The Karamel System and Semitic Languages: Structured MultiTiered
Morphology

Francois Barthélemy
CNAM-Cedric, Paris, France
INRIA-Alpage, Rocquencourt, France

francois.barthelemy@cnam.fr

Abstract one for the root, one for the template (consonant-

_ - vowel pattern) and the last one for the vocaliza-
Karamel is a system for finite-state mor- tjon.

phology which is multi-tape and uses a Such a multi-tiered description may be im-
typed Cartesian produc_t to relate tapes in - plemented using a cascade of 2-tape machines
a structured way. It implements stati- (Beesley, 1998) or using a multi-tape transducer

cally compiled feature structures. Its lan- \where each tier is described by a tape and the sur-
guage allows the use of regular expres- face form by an additional tape. This is the ap-
sions and Generalized Restriction rules to proach of G. A. Kiraz for the Syriac language (Ki-

define multi-tape transducers. Both simul- raz, 2000). Karamel is designed for the later solu-
taneous and successive application of local tjgn.
constraints are possible. This system is in- The multi-tape feature is also interesting for de-

teresting for describing rich and structured scribing related dialects, whenever a great part of
morphologies such as the morphology of the analysis may be shared. A separate tape is ded-
Semitic languages. icated to the surface form in each dialect.

The Semitic Morphology is strongly structured
by the roots. The basis of an analysis is the identi-
Karamel is a system for defining and executingfication of the root. Furthermore, several layers of
multi-tape finite-state transducers where relation2ffixes may be distinguished around the core con-
ships between tapes are expressed using a tré&ining the roots: paradigmatic prefixes; affixes
structure. This structure is obtained through emencoding the person, gender and number; clitics
bedded units, which are used to analyze a tuple gjuch as pronouns. This structure is conveniently
strings recognized by the transducer. For instancélefined using Karamel's units.
the units considered in an example may be affix, In the following section of the paper, we present
form and sentence. Karamel's language, its theoretical background

The system includes a language and an Inte@nd its syntax. Section 3 describe the other as-
grated Development Environment. The languagd€cts of the Karamel System: its development en-
uses extended regular expressions, Computatio,yg'ronment, its current state and future evolutions.
and contextual rules. The environment provides d hen comes an example of Semitic morphology
graphical interface to write and execute finite-state/ritten in Karamel, the description of Akkadian
descriptions. verbal flexion. The last section compares Karamel

Karamel has many applications. For Naturalto some other systems.

Language Prqcessmg,. it may be usgd for morphoé The Karamel language
logical analysis, transliteration, parsing, etc. This
paper is dedicated to the application of Karamel toThe language is based on a subclass of ratio-
the morphological analysis of Semitic languagesnal n-ary relations callednulti-grain relations

for which both multiple tapes and complex struc-which is closed under intersection and difference
tures are useful. (Barthélemy, 2007b). They are defined using ra-

Some descriptions of the morphology of tional expressions extended with a typed Cartesian
Semitic Languages use several tiers. For instanc@roduct. This operator implements the notion of
(McCarthy, 1981) uses four tiers, one for prefixes,unit used to give a tree-structure to tuples of the

1 Introduction

Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages, pages 10-18,
Athens, Greece, 31 March, 2009. (©2009 Association for Computational Linguistics

10

relations. A unit is an inner-node of the structure. numbe) has one component which contains three
A project is a set of finite-state machine definedtapes dig, fr anden).
over the same universe: the same alphabet, the The default value is a non-empty sequence
same tape set, the same units. A project beginsf units of typeseg. Cartesian products are
with declarations defining this universe. It contin-written in regular expressions as tuples with
ues with an ordered sequence of machine definithe type name followed by the components:
tions. {seqg: 2(0?),vingt,twenty} . Compo-
The declaration section contains several clausegdent names may be used instead of their posi-
including classes, tapes and unit definitions. Ation {seg:e=twenty,f=vingt,d=2(07?)}
class of symbols is a finite set of symbols. HereWhen a component is omitted, the default value
are some examples of class definitions: is implied. The notatio{seg} (cf. the default
value of the componert in num) is a unitseg
with default values in all the components. Units
may be embedded:

class short v is a, e, i, u;
class long_v is aa, ee, ii, uu;
class vow is a, e, i, u, long_v;
e{num :{seg:2,vingt,twenty}

A symbol may belong to several classes. In th {seq:2.-deux,-two}

definition of a class, another class name may ap-
pear and is just an abbreviation for all its membersThis example is a structured representation of the
The class names are also used in regular expretiplet (22,vingt-deux,twenty-two)
sions to denote the disjunction of their members. In Karamel, there are three ways of defining a
The symbols written using several letters and/offinite-state transducer: by a regular expression, by
digits, when there is a risk of confusion with a a computation or by a contextual rule. Regular
string of symbols, must be written enclosed by expressions use symbols, classes of symbols, ra-
and>. For instance, the long a is writtexa in the tional operations and standard extensions (for in-
class definitionlpng_v) but in a regular expres- Stance, optionality written ?). Furthermore, inter-
sion, it must be writtercaa> becaus@a denotes section, difference and negation are also available
a string of two short vowels. The bracketing with although these operations are usually not defined
< and> is also used for special characters such agn transducers.
the space< >, punctuation marks (e.gs,>) and Regular expressions are defined using the
the empty string<>. regexp construction:
A tape is declared with its name and the alpha-

regexp zero is
bet of the symbols which may appear on it.

{seg: 0,z eéro,(zero|naught) I
tape dig: <digit>, {seg: <digit> *-0 };
fr, en: <letter>|< >|<->; end

The alphabet is defined using a regular expressiof regexpcontains a non empty sequence of regular

made with symbols, classes and length-preservingxpressions ended with a semicolon. It denotes the

operators such as the disjunction and the differdisjunction of these expressions.

ence. The second way of defining a machine is by ap-
A Karamel unit is a typed Cartesian product. plying operators to already defined machines. All

The type consists in i) a number of componentghe operators used in regular expressions may ap-

and ii) the tapes contained by each component. Ig€ar in such a computation, but there are some

the declaration, there is also a default value foother operators as well. The first one is fitejec-
each component. tion which removes one or several tapes from its

operand. The second one is theternal product
which combines a n-ary relation with a language
on a given tape. It is used tpply a transducer

to a given input which is not split in units yet. All
possible partitioning of the input in units is first
computed, and then it is intersected with one tape
The unitseg (for segmentcontains three compo- of the transducer. The reverse operation is the ex-
nents, each using a single tape. The anitn (for ternal projection which extracts a language from a

unit seg is {d: dig = <digit> *
f: fr = <letter> ;
e: en = <letter>

*

*
—

unit num is
{c: dig, fr, en={seg}+}

11

relation on a given tape by first applying the sim-may lead to a combinatorial explosion. The fea-
ple projection and then removing unit boundariesture structure compilation techniques come from
These two operations are used to transduce a givéBarthélemy, 2007a).

possibly non-deterministic input into an output. A type is defined as follows:
let segments= fstruct Name is
union(star(non_zero),zero); [gen=gender,num=1|2|3]

Thelet s followed by an expression in prefixed wheregender is a class and 1, 2, 3 are sym-
notation with the operators written with letters. bols. Each feature is defined with its name and
The literals are the names of previously definedts domain of values, which is a finite set of sym-
machine. In our example, the expression uses thigols defined by a regular expression. A fea-
machineszero defined by the previousegexp ture structure of this type is written as follows:
andnon_zero (not given here). [Name:gen=masc,num=2] . As usual, it is

The last way for defining a machine consists inpossible to specify only part of the features and
the Generalized Restriction Rules defined in (Yli-their order is not important. The type name at
Jyra and Koskenniemi, 2004). Roughly speakthe beginning is mandatory. Feature structures are
ing, these rules are a modernized version of classompiled using auxiliary symbols which are not
sical Two-Level Rules such as Context Restrictiorknown by the user. The type name denotes a class
and Surface Coercion rules (Koskenniemi, 1983)of symbols containing all the symbols which may
They also are comparable to the rewrite rules obe used to compile a structure of this type, includ-
Xerox Finite-State Tools (Beesley and Karttunen,ing auxiliary symbols.

2003), the difference being that rewrite rules are Regular expressions and contextual rules may
applied in cascades whereas GR rules may be sitse variables which take their values in finite set

multaneous. of symbols. An expression with such a variable
Contextual rules are defined using three regulastands for the disjunction of all the possible val-
expressions: uation of the variables. Variables are especially

useful to express feature structure unification.

The language offers macros calledbrevia-
tions An abbreviation is a notation for an already
declared unit where part of the components is de-
fined in the declaration and another part is defined
in the call. Here is an example.

gr_rule rzero is

{num}
constraint

{num:seg= {seg }* {seg:#0 }{seg }*}
=> {num:seg= {seg:#0,z éero }}

end

The first expression defines a universe. All the exabbrev teen is {d: dig = <digit>;
pressions in the universe which match the pattern f. fr =<letter> *)
on the left of the arrow must also match the pat- e: en = <letter> *}

tern on the right. The sharp symbol is an auxiliary for {seg: 1 @d, @f,.@e teen}
symbol used to make sure that the 0 on both sideg, 5, expression{teen: 6, seize,six}
i; the same occurrence of this symbol. It identi-jq expanded ifseg: 16,seize,sixteen}
fies thecenterof the contextual rule. For more de- pafore the compilation.
tails about the semantics of Generalized Restric-
tion rules, see (Yli-Jyra and Koskenniemi, 2004). 3 The Karamel System

Karamel implements non-recursive feature
structures. Feature values are ordinary symbol3he core of the system consists in a compiler writ-
and feature structures are typed. The types mus$én in Python which compiles Karamel descrip-
be declared in the declaration section of the detions into finite-state automata which are inter-
scription. Feature Structures may appear anypreted as transducers by the system. The com-
where in regular expressions. They are usually pupiler uses th&SMandLextoolstoolkits by AT&T
on one or several specific tapes. They are statResearch. A Karamel regular expression is first
cally compiled. Feature Structures are to be usedompiled in the Lextools format, then the Lextools
with caution, because they allow the expression o€ompiler is called to compile it in FSM binary for-
long-distance dependencies which are costly anthat. Some Karamel operations over transducers

12

such as the intersection, the union, the concatenas a multilingual description of numbers that re-
tion are directly implemented by the correspond-ates the notation with digits to a written form in
ing FSM operation on automata. Some other opseveral languages (French, English, Finnish). A
erations such as the two projections and the extape is devoted to each language, a tape to the dig-
ternal product are performed by a script calling aits and several tapes for feature structures, some
sequence of FSM computations. of which are language specific. Another project

The development environment uses a Graphtransliterates Egyptian hieroglyphs into the Latin
ical User Interface written in HTML, CSS and alphabet, using an intermediate representation on
Javascript. There are three main subparts: proje third tape.
management (creation, deletion, import, export,) .
duplication); project development: creation, deIe-4 An example: the Akkadian verb
tion, renaming, reordering, checking, compilation|n this section, we present an application of
of a machine; machine execution, with optional in-Karamel to Semitic morphology, namely a de-
troduction of run-time input, filtering of the result, scription of Akkadian verbal forms.
projection on one or several tapes. Akkadian is the language of the ancient

A dependency graph is maintained in order toMesopotamia. It was written in cuneiform, from
ensure that a change in one machine is taken intaround 2500 B.C. up to the first century B.C. It
account in all the machines which depend on itis the main representative of the eastern branch of
For instance if there is the following definition: Semitic languages. It is divided in seven main di-
let m3=union(m1,m2); , any change inn; alects with many local variations. Its verbal mor-
implies a recompilation ofns. This recompila- phology is a typical semitic one, with a great num-
tion is not necessarily immediate. A status is assober of triliteral roots, some stems with usual flex-
ciated to each machine. The changerinresults ion (prefixation, reduplication, infixation, vocal-
in a change in the statusesraf andms. ization). There are two infixes, andtn . Their

At the moment, the execution of a machine isPresence is aimost orthogonal with the presence of
possible only through the GUI, using a browser.2 Stem prefix and the reduplication of the second
The development of a C++ or Python function toradical.
interpret the FSM machine with the Karamel se- The description of the morphology in Karamel
mantics is not a difficult task, but it is still to be IS based on a two-level structure. The first level
done. Another weakness of the current versiorfeparates verbal forms in three layers:
of the system is the type-checking which is not
fully implemented. The type system is simple and
the language is strongly typed, so every type error
should be found at compile time. It is not the case
yet.

Karamel will be distributed to a few kind beta- e personal affixes (prefixes and suffixes), which
testers in a near future. We plan to add some test ~encode the person, the number, the gender
facilities to the environment. At medium term, a and the case (when relevant).
migration from FSM to openFST (Allauzen et al.,
2007) and a distribution under the LGPL license
are envisaged.

So far, Karamel has been used for morphologyln the following, these units will be calleblig
A morphological analyzer for the Akkadian verb is grains
presented in the next section. It is a medium size The second level is used for the core only, which
grammar. Another project describes the Frenclis divided in smaller parts using the two following
morphology. It is the translation in Karamel of criteria: firstly, a unit must be significant in the
a grammar developed for the MMORPH systemanalysis; secondly, it is determined by a set of fea-
(Petitpierre and Russel, 1995). The grammar hagires in such a way that no smaller part is uniquely
a large coverage. It has been tested with a togetermined by a subset of these features and no
lexicon only. The other domain of application ex- greater part is determined by the same set of fea-
plored so far is the transliteration domain. Theretures. Such a component is invariable for a given

e a core, which contains the root, its vocaliza-
tion, and also the prefixes which depend on
the stem and/or aspect, infixes and gemina-
tion.

e the clitics: enclitic pronoun and proclitic par-
ticles.

13

value of its features, except some surface transfotiered analysis. There are several reasons for this.
mations. The first one comes from the Akkadian language.

Following the proposition of (Malbran-Labat, The stems and aspects are not described by pat-
2001), three kinds of vowels are distinguished.terns but divided in smaller analysis units, in par-
The first kind of vowel depends on the stem andicular stem analysis uses the two orthogonal di-
the aspect. They are calledpectual vowelsThe mensions called herstemland stem2 the first
second kind, calledexical voweldepends on the one notes stem gemination and prefixation and the
stem, the aspect and a lexical category attachedter, infixation. A stem is a pair (Steml,stem2).
to the root. The third kind of vowels, theup- The vocalization does not require patterns of two
port vowelsare not related to morphological fea- vowels separated by the middle radical, but in
tures. They are necessary to pronounce and/anost cases a pattern of only one vowel.

write' the form. The first two kinds of vow- Another reason comes from the Karamel lan-
els are systematically preserved in weak formgyuage: the information usually encoded in tiers
whereas support vowels disappear in weak conappears in the unit types. For instance the infor-
sonant neighborhood. Support vowel are membeation about the root tier appears in small grains
of the small grain containing the preceding consoof typeradical. Similarly, the vocalization appears
nant whereas lexical and aspectual vowels constin the small grains of typeaspect vowehndlex-

tute small grains. ical vowel The rich tree structure is sufficient to
The different subparts of the core and their fea-express clearly the analysis.

tures are given in figure 1. They will be called The morphotactics of the language is described
small grains as the sum of local constraints. It involves only
The figure 2 gives some extracts of the projectihe first three tapes. The elementary units, namely
It begins with the declaration section. There is asmall grains and all the big grains but the core,
class of all letters, subclasses of consonants, wealte described separately. For instance, the ma-
consonants, strong consonants, vowels, long Vowehine aspect_infix (cf. figure 2) distin-
els, short vowels. There is also a class for eaclyyishes two cases: if the featusspect has
feature domain. Several types of feature structuregerfect as value, then there is a small grain of
are defined: one for each kind of big grain (coretype ifx_parf containing the infixta ; if the
personal affix, pronoun, enclitic particle); a uniquefeatureaspect has another value, then there is
type for all the kinds of small grains. no grain of typeifx_parf in the core. The two
The description has five tapes. The first tapeases are given using two different regular expres-
contains the feature structures associated with bigions_ For more Comp|ex small grainS, more cases
grains, the second tape contains the feature strugre to be described, up to 13 for the lexical vowels
tures covering small grains. The third tape con-which have different colors and length depending
tains a canonical form of each grain. It corre-gn 4 features.
spond to theexical formof traditional Two-Level 1,4 finjte_state machines describe the order of
grammars. The last two tapes contain the SurfaCF‘espectively small and big grains. The one for
forms respectively in the Babylonian and the AS-gmall grains callectore_morphotactics is
syrian dialects, which are slightly different, mostly ¢ otched in the figure. -
in their vocalization.
Here is an example of structured analysis of thefe
form iptarasu.

The lexicon is given using a macro called
xent . A lexent (for lexical entry tuple
looks like a usual lexicon entry, with only lexi-

pers core pers cal information, although it is a regular expression
pref suff denoting a complete core, with its prefix, infixes,
rad | stem|rad | lex | rad vowels, etc. Thdexicon finite state machine
1 |infix | 2 | vowel| 3 may be directly intersected with theg_order
i p ta r a S [machine previously defined and all the other con-

The tape scheme does not correspond to a multstraints in order to obtain a machine describing all

- the possible cores build on the roots given in the
The cuneiform writing is syllabic. It is impossible to lexicon

write a consonant without a vowel immediately before or af-)

ter it. The computation of the two surface forms for

14

subpart steml| stem2| aspect| class| root | example

aspect prefix X X X muparrisu

stem prefix X Suprusu
radical X iprus

core infix X iptaras

steml geminatiory X upar as
aspect gemination X X X iparr as
aspect vowel X X X uparis
lexical vowel X X X X iprus

Figure 1. Subparts and features

the two dialects is performed by a set of con-compositionoperation. The descriptions are ori-

straints written using regular expressions and conented, with an input and an output, but the trans-
textual rules. They relate the lexical form and oneduction has not to be deterministic and the ma-
or both surface forms. The features are used ichines are invertible. The strings are not struc-
some of them. tured, but some structure may be marked using

Rules are used for phenomena which may occuauxiliary symbols inserted when necessary by the
several times in a given form. For instance, theuser.
deletion of support vowels before another vowel |n order to fulfill the constraints that there are
may appear in several places: before lexical andnly two tapes, grammars often put heterogeneous
aspectual vowels, but also when a weak consonanfata on a tape. For instance, the features and the
disappears or changes to a vowel. lexical representations are put together on the in-

In many cases however, surface transformatioput tape. Intermediate forms in the cascade often
occur only in one given place of a form and the usecontain a mix of lexical and surface representa-
of a rule is not necessary. The tree structure helpsons.
in characterizing this place. The example given There are no feature structures in XFST, but fea-
in the figure is the coloration of the first vowel in tyres written as ordinary symbo|s. The scope and
some stems (Il and Il1). the unifications are written by the user.

The grammar presently covers strong forms, 1- karamel is more declarative than XFST. Infor-
weak verbs and part of 2-weak and 3-weak verbsmation of different natures are put on different
Verbs with two or three weak consonahiand tapes. Abstract feature structures are available.
quadriliteral roots are not covered at all. The de-Tpeijr compilation and the unifications are auto-
scription uses 2Tegexp clauses, 22et and 6 mated. On the other hand, XFST is more efficient.
rules. The structure information is put only where neces-
sary.

XFST is distributed under a commercial license.

The system MAGEAD is another system of
inite-state morphology developed for Arabic di-
alects (Habash and Rambow, 2006). It follows the

phological descriptions. multi-tape approach proposed by George Anton

The most popular system is probably the XeroxKiraz for the Syriac language (Kiraz, 2000). It has

Finite State Tool (Beesley and Karttunen, 2003.)'a rule-based language following the principles of

,I[t han Teg. used, arl]mlong oéhersl, forlghgeSde_T_f}”Q’Grimley-Evans et al., 1996) in which a notion of
lon of Arabic morphology (Beesley,)- The partition splits forms in a sequence of units com-

|nterd|g|tat|9n |tshhandlled using af[ConlllmIte,['reli)l"’lceparable to Karamel's units. But in this approach,
process using the replace operator (Kartiunen an ere is only one kind of unit which relates all the

Be_ﬁ? e, 2000t) g(arttluner:j, 19.95)' tial tapes. Like Karamel, MAGEAD is a layer above
h © t?;mfu a![ona dmo clisa sequ%n ' OntT]LextooIs and FSM. The system is not distributed
where fwo-tape fransducers are merged Using g, jts description in published papers is not very

>There is a Akkadian verb with 3 weak consonants as rootdetailed.

4.1 Comparisons with other systems

There are many systems for writing finite-state
machines. In this section we compare Karame}
with some of them which are specialized in mor-

15

Declarations

class vowel is a, e, i, u, aa, ee, ii, uu;
class cons is b, d, g, h, ...

class num is sing, dual, plur;

class aspect is present, preterit, perfect, ...

fstruct fspers is [asp=aspect,pers=pers,num=num,gen=ge nj
fstruct fscore is [steml=steml,stem2=stem2,asp=aspect, lex=lex]

tape lex: letter, bab: letter, assy: letter, sg: fssg,
bg : fspers|fscore|fsclit;

unit sgrain is {sg: sg = [fssqg]; lex: lex = <letter> *,
bab: bab =<letter> *, assy. assy = <letter> * }
unit core is {bg: bg = [fscore];
smallg: sg, lex, bab, assy = {sgrain }» }

abbrev sqi is {rl: bg = [fscore]; r2: sg = [fssq];

r3: lex = <letter> *}
for {core: @rl, {sgrain }x {sgrain: @r2, @r3 } {sgrain }x }
abbrev lexent is {cfs: bg = [fscore]; fst: lex = <cons>;
snd: lex = <cons>; thd: lex = <cons> }
for {core: @cfs, {sgrain: [fssg:typ=typ-rad] b
{sgrain: [fssg:typ=rad], @fst } {sgrain: [fssg:typ=typ-rad] I
{sgrain: [fssg:typ=rad], @snd } {sgrain: [fssg:typ=typ-rad] 1
{sgrain: [fssg:typ=rad], @thd o}

Small grains morphotactics
regexp aspect_infix is

{sgi: [fscore:asp=perfect],[fssg:typ=ifx_parf], ta h
{core: [fscore:asp=aspect-perfect],
{sgrain: [fssg:typ=typ-ifx_parf] o}
end

regexp small_grain_order is
{core: smallg=

{sgrain: [fssg:typ=asp_pref] }? {sgrain: [fssg:typ=rad] }
{sgrain: [fssg:typ=ifx_parf] }? {sgrain: [fssg:typ=ifx_parf] 1?
let core_morphotactics=intersect(aspect_infix,stem_g emination,

...,Small_grain_order);
regexp lexicon is
{lexent: [fscore:lex=a_u,stem1=I|ll|IV],p,r,s I
{lexent: [fscore:lex=a,stem1=I|lll],s bt}

let actual_cores=intersect(core_morphotactics,lexico n;

Figure 2: extracts from the Akkadian project

16

Surface transformations

gr_rule delete_support_vowels is

{core }
constraint
{core: smallg= {sgrain }»
#{sgrain: lex=<letter>+<vowel>,bab=<letter><cons> }
{sgrain }» }
=>
{core: smallg= {sgrain }» #{sgrain }
{sgrain: bab=<> }? {sgrain: lex=<vowel> } {sgrain }x}
end

regexp color_u is
{core: [fscore:stem1=lI|llI],

{sgrain:lex=<cons>?<vowel>,bab=<cons>?u Hsgrain }* };

{core: [fscore:stem1=I|IV],
{sgrain:lex=<cons>?<vowel>,bab=<cons>?(<vowel>-u) }
{sgrain }*};

end

Figure 3: extracts from the Akkadian project

The main difference is that MAGEAD has only structuration. Furthermore, the number of tapes is
one level of structure using only one type of Cartefixed in MMORPH and user defined in Karamel.
sian Products. Another difference is that the twoMMORPH is distributed under the GPL license. It
systems use different kinds of contextual rulesis not maintained any more.

The rules differ both by their syntax and their se-
mantics. Furthermore, contextual rules are th® Conclusion
main syntactic construction in MAGEAD whereas

_ In this paper, we have emphasized the application
Karamel uses also regular expressions.

of Karamel to morphological descriptions. The
MMORPH is another system of partition-basedmutiplicity of tapes is useful at all the levels of
morphology based on the work by Pulman andhe analysis. The abstract representation typically
Hepple (Pulman and Hepple, 1993). There are tw@ises feature structures. Several tapes are to be
parts in a description: first, the morphotactics isysed if different kinds of feature structures have
described using a Unification Grammar where theyjfferent spans with respect to the surface form. At

terminals are lexical affixes and the non'terminaIQhe intermediate |eve|, several tapes may be used
are feature structures; transformation rules relatgy a multi-tiered analysis. It is not the case in our

the lexical and surface levels. The features are ﬂabxample, but Karamel is compatible with an ap-
Feature structures are evaluated dynamically by Broach where each tier is put on a different tape
unification machine. (Kiraz, 2000). The surface level may also use sev-

Karamel statically compiles Feature Structureseral tapes. In our example, two tapes are used for
and their unification into finite-state transducers.two different dialects. Itis also possible to use sev-
This is efficient and part of the structures areeral tapes for several writings of the surface forms,
shared. On the other hand, the grammar of feafor instance, a standard written form, a phonetic
ture structures must be regular and there is a riskepresentation using the International Phonetic Al-
of combinatorial explosion. MMORPH uses two phabet (IPA) and a transcription in Latin alphabet.
kinds of units: one relates affixes to Feature Struc- The other main feature of Karamel is to use em-
tures, the other relates small parts of lexical andedded units to relate the different tapes. This is
surface forms (typically, substrings of length Ouseful to define the scope of feature structure and
to 2). Karamel uses a richer and more flexibleto distinguish several parts in the forms.

17

References D. Petitpierre and G. Russel. 1995. Mmorph: the mul-

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Openfst:

tex morphology program. Technical report, ISSCO
technical report, Geneva, Switzerland.

A general and efficient weighted finite-state trans-S. Pulman and M. Hepple. 1993. A feature-based for-

ducer library. Inlmplementation and Application
of Automata, 12th International Conference, CIAA
volume 4783 ofLNC, pages 11-23, Prague, Czech

malism for two-level phonologyComputer Speech
and Languagge’.

Republic. Anssi Mikael Yli-Jyra and Kimmo Koskenniemi.

Francois Barthélemy. 2007a. Finite-state compilation
of feature structures for two-level morphology. In
International Workshop on Finite State Methods in
Natural Language Processing (FSMNLPptsdam,
Germany.

Francois Barthélemy. 2007b. Multi-grain relations. In
Implementation and Application of Automata, 12th
International Conference (CIAApages 243-252,
Prague, Czech Republic.

Kenneth R. Beesley and Lauri Karttunen. 2068ite
State MorphologyCSLI Publications.

Kenneth R. Beesley. 1998. Arabic morphology using
only finite-state operations.

Edmund Grimley-Evans, George Kiraz, and Stephen
Pulman. 1996. Compiling a partition-based two-
level formalism. In COLING, pages 454-459,
Copenhagen, Denmark.

Nizar Habash and Owen Rambow. 2006. Magead: a
morphological analyzer and generator for the Ara-
bic dialects. IPACL: Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and the 44th annual meeting of the Association for
Computational Linguisticgpages 681-688.

Lauri Karttunen and Kenneth R. Beesley. 2000.
Finite-state non-concatenative morphotactics. In
Fifth Workshop of the ACL Special Interest Group
in Computational Phonologypages 1-12, Luxem-
bourg (Luxembourg).

Lauri Karttunen. 1995. The replace operatorA@L-
95, pages 16-23, Boston, Massachusetts. Associa-
tion for Computational Linguistics.

George Anton Kiraz. 2000. Multitiered nonlinear
morphology using multitape finite automata: a case
study on Syriac and Arabic. Comput. Linguist.
26(1):77-105.

Kimmo Koskenniemi. 1983. Two-level model for
morphological analysis. IhJCAI-83 pages 683—
685, Karlsruhe, Germany.

Florence Malbran-Labat. 2001Manuel de langue
akkadienne Publications de linstitut Orientaliste
de Louvain (50), Peeters.

John J. McCarthy. 1981. A prosodic theory of noncon-

catenative morphologyLinguistic Inquiry, 12:373—
418.

18

2004. Compiling contextual restrictions on strings
into finite-state automata. IRroceedings of the
Eindhoven FASTAR Days 2004 (September 3-4)
Eindhoven, The Netherlands, December.

