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Abstract

Most dialog systems explicitly confirm
user-provided task-relevant concepts.
User responses to these system confirma-
tions (e.g. corrections, topic changes) may
be misrecognized because they contain
unrequested task-related concepts. In this
paper, we propose @ncept-specific lan-
guage model adaptation strategyhere
the language model (LM) is adapted to
the concept type(s) actually present in
the user's post-confirmation utterance.
We evaluate concept type classification
and LM adaptation for post-confirmation
utterances in theet's Go! dialog system.
We achieve 93% accuracy on concept type
classification using acoustic, lexical and
dialog history features. We also show that
the use of concept type classification for
LM adaptation can lead to improvements
in speech recognition performance.

Introduction

likely to be misrecognized, frustrating the user and

leading to cascading errors. Correct determina-
tion of the content of post-confirmation utterances

can lead to improved speech recognition, fewer

and shorter sequences of speech recognition er-
rors, and improved dialog system performance.

In this paper, we look at user responses to sys-
tem confirmation prompts CMU’s deployeabt’s
Go! dialog system. We adopt a two-pass recogni-
tion architecture (Young, 1994). In the first pass,
the input utterance is processed using a general-
purpose LM (e.g. specific to the domain, or spe-
cific to the dialog state). Recognition may fail
on concept words such as “Oakland” or “61C” ,
but is likely to succeed on closed-class words (e.qg.
"yes”, "no”, "and”, "but”, "leaving”). If the ut-
terance follows a system confirmation prompt, we
then use acoustic, lexical and dialog history fea-
tures to determine the task-relateshcept type(s)
likely to be present in the utterance. In the second
recognition pass, any utterance containing a con-
cept type is re-processed using a concept-specific
LM. We show that: (1) it is possible to achieve

In most dialog systems, the system explicitly con-high accuracy in determining presence or absence
firms user-provided task-relevanbncepts The  of particular concept types in a post-confirmation

user’s response to a confirmation prompt such agtterance; and (2) 2-pass speech recognition with
“leaving from Waterfront?” may consist of a sim- concept type classification and language model
ple confirmation(e.g. “yes”), a simpleejection  adaptation can lead to improved speech recogni-
(e.g. “n0”), acorrection(e.g. “no, Oakland”) or a tion performance for post-confirmation utterances.

topic changde.g. “no, leave at 7” or “yes, and go
to Oakland"). Each type of utterance has Impllca'Section 2 we discuss related work. In Section 3 we

tions for further processing. In particular, correc- . :
P 9 P describe our data. In Section 4 we present our con-

tions and topic changes are likely to contain un- e . .

ept type classification experiment. In Section 5
requested task-relevant concepts that are not well . .

we present our LM adaptation experiment. In Sec-

represented in the recognizer’s post-confirmatioqion 6 we conclude and discuss future work
language model (LM) This means that they are '

The rest of this paper is structured as follows: In

1The word error rate on post-confirmatibat's Go! utter-
ances containing a concept is 10% higher than on utterancasithout a concept.
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2 Related Work 1 Sys  Welcome tothe CMU Let's Go bus informé:
tion system. What can | do for you?

; : ; 2 User Ineed to go from Oakland
When a dialog system requests a confirmation, ASR I need to go .from. cant

the user’s subsequent corrections and topic changes sys  Where do you wanna leave from?
utterances are particularly likely to be misrecog- 4 ;Jgg tol\éVaterfr?/r\llp .

H H told. .me. Waterfront

nized. ConS|de_rabIe res_earch has now been_ don% Sys  Leaving from WATERFRONT . Did | get
on the automatic detection of spoken corrections. that right?
Linguistic cues to corrections include the num-| 6 User  OAKLAND:p
ber of words in th t-confirmation utteran ASR OAKLAND

er ol words € post-co ation utterance 7 Sys  Leaving from OAKLAND . Did | get that
and the use of marked word order (Krahmer e right?
al., 2001). Prosodic cues include FO max, RMS

max, RMS mean, duration, speech tempo angigure 1: Dialog extract frorhet's Go! data. User
percentage of silent frames(Litman et al., 2006;utterances are annotated with concept types (..

Hirschberg et al., 2004; Levow, 1998). DiscourseP for place)
cues include the removal, repetition, addition ONocation, a destination, a departure time, and
modification of a concept, the system’s dialog ac ptionally a bus route number. Each concept
type, and information about error rates in the dia—value provided by the user is explicitly con-
log so far (Krahmer et al., 2001; et al., 2002; Lit- firmed by the system (see Figure 1). In the
maf‘ et al.,, 2006; Walker et al., 2000). In our €X-annotated transcripts, the followirgpnceptsare
periments, we use most of these features as well Bveled: nei ghbor hood, pl ace, time
additional lexical features. ur, minute, time- (3f - day, ’and bus:.

ho
We can use knowledge Of, the type or Cont,emFor our experiments we collapsed these concepts
of a user utterance to modify system behawor]-n,[O threeconcept typestime,, placeandbus

For exa_mple, n thls paper we use the concept Let's Go! has five dialog states corresponding
ty_pe(s) in the Users utterance to ad‘f"pt the "eCOY%, the type of user utterance it expedisst-query
nizer's LM. It is now common practice to adapt next-query yes-no place and time.  Its speech

thet recognrllzeé ttl)l the ;ype,zggztextl_(l)\; Sth/Ie ?ft.m'recognizer uses dialog state-specific n-gram LMs
put speech (Bellegarda, )- adaptation, »ined on user utterances from the 2005 data.

has been used to improve automatic speech reCOGs focus on user utterances in response to sys-

nition performance in automated meeting trany o oaoo oo prompts (thees-nostate). Ta-

scripti_on (Tur anql Stolcke, 2.007)’ speech-drivenble 1 shows statistics aboyes-nostate utterances
question answering (Stenchikova et al., 2008)In Let's Go! Table 2 shows a confusion matrix

broadcast news recognition (Gildea and Hofmannfor confirmation prompt concept type and post-

1999), and spoken dialog systems (Tur, 2005)i:om‘irmation utterance concept type. This table

L In el st can be adapi 1 1 Sincates e potental o mitecognion of post
4 i ’ ’ confirmation utterances. For example, in the 2006
etal., 2001)), the topic (lyer and Ostendorf, 1999; . " 2 xample, |

: dataset after a system confirmation prompt for a
Sélg%a and Hofmann, 1999), or the speaker (Turbus abusconcept is used in only 64% of concept-

containing user utterances.
3 Data In our experiments, we used the 2006 data to
train concept type classifiers and for testing. We

In this experiment we use annotated dialog tranysed the 2005 data to build LMs for our speech
scripts and speech from theet's Go! sys-  recognition experiment.

tem, a telephone-based spoken dialog system that

provides information about bus routes in Pitts-4 Concept Classification

burgh (Raux et al., 2005). The data we used comes

from the first two months otets Go! system 41 Method

operation in 2005 (2411 dialogs), and one monthOur goal is to classify each post-confirmation user

in 2006 (1430 dialogs). This data has been tranutterance by the concept type(s) it contaiplage,

scribed, and annotated by hand for concept typestime, busor nong for later language-model adap-
In order to provide the user with route in- tation (see Section 5). From the post-confirmation

formation, Let's Go! must elicit a departure user utterances in the 2006 dataset described in
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Event 2005 2006 for each concept typeplace, busandtime)®. We

num | % num | % | f f q
Total dialogs 5411 1430 also report overalpre+, rec+, f-measuref-), an
Total yes-no confirms|| 9098 | 100 || 9028 | 100 classification accuracy across the three concept
;i%;‘gec?”f"ms with(| 2194 | 24 | 1635 | 18.1 types. Finally, we report the percentageswitch+
P Dialog State errors andswitcherrors. Switch+errors are utter-
Total confirm place|| 5548 | 61 5347 | 590 ances containingusclassified asime/placetime
utts confirm b asbus/place andplace ashbus/time these are the
Total confirm bus utts|| 1763 | 19.4 || 1589 | 17.6 : :
Total confirm  timell 1787 | 196 || 2011 | 223 errors _most likely to cause decreases in speech
utts recognition accuracy after language model adap-
Concept Type Features tation. Switcherrors include utterances with no
Yes-no utts with time || 296 | 3.2 305 | 3.4 | | ified - f
Yes-no utts withbus || 584 | 6.4 || 323 | 3.6 Only utterances classified as contalnlng one o
Lexical Features the three concept types are subject to second-
Yes-no utts with ‘yes’ || 4395 | 48.3 || 3693 | 40.9 pass recognition using a concept-specific language
Yes-no utts with ‘no’ || 2076 | 22.8 || 1564 | 17.3
Yes-no utts with T 203 | 2.2 129 | 14 mo_del. Therefore, the;g are the only utterance_s on
Yes-no utts with|| 114 | 1.3 | 185 | 2.1 which speech recognition performance may im-
from’ prove. This means that we want to maximiee+

Yes-no utts with ‘to’ 204 2.2 237 2.6
Acoustic Features

(proportion of utterances containing a concept that
are classified correctly). On the other hand, utter-

feature mean| stdev || mean| stdev ' - e
Duration (seconds) || 1.341| 1.097|| 1.365| 1.242 ances that are incorrectly classified as containing a
RMS mean :037 1.033 | .055 | .049 particular concept type will be subject to second-
FO mean 183.0| 60.86|| 185.7| 58.63 " g

FO max 289.8| 1485/ 296 9| 1465/  Pass recognition using a poorly-chosen language

model. This may cause speech recognition per-
Table 1: Statistics on post-confirmation utterance$ormance to suffer. This means that we want to

[ place] bus | time minimize switch+errors.

2005 dataset
confirmplace | 0.86 | 0.13 | 0.01 4.2 Features
confirm.bus 0.18 | 0.81 | 0.01 . .
confirmtime | 0.07 | 0.01 | 0.92 We used the features summarized in Table 3. All

2006 dataset of these features are available at run-time and so
confirmplace | 0.87 | 0.10 | 0.03 may be used in a live system. Below we give ad-
confirmbus | 0.34 1 0.64 | 0.02 ditional information about the RAW and LEX fea-
confirmtime | 0.15 | 0.13 | 0.71

tures; the other feature sets are self-explanatory.

Table 2: Confirmation state vs. user concept type _ _ _
4.2.1 Acoustic and Dialog History Features

Section 3, we extracted the features described ifhe acoustic/prosodic and dialog history features
Section 4.2 below. To identify the correct conceptare adapted from those identified in previous work
type(s) for each utterance, we used the human amn detecting speech recognition errors (particu-
notations provided with the data. larly (Litman et al., 2006)). We anticipated that
We performed a series of 10-fold cross-these features would help us distinguish correc-
validation experiments to examine the impact oftions and rejections from confirmations.
different types of feature on concept type classifi- .
cation. We trained three binary classifiers for eacﬁ"'z'2 Lexical Features
experiment, one for each concept type, i.e. we seplVe used lexical features from the user’s current ut-
arately classified each post-confirmation utterancéerance. Words in the output of first-pass ASR are
asplace +or place 5 time +ortime - andbus +or highly indicative both of concept presence or ab-
bus - We used Weka’s implementation of the J4gsence, and of the presence of particular concept
decision tree classifier (Witten and Frank, 2605) types; for examplegoing to suggests the pres-
For each experiment, we report precisipre¢t) ~ €nce of gplace We selected the most salient lexi-
and recall ec+) for determiningpresenceof each mreport precision or recall for determiniaig-

concept type, and overall classification accuracyenceof each concept type. In our data set 82.2% of the ut-
- terances do not contain any concepts (see Table 1). Conse-

2)48 gave the highest classification accuracy compared tquently, precision and recall for determining absence ohea
other machine learning algorithms we tried on this data. concept type are above .9 in each of the experiments.
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| Feature type | Feature source | Features |
System confirmation type | system log System’s confirmation prompt concept typeiffirmtime,
(DIA) confirm.place, or confirmbug
Acoustic (RAW) raw speech FO max; RMS max; RMS mean; Duration; Difference He-
tween FO max in first half and in second half
Lexical (LEX) transcripts/ASR output | Presence of specific lexical items; Number of tokens in utfer

ance; [transcribed speech only] String edit distance batwe
current and previous user utterances

Dialog history (DH1, DH3) 1-3 previous utterancey System’s dialog states of previous utteranpksfe, bus,
time, confirmtime, confirmplace, or confirmbug; [tran-
scribed speech only] Concept(s) that occurred in user’s ut-
terances (YES/NO for each of the conceplisce, bus, time
ASR confidence score (ASR) | ASR output Speech recognizer confidence score

Concept type match (CTM) transcripts/ASR output | Presence of concept-specific lexical items

Table 3: Features for concept type classifiers

cal features (unigrams and bigrams) for each conever, for recognized speech recognition errors re-
cept type by computing thautual informatiorbe-  duce the effectiveness of this feature (and of the
tween potential features and concept types (Maneoncept features in the dialog history feature set).
ning et al., 2008). For each lexical featurand

each concept type classe { place +, place -, 3 Baseline

time +, time -, bus +, bus}; we computed: A simple baseline for this tasijo-Concept al-
ways predictsnone in post-confirmation utter-
;- N + logs N+ Nie . Noc + logs N % Noe ances. This baseline achieves overall classifica-
N Ny xN. N No. * N.c tion accuracy of 82% butec+ of 0. At the other
N yogy N Nw  Noo o N+ Noo extreme, theConfirmation State baseline assigns

N + log> . SIgns
N Ne.#No N No.* N.o to each utterance the dialog system’s confirmation

prompt type (using the DIA feature). This base-

where N;.= number of utterances wheteco- line achievesec+ of .79, but overall classification
occurs withe, No.= number of utterances with  accuracy of only 14%. In all of the models used in
but withoutt, N, o= number of utterances whete our experiments, we include the current confirma-
occurs without:, Nog= number of utterances with tion prompt type (DIA) feature.
neithert nor ¢, Ny = total number of utterances
containingt, IV .= total number of utterances con-
tainingc, and N = total number of utterances. In this section we report the results of experiments

To identify the most relevant lexical features, on concept type classification in which we exam-
we extracted from the data all the transcribed useine the impact of the feature sets presented in Ta-
utterances. We removed all words that realize conble 3. We report performance separately for recog-
cepts (e.g. “61C”, “Squirrel Hill"), as these are nized speech, which is available at runtime (Table
likely to be misrecognized in a post-confirmation 5); and for transcribed speech, which gives us an
utterance. We then extracted all word unigramgdea of best possible performance (Table 4).
a_md bigrams. We computgd the 'mutual |nforma-4_4.1 Features from the Current Utterance
tion between each potential lexical feature and

concept type. We then selected the 30 feature%le firstlook at lexical (LEX) and prosodic (RAW)
eatures from the current utterance. For both rec-

with the highest mutual information which oc- . .
curred at least 20 times in the training data ognized and transcribed speech, the LEX model

For transcribed speech only, we also comput@cmeves significantly higheec+ and overall ac-

the string edit distance between the current anguracy than the RAW modejp( < .001). For

previous user utterances. This gives some indicar_ecognlzed speech, however, the LEX model has

tion of whether the current utterance is a correc-s'gn'f'camIy moreswitch+ errors than the RAW

tion or topic change (vs. a confirmation). How- model ¢ < .001). This is not surprising since the
majority of errors made by the RAW model are

*We aimed to select equal number of features for eachabeling an utterance with a conceptrame Ut-

class with information measure in the top 25%. 30 was ar% iscl ified in thi t subiect t
empirically derived threshold for the number of lexicalfea cances mMisciassiied in this way are not subject 1o

tures to satisfy the desired condition. second-pass recognition and do not increase WER.

4.4 Experiment Results

45



Features Place Time Bus Overall
pre+ | rec+ | acc | pre+ | rec+ | acc | pre+ | rec+ | acc | pre+ | rec+ | f+ acc switch+ | switch
No Concept 0 0 .86 0 0 0.81 0 0 92 [0 0 0 082 ] 0 0
Confirmation State | 0.87 | 0.85 | 0.86 | 0.64 | 0.54 | 0.58 | 0.71 | 0.87 | 0.78 | 0.14 | 0.79 | 0.24 | 0.14 | 17 72.3
RAW 0.65 | 053] 092 ] 025 001 | 096 | 0.38 ] 0.07 | 096 ]| 0.67 | 0.34 | 0.45 | 0.85 | 6.43 4.03
LEX 0.81 | 0.88] 096 | 077 | 0.48 | 098] 0.83 | 0.59 | 098] 0.87 | 0.72 [ 0.79 | 0.93 | 7.32 3.22
LEX_RAW 0.83 | 084] 09 | 075 | 054 | 098] 0.76 | 0.59 | 0.98 | 0.88 | 0.70 | 0.78 | 0.93 | 7.39 3.00
[ DHILEX [ 085091097 ] 072] 063 098] 089 ] 0.83]0.99]0.88] 0.81] 0.84] 0.95] 5.48 [ 285 |
| DH3LEX | 085087 097 ] 072 ] 059 ] 098 | 092 ] 0.82]099] 089 | 078 ] 0.83] 0.94] 522 | 262 |

Table 4: Concept type classification results: transcrilgsbsh (all models include feature DIA). Best
overall values in each group are highlighted in bold.

Features Place Time Bus Overall
pre+ | rec+ | acc | pre+ | rec+ | acc | pre+ | rec+ | acc | pre+ | rec+ | f+ acc switch+ | switch
No Concept 0 0 .86 0 0 0.81 0 0 92 [ 0 0 0 082 0 0
Confirmation State | 0.87 | 0.85 | 0.86 | 0.64 | 054 | 058 | 0.71 | 0.87 | 0.78 ] 0.14 | 0.79 | 0.24 | 0.14 | 17 72.3
RAW 065 053] 092 025 001 [ 09 [ 0.38] 0.07| 096 0.67 [ 0.34 | 0.45 | 0.85 | 6.43 4.03
LEX 070 [ 0.70 | 0.93 | 0.67 | 0.15 | 097 | 0.65 | 0.62 | 0.98 | 0.75 | 0.56 | 0.64 | 0.89 | 9.94 4.93
LEX_RAW 070 [ 0.72 ] 093] 0.66 | 0.38 | 097 | 0.68 | 0.57 | 098] 0.76 | 0.60 | 0.67 | 0.90 | 10.32 5.10
[ DHILEX_RAW [ 0717068 ] 093] 068 ] 0.38] 097 ] 078 0.63] 0.98] 0.7/ ] 060 ] 0.67 [ 0.90 [ 8.15 [ 455 |
| DH3LLEX_RAW [ 071070 093] 067 | 042097 079 0.63] 098] 0.77 [ 0.62 | 0.68 [ 0.90 [ 7.20 [ 457 ]
ASR DH3_LEX 071 ] 070 ] 093] 069 | 042 097 [ 0.79 [ 063 | 098] 0.77 [ 0.62 [ 0.68 [ 0.90 | 7.20 4.54
_RAW
CTM_DH3_LEX 082 082] 09 | 086 | 0.71 | 099 | 0.76 | 0.68 | 098 | 0.85 [ 0.74 | 0.79 | 0.93 | 3.89 2.94
_RAW
CTM_ASR_DH3 082 | 081] 09 | 086 | 0.69 | 099 | 0.76 | 0.68 | 0.98 | 0.85 | 0.74 [ 0.79 | 0.93 | 4.27 3.01
_LEX_RAW

Table 5. Concept type classification results: recognizestap (all models include feature DIA). Best
overall values in each group are highlighted in bold.

For transcribed speech, the LBEXAW model DHI1.LEX_RAW and DH3LEX_RAW do per-
does not perform significantly differently from the form significantly better than LEXRAW in terms
LEX model in terms of overall accuracsec+, or  of switch+ errors p < .05). There are
switch+ errors. However, for recognized speech,no significant performance differences between
LEX_RAW achieves significantly higheec+ and DH1_LEX_RAW and DH3LEX_RAW.
overall accuracy than LEXp( < .001). Lexical N ]
content from transcribed speech is a very good in#-4-3  Features Specific to Recognized Speech
dicator of concept type. However, lexical contentFinally, we add the ASR and CTM features to
from recognized speech is noisy, so concept typgnodels trained on recognized speech.
classification from ASR output can be improved We hypothesized that the classifier can use the
by using acoustic/prosodic features. recognizer’s confidence score to decide whether

We note that models containing only featuresan utterance is likely to have been misrecognized.
from the current utterance perform significantly However, ASRDH3_LEX_RAW is not signifi-
worse than theonfirmation statdaseline interms cantly different from DH3LEX _RAW in terms of
of rec+ (p < .001). However, they have signif- rec+, overall accuracy oswitch+errors.
icantly better overall accuracy and fewswitch+ We hypothesized that the CTM feature will im-
errors p < .001) . prove cases where a part of (but not the whole)
concept instance is recognized in first-pass recog-
nition®. The generic language model used in first-
Next, we add features from the dialog history pass recognition recognizes some concept-related
to our best-performing models so far. For tran-yords. So, if in the utterancMadison avenue
scribed speech, DHILEX performs significantly avenue(but not Madisor), is recognized in the
better than LEX in terms of overall accuraoge+,  first-pass recognition, the CTM feature can flag
and switch+ errors { < .001). DH3.LEX per-  the utterance with a partial match fplace help-

forms significantly worse than DHIEX interms  jng the classifier to correctly assign tigace
of rec+ (p < 0.05). For recognized speech,

neither DHL1LEX_ RAW nor DH3LEX_RAW is ®We do not try the CTM feature on transcribed speech be-

. . . cause there is a one-to-one correspondence between gesenc
significantly different from LEXRAW in terms of the concept and the CTM feature, so it perfectly indicates

of rec+ or overall accuracy. However, both presence of a concept.

4.4.2 Features from the Dialog History
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type to the utterance. Then, in the second-passiodeling toolkit (Xu and Rudnicky, 2000) We
recognition the utterance will be decoded withbuilt state- and concept-specific hierarchical LMs
a place concept-specific language model, potenfrom thelLet's Go! 2005 data. The LMs are built
tially improving speech recognition performance.with [place], [time] and[bus] submodels.

Adding the CTM feature to DHREX RAW and We evaluate speech recognition performance
ASR DH3_LEX_RAW leads to a large statistically on the post-confirmation user utterances from the
significant improvement in all measures: a 12%2006 testing dataset. Each experiment varies in 1)
absolute increase irec+, a 3% absolute increase the LM used for the final recognition pass and 2)
in overall accuracy, and decreasessiitch+ er-  the method of selecting a LM for use in decoding.
rors (p< .001). There are no statistically signifi-

cant differences between these two models. 5.1.1 Language models
We built seven LMs for these experiments. The
4.4.4 Summary and Discussion state-specificLM contains all utterances in the

In this section we evaluated different models fortraining data that were produced in tes-nodi-

concept type classification. The best perform-2109 state. Theeonfirm-place confirm-busand
ing transcribed speech model, DHEX, signif- confirm-timeLMs contain all utterances produced
icantly outperforms th€onfirmation State base- N theyes-nadialog state followingonfirm place
line on overall accuracy and @witch+andswitch ~ confirmbus and confirmtime system confirma-
errors (p< .001), and is not significantly different 10N Prompts respectively. - Finally, theoncept-
onrec+. The best performing recognized speecH?!cé concept-busandconcept-time.Ms contain
model, CTMDH3_LEX_RAW, significantly out- all utterances produced in tlyes-nodialog state
performs the Confirmation State baseline on that contain a mention ofplace busor time.
overall accuracy and oswitch+ and switch er- 512 Decoders

rors, but is significantly worse aec+ (p < .001). ] N

The best transcribed speech model achieves signif? the baseline,1-pass generalcondition, we

icantly higherrec+ and overall accuracy than the US€ thestate-specifid.M to recognize all post-
best recognized speech modek(p01). confirmation utterances. In thepass stateex-
perimental condition we use theonfirm-place,

confirm-bus and confirm-time LMs to recog-
nize testing utterances produced followingan-

In this section we report the impact of concept typdirm-place confirmbus and confirmtime prompt
prediction on recognition of post-confirmation ut- "€SPectively. I the 1-pass concepexperimen-
terances irLet's Go! system data. We hypothe- (@l condition we use theoncept-place, concept-
sized that speech recognition performance for ytPusandconcept-timeMs to recognize testing ut-
terances containing a concept can be improvelfrances produced followinganfirmplace con-
with the use of concept-specific LMs. We (1) com-firm_busandconfirm.time prompt respectively.

pare the existinglialog state-specifit M adap- In the 2-passconditions we perform first-pass
tation approach used ibet's Go! with our pro- recognition using thgeneralLM. Then, we clas-
posed concept-specificadaptation; (2) compare sify the output of the first pass using a concept
two approaches tooncept-specifiadaptation (us- type classifier. Finally, we perform second-pass
ing the system’s confirmation prompt type and usJecognition using the&oncept-place, concept-bus
ing our concept type classifiers); and (3) evaluat®" concept-timeLMs if the utterance was classi-

the impact of different concept type classifiers oni€d asplace, t)_qsor_timerespecti\_/elﬁ._ We used
concept-specifit M adaptation. the three classification models with highest overall

rec+: DH3_LEX_RAW, ASRDH3_LEX_RAW,

5 Speech Recognition Experiment

5.1 Method 5We chose the same speech recognizer, acoustic models,

. .. language modeling toolkit, and LM building parameters that
We used the PocketSphinx speech recognition enge ysed in the liveet's Go! system (Raux et al., 2005).

gine (et al., 2006) with gender-specific telephone- ’As we showed in Table 2, most, but not all, utterances in
quality acoustic models built for Communica- acgcv'm;a“c:n fttate Conta'rt ?f_c?j”eSpo”‘:"?g_Concept "
tor (et al.,, 2000). We trained trigram LMs us- e treat utterances classified as containing more than
) noeeeEs)s X concept type asone In the 2006 data, only 5.6% of ut-
ing 0.5 ratio discounting with the CMU language terances with a concept contain more than one concept type.
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Recognizer| Concept type Language Overall Concept utterances
classifier model WER WER Concept recall
1-pass general state-specific 38.49% 49.12% 50.75%
1-pass confirm state confirm-{place,bus,timg 38.83% 48.96% 51.36%
1-pass confirm state concept{place,bus,timg, 46.47% | 50.73%e | 52.9%:x
state-specific
2-pass DH3_LEX _RAW concept{place,bus,timg 38.48% 47.56%& | 53.2%x
state-specific
2-pass ASR_DH3_LEX concept{place,bus,timg 38.51% 47.99%& | 52.7%
RAW state-specific
2-pass CTM _ASR_DH3 concept{place,bus,timg, 38.42% 47.86%é& | 52.6%
LEX _RAW state-specific
2-pass oracle concept{place,bus,timg 37.85%& | 45.94%& | 54.91%k
state-specific

Table 6: Speech recognition resul#.indicates significant difference {p01). & indicates significant
difference (p<.05). * indicates near-significant trend in difference<(p7). Significance for WER is
computed as a paired t-test. Significance for concept riscall inference on proportion.

and CTMAASR DH3_LEX_RAW. To get an idea lower overall and concept utterance WER than
of “best possible” performance, we also report 2-the 1-pass generalrecognizer (p< .01). It

pass oracle recognition results, assuming an orackdso achieves significantly lower concept utterance
classifier that always outputs the correct conceptWVER than any of the 2-pass recognizers that use

type for an utterance. automatic concept prediction ¢ .01).
Our2-pass conceptesults show that it is possi-
5.2 Results ble to use knowledge of the concepts in a user’s ut-

In Table 6 we report average per-utterance worderance to improve speech recognition. @tpass
error rate (WER) on post-confirmation utterancesconcept results show that this cannot be effec-
average per-utterance WER on post-confirmatiorively done by assuming that the user will always
utterances containing a concept, and average cofddress the system’s question; instead, one must
cept recall rate (percentage of correctly recog.ConSider the user’s actual utterance and the dis-
nized concepts) on post-confirmation utterance§ourse history (as in our DHBEX_RAW model).
containing a concept. In slot-filling dialog sys-
tems likeLet's Gol, the concept recall rate largely
determines the potential of the system to underin this paper, we examined user responses to sys-
stand user-provided information and continue theéem confirmation prompts in task-oriented spoken
dialog successfully. Our goal is to maximize con-dialog. We showed that these post-confirmation
cept recall and minimize concept utterance WERutterances may contain unrequested task-relevant
without causing overall WER to decline. concepts that are likely to be misrecognized. Us-
As Table 6 shows, thé-pass stateand1-pass ing acoustic, lexical, dialog state and dialog his-
concept recognizers perform better than the tory features, we were able to classify task-
pass generatecognizer in terms of concept recall, relevant concepts in the ASR output for post-
but worse in terms of overall WER. Most of these confirmation utterances with 90% accuracy. We
differences are not statistically significant. How-showed that use of a concept type classifier can
ever, thel-pass conceptrecognizer has signifi- lead to improvements in speech recognition per-
cantly worse overall and concept utterance WERormance in terms of WER and concept recall.
than thel-pass generatecognizer (p< .01). Of course, any possible improvements in speech
All of the 2-pass recognizers that use au-recognition performance are dependent on (1) the
tomatic concept prediction achieve significantly performance of concept type classification; (2)
lower concept utterance WER than tlepass the accuracy of the first-pass speech recognition;
general recognizer (p< .05). Differences be- and (3) the accuracy of the second-pass speech
tween these recognizers in overall WER and conrecognition. For example, with our general lan-
cept recall are not significant. guage model, we get a fairly high overall WER
The 2-pass oraclerecognizer achieves signif- of 38.49%. In future work, we will systematically
icantly higher concept recall and significantly vary the WER of both the first- and second-pass

6 Conclusions and Future Work
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speech recognizers to further explore the interacR. lyer and M. Ostendorf. 1999. Modeling long dis-
tion between speech recognition performance and tanc3 dependenc;:asm |%“9|E?EQI§ZTTOPIC mixtures ver-
. sus dynamic cache model. ransactions on
concept type classification. . ; _
. . Speech and Audio Processjritf1):30-39.
The improvements our two-pass recognizers P IngL)
achieve have quite small local effects (up to 3.18%. Krahmer, M. Swerts, M. Theune, and M. Weegels.
absolute improvement in WER on utterances con- 2001. Error detection in spoken human-machine in-
taini t d th 104 t teraction. International Journal of Speech Technol-
aining a concept, and less than 1% on post- ;4 4.1y
confirmation utterances overall) but may have . .
larger impact on dialog completion times and taskG--A- 'lzeVOW- 19t98- ChﬁfaCte“Z'ng ar;d rde_c?gnlzmlg
: spoken corrections in human-computer dialogue. In
completion rates, as they reduce the number of ,
. - . ) Proceedings of COLING-ACL
cascading recognition errors in the dialog (et al., g
2002). Furthermore, we could also use knowledg®. Litman, J.Hirschberg, and M. Swerts. 2006. Char-
of the concept type(s) contained in a user utterance 2Ctérizing and predicting corrections in spoken dia-
to imorove dialod manadement and response plan- logue systemsComputational Linguistics32:417—
) IMp g g ponse p 438.
ning (Bohus, 2007). In future work, we will look .
at (1) extending the use of our concept-type clasC: D- Manning, P. Raghavan, and H. Schitze. 2008.
sifiers to utterances following any system prompt; Introduction to Information Retrieval Cambridge

. . 4 University Press.
and (2) the impact of these interventions on overall

metrics of d|a|og success. A. Raux, B. Langner, A. Black, and M Eskenazi. 2005.
Let's Go Public! Taking a spoken dialog system to
7 Acknowledgements the real world. InProceedings of Eurospeech
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