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Abstract

We describe a synthetic method for com-
bining machine translations produced by
different systems given the same input.
One-best outputs are explicitly aligned
to remove duplicate words. Hypotheses
follow system outputs in sentence order,
switching between systems mid-sentence
to produce a combined output. Experi-
ments with the WMT 2009 tuning data
showed improvement of 2 BLEU and 1
METEOR point over the best Hungarian-
English system. Constrained to data pro-
vided by the contest, our system was sub-
mitted to the WMT 2009 shared system
combination task.

1 Introduction

Many systems for machine translation, with dif-
ferent underlying approaches, are of competitive
quality. Nonetheless these approaches and sys-
tems have different strengths and weaknesses. By
offsetting weaknesses with strengths of other sys-
tems, combination can produce higher quality than
does any component system.

One approach to system combination uses con-
fusion networks (Rosti et al., 2008; Karakos et
al., 2008). In the most common form, a skele-
ton sentence is chosen from among the one-best
system outputs. This skeleton determines the or-
dering of the final combined sentence. The re-
maining outputs are aligned with the skeleton, pro-
ducing a list of alternatives for each word in the
skeleton, which comprises a confusion network. A
decoder chooses from the original skeleton word
and its alternatives to produce a final output sen-
tence. While there are a number of variations on
this theme, our approach differs fundamentally in
that the effective skeleton changes on a per-phrase
basis.

Our system is an enhancement of our previous
work (Jayaraman and Lavie, 2005). A hypothesis
uses words from systems in order, switching be-
tween systems at phrase boundaries. Alignments
and a synchronization method merge meaning-
equivalent output from different systems. Hy-
potheses are scored based on system confidence,
alignment support, and a language model.

We contribute a few enhancements to this pro-
cess. First, we introduce an alignment-sensitive
method for synchronizing available hypothesis ex-
tensions across systems. Second, we pack similar
partial hypotheses, which allows greater diversity
in our beam search while maintaining the accuracy
of n-best output. Finally, we describe an improved
model selection process that determined our sub-
missions to the WMT 2009 shared system combi-
nation task.

The remainder of this paper is organized as fol-
lows. Section 2 describes the system with empha-
sis on our modifications. Tuning, our experimen-
tal setup, and submitted systems are described in
Section 3. Section 4 concludes.

2 System

The system consists of alignment (Section 2.1)
and phrase detection (Section 2.2) followed by de-
coding. The decoder constructs hypothesis sen-
tences one word at a time, starting from the left. A
partially constructed hypothesis comprises:

Word The most recently decoded word. Initially,
this is the beginning of sentence marker.

Used The set of used words from each system.
Initially empty.

Phrase The current phrase constraint from Sec-
tion 2.2, if any. The initial hypothesis is not
in a phrase.

Features Four feature values defined in Section
2.4 and used in Section 2.5 for beam search
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and hypothesis ranking. Initially, all features
are 1.

Previous A set of preceding hypothesis pointers
described in Section 2.5. Initially empty.

The leftmost unused word from each system
corresponds to a continuation of the partial hy-
pothesis. Therefore, for each system, we extend a
partial hypothesis by appending that system’s left-
most unused word, yielding several new hypothe-
ses. The appended word, and those aligned with it,
are marked as used in the new hypothesis. Since
systems do not align perfectly, too few words may
be marked as used, a problem addressed in Sec-
tion 2.3. As described in Section 2.4, hypotheses
are scored using four features based on alignment,
system confidence, and a language model. Since
the search space is quite large, we use these partial
scores for a beam search, where the beam contains
hypotheses of equal length. This space contains
hypotheses that extend in precisely the same way,
which we exploit in Section 2.5 to increase diver-
sity. Finally, a hypothesis is complete when the
end of sentence marker is appended.

2.1 Alignment

Sentences from different systems are aligned in
pairs using a modified version of the METEOR
(Banerjee and Lavie, 2005) matcher. This iden-
tifies alignments in three phases: exact matches
up to case, WordNet (Fellbaum, 1998) morphol-
ogy matches, and shared WordNet synsets. These
sources of alignments are quite precise and unable
to pick up on looser matches such as “mentioned”
and “said” that legitimately appear in output from
different systems. Artificial alignments are in-
tended to fill gaps by using surrounding align-
ments as clues. If a word is not aligned to any
word in some other sentence, we search left and
right for words that are aligned into that sentence.
If these alignments are sufficiently close to each
other in the other sentence, words between them
are considered for artificial alignment. An arti-
ficial alignment is added if a matching part of
speech is found. The algorithm is described fully
by Jayaraman and Lavie (2005).

2.2 Phrases

Switching between systems is permitted outside
phrases or at phrase boundaries. We find phrases
in two ways. Alignment phrases are maximally

long sequences of words which align, in the same
order and without interruption, to a word se-
quence from at least one other system. Punctua-
tion phrases place punctuation in a phrase with the
preceding word, if any. When the decoder extends
a hypothesis, it considers the longest phrase in
which no word is used. If a punctuation phrase is
partially used, the decoder marks the entire phrase
as used to avoid extraneous punctuation.

2.3 Synchronization

While phrases address near-equal pieces of trans-
lation output, we must also deal with equally
meaningful output that does not align. The im-
mediate effect of this issue is that too few words
are marked as used by the decoder, leading to du-
plication in the combined output. In addition, par-
tially aligned system output results in lingering un-
used words between used words. Often these are
function words that, with language model scoring,
make output unnecessarily verbose. To deal with
this problem, we expire lingering words by mark-
ing them as used. Specifically, we consider the
frontier of each system, which is the leftmost un-
used word. If a frontier lags behind, words as used
to advance the frontier. Our two methods for syn-
chronization differ in how frontiers are compared
across systems and the tightness of the constraint.

Previously, we measured frontiers from the be-
ginning of sentence. Based on this measurement,
the synchronization constraint requires that the
frontiers of each system differ by at most s. Equiv-
alently, a frontier is lagging if it is more than s
words behind the rightmost frontier. Lagging fron-
tiers are advanced until the synchronization con-
straint becomes satisfied. We found this method
can cause problems in the presence of variable
length output. When the variability in output
length exceeds s, proper synchronization requires
distances between frontiers greater than s, which
this constraint disallows.

Alignments indicate where words are syn-
chronous. Words near an alignment are also likely
to be synchronous even without an explicit align-
ment. For example, in the fragments “even more
serious, you” and “even worse, you” from WMT
2008, “serious” and “worse” do not align but
do share relative position from other alignments,
suggesting these are synchronous. We formalize
this by measuring the relative position of fron-
tiers from alignments on each side. For example,
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if the frontier itself is aligned then relative posi-
tion is zero. For each pair of systems, we check
if these relative positions differ by at most s un-
der an alignment on either side. Confidence in a
system’s frontier is the sum of the system’s own
confidence plus confidence in systems for which
the pair-wise constraint is satisfied. If confidence
in any frontier falls below 0.8, the least confident
lagging frontier is advanced. The process repeats
until the constraint becomes satisfied.

2.4 Scores

We score partial and complete hypotheses using
system confidence, alignments, and a language
model. Specifically, we have four features which
operate at the word level:

Alignment Confidence in the system from which
the word came plus confidence in systems to
which the word aligns.

Language Model Score from a suffix array lan-
guage model (Zhang and Vogel, 2006)
trained on English from monolingual and
French-English data provided by the contest.

N -Gram
(

1
3

)order−ngram using language model
order and length of ngram found.

Overlap overlap
order−1 where overlap is the length of

intersection between the preceding and cur-
rent n-grams.

The N -Gram and Overlap features are intended to
improve fluency across phrase boundaries. Fea-
tures are combined using a log-linear model
trained as discussed in Section 3. Hypotheses are
scored using the geometric average score of each
word in the hypothesis.

2.5 Search

Of note is that a word’s score is impacted only by
its alignments and the n-gram found by the lan-
guage model. Therefore two partial hypotheses
that differ only in words preceding the n-gram and
in their average score are in some sense duplicates.
With the same set of used words and same phrase
constraint, they extend in precisely the same way.
In particular, the highest scoring hypothesis will
never use a lower scoring duplicate.

We use duplicate detecting beam search to ex-
plore our hypothesis space. A beam contains par-
tial hypotheses of the same length. Duplicate

hypotheses are detected on insertion and packed,
with the combined hypothesis given the highest
score of those packed. Once a beam contains the
top scoring partial hypotheses of length l, these
hypotheses are extended to length l+1 and placed
in another beam. Those hypotheses reaching end
of sentence are placed in a separate beam, which is
equivalent to packing them into one final hypoth-
esis. Once we remove partial hypothesis that did
not extend to the final hypothesis, the hypotheses
are a lattice connected by parent pointers.

While we submitted only one-best hypotheses,
accurate n-best hypotheses are important for train-
ing as explained in Section 3. Unpacking the hy-
pothesis lattice into n-best hypotheses is guided
by scores stored in each hypothesis. For this task,
we use an n-best beam of paths from the end of
sentence hypothesis to a partial hypothesis. Paths
are built by induction, starting with a zero-length
path from the end of sentence hypothesis to itself.
The top scoring path is removed and its terminal
hypothesis is examined. If it is the beginning of
sentence, the path is output as a complete hypoth-
esis. Otherwise, we extend the path to each parent
hypothesis, adjusting each path score as necessary,
and insert into the beam. This process terminates
with n complete hypotheses or an empty beam.

3 Tuning

Given the 502 sentences made available for tun-
ing by WMT 2009, we selected feature weights for
scoring, a set of systems to combine, confidence in
each selected system, and the type and distance s
of synchronization. Of these, only feature weights
can be trained, for which we used minimum error
rate training with version 1.04 of IBM-style BLEU
(Papineni et al., 2002) in case-insensitive mode.
We treated the remaining parameters as a model
selection problem, using 402 randomly sampled
sentences for training and 100 sentences for eval-
uation. This is clearly a small sample on which
to evaluate, so we performed two folds of cross-
validation to obtain average scores over 200 un-
trained sentences. We chose to do only two folds
due to limited computational time and a desire to
test many models.

We scored systems and our own output using
case-insensitive IBM-style BLEU 1.04 (Papineni
et al., 2002), METEOR 0.6 (Lavie and Agarwal,
2007) with all modules, and TER 5 (Snover et
al., 2006). For each source language, we ex-
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In Sync s BLEU METE TER Systems and Confidences
cz length 8 .236 .507 59.1 google .46 cu-bojar .27 uedin .27
cz align 5 .226 .499 57.8 google .50 cu-bojar .25 uedin .25
cz align 7 .211 .508 65.9 cu-bojar .60 google .20 uedin .20
cz .231 .504 57.8 google
de length 7 .255 .531 54.2 google .40 uka .30 stuttgart .15 umd .15
de length 6 .260 .532 55.2 google .50 systran .25 umd .25
de align 9 .256 .533 55.5 google .40 uka .30 stuttgart .15 umd .15
de align 6 .200 .514 54.2 google .31 uedin .22 systran .18 umd .16 uka .14
de .244 .523 57.5 google
es align 8 .297 .560 52.7 google .75 uedin .25
es length 5 .289 .548 52.1 google .50 talp-upc .17 uedin .17 rwth .17
es .297 .558 52.7 google
fr align 6 .329 .574 49.9 google .70 lium1 .30
fr align 8 .314 .596 48.6 google .50 lium1 .30 limsi1 .20
fr length 8 .323 .570 48.5 google .50 lium1 .25 limsi1 .25
fr .324 .576 48.7 google
hu length 5 .162 .403 69.2 umd .50 morpho .40 uedin .10
hu length 8 .158 .407 69.5 umd .50 morpho .40 uedin .10
hu align 7 .153 .392 68.0 umd .33 morpho .33 uedin .33
hu .141 .391 66.1 umd
xx length 5 .326 .584 49.6 google-fr .61 google-es .39
xx align 4 .328 .580 49.5 google-fr .80 google-es .20
xx align 5 .324 .576 48.6 google-fr .61 google-es .39
xx align 7 .319 .587 51.1 google-fr .50 google-es .50
xx .324 .576 48.7 google-fr

Table 1: Combination models used for submission to WMT 2009. For each language, we list our pri-
mary combination, contrastive combinations, and a high-scoring system for comparison in italic. All
translations are into English. The xx source language combines translations from different languages,
in our case French and Spanish. Scores from BLEU, METEOR, and TER are the average of two cross-
validation folds with 100 evaluation sentences each. Numbers following system names indicate con-
trastive systems. More evaluation, including human scores, will be published by WMT.

perimented with various sets of high-scoring sys-
tems to combine. We also tried confidence val-
ues proportional to various powers of BLEU and
METEOR scores, as well as hand-picked values.
Finally we tried both variants of synchronization
with values of s ranging from 2 to 9. In total, 405
distinct models were evaluated. For each source
source language, our primary system was chosen
by performing well on all three metrics. Models
that scored well on individual metrics were sub-
mitted as contrastive systems. In Table 1 we report
the models underlying each submitted system.

4 Conclusion

We found our combinations are quite sensitive to
presence of and confidence in the underlying sys-
tems. Further, we show the most improvement

when these systems are close in quality, as is the
case with our Hungarian-English system. The
two methods of synchronization were surprisingly
competitive, a factor we attribute to short sentence
length compared with WMT 2008 Europarl sen-
tences. Opportunities for further work include per-
sentence system confidence, automatic training of
more parameters, and different alignment models.
We look forward to evaluation results from WMT
2009.
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