank. We can think
and Manning (2004), Bod (2006a) and Segineithat the candidate grammar has produced a new
(2007). Most of them use sentences from a treeversion of the treebank, and that the score of the
bank for training and trees from the same treebangrammar is a measure of the closeness of the new
for evaluation. As such, the best model for un-treebank to the original treebank. Finding the best
supervised parsing is the one that reports the bestpper bound is equivalent to finding the closest
performance.

Unambiguous

Non-Terminally

UNTS version of the treebank to the original one.

Separated Such bounds are difficult to find for most classes

(UNTS) grammars have properties that makeof languages because the search space is the
them attractive for grammatical inference. Theseset of all possible versions of the treebank that
grammars have been shown to be PAC-learnablmight have been produced by any grammar in the
in polynomial time (Clark, 2006), meaning that class under study. In order to make the problem

under

certain circumstances,

the underlyingractable, we need the formalism to have an easy

grammar can be learned from a sample of thavay to characterize all the versions of a treebank

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 58-65,

Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics
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it might produce. UNTS grammars have a speciahave thatX = oY~ (Clark, 2007). Unambiguous

characterization that makes the search space eaif'S (UNTS) grammars are those NTS grammars

to define but whose exploration is NP-hard. that parses unambiguously every instance of the
In this paper we present a way to characterizéanguage.

UNTS grammars and a metric function to mea- Gjven any grammars, a substrings of » €

sure the closeness between two different version, () is called aconstituent of r if and only if there
of a treebank. We show that the problem of find-is an x in N such thatS = uXv = usv — r.

ing the closest UNTS version of the treebank cany, contrast, a string is called a non-constituent or
be described as Maximum Weight Independent Sjjiityent of r € L(G) if s is not a constituent of.
(MWIS) problem, a well known NP-hard problem \ye say that is a constituent of a languadeG)
(Karp, 1972). The exploration algorithm retumsi tor every ; that contains, s is a constituent of
a version of the treebank that is the closest to the |, contrasts is a distituent ofZ.(G) if for every
gold standard in terms of our own metric.

We show that tth.l—meas.ure 'S rglated to our An interesting characterization of finite UNTS
measure and that it is possible to find and upper

bound of theF'1-performance for all UNTS gram- grammars 1s that every supstrlng that appear in

. some string of the language is always a constituent

mars. Moreover, we compute this upper bound for - . :

the WSJ10. a subset of the Penn Treebank (Marqr always a distituent. In other words, if there is a
' tringr in L(G) for which s is a constituent, then

cus et al., 1994) using POS tags as the al habe? : .
The upper boun)d weglj‘ound m%% for the lgl s'is a constituent ol (G). By means of this prop-

rty, if we ignore the non-terminal label finit

measure. Our result suggest that UNTS grammare Y, € ignore fhe non-termina abe s a ©

: ) . NTS language is fully determined by its set of

are a formalism that has the potential to achieve . . ,

: : constituentg”. We can show this property for fi-

state-of-the-art unsupervised parsing performance. . .

. nite UNTS languages. We believe that it can also

but does not guarantee that there exists a gramm & shown for non-finite cases, but for our purposes
that can actually achieve tt32.2%. ' purp

To the best of knowledae. th . the finite cases suffices, because we use grammars
0 the best of our knowledge, Inere 1S no pres, parse finite sets of sentences, specifically, the

vious research on finding upper bounds for perfor'sentences of test treebanks. We know that for ev-

mance over aconcrete class of grammars. In Kle"éry finite subset of an infinite language produced
and Manning (2004), the authors compute an Upby a UNTS grammar, there is a UNTS gram-

per bound for parsing with binary trees a gold trees ar & whose language is finite and that parses

bank that is not binary. This upper bound, that isthe finite subset a&. If we look for the upper

88.1% for the WSJ10, is for any parser that returnsbound among the grammars that produce a finite
binary trees, including the concrete models devell'anguage this upper bound is also an upper bound
oped in the same work. But their upper bound doe§Or the cla{ss of infinite UNTS grammars,
not use any specific information of the concrete o _
models that may help them to find better ones. ~ 1"e UNTS characterization plays a very im-
The rest of the paper is organized as followsPOrtant role in the way we look for the upper

Section 2 presents our characterization of UNTS0UNd. Our method focuses on how to determine

grammars. Section 3 introduces the metric we op?VNich of the constituents that appear in the gold

timized and explains how the closest version of thé'® actually the constituents that produce the up-
treebank is found. Section 4 explains how the upP€’ Pound. Suppose that a given gold treebank
per bound for our metric is translated to an up-CONtains two strings and 3 such that theyceur

per bound of theé"1 score. Section 5 presents our ©V&rlapped. Thatis, there exist non-empty strings

/ / / _ /
bound for UNTS grammars using the WSJ10 andj‘/’%/ﬁ such thata = o'y and§ = (" and
finally Section 6 concludes the paper. o’vp" occurs in the treebank. ' is the set of
constituents of a UNTS grammar it can not have

r wheres occurs,s is a distituent of-.

2 UNTSGrammarsand Languages both o and 3. It might have one or the other, but
if both belong toC' the resulting language can not
Formally, a context free grammaG =  be UNTS. In order to find the closest UNTS gram-

(X, N, S, P) is said to be Non-Terminally Sepa- mar we design a procedure that looks for the sub-
rated (NTS) if, for allX,Y € N anda, 3,7 €  set of all substrings that occur in the sentences of
(2 U N)* such thatX = afy andY = 3, we the gold treebank that can be the constituentset
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of a grammar. We do not explicitly build a UNTS ric, and we show that the possible valuesrof
grammar, but find the sét that produces the best can be bounded by a function that takes this score
score. as argument. In this section we present our metric

We say that two strings and3 arecompatible  and the technique we use to find a grammar that
in a languagel. if they do not occur overlapped reports the best value for our metric.

in L, and hence they both can be members'of |fthe original treebani” is not produced by any
If we think of L as a subset of an infinite lan- yNTS grammar, then there are stringsZinthat
guage, itis not possible to check that two overlapyre constituents in some sentences and that are dis-
ping strings do not appear overlapped in the “realijtyents in some other sentences. For each one of
language and hence that they are actually comthem we need a procedure to decide whether they
patible. Nevertheless, we can guarantee compaye members of’ or not. If a stringa appears a
ibility between two stringsy, 5 by requiring that  sjgnificant number of times more as a constituent
they do not overlap at all, this is, that there arengn as a distituent the procedure may choose to
no non-empty strings’, , #" such that = o'y jnclude it in C at the price of being wrong a few
andg = vA3'. We call this type of compatibility times. That is, the new version @fhas all occur-
strong compatibility. Strong compatibility ensures rences ofx either as constituents or as distituents.
that two strings can belong 6 regardless of..  Tne treebank that has all of its occurrences as con-
In our experiments we focus on finding the best setjtyents differs from the original in that there are
C of compatible strings. some occurrences ef that were originally dis-
Any set of compatible string§’ extracted from  tjituents and are marked as constituents. Similarly,
the gold treebank can be used to produce a ney « is marked as distituent in the new treebank, it

version of the treebank. For example, Figure lnhas occurrences of that were constituents if.
shows two trees from the WSJ Penn Treebank.

The string “in the dark” occurs as a constituent in
(a) and as a distituent in (b). @ contains “in the

The decision procedure becomes harder when
all the substrings that appear in the treebank are
o - o considered. The increase in complexity is a con-
dark”, it can not contain “the dark clouds” given .
that th lao in the vield of (b). A sequence of the number of decisions the procedure

at they overlap in the yield of (b). As a CON" heeds to take and the way these decisions interfere
sequence, the new treebank correctly contains the .

bt A but not th in (b). Instead. th one with another. We show that the problem of
su Idre(? 'S ('a)d . n.ct)) de one in ( )t.h ns eat, edetermining the sef’ is naturally embedded in a
yield of (b) is described as in (c) in the new ree'graph NP-hard problem. We define a way to look

bank. . .
) _ for the optimal grammars by translating our prob-
C defines a new version of the treebank that saf,

_ i -~“1em to a well known graph problem. Létbe the
isfies the UNTS property. Our goal is to obtain a

bankl” h th ' and hank the set of sentences in a treebank, and/gt) be
treebankl™ such that (al” an Tare.tree anks all the possible non-empty proper substringg.of
over the same set of sentences, Tb)is UNTS,

S _ We build a weighted undirected graghin terms
andf (€)T"is the ChIOS?]St treefbarl]nk tb n tlern;]s of of the treebank as follows. Nodesdhcorrespond
performance. The three of them imply that any,, strings inS(L). The weight of a node is a func-

other UNTS grammar is not as similar as the ong; w(s) that models our interest of havingse-

we found. lected as a constituent(s) is defined in terms of

- some information derived from the gold treebank
3 Finding the Best UNTS Grammar T and we discuss it later in this section. Finally,

As our goal is to find the closest grammar in termgW0 Nodes: andb are connected by an edge if their
of performance, we need to define first a WeighltWQ corresponding strings c_onflllct in a sentence of
for each possible grammar and second, an algd- (I-€:, they are not compatible if).

rithm that searches for the grammar with the best Not all elements of. are inS(L). We did not
weight. Ideally, the weight of a candidate gram-include L in S(L) for two practical reasons. The
mar should be in terms aof'1, but we can show first one is that to requird. in S(L) is too re-
that optimization of this particular metric is com- strictive. It states that all strings ih are in fact
putationally hard. Instead of definingl as their constituents. If two stringib and bc of L oc-
score, we introduce a new metric that is easier t@ur overlapped in a third stringbc then there is
optimize, we find the best grammar for this met-no UNTS grammar capable of having the three of
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Figure 1: (a) and (b) are two subtrees that show “in the dark” as ditteerg and as a distituent respec-

tively. (c) shows the result of choosing “in the dark” as a constituent.

them as constituents. The second one is that inmize c¢(s) and minimized(s) at the same time.
cluding them produces graphs that are too sparsé&his can be done by defining the contribution of a
If they are included in the graph, we know thatstring s to the overall score as

any solution should contain them, consequently,

all their neighbors do not belong to any solution w(s) = c(s) — d(s).

and they can be removed from the graph. Our SXWith this definition ofw, the weightW (C) =
periments show that the graph that results from re
scc w(s) becomes the number of constituents

moving nodes related to nodes representing strin
mLarge too small to produce an |Eterestln gresul?gf: T that are inT minus the number of con-
P y 9 stituents that do not. If we define the number of

By means of representing the treebank as Rits to be H(C) = 3", ... c(s) and the number of

graph, selecting a set of constituedtsC S(L) missesto be M(C) = 3. d(s) we have that
is equivalent to selecting an independent set of s€C

nodes in the graph. Amdependent set is a sub- W(C) = H(C) — M(C). 1)
set of the set of nodes that do not have any pair
of nodes connected by an edge. Clearly, there are As we confirm in Section 5, graphs tend to be
exponentially many possible ways to select an invery big. In order to reduce the size of the graphs,
dependent set, and each of these sets represents a string s hasw(s) < 0, we do not include its
set of constituents. But, since we are interested igorresponding node in the graph. An independent
the best set of constituents, we associate to eactet that does not includehas an equal or higher
independent se€’ the weightW(C) defined as W than the same set including
> sccw(s). Our aim is then to find a set’,q. For example, letI’ be the treebank in Fig-
that maximizes this weight. This problemisawellure 2 (a). The sets of substrings such that
known problem of graph theory known in the lit- w(c) > 0 is {da,cd,be, cda,ab,bch}. The
erature as the Maximum Weight Independent Segraph that corresponds to this set of strings is
(MWIS) problem. This problem is also known to given in Figure 3. Nodes corresponding to
be NP-hard (Karp, 1972). strings {dabch, beda, abe, abf, abg, bei, daj} are

We still have to choose a definition far(s).  Not shown in the figure because the strings do
We want to find the grammar that maximizeés.  not belong toS(L). The figure also shows the
Unfortunately,/"1 can not be expressed in terms of Weights associated to the substrings according to
a sum of weights. Maximization of'1 is beyond their counts in Figure 2 (a). The shadowed nodes
the expressiveness of our model, but our strateggorrespond to the independent set that maximizes
is to define a measure that correlates withand W The trees in the Figure 2 (b) are the sentences
that can be expressed as a sum of weights. of the treebank parsed according the optimal inde-

In order to introduce our measure, we first de-Pendent set.
fine ¢(s) andd(s) as the number of times a string
s appears in the gold treebafikas a constituent
and as a distituent respectively. Observe that iEven though finding the independent set that max-
we choose to include as a constituent of’, the  imizes W is an NP-Hard problem, there are in-
resulting treebani” contains all the:(s) + d(s)  stances where it can be effectively computed, as
occurrences of as a constituent:(s) of thes oc-  we show in the next section. The €f,,, max-
currences irl” are constituents as they arelh imizes W for the WSJ10 and we know that all
andd(s) of the occurrences are constituentdih  othersC produces a lower value d¥. In other
but are in fact distituents ifi. We want to max- words, the se’,,,,, produce a treebarik,,, .. that

An Upper Bound for F1
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Figure 2: (a) A gold treebank. (b) The treebank generated by the gratimal U {cd, ab, cda}.

1 1

"
S

Figure 3: Graph for the treebank of Figure 2.

1

is the closest UNTS version to the WSJ10 interms__ . . . o
dpreC|3|on and recall: precisiog== and recalll.

of W. We can compute the precision, recall an
F1 for C,,4, but there is no warranty that thiél
score is the best for all the UNTS grammars. Thi

F'1-weights for all possible UNTS grammars re-
spectively. Then, ifw is an upper bound o,
then f(w) is an upper bound df. The functionf

is defined as follows:

) =1 (52 501) @
K
whereFl(p,r) = 224, andK = Y- g c(s) is

the total number of constituents in the gold tree-
bankT. From it, we can also derive values for

A recall of 1 is clearly an upper bound for all the

éoossible values of recall, but the value given for

is the case becaus&l and W do not define the precision is not necessarily an upper bound for all

same ordering over the family of candidate con

stituent setg: there are gold treebanks (used
for computing the metrics), and set§, C> such
that F1(Cy) < F1(Cy) andW (Cy) > W(Cy).
For example, consider the gold treebankn Fig-

ure 4 (a). The table in Figure 4 (b) displays two
setsC and (5, the treebanks they produce, and

their values off'1 andW. Note thatCs is the re-
sult of adding the string f to C, also note that
clef) = 1andd(ef) = 2. This improves the'1
score but produces a low#r'.

The F'1 measure we work with is the one de-
fined in the recent literature of unsupervised pars

ing (Klein and Manning, 2004)F'1 is defined in

terms of Precision and Recall as usual, and the IaI
two measures are micro-averaged measures th%ﬁ

T

the possible values of precision. It might exist a

grammar having a higher value of precision but
whoseF'1 has to be below our upper bound.

The rest of section shows th#{1W) is an up-
per bound forF'1, the reader not interested in the
technicalities can skip it.

The key insight for the proof is that both metrics
F'1 andWW can be written in terms of precision and
recall. LetT be the treebank that is used to com-
pute all the metrics. And Ief” be the treebank
produced by a given constituent €€t If a string
s belongs toC, then itsc(s) + d(s) occurrences
in 7" are marked as constituents. Moreoveis
correctly tagged a(s) number of times while it
is incorrectly tagged d(s) number of times. Us-
this, P, R and F'1 can be computed faf' as
ows:

include full-span brackets, and that ignore both

unary branches and brackets of span one. For sim-
plicity, the previous example does not count the

full-span brackets.

As the example shows, the upper boundfior
might not be an upper bound f1, but it is pos-

sible to find a way to define an upper bound of

F'1 using the upper bound d¥. In this section
we define a functiory’ with the following prop-
erty. LetX andY be the sets ofV/-weights and
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@)

a b d e f e f h e f i
(ab)c a(bd) (ef)g efh efi
(b)
C T, P R F1 W
C1 = {abc,abd,efg,efh,efi,ab} {(ab)c, (ab)d,efg,efh,efi} 50% | 33% | 40% 1-1=0
Cy = {abc,abd,efg,efh,efi,ab,ef} | {(ab)c, (ab)d, (ef)g, (ef)h,(ef)i} || 40% | 67% | 50% || 2 -3 = —1

Figure 4: (a) A gold treebank. (b) Two grammars, the treebanks thesragen and their scores.

W can also be written in terms @ and R as fixed weightiW = w¢. The function is monoton-
1 ically increasing inr, so we can apply it to both
wW(C)=(2- m)R(C)K (5) sides of the following inequalityc < 1, which is

trivially true. As result, we geflc < f(wc¢) as
This formula is proved to be equivalent to Equa-required. The second inequality is proved by ob-
tion (1) by replacingP(C) and R(C') with equa-  serving thatf(w) is monotonically increasing in
tions (3) and (4) respectively. Using the last twow, and by applying it to both sides of the hypothe-
equations, we can rewrit€1 andW takingp and  sisw. < w.

r, representing values of precision and recall, as

parameters: 5 UNTSBoundsfor the WSJ10 Treebank
2pr In this section we focus on trying to find real upper
Fl(p,r) = Pt bounds building the graph for a particular treebank
1 T. We find the best independent set, we build the
Wi(p,r) = (2 - E)T’K (6)  UNTS versiorT},., of T and we compute the up-

per bound forF'1. The treebank we use for exper-
Using these equations, we can prove tlfat iments is the WSJ10, which consists of the sen-
correctly translates upper bounds1df to upper tences of the WSJ Penn Treebank whose length
bounds ofF'1 using calculus. In contrast t61, is at most 10 words after removing punctuation
W not necessarily take values betw®andl. In-  marks (Klein and Manning, 2004). We also re-
stead, it takes values betwe&hand —oco. More-  moved lexical entries transforming POS tags into
over, it is negative whep < % and goes to-oo  our terminal symbols as it is usually done (Klein
whenp goes to0. Let C be an arbitrary UNTS and Manning, 2004; Bod, 2006a).
grammar, and lepc, rc andwe be its precision, We start by finding the best independent set. To
recall andW-weight respectively. Letv be our solve the problem in the practice, we convert it
upper bound, so thats < w. If f1¢ is defined into an Integer Linear Programming (ILP) prob-
asF1(pc,rc) we needto show thatle < f(w). lem. ILP is also NP-hard (Karp, 1972), but there
We boundf1¢ in two steps. First, we show that is software that implements efficient strategies for
solving some of its instances (Achterberg, 2004).
fle < f(we) ILP problems are defined by three parameters.
First, there is a set of variables that can take val-
ues from a finite set. Second, there is an objective
Flwe) < fw). function that has to be maximized, and third, there
is a set of constraints that must be satisfied. In our
The first inequality is proved by observing thatcase, we define a binary variabte € {0, 1} for
flec andf(wce) are the values of the function every nodes in the graph. Its value is 1 or 0, that
respectively determines the presence or absence of

and second, we show that

fl(r)=F1 (1W7r> s in the setC),... The objective function is
~ Kr
at the pOintSr = rC and’l“ = 1 reSpeCtiver. SE;(L) xsw(s)

This function corresponds to the line defined by
the F'1 values of all possible models that have aThe constraints are defined using the edges of the
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graph. For every edgésy, s2) in the graph, we Gold constituents K 35302
add the following constraint to the problem: Strings |S(L)| | 68803
Nodes 7029

Ts; + Tsy <1 Edges 1204

The 7422 trees of th_e WSJ10 treebank have a 1hpje 1 Figures for the WSJ10 and its graph.
total of 181476 substrings of length> 2, that

form the setS(L) of 68803 different substrings. Hits H | 22169
The number of substrings ifi(L) does not grow Misses | M | 2127
too much with respect to the number of strings in Weight | W | 20042
L because substrings are sequences of POS tags, Precisionl 7| 91.2%
meaning that each substring is very frequent in the Recall R | 62.8%
corpus. If substrings were made out of words in- F1 1 74.4%

stead of POS tags, the number of substrings would
grow much faster, making the problem harder to
solve. Moreover, removing the stringsuch that
w(s) < 0 gives a total of only7029 substrings.
Since there is a node for each substring, the result- Table 3 shows results that allow us to com-
ing graph contain§029 nodes. Recall that there pare the upper bounds with state-of-the-art pars-
is an edge between two strings if they occur overing scores. BestW corresponds to the scores of
lapped. Our graph contaifif04 edges. The ILP T,,., and UBoundF1 is the result of our transla-
version hasr029 variables,1204 constraints and tion function f. From the table we can see that
the objective function sums ov&029 variables. an unsupervised parser based on UNTS grammars
These numbers are summarized in Table 1. may reach a sate-of-the-art performance over the
The solution of the ILP problem is a set of WSJ10. RBranch is a WSJ10 version where all
6583 variables that are set to one. This set corretrees are binary and right branching. DMV, CCM
sponds to a seft),,,.. of nodes in our graph of the and DMV+CCM are the results reported in Klein
same number of elements. Using,,, we build and Manning (2004). U-DOP and UML-DOP
a new versiorl,,,, of the WSJ10, and compute are the results reported in Bod (2006b) and Bod
its weightWW, precision, recall an@'1. Their val-  (2006a) respectively. Incremental refers to the re-
ues are displayed in Table 2. Since the elementsults reported in Seginer (2007).
of L were not introduced it$ (L), elements of_ We believe that our upper bound is a generous
are not necessarily i@,,,,, but in order to com- one and that it might be difficult to achieve it for
pute precision and recall, we add them by handtwo reasons. First, since the WSJ10 corpus is
Strictly speaking, the set of constituents that wea rather flat treebank, from th&8803 substrings
use for buildingT},,4z iS Ciraz plus the full span  only 10% of them are such that(s) > d(s). Our
brackets. procedure has to decide among thi¥% which
We can, using equation (2), compute the up-of the strings are constituents. An unsupervised
per bound ofF'1 for all the possible scores of all method has to choose the set of constituents from
UNTS grammars that use POS tags as alphabet: the set of all68803 possible substrings. Second,
we are supposing a recall 890% which is clearly
f(Wmaz) = F1 (2 — }umwl) — 82.9% too optimistic. We beI_ievFe that we can find a
tighter upper bound by finding an upper bound for
recall, and by rewriting/ in equation (2) in terms
of the upper bound for recall.
1 It must be clear the scope of the upper bound
= 69.8% we found. First, note that it has been computed
over the WSJ10 treebank using the POS tags as
while its recall isk = 100%. Note from the pre- the alphabet. Any other alphabet we use, like for
vious section thaP (w,,; ) is not an upper bound example words, or pairs of words and POS tags,
for precision but just the precision associated tachanges the relation of compatibility among the
the upper bound (wpqz)- substrings, making a completely different universe

Table 2: Summary of the scores 6},

The precision for this upper bound is

P(wma:p) =

2 _ Wmax
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[ Model UP UR [F1 | alphabet.

RBranch 55.1 70.0 | 61.7 From a more abstract perspective, we intro-
DMV 46.6 59.2 | 52.1 duced a different approach to assess the usefulness
CCM 64.2 816 | 71.9 of a grammatical formalism. Usually, formalism
DMV+CCM 69.3 88.0 | 77.6 are proved to have interesting learnability proper-
U-DOP 70.8 88.2 | 785 ties such as PAC-learnability or convergence of a
UML-DOP 82.9 probabilistic distribution. We present an approach
Incremental 75.6 76.2 | 75.9 that even though it does not provide an effective
BestW(UNTS) 912 628 | 744 way of computing the best grammar in an unsu-
UBoundF1(UNTS)| 69.8 100.0| 82.2 pervised fashion, it states the upper bound of per-

formance for all the class of UNTS grammars.
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Abstract

In this paper, I show that a problem of
learning a morphological paradigm is sim-
ilar to a problem of learning a partition
of the space of Boolean functions. I de-
scribe several learners that solve this prob-
lem in different ways, and compare their
basic properties.

1 Introduction

Lately, there has been a lot of work on acquir-
ing paradigms as part of the word-segmentation
problem (Zeman, 2007; Goldsmith, 2001; Snover
et al., 2002). However, the problem of learning
the distribution of affixes within paradigms as a
function of their semantic (or syntactic) features is
much less explored to my knowledge. This prob-
lem can be described as follows: suppose that the
segmentation has already been established. Can
we now predict what affixes should appear in
what contexts, where by a ‘context’ I mean some-
thing quite general: some specification of seman-
tic (and/or syntactic) features of the utterance. For
example, one might say that the nominal suffix -
z in English (as in apple-z) occurs in contexts that
involve plural or possesive nouns whose stems end
in a voiced segment.

In this paper, I show that the problem of learn-
ing the distribution of morphemes in contexts
specified over some finite number of features
is roughly equivalent to the problem of learn-
ing Boolean partitions of DNF formulas. Given
this insight, one can easily extend standard DNF-
learners to morphological paradigm learners. I
show how this can be done on an example of
the classical k-DNF learner (Valiant, 1984). This
insight also allows us to bridge the paradigm-
learning problem with other similar problems in

This paper ows a great deal to the input from Ed Stabler.
As usual, all the errors and shortcomings are entirely mine.

the domain of cognitive science for which DNF’s
have been used, e.g., concept learning. I also de-
scribe two other learners proposed specifically for
learning morphological paradigms. The first of
these learners, proposed by me, was designed to
capture certain empirical facts about syncretism
and free variation in typological data (Pertsova,
2007). The second learner, proposed by David
Adger, was designed as a possible explanation of
another empirical fact - uneven frequencies of free
variants in paradigms (Adger, 2006).

In the last section, I compare the learners on
some simple examples and comment on their mer-
its and the key differences among the algorithms.
I also draw connections to other work, and discuss
directions for further empirical tests of these pro-
posals.

2 The problem

Consider a problem of learning the distribution
of inflectional morphemes as a function of some
set of features. Using featural representations, we
can represent morpheme distributions in terms of
a formula. The DNF formulas are commonly used
for such algebraic representation. For instance,
given the nominal suffix -z mentioned in the in-
troduction, we can assign to it the following rep-
resentation:  [(noun; +voiced)stem; +plural) V
(noun; +voiced|stem; +possesive)].  Presum-
ably, features like [plural] or [+voiced] or |stem
(end of the stem) are accessible to the learners’
cognitive system, and can be exploited during
the learning process for the purpose of “ground-
ing” the distribution of morphemes.! This way
of looking at things is similar to how some re-
searchers conceive of concept-learning or word-

lAssuming an a priori given universal feature set, the
problem of feature discovery is a subproblem of learning
morpheme distributions. This is because learning what fea-
ture condition the distribution is the same as learning what

features (from the universal set) are relevant and should be
paid attention to.

Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 66—74,
Athens, Greece, 30 March 2009. (©)2009 Association for Computational Linguistics
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learning (Siskind, 1996; Feldman, 2000; Nosofsky
et al., 1994).

However, one prominent distinction that sets
inflectional morphemes apart from words is that
they occur in paradigms, semantic spaces defin-
ing a relatively small set of possible distinctions.
In the absence of free variation, one can say that
the affixes define a partition of this semantic space
into disjoint blocks, in which each block is asso-
ciated with a unique form. Consider for instance
a present tense paradigm of the verb “to be” in
standard English represented below as a partition
of the set of environments over the following fea-
tures: class (with values masc, fem, both (masc
& fem),inanim,), number (with values +sg and
—sg), and person (with values Ist, 2nd, 3rd).2

am lst. person; fem; +sg.
Ist. person; masc; +sg.
are 2nd. person; fem; +sg.

2nd. person; masc; +sg.
2nd. person; fem; —sg.
2nd. person; masc; —sg.
2nd. person; both; —sg.
1st. person; fem; —sg.
Ist. person; masc; —sg.
1st. person; both; —sg.
3rd. person; masc; —sg
3rd. person; fem; —sg
3rd. person; both; —sg
3rd. person; inanim; —sg
3rd person; masc; +sg
3rd person; fem; +sg
3rd person; inanim; +sg

is

Each block in the above partition can be rep-
resented as a mapping between the phonological
form of the morpheme (a morph) and a DNF for-
mula. A single morph will be typically mapped to
a DNF containing a single conjunction of features
(called a monomial). When a morph is mapped
to a disjunction of monomials (as the morph [-z]
discussed above), we think of such a morph as
a homonym (having more than one “meaning”).
Thus, one way of defining the learning problem is
in terms of learning a partition of a set of DNF’s.

These particular features and their values are chosen just
for illustration. There might be a much better way to repre-
sent the distinctions encoded by the pronouns. Also notice
that the feature values are not fully independent: some com-
binations are logically ruled out (e.g. speakers and listeners
are usually animate entities).
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Alternatively, we could say that the learner has
to learn a partition of Boolean functions associated
with each morph (a Boolean function for a morph
m maps the contexts in which m occurs to true,
and all other contexts to false).

However, when paradigms contain free varia-
tion, the divisions created by the morphs no longer
define a partition since a single context may be as-
sociated with more than one morph. (Free vari-
ation is attested in world’s languages, although
it is rather marginal (Kroch, 1994).) In case a
paradigm contains free variation, it is still possible
to represent it as a partition by doing the follow-
ing:

e Take a singleton partition of morph-
meaning pairs (m,r) and merge any cells
that have the same meaning . Then merge
those blocks that are associated with the

same set of morphs.

Below is an example of how we can use this trick
to partition a paradigm with free-variation. The
data comes from the past tense forms of “to be” in
Buckie English.

was Ist. person; fem; +sg.
Ist. person; masc; +sg.
3rd person; masc; +sg
3rd person; fem; +sg
3rd person; inanim; +sg
2nd. person; fem; +sg.
2nd. person; masc; +sg.
2nd. person; fem; —sg.
2nd. person; masc; —sg.
2nd. person; both; —sg.
Ist. person; fem; —sg.
Ist. person; masc; —sg.
Ist. person; both; —sg.

was/were

were 3rd. person; masc; —sg
3rd. person; fem; —sg
3rd. person; both; —sg

3rd. person; inanim; —sg

In general, then, the problem of learning the
distribution of morphs within a single inflectional
paradigm is equivalent to learning a Boolean par-
tition.

In what follows, I consider and compare several
learners for learning Boolean partitions. Some of
these learners are extensions of learners proposed
in the literature for learning DNFs. Other learners



were explicitly proposed for learning morphologi-
cal paradigms.

We should keep in mind that all these learners
are idealizations and are not realistic if only be-
cause they are batch-learners. However, because
they are relatively simple to state and to under-
stand, they allow a deeper understanding of what
properties of the data drive generalization.

2.1 Some definitions

Assume a finite set of morphs, X, and a finite set
of features F'. It would be convenient to think of
morphs as chunks of phonological material cor-
responding to the pronounced morphemes.> Ev-
ery feature f € F' is associated with some set
of values V} that includes a value [x], unspec-
ified. Let S be the space of all possible com-
plete assignments over F' (an assignment is a set
{fi = V¢|Vfi € F}). We will call those assign-
ments that do not include any unspecified features
environments. Let the set S’ C S correspond to
the set of environments.

It should be easy to see that the set .S forms a
Boolean lattice with the following relation among
the assignments, <p: for any two assignments a;
and a9, a1 <p asy iff the value of every feature f;
in a; is identical to the value of f; in a0, unless f;
is unspecified in as. The top element of the lattice
is an assignment in which all features are unspec-
ified, and the bottom is the contradiction. Every
element of the lattice is a monomial corresponding
to the conjunction of the specified feature values.
An example lattice for two binary features is given
in Figure 1.

Figure 1: A lattice for 2 binary features
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A language L consists of pairs from ¥ x 5.
That is, the learner is exposed to morphs in differ-
ent environments.

SHowever, we could also conceive of morphs as functions

specifying what transformations apply to the stem without
much change to the formalism.

One way of stating the learning problem is to
say that the learner has to learn a grammar for the
target language L (we would then have to spec-
ify what this grammar should look like). Another
way is to say that the learner has to learn the lan-
guage mapping itself. We can do the latter by us-
ing Boolean functions to represent the mapping of
each morph to a set of environments. Depending
on how we state the learning problem, we might
get different results. For instance, it’s known that
some subsets of DNF’s are not learnable, while
the Boolean functions corresponding to them are
learnable (Valiant, 1984). Since I will use Boolean
functions for some of the learners below, I intro-
duce the following notation. Let B be the set of
Boolean functions mapping elements of S’ to true
or false. For convenience, we say that b, corre-
sponds to a Boolean function that maps a set of en-
vironments to frue when they are associated with
m in L, and to false otherwise.

3 Learning Algorithms

3.1 Learner 1: an extension of the Valiant
Kk-DNF learner

An observation that a morphological paradigm can
be represented as a partition of environments in
which each block corresponds to a mapping be-
tween a morph and a DNF, allows us to easily con-
vert standard DNF learning algorithms that rely
on positive and negative examples into paradigm-
learning algorithms that rely on positive examples
only. We can do that by iteratively applying any
DNF learning algorithm treating instances of in-
put pairs like (m,e) as positive examples for m
and as negative examples for all other morphs.

Below, I show how this can be done by ex-
tending a k-DNF* learner of (Valiant, 1984) to a
paradigm-learner. To handle cases of free varia-
tion we need to keep track of what morphs occur
in exactly the same environments. We can do this
by defining the partition II on the input following
the recipe in (1) (substituting environments for the
variable r).

The original learner learns from negative exam-
ples alone. It initializes the hypothesis to the dis-
junction of all possible conjunctions of length at
most k, and subtracts from this hypothesis mono-
mials that are consistent with the negative ex-
amples. We will do the same thing for each

4L-DNF formula is a formula with at most & feature val-
ues in each conjunct.



morph using positive examples only (as described
above), and forgoing subtraction in a cases of free-
variation. The modified learner is given below.
The following additional notation is used: Lex is
the lexicon or a hypothesis. The formula D is a
disjunction of all possible conjunctions of length
at most k. We say that two assignments are con-
sistent with each other if they agree on all specified
features. Following standard notation, we assume
that the learner is exposed to some text " that con-
sists of an infinite sequence of (possibly) repeating
elements from L. ¢; is a finite subsequence of the
first j elements from 7T". L(t;) is the set of ele-
ments in ¢;.

Learner 1 (input: ¢;)

1. set Lex
L(t;)}

. For each (m,e) € L(t;), for each
m' s.t. =3 block bl € II of L(t;),
(m,e) € bl and (m’,e) € bl:
replace (m/, f) in Lex by (m/, f')
where f’ is the result of removing
every monomial consistent with e.

{{(m,D)| I(m,e) €

This learner initially assumes that every morph
can be used everywhere. Then, when it hears one
morph in a given environment, it assumes that no
other morph can be heard in exactly that environ-
ment unless it already knows that this environment
permits free variation (this is established in the
partition IT).

4 Learner 2:

The next learner is an elaboration on the previous
learner. It differs from it in only one respect: in-
stead of initializing lexical representations of ev-
ery morph to be a disjunction of all possible mono-
mials of length at most k, we initialize it to be the
disjunction of all and only those monomials that
are consistent with some environment paired with
the morph in the language. This learner is simi-
lar to the DNF learners that do something on both
positive and negative examples (see (Kushilevitz
and Roth, 1996; Blum, 1992)).

So, for every morph m used in the language, we
define a disjunction of monomials D, that can be
derived as follows. (i) Let F,,, be the enumeration
of all environments in which m occurs in L (ii)
let M; correspond to a set of all subsets of feature
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values in e;, e; € F (iii) let D,,, be \/ M, where a
set s € M iff s € M;, for some 1.

Learner 2 can now be stated as a learner that
is identical to Learner 1 except for the initial set-
ting of Lex. Now, Lex will be set to Lex :
{(m, Dyu)| Am,e) € L(t,)}.

Because this learner does not require enumer-
ation of all possible monomials, but just those
that are consistent with the positive data, it can
handle “polynomially explainable” subclass of
DNPF’s (for more on this see (Kushilevitz and Roth,
1996)).

5 Learner 3: a learner biased towards
monomial and elsewhere distributions

Next, I present a batch version of a learner I pro-
posed based on certain typological observations
and linguists’ insights about blocking. The typo-
logical observations come from a sample of verbal
agreement paradigms (Pertsova, 2007) and per-
sonal pronoun paradigms (Cysouw, 2003) show-
ing that majority of paradigms have either “mono-
mial” or “elsewhere” distribution (defined below).

Roughly speaking, a morph has a monomial dis-
tribution if it can be described with a single mono-
mial. A morph has an elsewhere distribution if
this distribution can be viewed as a complement
of distributions of other monomial or elsewhere-
morphs. To define these terms more precisely I
need to introduce some additional notation. Let
()ex be the intersection of all environments in
which morph x occurs (i.e., these are the invariant
features of x). This set corresponds to a least up-
per bound of the environments associated with x in
the lattice (S, <g), call it lub,.. Then, let the min-
imal monomial function for a morph z, denoted
mm,, be a Boolean function that maps an envi-
ronment to true if it is consistent with [ub, and
to false otherwise. As usual, an extension of a
Boolean function, ext(b) is the set of all assign-
ments that b maps to true.

2) Monomial distribution
A morph x has a monomial distribution iff

by = mmy.

The above definition states that a morph has a
monomial distribution if its invariant features pick
out just those environments that are associated
with this morph in the language. More concretely,
if a monomial morph always co-occurs with the
feature +singular, it will appear in all singular en-



vironments in the language.

3) Elsewhere distribution
A morph z has an elsewhere distribution
iff by = mmg — (mmg, Vmmg, V...V
(mmy,,)) forall z; # = in X.

The definition above amounts to saying that a
morph has an elsewhere distribution if the envi-
ronments in which it occurs are in the extension
of its minimal monomial function minus the min-
imal monomial functions of all other morphs. An
example of a lexical item with an elsewhere distri-
bution is the present tense form are of the verb “to
be”’, shown below.

Table 1: The present tense of “to be” in English
sg. pl
1p. | am are

2p. | are are
3p. | is are

Elsewhere morphemes are often described in
linguistic accounts by appealing to the notion of
blocking. For instance, the lexical representation
of are is said to be unspecified for both person
and number, and is said to be “blocked” by two
other forms: am and is. My hypothesis is that
the reason why such non-monotonic analyses ap-
pear so natural to linguists is the same reason for
why monomial and elsewhere distributions are ty-
pologically common: namely, the learners (and,
apparently, the analysts) are prone to generalize
the distribution of morphs to minimal monomi-
als first, and later correct any overgeneralizations
that might arise by using default reasoning, i.e. by
positing exceptions that override the general rule.
Of course, the above strategy alone is not sufficient
to capture distributions that are neither monomial,
nor elsewhere (I call such distributions “overlap-
ping”, cf. the suffixes -en and -t in the German
paradigm in Table 2), which might also explain
why such paradigms are typologically rare.

Table 2: Present tense of some regular verbs in
German

sg.  pl
Ip. | -e -en
2p. | -st -t
3p. | -t -en

The original learner I proposed is an incre-
mental learner that calculates grammars similar
to those proposed by linguists, namely grammars
consisting of a lexicon and a filtering “blocking”
component. The version presented here is a sim-
pler batch learner that learns a partition of Boolean
functions instead.’ Nevertheless, the main proper-
ties of the original learner are preserved: specifi-
cally, a bias towards monomial and elsewhere dis-
tributions.

To determine what kind of distribution a morph
has, I define a relation C. A morph m stands in a
relation C to another morph m/ if I(m,e) € L,
such that lub,, is consistent with e. In other
words, mCm’ if m occurs in any environment
consistent with the invariant features of m’. Let
C™ be a transitive closure of C.

Learner 3 (input: ¢;)

1. Let S(t;) be the set of pairs in ¢; containing
monomial- or elsewhere-distribution morphs.
That is, (m,e) € S(t;) iff ~3m’ such that
mCTm’ and m'C*Tm.

2. Let O(tj) = t; — S(t;) (the set of all other
pairs).

3. A pair (m,e) € S is a least element of S
iff ~3(m/, e’y € (S — {(m,e)}) such that

m/'Ctm.

4. Given a hypothesis Lex, and for any expres-
sion (m,e) € Lex: let rem((m,e), Lex) =
(m, (i, — {b] (', b) € Lex}))?

1. set S := S(t;) and Lex := ()

2. While S # (: remove a least x
from S and set Lex := Lex U
rem(zx, Lex)

3. Set Lex := Lex U O(t;).

This learner initially assumes that the lexicon is
empty. Then it proceeds adding Boolean functions
corresponding to minimal monomials for morphs
that are in the set S(¢;) (i.e., morphs that have ei-
ther monomial or elsewhere distributions). This

51 thank Ed Stabler for relating this batch learner to me
(p.c.).

SFor any two Boolean functions b, b’: b—b' is the function
that maps e to 1 iff e € ext(b) and e ¢ ext(b’). Similarly,
b+ ¥ is the function that maps e to 1 iff e € ext(b) and
e € ext(V).



is done in a particular order, namely in the or-
der in which the morphs can be said to block
each other. The remaining text is learned by rote-
memorization. Although this learner is more com-
plex than the previous two learners, it generalizes
fast when applied to paradigms with monomial
and elsewhere distributions.

5.1 Learner 4: a learner biased towards
shorter formulas

Next, I discuss a learner for morphological
paradigms, proposed by another linguist, David
Adger. Adger describes his learner informally
showing how it would work on a few examples.
Below, I formalize his proposal in terms of learn-
ing Boolean partitions. The general strategy of
this learner is to consider simplest monomials first
(those with the fewer number of specified features)
and see how much data they can unambiguously
and non-redundantly account for. If a monomial
is consistent with several morphs in the text - it is
discarded unless the morphs in question are in free
variation. This simple strategy is reiterated for the
next set of most simple monomials, etc.

Learner 4 (input ¢;)

1. Let M; be the set of all monomials over F'
with ¢ specified features.

Let B; be the set of Boolean functions from
environments to truth values corresponding
to M; in the following way: for each mono-
mial mn € M, the corresponding Boolean
function b is such that b(e) = 1 if e is an
environment consistent with mn; otherwise
b(e) = 0.

. Uniqueness check:
For a Boolean function b, morph m, and text
tj let unique(b,m,t;) = 1 iff ext(by,) C
ext(b) and =3(m/,e) € L(tj), st. e €
ext(b) and e & ext(by,).

1. set Lex :=Y x Jand i := 0;

2. while Lex does not correspond to
L(t;) AND i < |F| do:
for each b € B;, for each m, s.t.
I(m,e) € L(t;):

o if unique(b,m,t;) = 1 then
replace (m, f) with (m, f + b)
in Lex

7—1i+1
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This learner considers all monomials in the or-
der of their simplicity (determined by the num-
ber of specified features), and if the monomial in
question is consistent with environments associ-
ated with a unique morph then these environments
are added to the extension of the Boolean function
for that morph. As a result, this learner will con-
verge faster on paradigms in which morphs can be
described with disjunctions of shorter monomials
since such monomials are considered first.

6 Comparison

6.1 Basic properties

First, consider some of the basic properties of the
learners presented here. For this purpose, we will
assume that we can apply these learners in an iter-
ative fashion to larger and larger batches of data.
We say that a learner is consistent if and only if,
given a text t;, it always converges on the gram-
mar generating all the data seen in ¢; (Osherson
et al., 1986). A learner is monotonic if and only
if for every text ¢ and every point j < k, the hy-
pothesis the learner converges on at ¢; is a subset
of the hypothesis at ¢; (or for learners that learn
by elimination: the hypothesis at ¢; is a superset
of the hypothesis at ). And, finally, a learner is
generalizing if and only if for some ¢; it converges
on a hypothesis that makes a prediction beyond the
elements of ¢;.

The table below classifies the four learners ac-
cording to the above properties.

Learner consist. monoton. generalizing
Learner 1 yes yes yes
Learner 2 yes yes yes
Learner 3 yes no yes
Learner 4 yes yes yes

All learners considered here are generalizing
and consistent, but they differ with respect to
monotonicity. Learner 3 is non-monotonic while
the remaining learners are monotonic. While
monotonicity is a nice computational property,
some aspects of human language acquisition are
suggestive of a non-monotonic learning strategy,
e.g. the presence of overgeneralization errors and
their subsequent corrections by children(Marcus et
al., 1992). Thus, the fact that Learner 3 is non-
monotonic might speak in its favor.



6.2 Illustration

To demonstrate how the learners work, consider
this simple example. Suppose we are learning the
following distribution of morphs A and B over 2
binary features.

@ Example 1
| +1  —fl
+2 | A B
—f2 | B B

Suppose further that the text 3 is:

A +f1;+f2
B —f1;+f2
B +f1;—f2

Learner 1 generalizes right away by assuming
that every morph can appear in every environment
which leads to massive overgeneralizations. These
overgeneralizations are eventually eliminated as
more data is discovered. For instance, after pro-
cessing the first pair in the text above, the learner
“learns” that B does not occur in any environ-
ment consistent with (+ f1; + f2) since it has just
seen A in that environment. After processing ts,
Learner 1 has the following hypothesis:

(+fL+f2) v (= f1;—f2)
(=f1) v (-r2)

That is, after seeing t3, Learner 2 correctly pre-
dicts the distribution of morphs in environments
that it has seen, but it still predicts that both A
and B should occur in the not-yet-observed en-
vironment, (—f1; —f2). This learner can some-
times converge before seeing all data-points, es-
pecially if the input includes a lot of free varia-
tion. If fact, if in the above example A and B were
in free variation in all environments, Learner 1
would have converged right away on its initial set-
ting of the lexicon. However, in paradigms with no
free variation convergence is typically slow since
the learner follows a very conservative strategy of
learning by elimination.

Unlike Learner 1, Learner 2 will converge after
seeing t3. This is because this learner’s initial hy-
pothesis is more restricted. Namely, the initial hy-
pothesis for A includes disjunction of only those
monomials that are consistent with (4 f1;+f2).
Hence, A is never overgeneralized to (— f1; — f2).
Like Learner 1, Learner 2 also learns by elimina-

A
B
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tion, however, on top of that it also restricts its ini-
tial hypothesis which leads to faster convergence.

Let’s now consider the behavior of learner 3 on
example 1. Recall that this learner first computes
minimal monomials of all morphs, and checks
in they have monomial or elsewhere distributions
(this is done via the relation C"). In this case, A
has a monomial distribution, and B has an else-
where distribution. Therefore, the learner first
computes the Boolean function for A whose exten-
sion is simply (4 f1; + f2); and then the Boolean
function for B, whose extension includes environ-
ments consistent with (*;*) minus those consistent
with (4 f1; 4 f2), which yields the following hy-
pothesis:

ext(by)
ext(bp)

[+f1;+£2]
[—fL+f2][+f1 = f2][— f1; — f2]

That is, Learner 3 generalizes and converges on
the right language after seeing text ¢s.

Learner 4 also converges at this point. This
learner first considers how much data can be un-
ambiguously accounted for with the most minimal
monomial (*;*). Since both A and B occur in en-
vironments consistent with this monomial, noth-
ing is added to the lexicon. On the next round,
it considers all monomials with one specified fea-
ture. 2 such monomials, (—f1) and (—f2), are
consistent only with B, and so we predict B to ap-
pear in the not-yet-seen environment (—f1; — f2).
Thus, the hypothesis that Learner 4 arrives at is the
same as the hypothesis Learners 3 arrives at after
seeing 3.

6.3 Differences

While the last three learners perform similarly on
the simple example above, there are significant
differences between them. These differences be-
come apparent when we consider larger paradigms
with homonymy and free variation.

First, let’s look at an example that involves a
more elaborate homonymy than example 1. Con-
sider, for instance, the following text.

5) Example 2
A [+ +f2+13]
A [+f1;—f2;—f3]
A [+ f1+ 25— f3]
A [—f1;,+f2;4+f3]
B [—f1;—f2;—f3]



Given this text, all three learners will differ in
their predictions with respect to the environ-
ment (—f1;+f2;—f3). Learner 2 will pre-
dict both A and B to occur in this environment
since not enough monomials will be removed
from representations of A or B to rule out ei-
ther morph from occurring in (—f1;4f2; — f3).
Learner 3 will predict A to appear in all envi-
ronments that haven’t been seen yet, including
(=f1;+f2;—f3). This is because in the cur-
rent text the minimal monomial for A is (x; ;)
and A has an elsewhere distribution. On the
other hand, Learner 4 predicts B to occur in
(=f1;+f2;—f3). This is because the exten-
sion of the Boolean function for B includes
any environments consistent with (—f1; —f3) or
(—f1; — f2) since these are the simplest monomi-
als that uniquely pick out B.

Thus, the three learners follow very different
generalization routes. Overall, Learner 2 is more
cautious and slower to generalize. It predicts free
variation in all environments for which not enough
data has been seen to converge on a single morph.
Learner 3 is unique in preferring monomial and
elsewhere distributions. For instance, in the above
example it treats A as a ‘default’ morph. Learner
4 is unique in its preference for morphs describ-
able with disjunction of simpler monomials. Be-
cause of this preference, it will sometimes gener-
alize even after seeing just one instance of a morph
(since several simple monomials can be consistent
with this instance alone).

One way to test what the human learners do
in a situation like the one above is to use artifi-
cial grammar learning experiments. Such experi-
ments have been used for learning individual con-
cepts over features like shape, color, texture, etc.
Some work on concept learning suggests that it is
subjectively easier to learn concepts describable
with shorter formulas (Feldman, 2000; Feldman,
2004). Other recent work challenges this idea (La-
fond et al., 2007), showing that people don’t al-
ways converge on the most minimal representa-
tion, but instead go for the more simple and gen-
eral representation and learn exceptions to it (this
approach is more in line with Learner 3).

Some initial results from my pilot experiments
on learning partitions of concept spaces (using ab-
stract shapes, rather than language stimuli) also
suggest that people find paradigms with else-
where distributions easier to learn than the ones
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with overlapping distributions (like the German
paradigms in 2). However, I also found a bias to-
ward paradigms with the fewer number of relevant
features. This bias is consistent with Learner 4
since this learner tries to assume the smallest num-
ber of relevant features possible. Thus, both learn-
ers have their merits.

Another area in which the considered learn-
ers make somewhat different predictions has to
do with free variation. While I can’t discuss
this at length due to space constraints, let me
comment that any batch learner can easily de-
tect free-variation before generalizing, which is
exactly what most of the above learners do (ex-
cept Learner 3, but it can also be changed to do
the same thing). However, since free variation
is rather marginal in morphological paradigms,
it is possible that it would be rather problem-
atic. In fact, free variation is more problematic if
we switch from the batch learners to incremental
learners.

7 Directions for further research

There are of course many other learners one could
consider for learning paradigms, including ap-
proaches quite different in spirit from the ones
considered here. In particular, some recently pop-
ular approaches conceive of learning as matching
probabilities of the observed data (e.g., Bayesian
learning). Comparing such approaches with the
algorithmic ones is difficult since the criteria for
success are defined so differently, but it would
still be interesting to see whether the kinds of
prior assumptions needed for a Bayesian model
to match human performance would have some-
thing in common with properties that the learn-
ers considered here relied on. These properties
include the disjoint nature of paradigm cells, the
prevalence of monomial and elsewhere morphs,
and the economy considerations. Other empirical
work that might help to differentiate Boolean par-
tition learners (besides typological and experimen-
tal work already mentioned) includes finding rele-
vant language acquisition data, and examining (or
modeling) language change (assuming that learn-
ing biases influence language change).
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