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Abstract

Linguistic metrics based on syntactic and
semantic information have proven very
effective for Automatic MT Evaluation.
However, no results have been presented
so far on their performance when applied
to heavily ill-formed low quality transla-
tions. In order to glean some light into this
issue, in this work we present an empirical
study on the behavior of a heterogeneous
set of metrics based on linguistic analysis
in the paradigmatic case of speech transla-
tion between non-related languages. Cor-
roborating previous findings, we have ver-
ified that metrics based on deep linguis-
tic analysis exhibit a very robust and sta-
ble behavior at the system level. How-
ever, these metrics suffer a significant de-
crease at the sentence level. This is in
many cases attributable to a loss of recall,
due to parsing errors or to a lack of parsing
at all, which may be partially ameliorated
by backing off to lexical similarity.

1 Introduction

Recently, there is a growing interest in the devel-
opment of automatic evaluation metrics which ex-
ploit linguistic knowledge at the syntactic and se-
mantic levels. For instance, we may find metrics
which compute similarities over shallow syntac-
tic structures/sequences (Giménez and Màrquez,
2007; Popovic and Ney, 2007), constituency
trees (Liu and Gildea, 2005) and dependency
trees (Liu and Gildea, 2005; Amigó et al., 2006;
Mehay and Brew, 2007; Owczarzak et al., 2007).
We may also find metrics operating over shallow
semantic structures, such as named entities and se-
mantic roles (Giménez and Màrquez, 2007).

Linguistic metrics have been proven to produce
more reliable system rankings than metrics limit-

ing their scope to the lexical dimension, in partic-
ular when applied to test beds with a rich system
typology, i.e., test beds in which there are auto-
matic outputs produced by systems based on dif-
ferent paradigms, e.g., statistical, rule-based and
human-aided (Giménez and Màrquez, 2007). The
reason is that they are able to capture deep MT
quality distinctions which occur beyond the shal-
low level of lexical similarities.

However, these metrics have the limitation of
relying on automatic linguistic processors, tools
which are not equally available for all languages
and whose performance may vary depending on
the type of analysis conducted and the applica-
tion domain. Thus, it could be argued that lin-
guistic metrics should suffer a significant quality
drop when applied to a different translation do-
main, or to ill-formed sentences. Clearly, met-
ric scores computed on partial or wrong syntac-
tic/semantic structures will be less informed. But,
should this necessarily lead to less reliable eval-
uations? In this work, we have analyzed this is-
sue by conducting a contrastive empirical study on
the behavior of a heterogeneous set of metrics over
several evaluation scenarios of decreasing transla-
tion quality. In particular, we have studied the case
of Chinese-to-English speech translation, which is
a paradigmatic example of low quality and heavily
ill-formed output.

The rest of the paper is organized as follows. In
Section 2, prior to presenting experimental work,
we describe the set of metrics employed in our
experiments. We also introduce a novel family
of metrics which operate at the properly semantic
level by analyzing similarities over discourse rep-
resentations. Experimental work is then presented
in Section 3. Metrics are evaluated both in terms of
human likeness and human acceptability (Amigó
et al., 2006). Finally, in Section 4, main conclu-
sions are summarized and future work is outlined.
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2 A Heterogeneous Metric Set

We have used a heterogeneous set of metrics se-
lected out from the metric repository provided
with the IQMT evaluation package (Giménez and
Màrquez, 2007)1. We have considered several
metric representatives from different linguistic
levels (lexical, syntactic and semantic). A brief
description of the metric set is available in Ap-
pendix A.

In addition, taking advantage of newly available
semantic processors, we have designed a novel
family of metrics based on the Discourse Repre-
sentation Theory, a theoretical framework offer-
ing a representation language for the examination
of contextually dependent meaning in discourse
(Kamp, 1981). A discourse is represented in a
discourse representation structure (DRS), which is
essentially a variation of first-order predicate cal-
culus —its forms are pairs of first-order formulae
and the free variables that occur in them.

2.1 Exploiting Semantic Similarity for
Automatic MT Evaluation

‘DR’ metrics analyze similarities between auto-
matic and reference translations by comparing
their respective DRSs. These are automatically
obtained using the C&C Tools (Clark and Cur-
ran, 2004)2. Sentences are first parsed on the basis
of a combinatory categorial grammar (Bos et al.,
2004). Then, the BOXER component (Bos, 2005)
extracts DRSs. As an illustration, Figure 1 shows
the DRS representation for the sentence“Every
man loves Mary.”. The reader may find the out-
put of the BOXER component (top) together with
the equivalent first-order formula (bottom).

DRS may be viewed as semantic trees, which
are built through the application of two types of
DRS conditions:

basic conditions: one-place properties (pred-
icates), two-place properties (relations),
named entities, time-expressions, cardinal
expressions and equalities.

complex conditions: disjunction, implication,
negation, question, and propositional attitude
operations.

Three kinds of metrics have been defined:
1http://www.lsi.upc.edu/∼nlp/IQMT
2http://svn.ask.it.usyd.edu.au/trac/

candc

DR-STM-l (Semantic Tree Matching) These
metrics are similar to theSyntactic Tree
Matching metric defined by Liu and Gildea
(2005), in this case applied to DRSs instead
of constituency trees. All semantic subpaths
in the candidate and the reference trees are
retrieved. The fraction of matching subpaths
of a given length,l ∈ [1..9], is computed.
Then, average accumulated scores up to a
given length are retrieved. For instance,‘DR-

STM-4’ corresponds to the average accumu-
lated proportion of matching subpaths up to
length-4.

DR-Or-t These metrics compute lexical overlap-
ping3 between discourse representation struc-
tures (i.e., discourse referents and discourse
conditions) according to their type ‘t’. For
instance, ‘DR-Or -pred’ roughly reflects lexi-
cal overlapping between the referents associ-
ated to predicates (i.e., one-place properties),
whereas‘DR-Or -imp’ reflects lexical overlap-
ping between referents associated to implica-
tion conditions. We also introduce the‘DR-

Or -⋆’ metric, which computes average lexical
overlapping over all DRS types.

DR-Orp-t These metrics compute morphosyn-
tactic overlapping (i.e., between parts of
speech associated to lexical items) between
discourse representation structures of the
same typet. We also define the‘DR-Orp-⋆’

metric, which computes average morphosyn-
tactic overlapping over all DRS types.

Note that in the case of some complex condi-
tions, such as implication or question, the respec-
tive order of the associated referents in the tree
is important. We take this aspect into account
by making order information explicit in the con-
struction of the semantic tree. We also make ex-
plicit the type, symbol, value and date of condi-
tions when these are applicable (e.g., predicates,
relations, named entities, time expressions, cardi-
nal expressions, or anaphoric conditions).

Finally, the extension to the evaluation setting
based on multiple references is computed by as-
signing the maximum score attained against each
individual reference.

3Overlapping is measured following the formulae and
definitions by Giménez and Màrquez (2007). A short defi-
nition may be found in Appendix A.
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Formally:

∃y named(y,mary, per) ∧ (∀x man(x) → ∃z love(z) ∧ event(z) ∧ agent(z, x) ∧ patient(z, y))

Figure 1: DRS representation for“Every man loves Mary.”

3 Experimental Work

In this section, we present an empirical study on
the behavior of a heterogeneous set of metrics
based on linguistic analysis in the case of speech
translation between non-related languages.

3.1 Evaluation Scenarios

We have used the test bed from the Chinese-
to-English translation task at the“2006 Evalua-
tion Campaign on Spoken Language Translation”
(Paul, 2006)4. The test set comprises 500 transla-
tion test cases corresponding to simple conversa-
tions (question/answer scenario) in the travel do-
main. In addition, there are 3 different evalua-
tion subscenarios of increasing translation diffi-
culty, according to the translation source:

CRR: Translation of correct recognition results
(as produced by human transcribers).

ASR read: Translation of automatic read speech
recognition results.

ASR spont: Translation of automatic sponta-
neous speech recognition results.

For the purpose of automatic evaluation, 7 hu-
man reference translations and automatic outputs
by 14 different MT systems for each evaluation
subscenario are available. In addition, we count
on the results of a process of manual evaluation.

4http://www.slc.atr.jp/IWSLT2006/

For each subscenario, 400 test cases from 6 differ-
ent system outputs were evaluated, by three human
assessors each, in terms of adequacy and fluency
on a 1-5 scale (LDC, 2005). A brief numerical de-
scription of these test beds is available in Table 1.
It includes the number of human references and
system outputs available, as well as the number
of sentences per output, and the number of system
outputs and sentences per system assessed. For the
sake of completeness, we report the performance
of the Automatic Speech Recognition (ASR) sys-
tem, in terms of accuracy, over the source Chinese
utterances, both at the word and sentence levels.
Also, in order to give an idea of the translation
quality exhibited by automatic systems, average
adequacy and fluency scores are also provided.

3.2 Meta-Evaluation

Our experiment requires a mechanism for evaluat-
ing the quality of evaluation metrics, i.e., a meta-
evaluation criterion. The two most prominent are:

• Human Acceptability:Metrics are evaluated
in terms of their ability to capture the de-
gree of acceptability to humans of automatic
translations, i.e., their ability to emulate hu-
man assessors. The underlying assumption
is thatgoodtranslations should be acceptable
to human evaluators. Human acceptability is
usually measured on the basis ofcorrelation
between automatic metric scores and human
assessments of translation quality.
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CRR ASR read ASR spont
#human-references 7 7 7
#system-outputs 14 14 13
#sentences 500 500 500
#outputsassessed 6 6 6
#sentencesassessed 400 400 400
Word Recognition Accuracy — 0.74 0.68
Sentence Recognition Accuracy — 0.23 0.17
Average Adequacy 1.40 1.02 0.93
Average Fluency 1.16 0.98 0.98

Table 1: IWSLT 2006 MT Evaluation Campaign. Chinese-to-English test bed description

• Human Likeness:Metrics are evaluated in
terms of their ability to capture the fea-
tures which distinguish human from auto-
matic translations. The underlying assump-
tion is thatgoodtranslations should resemble
human translations. Human likeness is usu-
ally measured on the basis ofdiscriminative
power (Lin and Och, 2004b; Amigó et al.,
2005).

In this work, metrics are evaluated both in terms
of human acceptability and human likeness. In the
case of human acceptability, metric quality is mea-
sured on the basis of correlation with human as-
sessments both at the sentence and document (i.e.,
system) levels. We compute Pearson correlation
coefficients. The sum of adequacy and fluency is
used as a global measure of quality. Assessments
from different judges have been averaged.

In the case of human likeness, we use the proba-
bilistic KING measure defined inside theQARLA

Framework (Amigó et al., 2005). KING repre-
sents the probability, estimated over the set of test
cases, that the score attained by a human reference
is equal or greater than the score attained byany
automatic translation. Although KING computa-
tions do not require human assessments, for the
sake of comparison, we have limited to the set of
test cases counting on human assessments.

3.3 Results

Table 2 presents meta-evaluation results for a set
of metric representatives from different linguistic
levels over the three subscenarios defined (‘CRR’,
‘ASR read’ and ‘ASR spont’). Highest scores
in each column have been highlighted. Lowest
scores appear in italics.

System-level Behavior

At the system level (Rsys, columns 7-9), the high-
est quality is in general attained by metrics based
on deep linguistic analysis, either syntactic or se-
mantic. Among lexical metrics, the highest cor-
relation is attained by BLEU and the variant of
GTM rewarding longer matchings (e = 2).

As to the impact of sentence ill-formedness,
while most metrics at the lexical level suffer a sig-
nificant variation across the three subscenarios, the
performance of metrics at deeper linguistic levels
is in general quite stable. However, in the case of
the translation of automatically recognized spon-
taneous speech (ASR spont) we have found that
the ‘SR-Or-⋆’ and ‘SR-Mr-⋆’ metrics, respectively
based on lexical overlapping and matching over
semantic roles, suffer a very significant decrease
far below the performance of most lexical metrics.
Although ‘SR-Or-⋆’ has performed well on other
test beds (Giménez and Màrquez, 2007), its low
performance over the BTEC data suggests that it
is not fully portable across all kind of evaluation
scenarios.

Finally, it is highly remarkable the degree of ro-
bustness exhibited by semantic metrics introduced
in Section 2.1. In particular, the metric variants
based on lexical and morphosyntactic overlapping
over discourse representations (‘DR-Or-⋆’ and‘DR-

Orp-⋆’ , respectively), obtain a high system-level
correlation with human assessments across the
three subscenarios.

Sentence-level Behavior

At the sentence level (KING andRsnt, columns
1-6), highest quality is attained in most cases by
metrics based on lexical matching. This result was
expected since all MT systems are statistical and
the test set is in-domain, that is it belongs to the

253



Human Likeness Human Acceptability
KING Rsnt Rsys

ASR ASR ASR ASR ASR ASR
Level Metric CRR read spont CRR read spont CRR read spont

1-WER 0.63 0.69 0.71 0.47 0.50 0.48 0.50 0.32 0.52
1-PER 0.71 0.79 0.79 0.44 0.48 0.45 0.67 0.39 0.60
1-TER 0.69 0.75 0.77 0.49 0.52 0.50 0.66 0.36 0.62
BLEU 0.69 0.72 0.73 0.54 0.53 0.52 0.79 0.74 0.62

Lexical NIST 0.79 0.84 0.85 0.53 0.54 0.53 0.12 0.26 -0.02
GTM ( e = 1) 0.75 0.81 0.83 0.50 0.52 0.52 0.35 0.10 -0.09
GTM ( e = 2) 0.72 0.78 0.79 0.62 0.64 0.61 0.78 0.65 0.62
METEOR wnsyn 0.81 0.86 0.86 0.44 0.50 0.48 0.55 0.39 0.08
ROUGEW 1.2 0.74 0.79 0.81 0.58 0.60 0.58 0.53 0.69 0.43
Ol 0.74 0.81 0.82 0.57 0.62 0.58 0.77 0.51 0.34
SP-Op-⋆ 0.75 0.80 0.82 0.54 0.59 0.56 0.77 0.54 0.48
SP-Oc-⋆ 0.74 0.81 0.82 0.54 0.59 0.55 0.82 0.52 0.49

Shallow SP-NISTl 0.79 0.84 0.85 0.52 0.53 0.52 0.10 0.25 -0.03
Syntactic SP-NISTp 0.74 0.78 0.80 0.44 0.42 0.43 -0.02 0.24 0.04

SP-NISTiob 0.65 0.69 0.70 0.33 0.32 0.35 -0.09 0.17 -0.09
SP-NISTc 0.55 0.59 0.59 0.24 0.22 0.25 -0.07 0.19 0.08
CP-Op-⋆ 0.75 0.81 0.82 0.57 0.63 0.59 0.84 0.67 0.52
CP-Oc-⋆ 0.74 0.80 0.82 0.60 0.64 0.61 0.71 0.53 0.43
DP-Ol-⋆ 0.68 0.75 0.76 0.48 0.50 0.50 0.84 0.77 0.67
DP-Oc-⋆ 0.71 0.76 0.77 0.41 0.46 0.43 0.76 0.65 0.71

Syntactic DP-Or -⋆ 0.75 0.80 0.81 0.51 0.53 0.51 0.81 0.75 0.62
DP-HWCw 0.54 0.57 0.57 0.29 0.32 0.28 0.73 0.74 0.37
DP-HWCc 0.48 0.51 0.52 0.17 0.18 0.22 0.73 0.64 0.67
DP-HWCr 0.44 0.49 0.48 0.20 0.21 0.25 0.71 0.58 0.56
CP-STM 0.71 0.77 0.80 0.53 0.56 0.54 0.65 0.58 0.47
SR-Mr -⋆ 0.40 0.43 0.45 0.29 0.28 0.29 0.52 0.60 0.20
SR-Or -⋆ 0.45 0.49 0.51 0.35 0.35 0.36 0.56 0.58 0.14

Shallow SR-Or 0.31 0.33 0.35 0.16 0.15 0.18 0.68 0.73 0.53
Semantic SR-Mrv -⋆ 0.38 0.41 0.42 0.33 0.34 0.34 0.79 0.81 0.42

SR-Orv -⋆ 0.40 0.44 0.45 0.36 0.38 0.38 0.64 0.72 0.72
SR-Orv 0.36 0.40 0.40 0.27 0.31 0.29 0.34 0.78 0.38
DR-Or -⋆ 0.67 0.73 0.75 0.48 0.53 0.50 0.86 0.74 0.77

Semantic DR-Orp-⋆ 0.59 0.64 0.65 0.34 0.35 0.33 0.84 0.78 0.95
DR-STM 0.58 0.63 0.65 0.23 0.26 0.26 0.75 0.62 0.67

Table 2: Meta-evaluation results for a set of metric representatives from different linguistic levels

same domain in which systems have been trained.
Therefore, translation outputs have a strong ten-
dency to share the sublanguage (i.e., word selec-
tion and word ordering) represented by the prede-
fined set of human reference translations.

Metrics based on lexical overlapping and
matching over shallow syntactic categories and
syntactic structures (‘SP-Op-⋆’ , ‘SP-Oc-⋆’ , ‘CP-Op-⋆’ ,
‘CP-Oc-⋆’ , ‘DP-Ol-⋆’ , ‘DP-Oc-⋆’ , and ‘DP-Or-⋆’) per-
form similarly to lexical metrics. However, com-
puting NIST scores over base phrase chunk se-
quences (‘SP-NISTiob’ , ‘SP-NISTc’) is not as effec-
tive. Metrics based on head-word chain match-
ing (‘DP-HWCw’ , ‘DP-HWCc’ , ‘DP-HWCr’) suffer also
a significant decrease. Interestingly, the metric
based on syntactic tree matching (‘CP-STM’) per-
formed well in all scenarios.

Metrics at the shallow semantic level suffer also
a severe drop in performance. Particularly signif-
icant is the case case of the‘SR-Or ’ metric, which

does not consider any lexical information. Inter-
estingly, the‘SR-Orv’ variant, which only differs
in that it distinguishes between SRs associated to
different verbs, performs slightly better.

At the semantic level, metrics based on lex-
ical and morphosyntactic overlapping over dis-
course representations (‘DR-Or-⋆’ and ‘DR-Orp-⋆’)
suffer only a minor decrease, whereas semantic
tree matching (‘DR-STM’) reports as a specially bad
predictor of human acceptability (Rsnt).

However, the most remarkable result, in rela-
tion to the goal of this work, is that the behavior
of syntactic and semantic metrics across the three
evaluation subscenarios is, in general, quite stable
—the three values in each subrow are in a very
similar range. Therefore, answering the question
posed in the introduction,sentence ill-formedness
is not a limiting factor in the performance of lin-
guistic metrics.
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Human Likeness Human Acceptability
KING Rsnt Rsys

ASR ASR ASR ASR ASR ASR
Level Metric CRR read spont CRR read spont CRR read spont

Lexical NIST 0.79 0.84 0.85 0.53 0.54 0.53 0.12 0.26 -0.02
GTM ( e = 2) 0.72 0.78 0.79 0.62 0.64 0.61 0.78 0.65 0.62
METEOR wnsyn 0.81 0.86 0.86 0.44 0.50 0.48 0.55 0.39 0.08
Ol 0.74 0.81 0.82 0.57 0.62 0.58 0.77 0.51 0.34
CP-Op-⋆ 0.75 0.81 0.82 0.57 0.63 0.59 0.84 0.67 0.52

Syntactic CP-Oc-⋆ 0.74 0.80 0.82 0.60 0.64 0.61 0.71 0.53 0.43
DP-Ol-⋆ 0.68 0.75 0.76 0.48 0.50 0.50 0.84 0.77 0.67
SR-Mr -⋆ 0.40 0.43 0.45 0.29 0.28 0.29 0.52 0.60 0.20
SR-Mr -⋆b 0.68 0.72 0.73 0.31 0.30 0.31 0.52 0.60 0.20
SR-Mr -⋆i 0.84 0.86 0.88 0.34 0.34 0.34 0.56 0.63 0.25
SR-Or -⋆ 0.45 0.49 0.51 0.35 0.35 0.36 0.56 0.58 0.14
SR-Or -⋆b 0.71 0.75 0.78 0.38 0.38 0.38 0.56 0.58 0.14
SR-Or -⋆i 0.84 0.88 0.89 0.41 0.41 0.41 0.62 0.60 0.22
SR-Or 0.31 0.33 0.35 0.16 0.15 0.18 0.68 0.73 0.53
SR-Or b 0.54 0.58 0.60 0.19 0.18 0.20 0.68 0.73 0.53

Shallow SR-Or i 0.72 0.77 0.79 0.26 0.26 0.27 0.80 0.73 0.67
Semantic SR-Mrv -⋆ 0.38 0.41 0.42 0.33 0.34 0.34 0.79 0.81 0.42

SR-Mrv -⋆b 0.70 0.73 0.74 0.34 0.35 0.34 0.79 0.81 0.42
SR-Mrv -⋆i 0.88 0.90 0.92 0.36 0.38 0.37 0.81 0.82 0.45
SR-Orv -⋆ 0.40 0.44 0.45 0.36 0.38 0.38 0.64 0.72 0.72
SR-Orv -⋆b 0.72 0.76 0.77 0.38 0.40 0.39 0.64 0.72 0.72
SR-Orv -⋆i 0.88 0.90 0.91 0.40 0.42 0.41 0.69 0.74 0.74
SR-Orv 0.36 0.40 0.40 0.27 0.31 0.29 0.34 0.78 0.38
SR-Orv b 0.66 0.70 0.71 0.29 0.32 0.30 0.34 0.78 0.38
SR-Orv i 0.83 0.86 0.88 0.33 0.36 0.33 0.49 0.82 0.56
DR-Or -⋆ 0.67 0.73 0.75 0.48 0.53 0.50 0.86 0.74 0.77
DR-Or -⋆b 0.69 0.75 0.77 0.50 0.53 0.50 0.90 0.69 0.56

Semantic DR-Or -⋆i 0.83 0.87 0.89 0.53 0.57 0.53 0.88 0.70 0.61
DR-Orp-⋆ 0.59 0.64 0.65 0.34 0.35 0.33 0.84 0.78 0.95
DR-Orp-⋆b 0.61 0.65 0.67 0.35 0.36 0.34 0.86 0.71 0.57
DR-Orp-⋆i 0.80 0.84 0.85 0.43 0.46 0.43 0.90 0.75 0.70
DR-STM 0.58 0.63 0.65 0.23 0.26 0.26 0.75 0.62 0.67
DR-STM-b 0.64 0.68 0.71 0.23 0.26 0.27 0.75 0.62 0.67
DR-STM-i 0.83 0.87 0.87 0.33 0.36 0.36 0.84 0.63 0.66

Table 3: Meta-evaluation results. Improved sentence-level evaluation of SR and DR metrics

Improved Sentence-level Behavior

By inspecting particular instances, we have found
that linguistic metrics are, in many cases, unable to
produce any evaluation result. The number of un-
scored sentences is particularly significant in the
case of SR metrics. For instance, the‘SR-Or-⋆’

metric is unable to confer an evaluation score in
57% of the cases. Several reasons explain this fact.
The first and most important is that linguistic met-
rics rely on automatic processors trained on out-
of-domain data, which are, thus, prone to error.
Second, we argue that the test bed itself does not
allow for fully exploiting the capabilities of these
metrics. Apart from being based on a reduced vo-
cabulary (2,346 distinct words), test cases consist
mostly of very short segments (14.64 words on av-
erage), which in their turn consist of even shorter
sentences (8.55 words on average)5.

5Vocabulary size and segment/sentence average lengths
have been computed over the set of reference translations.

A possible solution could be to back off to
a measure of lexical similarity in those cases in
which linguistic processors are unable to produce
any linguistic analysis. This should significantly
increase their recall. With that purpose, we have
designed two new variants for each of these met-
rics. Given a linguistic metricx, we define:

• xb → by backing off to lexical overlapping,
Ol, only when the linguistic processor was
not able to produce a parsing. Lexical scores
are conveniently scaled so that they are in a
similar range tox scores. Specifically, we
multiply them by the averagex score attained
over all other test cases for which the parser
succeeded. Formally, given a test caset be-
longing to a set of test casesT :

xb(t) =

{

x(t) if t ∈ ok(T )

Ol(t)
P

j∈ok(T ) x(j)

|ok(T )| otherwise
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whereok(T ) is the subset of test cases inT

which were successfully parsed.

• xi → by linearly interpolatingx and Ol

scores for all test cases, via arithmetic mean:

xi(t) =
x(t) + Ol(t)

2

In both cases, system-level scores are calculated
by averaging over all sentence-level scores.

Table 3 shows meta-evaluation results on the
performance of these variants for several repre-
sentatives from the SR and DR families. For the
sake of comparison, we also show the scores at-
tained by the base versions, and by some of the
top-scoring metrics from other linguistic levels.

The first observation is that in all cases the new
variants outperform their respective base metric,
being linear interpolation the best alternative. The
increase is particularly significant in terms of hu-
man likeness. New variants even outperform lex-
ical metrics, including theOl metric, which sug-
gests that, in spite of its simplicity, this is a valid
combination scheme. However, in terms of human
acceptability, the gain is only moderate, and still
their performance is far from top-scoring metrics.

Sentence-level improvements are also reflected
at the system level, although to a lesser extent.
Interestingly, in the case of the translation of au-
tomatically recognized spontaneous speech (ASR
spont, column 9), mixing with lexical overlap-
ping improves the low-performance‘SR-Or ’ and
‘SR-Orv’ metrics, at the same time that it causes
a significant drop in the high-performance‘DR-Or ’

and‘DR-Orp’ metrics. Still, the performance of lin-
guistic metrics at the sentence level is under the
performance of lexical metrics. This is not sur-
prising. After all, apart from relying on automatic
processors, linguistic metrics focus on very par-
tial aspects of quality. However, since they operate
at complementary quality dimensions, their scores
are suitable for being combined.

4 Conclusions and Future Work

We have presented an empirical study on the ro-
bustness of a heterogeneous set of metrics operat-
ing at different linguistic levels for the particular
case of Chinese-to-English speech translation of
basic travel expressions. As an additional contri-
bution, we have presented a novel family of met-
rics which operate at the semantic level by analyz-
ing discourse representations.

Corroborating previous findings by Giménez
and Màrquez (2007), results at the system level,
show that metrics guided by deeper linguistic
knowledge, either syntactic or semantic, are, in
general, more effective and stable than metrics
which limit their scope to the lexical dimension.

However, at the sentence level, results indicate
that metrics based on deep linguistic analysis are
not as reliable overall quality estimators as lexical
metrics, at least when applied to low quality trans-
lations, as it is the case. This behavior is mainly at-
tributable a drop in recall due to parsing errors. By
inspecting particular sentences we have observed
that in many cases these metrics are unable to pro-
duce any result. In that respect, we have showed
that backing off to lexical similarity is a valid and
effective strategy so as to improve the performance
of these metrics.

But the most remarkable result, in relation to the
goal of this work, is that syntactic and semantic
metrics exhibit a very robust behavior across the
three evaluation subscenarios of decreasing trans-
lation quality analyzed. Therefore, sentence ill-
formedness is not a limiting factor in the perfor-
mance of linguistic metrics. The quality drop,
when moving from the system to the sentence
level, seems, thus, more related to a shift in the
application domain.

For future work, we are currently studying the
possibility of further improving the sentence-level
behavior of present evaluation methods by com-
bining the outcomes of metrics at different linguis-
tic levels into a single measure of quality (citation
omitted for the sake of anonymity).
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A Metric Set

Metrics are grouped according to the linguistic di-
mension at which they operate:

• Lexical Similarity

WER (Nießen et al., 2000).

PER (Tillmann et al., 1997).

BLEU (Papineni et al., 2001).

NIST (Doddington, 2002).

GTM (Melamed et al., 2003).

ROUGE (Lin and Och, 2004a).

METEOR. (Banerjee and Lavie, 2005).

TER (Snover et al., 2006).

Ol (Giménez and Màrquez, 2007).Ol is a
short name for lexical overlapping. Au-
tomatic and reference translations are
considered as unordered sets of lexical
items. Ol is computed as the cardinal-
ity of the intersection of the two sets di-
vided into the cardinality of their union.

• Shallow Syntactic Similarity (SP)

SP-Op-⋆. Average lexical overlapping over
parts-of-speech.

SP-Oc-⋆. Average lexical overlapping over
base phrase chunk types.

SP-NIST.NIST score over sequences of:

SP-NISTl Lemmas.
SP-NISTp Parts-of-speech.
SP-NISTc Base phrase chunks.
SP-NISTiob Chunk IOB labels.

• Syntactic Similarity

On Dependency Parsing (DP)

DP-HWC Head-word chain matching
(HWCM), as presented by Liu and
Gildea (2005), but slightly modi-
fied so as to consider different head-
word chain types:
DP-HWCw words.
DP-HWCc categories.
DP-HWCr relations.

In all cases only chains up to length
4 are considered.

DP-Ol|Oc|Or These metrics cor-
respond exactly to the LEVEL,
GRAM and TREE metrics intro-
duced by Amigó et al. (2006):

DP-Ol-⋆ Average overlapping be-
tween words hanging at the same
level of the tree.

DP-Oc-⋆ Average overlapping be-
tween words assigned the same
grammatical category.

DP-Or-⋆ Average overlapping be-
tween words ruled by the same
type of grammatical relations.

On Constituency Parsing (CP)
CP-STM Syntactic tree matching

(STM), as presented by Liu and
Gildea (2005), i.e., limited up to
length-4 subtrees.

CP-Op-⋆ Average lexical overlap-
ping over parts-of-speech, similarly
to ‘SP-Op-⋆’ , except that parts-of-
speech are now consistent with the
full parsing.

CP-Oc-⋆ Average lexical overlapping
over phrase constituents. The differ-
ence between this metric and‘SP-Oc-

⋆’ is in the phrase scope. In con-
trast to base phrase chunks, con-
stituents allow for phrase embed-
ding and overlapping.

• Shallow-Semantic Similarity

On Semantic Roles (SR)
SR-Or-⋆ Average lexical overlapping

between SRs of the same type.
SR-Mr-⋆ Average lexical matching

between SRs of the same type.
SR-Or Overlapping between semantic

roles independently from their lexi-
cal realization.

We also consider a more restrictive ver-
sion of these metrics (‘SR-Mrv -⋆’ , ‘SR-

Orv -⋆’ , and ‘SR-Orv ’), which require
SRs to be associated to the same verb.

• Semantic Similarity

On Discourse Representations (DR)
DR-STM Average semantic tree

matching considering semantic
subtrees up to length 4.

DR-Or-⋆ Average lexical overlapping
between DRSs of the same type.

DR-Orp-⋆ Average morphosyntactic
overlapping between DRSs of the
same type.
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