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Abstract

We present the context-theoretic frame-
work, which provides a set of rules for the
nature of composition of meaning based
on the philosophy ofneaning as context
Principally, in the framework the composi-
tion of the meaning of words can be repre-
sented as multiplication of their represen-
tative vectors, where multiplication is dis-
tributive with respect to the vector space.

We discuss the applicability of the frame-
work to a range of techniques in natu-
ral language processing, including subse-
quence matching, the lexical entailment
model of Dagan et al. (2005), vector-based
representations of taxonomies, statistical
parsing and the representation of uncer-
tainty in logical semantics.

Introduction

the word level, to the phrasal and sentence lev-
els and beyond are essential for vector based se-
mantics to truly compete with logical semantics,
both in their academic standing and in application
to real problems in natural language processing.
Moreover the time is ripe for such a theory: never
has there been such an abundance of immediately
available textual data (in the form of the world-
wide web) or cheap computing power to enable
vector-based representations of meaning to be ob-
tained. The need to organise and understand the
new abundance of data makes these techniques all
the more attractive since meanings are determined
automatically and are thus more robust in compar-
ison to hand-built representations of meaning. A
guiding theory of vector based semantics would
undoubtedly be invaluable in the application of
these representations to problems in natural lan-
guage processing.

The context-theoretic framework does not pro-
vide a formula for how to compose meaning;

Techniques such as latent semantic analysis (Deer,ather it provides mathematical guidelines for the-
wester et al., 1990) and its variants have beeRries of meaning. It describes the nature of the
very successful in representing the meanings of€ctor space in which meanings live, gives some
words as vectors, yet there is currently no theoryestrictions on how meanings compose, and pro-
of natural language semantics that explains howides us with a measure of the degree of entail-
we should compose these representations: wh#t€nt between strings for any implementation of
should the representation of a phrase be, given th&e framework.
representation of the words in the phrase? In this The remainder of the paper is structured as fol-
paper we present such a theory, which is baselPws: in Section 2 we present the framework; in
on the philosophy ofmeaning as contexas epit- Section 3 we present applications of the frame-
omised by the famous sayings of WittgensteinWork:
(1953), “Meaning justis use” and Firth (1957),
“You shall know a word by the company it keeps”.
For the sake of brevity we shall present only a
summary of our research, which is described in
full in (Clarke, 2007), and we give a simplified
version of the framework, which nevertheless suf-
fices for the examples which follow.

We believe that the development of theories that
can take vector representations of meaning beyond

e We describe subsequence matching (Section
3.1) and the lexical entailment model of (Da-
gan et al., 2005) (Section 3.2), both of which
have been applied to the task of recognising
textual entailment.

e We show how a vector based representation
of a taxonomy incorporating probabilistic in-
formation about word meanings can be con-
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# € LY(S)*, whereL!(S) means the set of all
functions fromS to the real number® which are
finite under thel.! norm,
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and L!(S)™ restricts this to functions to the non-
negative real numberd™; these functions are
Figure 1: Vector representations of two terms incalled the positive elements of the vector space
a spacel!(S) whereS = {di,da,d3,ds,ds,ds}  L1(S). The requirement that the! norm is finite,
and their vector lattice meet (the darker shade@énd that the map is only to positive elements re-
area). flects the fact that the vectors are intended to repre-
sent an estimate of relative frequency distributions
of the strings over the contexts, since a frequency
distribution will always satisfy these requirements.
cJ\Iote also that thé, norm of the context vector of

a string is simply the sum of all its components
and is thus proportional to its probability.

. . . 1 . _
« We summarise our approach to representing '€ Set of functiond.*(5) sa vector space un
uncertainty in logical semantics in Section der the point-wise operations:

35. (au)(s) = oauls)
(u+0v)(s) = wu(s)+wv(s)

structed in Section 3.3.

e We show how syntax can be represente
within the framework in Section 3.4.

2 Context-theoretic Framework

1 . .
The context-theoretic framework is based on thefor u,v € L(S) a}nda € R, butitis also a lattice
. . ._under the operations
idea that the vector representation of the meaning
of a word is derived from the contexts in which it (uAv)(s) = min(u(s),v(s))
occurs. However it extends thl_s idea to strings of (uVo)(s) =
any length: we assume there is some $eaton- N _ _ _
taining all the possible contexts associated witHn fact itis avector latticeor Riesz spacAlipran-
any string. Acontext theoryis an implementa- tis and Burkinshaw, 1985) since it satisfies the fol-
tion of the context-theoretic framework; a key re-lowing relationships
quirement for a context theory is a mapping from
strings to vectors formed from the set of contexts.
In vector based techniques, the set of contexts

may be the set of possible dependency relationgherea € R* and< is the partial ordering asso-

between words, or the set of documents in whicltiated with the lattice operations, definedby v

strings may occur; in context-theoretic semanticsf ¢ A v = .

however, the set of “contexts” can be any set. Together with thel; norm, the vector lattice

We continue to refer to it as a set of contextsdefines ambstract Lebesgue spa¢abramovich

since the intuition and philosophy which forms theand Aliprantis, 2002) a vector space incorporating

basis for the framework derives from this idea;g|l the properties of a measure space, and thus can

in practice the set may even consist of logicalalso be thought of as defining a probability space,

sentences describing the meanings of strings ilvherev and A correspond to the union and inter-

model-theoretic terms. section of events in the algebra, and the norm
An important aspect of vector-based techniquegorresponds to the (un-normalised) probability.

is measuring the frequency of occurrence of

strings in each context. We model this in a gen2-1 Distributional Generality

eral way as follows: letd be a set consisting of The vector lattice nature of the space under consid-

the words of the language under considerationeration is important in the context-theoretic frame-

The first requirement of a context theory is a map4work since it is used to define a degree of entail-

ping x — & from a stringx € A* to a vector ment between strings. Our notion of entailment is

max(u(s), v(s)).

if w<v then ou<av
if u<v then uv+4+w<v+w,
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based on the concept distributional generality words, i.e.
(Weeds et al., 2004), a generalisation of the distri- -9 =2y,
butional hypothesis of Harris (1985), in which it .

is assumed that terms with a more general meark®" the map from strings to context vectors defines

: : . . migr homomorphism. Then the require-
ing will occur in a wider array of contexts, an a semigroup homomorphis en the require

idea later developed by Geffet and Dagan (ZOOS)ment that multlpllcathn is associative can t_)e seen
0 be a natural one since the homomorphism en-

Weeds et al. (2004) also found that frequenc;é thi . tf text i S|
played a large role in determining the direction orces this requirement for context vectors. - sim-

of entailment, with the more general term often”arly since all context vectors are positive their

occurring more frequently. The partial ordering !oroduct in the algebra must also be positive, thus it

of the vector lattice encapsulates these propertie'g hatural to extend this to all elements of the alge-

sinces: < { if and only if y occurs more frequently bra. The requirement for dI'S'[I’IbutIVIty is Jugtlfled
by our own model of meaning as context in text

in all the contexts in whick occurs. . )
. . ) . ) . . corpora, described in full elsewhere.
This partial ordering is a strict relationship,

however, that is unlikely to exist between any two 3 Context Theory
given vectors. Because of this, we defindegree

. The above requirements give us all we need to de-
of entailment

fine a context theory.

Ent(u, v) |u A vlly Definition 1 (Context theory) (A, S, , - ) defines

’ lully a context theory if.1(9) is a lattice-ordered al-
gebra under the multiplication defined bynd"

This value has the properties of a conditional probyefines a semigroup homomorphism-— & from

ability; in the case ofu = & andv = gitisa  gxtoL1(9)*.

measure of the degree to which the contexts string

x occurs in are shared by the contexts stijngc- 3 Context Theories for Natural

cursin. Language

2.2 Multiplication In this section we describe applications of the

. context-theoretic framework to applications in
The map from strings to vectors already tells us ev- PP

. .. computational linguistics and natural language
erything we need to know about the composition i
o . processing. We shall commonly use a construc-
of words: given two words: andy, we have their . . X ) . .
o ) A tion in which there is a binary operatianon S
individual context vectorg: andy, and the mean- . . . .
. : . that makes it a semigroup. In this cak&S) is a
ing of the stringxy is represented by the vector . . . .
- . . . . lattice-ordered algebra with convolution as multi-
zy. The question we address is what relationshi ication:
should be imposed between the representation gf] '
the meanings of individual wordsandy and the
eanings o A worasandy (u-v)(r) = > uls)u(t)
meaning of their compositiony. As it stands, we
have little guidance on what maps from strings to
context vectors are appropriate. for r,s,t € S andu,v € L'(S). We denote the
The first restriction we propose is that vectorunit basis element associated with an elemeat
representations of meanings should be composS by e,, that ise,(y) = 1 if and only if y = =,
ablein their own right without consideration of otherwisee,(y) = 0.
what words they originated from. In fact we place )
a strong requirement on the nature of multiplica-3-1 Subsequence Matching
tion on elements: we require that the multiplica-A string x € A* is called a “subsequence” of
tion - on the vector space definesadtice-ordered ¢ € A* if each element ofr occurs iny in the
algebra This means that multiplication is asso- same order, but with the possibility of other ele-
ciative, distributive with respect to addition, and ments occurring in between, so for exampléa
satisfiesu - v > 0if v > 0 andv > 0, i.e. the s a subsequence atabcba in {a,b, c}*. We de-
product of positive elements is also positive. note the set of subsequencesaofincluding the
We argue that composition of context vectorsempty string) bySub(z). Subsequence match-
needs to be compatible with concatenation ofng compares the subsequences of two strings: the

sot=r
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more subsequences they have in common the morel Model | Accuracy | CWS |

similar they are assumed to be. This idea has | Dirichlet (10°) 0.584 0.630
been used successfully in text classification (Lodhi | Dirichlet (107) 0.576 0.642
et al, 2002) and recognising textual entailment | Bayer (MITRE) 0.586 0.617
(Clarke, 2006). Glickman (Bar llan) || 0.586 0.572
We can describe such models using a context | Jijkoun (Amsterdam)| 0.552 0.559
theory (A, A*,”,-), where - is convolution in Newman (Dublin) 0.565 0.6
L'(A*) and
Table 1: Results obtained with our Latent Dirichlet
p=(1/2") > e, projection model on the data from the first Recog-
yeSub(x) nising Textual Entailment Challenge for two doc-

— 106 — 107 usi i
i.e. the context vector of a string is a weighted sumument lengthsy = 107 and V' = 10° using a cut

: . ) off for the degree of entailment @f.5 at which
of its subsequences. Under this context theory . . .
o o entailment was regarded as holding. CWS is the
7y, 1.e.x completely entailg if = is a subsequence

of y confidence weighted score — see (Dagan et al.,

Many variations on this context theory are pos-ZOOS) for the definition.
sible, for example using more complex mappings

1 *
to L' (A*). The context theory can also be adapted Glickman and Dagan (2005) do not use this

to incorporate a measure of lexical overlap be'measure, possibly because the problem of data

tween strings, an approach that, although simpléy o ceness makes it useless for long strings. How-

performs comparably to more complex techniques, o the measure they use can be viewed as an ap-
in tasks such as recognising textual entailmenbroximation to this context theory

(Dagan et al., 2005) We have also used this idea to determine en-
3.2 Lexical Entailment Model tailment, using latent Dirichlet allocation to get

Glickman and Dagan (2005) define their 0Wnaround'the problem of data sparseness. A model
model of entailment and apply it to the task of V&S built using a §ubset of around 380,000 docu-
recognising textual entailment. They estimatememS from the Gigaword corpus, and the model

. was evaluated on the dataset from the first Recog-
entailment between words based on occurrences

in documents: they estimatelexical entailment nising Textual Entailment Challenge; the results

probability LEP(z, y) between two terms and are shown in Table 1. In order to use the model, a
to be Y y document length had to be chosen; it was found

Ny that very long documents yielded better perfor-

LEP ~ i
(z,y) mance at this task.

Ty

wheren, andn, , denote the number of docu-

ments that the worg occurs in and the words
andy both occur in respectively. In this section we describe how the relationships

We can describe this using a context theorydescribed by a taxonomy, the collection isf

(A, D,",-), whereD is the set of documents, and a relationships described by ontologies such as
_ . WordNet (Fellbaum, 1989), can be embedded in
#(d) = { 1 if 2 occurs in document the vector lattice structure that is crucial to the
0 otherwise. context-theoretic framework. This opens up the

3.3 Representing Taxonomies

way to the possibility of new techniques that
combine the vector-based representations of word
meanings with the ontological ones, for example:

In this case the estimate eEP(x,y) coincides
with our own degree of entailmehint(z, y).

There are many ways in which the multiplica-
tion - can be defined of! (D). The simplest one
definese; - ey = eq if d = f andegey = 0 oth-
erwise. The effect of multiplication of the context
vectors of two strings is then set intersection:

e Semantic smoothingcould be applied to
vector based representations of an ontology,
for example using distributional similarity
measures to move words that are distribution-

. 1 if z andy occur in document ally similar closer to each other in the vector

(&-9)(d) = { 0 otherwise. space. This type of technique may allow the
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benefits of vector based techniques and onthat more general concepts are given higher proba-
tologies to be combined. bilities, for example if there is a most general con-
cept (a top-most node in the taxonomy, which may
e Automatic classification: representing the correspond for example to “entity”) its probability
taxonomy in a vector space may make itwill be one, since every term can be considered an
easier to look for relationships between thejnstance of that concept.
meanings in the taxonomy and meanings de- \We give a general definition based on this idea
rived from vector based techniques such asvhich does not require probabilities to be assigned
latent semantic analysis, potentially aiding inbased on corpus counts:

classifying word meanings in a taxonomy. Definition 4 (Real Valued Taxonomy)A real val-

e The new vector representation could lead toued taxonomy is a finite sét of conceptswith a

new measures afemantic distance for ex- partial ordering < and a positive real functiop
ample, the I? norms can all be used to over S. Themeasureof a concept is then defined

measure distance between the vector rep'-n terms ofp as

resentations of meanings in a taxonomy. o
Moreover, the vector-based representation al- p(x) = Z p(y)
lows ambiguity to be represented by adding vel (@)

the weighted representations of individual The taxonomy is called probabilistic if

Senses. Y zesp(s) = 1. In this casep refers to the

We assume that this-a relation is a partial or- probability of a concept

dering; this is true for many ontologies. We wish  Thus in a probabilistic taxonomy, the function
to incorporate the partial ordering of the taxonomyp corresponds to the probability that a term is ob-
into the partial ordering of the vector lattice. We served whose meaning corresponds (in that con-

will make use of the following result relating to text) to that concept. The functighdenotes the
partial orders: probability that a term is observed whose meaning

in that context is subsumed by the concept.

Note that if S has a top element then in the
probabilistic case, clearly(/) = 1. In studies of
distance measures on ontologies, the concepts in
S often correspond to senses of terms, in this case
the functionp represents the (normalised) proba-
set|(x) ={y e S:y<a} bility that a givelz term will oc(cur with the) spense
Proposition 3 (Ideal Completion) If S is a par- indicated by the concept. The top-most concept
tially ordered set, ther| (-) can be considered as often exists, and may be something with the mean-
a function froms to the powerse2®. Under the ing “entity"—intended to include the meaning of
partial ordering defined by set inclusion, the set ofall concepts below it.

Definition 2 (Ideals) A lower setin a partially
ordered sefS is a setT” such that for allz, y € S,
if r € Tandy < ztheny € T.
Theprincipal ideal generated by an elemernn
a partially ordered sefS is defined to be the lower

lower sets form a complete lattice, aljcq-) is a The most simple completion we consider is into
completion ofS, theideal completion the vector latticel.! (.S), with basis elementée,, :
We are also concerned with the probability of* € S}

concepts. This is an idea that has come abowRroposition 5 (Ideal Vector Completion) Let S
through the introduction of “distance measures’be a probabilistic taxonomy with probability dis-
on taxonomies (Resnik, 1995). Since terms caitribution functionp that is non-zero everywhere on
be ascribed probabilities based on their frequensS. The function) from S to L(S) defined by

cies of occurrence in corpora, the concepts they re-

fer to can similarly be assigned probabilities. The P(x) = Z p(y)ey

probability of a concept is the probability of en- ye|(z)

countering an instance of that concept in the cor-

pus, that is, the probability that a term selectedS @ completion of the partial ordering o un-
at random from the corpus has a meaning that i§€r the vector lattice order of.'(S), satisfying
subsumed by that particular concept. This ensurel (z)[l1 = p(z).
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entity

| m j
organism o d
ple|amt ./ S\K/RY/R

they mashed their way through the thick mud

grass tree
/ / | \ Figure 3: A link grammar parse. Link types:
cereal beech chestnut oak s: subject, o: object, m: modifying phrases,
/ | \ a: adjective j: preposition,d: determiner.

oat rice barley

1974) for details. We denote the free inverse semi-
Figure 2: A small example taxonomy extracted9roup ons by FIS(S).
from WordNet (Fellbaum, 1989). Free inverse sgmigroups were shown by Munn
(1974) to be equivalent tbirooted word trees A
) ) . birooted word-tree on a set is a directed acyclic
!?roof<. Th(_a fL:gncﬁlon@b is clearly cgder-preservmg- graph whose edges are labelled by elementd of
Tz < yinb then since| () S | (y), neces- \uhich does not contain any subgraphs of the form
sarily ¥(z) < ¥(y). Convers_el)_/, theonly way o @, o @ e o %, e, together with
thate)(z) < +(y) can be true is ifl (z) C |(¥) o distinguished nodes, called the start node,
sincep is non-zero everywhere. If this is the case, ;4 finish nodes.
thenz < y by the nature of the ideal completion. 5, element in the free semigrotfiS(s) is de-

Thus is an order-embedding, and sinté&(S) is noted as a sequenaé' 2% ... 29 wherex; € S
a complete lattice, it is also a completion. Finally, ;.4 (1,1} 2 "
(2 9 :

note that|y(z) |1 = >_ye| @) P(y) = p(z). O We construct the birooted word tree by starting

This completion allows us to represent conceptdVith a single node as the start node, and for each
as elements within a vector lattice so that not onlyfrom 1 ton:
the partial ordering of the taxonomy is preserved,
but the probability of concepts is also preserved as
the size of the vector under tie norm.

e Determine if there is an edge labellegleav-
ing the current node ifl; = 1, or arriving at
the current node ifl;, = —1.

3.4 Representing Syntax _ .
e If so, follow this edge and make the resulting

In this section we give a description link grammar node the current node.

(Sleator and Temperley, 1991) in terms of a con-

text theory. Link grammar is a lexicalised syntac- o |f not, create a new node and join it with an
tic formalism which describes properties of words edge labelled:; in the appropriate direction,
in terms oflinks formed between them, and which and make this node the current node.

is context-free in terms of its generative power; for

the sake of brevity we omit the details, although aThe finish node is the current node after thiter-
sample link grammar parse is show in Figure 3. ations.

Our formulation of link grammar as a context The product of two elementsandy in the free
theory makes use of a construction calleffee  inverse semigroup can be computed by finding the
inverse semigroup Informally, the free inverse birooted word-tree of and that ofy, joining the
semigroup on a se$ is formed from elements graphs by equating the start nodeyatith the fin-
of S and their inversesS—! = {s=! : s € S}, ish node ofr (and making it a normal node), and
satisfying no other condition than those of an in-merging any other nodes and edges necessary to
verse semigroup. Formally, the free inverse semiremove any subgraphs of the fown-" e <%~ o
group is defined in terms of a congruence relaor ¢ <~ e —% . The inverse of an element
tion on(SUS~1)* specifying the inverse property has the same graph with start and finish nodes ex-
and commutativity of idempotents — see (Munn,changed.
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We can represent parses of sentences in linto describe our uncertainty about word-sense dis-
grammar by translating words to syntactic cate-ambiguation in the representation. Incorporating
gories in thefree inverse semigroupThe parse such probabilistic information into the representa-
shown earlier for “they mashed their way throughtion of meaning may lead to more robust systems
the thick mud” can be represented in the inversavhich are able to cope when one component fails.
semigroup ort = {s,m,o0,d, j,a} as The basic principle we propose is to first repre-
sent unambiguous logical statements as a context
theory. Our uncertainty about the meaning of a
sentence can then be represented as a probability
distribution over logical statements, whether the
uncertainty arises from parsing, word-sense dis-
ambiguation or any other source. Incorporating
this information is then straightforward: the rep-
resentation of the sentence is the weighted sum
of the representation of each possible meaning,
where the weights are given by the probability dis-

ss tmodd to tm ™ jdaa " td "t
which has the following birooted word-tree (the
words which the links derive from are shown in
brackets):

s(they, mashedl j(through mud)

m(mashedthrough

d(the. mud) tribution.
$ Computing the degree of entailment using this
o(mashedway) . . .
¢ approach is computationally challenging, however
a(thick, mud) we have shown that it is possible to estimate the
_ degree of entailment by computing a lower bound
d(their, way) ) . . Lo
¢ on this value by calculating pairwise degrees of
) entailment for each possible logical statement.

Let A be the set of words in the natural lan-4 Related Work

guage under consideratio;, be the set of link _
types. Then we can form a context theoryMitchell and Lapata (2008) proposed a framework

(A,FIS(S),",- ) where- is multiplication defined for composing meaning that is extremely gen-
by convolution onFIS(S), and a wordn € A is eral in nature: there is no requirement for linear-
mapped to a probabilistic suiof its link possible ity in the composition function, although in prac-
grammar representations (calldjuncty. Thus tice the authors do adopt this assumption. Indeed
we have a context theory which maps a string their “multiplicative models” require composition
to elements ofL! (FIS(S)); if there is a parse for of two vectors to be a linear function of their ten-
this string then there will be some component ofSOF product; this is equivalent to our requirement
4 which corresponds to an idempotent element off distributivity with respect to vector space addi-
FIS(S). Moreover we can interpret the magnitudetion.

of the component as the probability of that par- Various ways of composing vector based repre-
ticular parse, thus the context theory describes §entations of meaning were investigated by Wid-

probabilistic variation of link grammar. dows (2008), including the tensor product and di-
o _ _ rect sum. Both of these are compatible with the
3.5 Uncertainty in Logical Semantics context theoretic framework since they are dis-

For the sake of brevity, we summarise our apdributive with respect to the vector space addition.
proach to representing uncertainty in logical se- Clark et al. (2008) proposed a method of com-
mantics, which is described in full elsewhere. Ourposing meaning that generalises Montague seman-
aim is to be able to reason with probabilistic infor-tics; further work is required to determine how
mation about uncertainty in logical semantics. Fortheir method of composition relates to the context-
example, in order to represent a natural languagtheoretic framework.

sentence as a logical statement, it is necessary Erk and Pado (2008) describe a method of com-
to parse it, which may well be with a statistical position that allows the incorporation of selec-
parser. We may have hundreds of possible parsdmnal preferences; again further work is required
and logical representations of a sentence, and at determine the relation between this work and
sociated probabilities. Alternatively, we may wish the context-theoretic framework.
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We have given an introduction to the context- _
theoretic framework, which provides mathemat-Katrin Erk and Sebastian Pado. 2008. A structured
' vector space model for word meaning in context. In

ical guidelines on how vector-based representa- Proceedings of EMNLP
tions of meaning should be composed, how en-

tailment should be determined between these re
resentations, and how probabilistic information
should be incorporated.

We have shown how the framework can be ap
plied to a wide range of problems in computational
linguistics, including subsequence matching, vec-
tor based representations of taxonomies and statiylaayan Geffet and Ido Dagan. ~2005. The dis-

tical . Theid h ted h tributional inclusion hypotheses and lexical entail-
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