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Abstract

In a corpus study we found that authors
vary both mathematical form and preci-
sion1 when expressing numerical quanti-
ties. Indeed, within the same document,
a quantity is often described vaguely in
some places and more accurately in others.
Vague descriptions tend to occur early in a
document and to be expressed in simpler
mathematical forms (e.g., fractions or ra-
tios), whereas more accurate descriptions
of the same proportions tend to occur later,
often expressed in more complex forms
(e.g., decimal percentages). Our results
can be used in Natural Language Gener-
ation (1) to generate repeat descriptions
within the same document, and (2) to gen-
erate descriptions of numerical quantities
for different audiences according to math-
ematical ability.

1 Introduction

This study is part of the NUMGEN project2, which
aims (a) to investigate how numerical quantity de-
scriptions vary in English, (b) to specify a gram-
mar that covers these variations, and (c) to develop
an algorithm that selects appropriate descriptions
for people with different levels of mathematical
ability. We collected, from newspapers, popular
science magazines and scientific journals, exam-
ples of numerical facts that were mentioned more
than once, so that first mentions could be com-
pared with subsequent mentions. For example in
the following text, two mentions of the same nu-
merical fact – the proportion of A grades in UK
A-level examinations in 2008 – are underlined:

1Our use of the termprecisionhas nothing to do with pre-
cision in information retrieval (i.e., the percentage of docu-
ments retrieved that are relevant).

2http://mcs.open.ac.uk/sw6629/numgen

A-level results show record number of
A grades
Record numbers of teenagers have re-
ceived top A-level grades
By Graeme Paton, Education Editor
More than a quarter of papers were
marked A as results in the so-called gold
standard examination reach a new high.
. . .
According to figures released today by
the Joint Council for Qualifications,
25.9 per centof A-level papers were
awarded an A grade this summer . . .
(Daily Telegraph, 14 August 2008)

Comparing the two, (a) the first (More than a
quarter) is less precise than the second (25.9 per
cent), (b) its mathematical form, a common frac-
tion, is less complex than the decimal percentage
form of the second, and (c) its string has more
characters (i.e., it isnot shorter in length as might
be expected if it were a summary). Also, the two
mentions occur in different parts of the document
– the first paragraph, and the fifth paragraph.

1.1 What do we mean by precision?

To compare theprecision of numerical expres-
sions we needed a more exact definition of the
concept. We derived the following rules to deter-
mine precision:

• Precision increases with the number of sig-
nificant figures

• Round numbers imply vagueness (implicit
approximation)

• Modifiers increase the precision of round
numbers when they indicate the direction of
approximation (> or <)

• Common proportional quantities imply
vagueness (implicit approximation similar to
round numbers)
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Our first rule concerns arithmetical precision —
i.e., the number of significant figures. Thus 344
with three significant figures is more precise than
340 with only two and56% with two significant
figures is more precise than50%with one.

Second, we adhere to Krifka’s RNRI (round
number round interpretation) theory that when
speakers or writers mention a round figure such as
sixty, they mean that the actual figure is slightly
less than or more than the round number un-
less they explicitly modify it with (say)exactly,
and similarly, hearers or readers interpret it as
rounded (Krifka, 2007). As a consequence,sixty
andaround sixtyhave the same level of precision,
while exactly sixtyis more precise thansixty.

Third, we take into account modifiers (or nu-
merical hedges) such asunder, over, more than,
and verbs such astopped. So we say thatover
sixty and topped sixtyare more precise thansixty
since they give more information.

Finally, we extend Krifka’s ideas (2007) to
cover common proportional quantities. Krifka
confined his ideas to scalar and numerical quan-
tities, but we propose that they can also be applied
to common proportions such ashalf, two thirds
and three quartersand their ratio, decimal, per-
centage and multiple equivalents. We hypothesise
that when speakers or writers use a common pro-
portion, they implicitly round up or down just the
same as with round whole numbers, so we would
argue thataround a halfis the same level of preci-
sion asa half, whereasmore than halfis more pre-
cise thanhalf. When comparing different types,
we take the implied vagueness of common propor-
tions into account, so that we consider25% to be
more precise thanone quarter.

1.2 Maths form and conceptual complexity

Numerical proportions may be expressed by dif-
ferentmathematical forms, e.g., fractions, ratios,
percentages. Complexity of mathematical form
denotes the amount of effort and numerical skill
required by readers to interpret a numerical quan-
tity; as complexity of mathematical concepts in-
creases, the amount of effort required for compre-
hension also increases.

As a convenient measure of the complexity of
mathematical forms, we employ a scale corre-
sponding to the levels at which they are intro-
duced in the Mathematics Curriculum for Schools
(1999); that is, we assume that simple concepts are

Maths Form Level or
Complexity

Whole numbers 1–10 Level 1
Whole numbers 1–100 Level 2
Whole numbers 1–1000 Level 3
1-place decimals Level 3
Common fractions Level 3
Money and temperature Level 3
Whole numbers> 1000 Level 4
3-place decimals Level 4
Multiples Level 4
Percentages Level 4
Fractions Level 5
Ratios Level 5
Decimal Percentages Level 6
Standard index form Level 8

Table 1: Scale of Level/Complexity extracted
from the Maths Curriculum for Schools (1999)

taught before difficult ones, so that a child learns
whole numbers up to ten at Level 1, then much
later learns standard index form (e.g., 4.12x10

6)
at Level 8 (table 1).

2 Hypotheses

Our hypotheses about repeated mentions of nu-
merical facts are as follows:

• Precision will increase from first to subse-
quent mentions.

• Level of complexity of mathematical forms
will increase from first to subsequent men-
tions.

• Changes in precision and mathematical form
are related to document structure.

3 Empirical Study

3.1 The NUM GEN Corpus

The corpus has 97 articles on ten topics, where
each topic describes the same underlying numer-
ical quantities, e.g., 19 articles on the discovery of
a new planet all published in the first week of May
2007 (from Astronomy and Astrophysics, Nature,
Scientific American, New Scientist, Science, 11
newspapers and three Internet news sites). In total,
the corpus has 2,648 sentences and 54,684 words.
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3.2 Corpus analysis and annotation

The articles were split into sentences automati-
cally, then checked and corrected manually. We
annotated 1,887 numerical quantity expressions
(788 integers, 319 dates, 140 decimals, 87 frac-
tions, 107 multiples, 66 ordinals, 336 percentages
and 44 ratios).

In this study, we looked for coreferring phrases
containing numerical quantities, such as the sen-
tences. . . of papers were marked Aand . . . of A-
level papers were awarded an A gradein the above
text, and compared the numerical expressions as-
sociated with them.3 Then, for each fact, we noted
the linguistic form of first and subsequent men-
tions in each text and their document positions.

3.3 Judgements on precision and
mathematical level

Two readers (the authors) judged whether preci-
sion had changed from first to subsequent men-
tions of a numerical fact in a text, and if so,
whether it had increased or decreased, according
to the rules set out in the list in section 1.1. We
also judged the conceptual complexity of mathe-
matical forms, ranging from 1 to 8 (as defined in
table 1). For precision, the judges agreed on 94%
of cases (Cohen’s kappa is 0.88). Differences were
resolved by discussion.

3.4 Results

Table 2 shows results for binomial tests on 88
cases of repeated numerical facts. They show
a clear trend towardsunequal precisionbetween
first and subsequent mentions and, in the 62 cases
where it is unequal, an overwhelming trend for
precision to increase. Regarding mathematical
level (i.e., the complexity scale for mathematical
form), the trend is for subsequent mentions to have
a levelequalto that of first mentions, but in the 31
cases where it is unequal, they show a significant
trend towards anincrease in level— i.e., subse-
quent mentions are conceptually more difficult.

Our first hypothesis (precision increases from
first to subsequent mentions) is thus clearly sup-
ported. Our second hypothesis (level of concep-
tual complexity increases from first to subsequent
mentions) is supported by significant increases in
level only where the level changed. Note that by

3Note that the numerical facts themselves do not corefer,
since they are merely properties of coreferring sets or scales
(Deemter and Kibble, 2000).

Observation n Prop. Sig.
Precision: Equal 26 .30 .0002

Unequal 62 .70
Precision: Increase 56 .90

Decrease 6 .10 .00001
Maths Level: Equal 57 .65

Unequal 31 .35 .007
Maths Level: Increase 25 .81

Decrease 6 .19 .0009

Table 2: Binomial tests on repeated mentions,
based on .5 probability, 2-tailed, Z approximation.

our definition, complexity of mathematical con-
cepts is distinct from precision: for example, 59
is more precise than 60 but equally complex (both
are taught at Level 2 – whole numbers up to 100).
Further investigation revealed that mathematical
level tended to remain the same where both men-
tions were at the beginning of a document (n=14,
p < 0.005, in a 2-tailed binomial test, as above).

Hypothesis three (changes in precision and
mathematical form are related to document struc-
ture) is partially validated in that precision and
mathematical level both increase from early to
later positions in the document structure.

4 Discussion

Are these results surprising? We believe they show
that appropriate presentation of numerical infor-
mation requires surprising sophistication. It is
usual tosummariseinformation early in an arti-
cle, but with numerical facts, summarisation can-
not be equated with lower precision or with sim-
pler mathematical form. If summarisation means
identifying important facts and presenting them
in a condensed form, then why are early men-
tions of numerical factsnot condensed? A sur-
prisingly large proportion of first mentions (45%)
had longer (or equally long) strings than subse-
quent mentions (see the text in the introduction,
whereMore than a quarteris longer than25.9 per
cent). Also, why change the mathematical form?
It is not obvious that 25.9% should be converted
to a common fraction. Intuitively we might reason
that25.9%is close to25%which can be expressed
by the simpler mathematical forma quarter, but it
is far from obvious how this reasoning should be
generalised so that it applies to all cases.

A side-effect of our analysis is that it pro-
vides some empirical evidence in support of
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Krifka’s RNRI theory (2007); however, the data
is sparse. Ten repeated mentions of numerical
facts had round, whole number first mentions
and subsequent mentions that were more precise,
e.g.,200,000. . .207,000. Thus demonstrating that
authors do indeed write round numbers which
they intend readers to interpret as being approxi-
mate. There is similar evidence from 22 examples
demonstrating that RNRI can be extended to com-
mon proportions.

5 Related work

Communicating numerical information is impor-
tant in Natural Language Generation (NLG) be-
cause input data is wholly or partially numerical
in nearly everyNLG system, but the problem has
received little attention. For example, SUMTIME

summarises weather prediction data for oil rig per-
sonnel e.g.,1.0-1.5 mainly SW swell falling 1.0
or less mainly SSW swell by afternoon(Reiter et
al., 2005) but would require much greater flexi-
bility to present the same numerical facts to non-
professionals.

The difficulty of communicating numerical in-
formation has been highlighted in educational and
psychological research. Hansenet al.’s book
(2005) provides ample evidence of confusions that
many children have about e.g., decimal places; in-
deed, they demonstrate that many believe68.95%
is larger than70.1%-- misconceptions that often
persist into adulthood. Even professionals misun-
derstand the mathematics of risk. Gingerenzer and
Edwards (2003) found doctors calculate more re-
liably with reference sets than with proportions.

We are not aware of any research on linguistic
variation in proportions; in fact, a recent special is-
sue on numerical expressions containedno papers
on proportions (Corver et al., 2007).

6 Conclusions and Future Work

In this paper we presented:

• A set of rules for determining precision in nu-
merical quantities that is sufficient to cover
the examples in our corpus

• A scale for conceptual complexity in numer-
ical expressions derived from the Mathemat-
ics Curriculum for Schools.

• A corpus of sets of articles whose main mes-
sage is to present numerical facts

• Empirical results demonstrating trends to-
wards increasing precision and complexity in
repeat mentions of numerical facts with posi-
tion in document structure.

Our results identify an interesting and well-
defined problem that will be addressed in the fi-
nal stage of NUMGEN: how to derive appropriate
simplified expressions (less precise, simpler math-
ematical form) for use in contexts like the open-
ings of articles, or communications intended for
readers with lower levels of mathematical ability.
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