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Abstract

This paper describes the techniques we
explored to improve the translation of
news text in the German-English and
Hungarian-English tracks of the WMT09
shared translation task. Beginning with a
convention hierarchical phrase-based sys-
tem, we found benefits for using word seg-
mentation lattices as input, explicit gen-
eration of beginning and end of sentence
markers, minimum Bayes risk decoding,
and incorporation of a feature scoring the
alignment of function words in the hy-
pothesized translation. We also explored
the use of monolingual paraphrases to im-
prove coverage, as well as co-training to
improve the quality of the segmentation
lattices used, but these did not lead to im-
provements.

1 Introduction

For the shared translation task of the Fourth Work-
shop on Machine Translation (WMT09), we fo-
cused on two tasks: German to English and Hun-
garian to English translation. Despite belonging to
different language families, German and Hungar-
ian have three features in common that complicate
translation into English:

1. productive compounding (especially of
nouns),

2. rich inflectional morphology,

3. widespread mid- to long-range word order
differences with respect to English.

Since these phenomena are poorly addressed with
conventional approaches to statistical machine

translation, we chose to work primarily toward
mitigating their negative effects when construct-
ing our systems. This paper is structured as fol-
lows. In Section 2 we describe the baseline model,
Section 3 describes the various strategies we em-
ployed to address the challenges just listed, and
Section 4 summarizes the final translation system.

2 Baseline system

Our translation system makes use of a hierarchical
phrase-based translation model (Chiang, 2007),
which we argue is a strong baseline for these
language pairs. First, such a system makes use
of lexical information when modeling reorder-
ing (Lopez, 2008), which has previously been
shown to be useful in German-to-English trans-
lation (Koehn et al., 2008). Additionally, since
the decoder is based on a CKY parser, it can con-
sider all licensed reorderings of the input in poly-
nomial time, and German and Hungarian may re-
quire quite substantial reordering. Although such
decoders and models have been common for sev-
eral years, there have been no published results for
these language pairs.

The baseline system translates lowercased and
tokenized source sentences into lowercased target
sentences. The features used were the rule transla-
tion relative frequency P (ē|f̄), the “lexical” trans-
lation probabilities Plex(ē|f̄) and Plex(f̄ |ē), a rule
count, a target language word count, the target
(English) language model P (eI1), and a “pass-
through” penalty for passing a source language
word to the target side.1 The rule feature values
were computed online during decoding using the
suffix array method described by Lopez (2007).

1The “pass-through” penalty was necessary since the En-
glish language modeling data contained a large amount of
source-language text.
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2.1 Training and development data

To construct the translation suffix arrays used to
compute the translation grammar, we used the par-
allel training data provided. The preprocessed
training data was filtered for length and aligned
using the GIZA++ implementation of IBM Model
4 (Och and Ney, 2003) in both directions and sym-
metrized using the grow-diag-final-and
heuristic. We trained a 5-gram language model
from the provided English monolingual training
data and the non-Europarl portions of the parallel
training data using modified Kneser-Ney smooth-
ing as implemented in the SRI language modeling
toolkit (Kneser and Ney, 1995; Stolcke, 2002). We
divided the 2008 workshop “news test” sets into
two halves of approximately 1000 sentences each
and designated one the dev set and the other the
dev-test set.

2.2 Automatic evaluation metric

Since the official evaluation criterion for WMT09
is human sentence ranking, we chose to minimize
a linear combination of two common evaluation
metrics, BLEU and TER (Papineni et al., 2002;
Snover et al., 2006), during system development
and tuning:

TER − BLEU

2

Although we are not aware of any work demon-
strating that this combination of metrics correlates
better than either individually in sentence ranking,
Yaser Al-Onaizan (personal communication) re-
ports that it correlates well with the human evalua-
tion metric HTER. In this paper, we report uncased
TER and BLEU individually.

2.3 Forest minimum error training

To tune the feature weights of our system, we used
a variant of the minimum error training algorithm
(Och, 2003) that computes the error statistics from
the target sentences from the translation search
space (represented by a packed forest) that are ex-
actly those that are minimally discriminable by
changing the feature weights along a single vector
in the dimensions of the feature space (Macherey
et al., 2008). The loss function we used was the
linear combination of TER and BLEU described in
the previous section.

3 Experimental variations

This section describes the experimental variants
explored.

3.1 Word segmentation lattices
Both German and Hungarian have a large number
of compound words that are created by concate-
nating several morphemes to form a single ortho-
graphic token. To deal with productive compound-
ing, we employ word segmentation lattices, which
are word lattices that encode alternative possible
segmentations of compound words. Doing so en-
ables us to use possibly inaccurate approaches to
guess the segmentation of compound words, al-
lowing the decoder to decide which to use during
translation. This is a further development of our
general source-lattice approach to decoding (Dyer
et al., 2008).

To construct the segmentation lattices, we de-
fine a log-linear model of compound word seg-
mentation inspired by Koehn and Knight (2003),
making use of features including number of mor-
phemes hypothesized, frequency of the segments
as free-standing morphemes in a training corpus,
and letters in each segment. To tune the model
parameters, we selected a set of compound words
from a subset of the German development set,
manually created a linguistically plausible seg-
mentation of these words, and used this to select
the parameters of the log-linear model using a lat-
tice minimum error training algorithm to minimize
WER (Macherey et al., 2008). We reused the same
features and weights to create the Hungarian lat-
tices. For the test data, we created a lattice of ev-
ery possible segmentation of any word 6 charac-
ters or longer and used forward-backward pruning
to prune out low-probability segmentation paths
(Sixtus and Ortmanns, 1999). We then concate-
nated the lattices in each sentence.

Source Condition BLEU TER

German
baseline 20.8 60.7
lattice 21.3 59.9

Hungarian
baseline 11.0 71.1
lattice 12.3 70.4

Table 1: Impact of compound segmentation lat-
tices.

To build the translation model for lattice sys-
tem, we segmented the training data using the one-
best split predicted by the segmentation model,
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and word aligned this with the English side. This
variant version of the training data was then con-
catenated with the baseline system’s training data.

3.1.1 Co-training of segmentation model
To avoid the necessity of manually creating seg-
mentation examples to train the segmentation
model, we attempted to generate sets of training
examples by selecting the compound splits that
were found along the path chosen by the decoder’s
one-best translation. Unfortunately, the segmen-
tation system generated in this way performed
slightly worse than the one-best baseline and so
we continued to use the parameter settings derived
from the manual segmentation.

3.2 Modeling sentence boundaries

Incorporating an n-gram language model proba-
bility into a CKY-based decoder is challenging.
When a partial hypothesis (also called an “item”)
has been completed, it has not yet been determined
what strings will eventually occur to the left of
its first word, meaning that the exact computation
must deferred, which makes pruning a challenge.
In typical CKY decoders, the beginning and ends
of the sentence (which often have special charac-
teristics) are not conclusively determined until the
whole sentence has been translated and the proba-
bilities for the beginning and end sentence proba-
bilities can be added. However, by this point it is
often the case that a possibly better sentence be-
ginning has been pruned away. To address this,
we explicitly generate beginning and end sentence
markers as part of the translation process, as sug-
gested by Xiong et al. (2008). The results of doing
this are shown in Table 2.

Source Condition BLEU TER

German
baseline 21.3 59.9

+boundary 21.6 60.1

Hungarian
baseline 12.3 70.4

+boundary 12.8 70.4

Table 2: Impact of modeling sentence boundaries.

3.3 Source language paraphrases

In order to deal with the sparsity associated with
a rich source language morphology and limited-
size parallel corpora (bitexts), we experimented
with a novel approach to paraphrasing out-of-
vocabulary (OOV) source language phrases in

our Hungarian-English system, using monolingual
contextual similarity rather than phrase-table piv-
oting (Callison-Burch et al., 2006) or monolin-
gual bitexts (Barzilay and McKeown, 2001; Dolan
et al., 2004). Distributional profiles for source
phrases were represented as context vectors over
a sliding window of size 6, with vectors defined
using log-likelihood ratios (cf. Rapp (1999), Dun-
ning (1993)) but using cosine rather than city-
block distance to measure profile similarity.

The 20 distributionally most similar source
phrases were treated as paraphrases, considering
candidate phrases up to a width of 6 tokens and fil-
tering out paraphrase candidates with cosine simi-
larity to the original of less than 0.6. The two most
likely translations for each paraphrase were added
to the grammar in order to provide mappings to
English for OOV Hungarian phrases.

This attempt at monolingually-derived source-
side paraphrasing did not yield improvements over
baseline. Preliminary analysis suggests that the
approach does well at identifying many content
words in translating extracted paraphrases of OOV
phrases (e.g., a kommunista part vezetaje ⇒ ,
leader of the communist party or a ra tervezett⇒
until the planned to), but at the cost of more fre-
quently omitting target words in the output.

3.4 Dominance feature

Although our baseline hierarchical system permits
long-range reordering, it lacks a mechanism to
identify the most appropriate reordering for a spe-
cific sentence translation. For example, when the
most appropriate reordering is a long-range one,
our baseline system often also has to consider
shorter-range reorderings as well. In the worst
case, a shorter-range reordering has a high proba-
bility, causing the wrong reordering to be chosen.
Our baseline system lacks the capacity to address
such cases because all the features it employs are
independent of the phrases being moved; these are
modeled only as an unlexicalized generic nonter-
minal symbol.

To address this challenge, we included what we
call a dominance feature in the scoring of hypothe-
sis translations. Briefly, the premise of this feature
is that the function words in the sentence hold the
key reordering information, and therefore function
words are used to model the phrases being moved.
The feature assesses the quality of a reordering by
looking at the phrase alignment between pairs of
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function words. In our experiments, we treated
the 128 most frequent words in the corpus as func-
tion words, similar to Setiawan et al. (2007). Due
to space constraints, we will discuss the details in
another publication. As Table 3 reports, the use of
this feature yields positive results.

Source Condition BLEU TER

German
baseline 21.6 60.1
+dom 22.2 59.8

Hungarian
baseline 12.8 70.4
+dom 12.6 70.0

Table 3: Impact of alignment dominance feature.

3.5 Minimum Bayes risk decoding

Although during minimum error training we as-
sume a decoder that uses the maximum derivation
decision rule, we find benefits to translating using
a minimum risk decision rule on a test set (Kumar
and Byrne, 2004). This seeks the translation E of
the input lattice F that has the least expected loss,
measured by some loss function L:

Ê = arg min
E′

EP (E|F)[L(E,E′)] (1)

= arg min
E′

∑
E

P (E|F)L(E,E′) (2)

We approximate the posterior distribution
P (E|F) and the set of possible candidate transla-
tions using the unique 500-best translations of a
source lattice F . If H(E,F) is the decoder’s path
weight, this is:

P (E|F) ∝ expαH(E,F)

The optimal value for the free parameter αmust
be experimentally determined and depends on the
ranges of the feature functions and weights used in
the model, as well as the amount and kind of prun-
ing using during decoding.2 For our submission,
we used α = 1. Since our goal is to minimize
TER−BLEU

2 we used this as the loss function in (2).
Table 4 shows the results on the dev-test set for
MBR decoding.

2If the free parameter α lies in (1,∞) the distribution is
sharpened, if it lies in [0, 1), the distribution is flattened.

Source Decoder BLEU TER

German
Max-D 22.2 59.8
MBR 22.6 59.4

Hungarian
Max-D 12.6 70.0
MBR 12.8 69.8

Table 4: Performance of maximum derivation vs.
MBR decoders.

4 Conclusion

Table 5 summarizes the impact on the dev-test set
of all features included in the University of Mary-
land system submission.

Condition
German Hungarian

BLEU TER BLEU TER

baseline 20.8 60.7 11.0 71.1
+lattices 21.3 59.9 12.3 70.4

+boundary 21.6 60.1 12.8 70.4
+dom 22.2 59.8 12.6 70.0

+MBR 22.6 59.4 12.8 69.8

Table 5: Summary of all features
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