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Abstract

We present the context-theoretic frame-
work, which provides a set of rules for the
nature of composition of meaning based
on the philosophy ofmeaning as context.
Principally, in the framework the composi-
tion of the meaning of words can be repre-
sented as multiplication of their represen-
tative vectors, where multiplication is dis-
tributive with respect to the vector space.

We discuss the applicability of the frame-
work to a range of techniques in natu-
ral language processing, including subse-
quence matching, the lexical entailment
model of Dagan et al. (2005), vector-based
representations of taxonomies, statistical
parsing and the representation of uncer-
tainty in logical semantics.

1 Introduction

Techniques such as latent semantic analysis (Deer-
wester et al., 1990) and its variants have been
very successful in representing the meanings of
words as vectors, yet there is currently no theory
of natural language semantics that explains how
we should compose these representations: what
should the representation of a phrase be, given the
representation of the words in the phrase? In this
paper we present such a theory, which is based
on the philosophy ofmeaning as context, as epit-
omised by the famous sayings of Wittgenstein
(1953), “Meaning justis use” and Firth (1957),
“You shall know a word by the company it keeps”.
For the sake of brevity we shall present only a
summary of our research, which is described in
full in (Clarke, 2007), and we give a simplified
version of the framework, which nevertheless suf-
fices for the examples which follow.

We believe that the development of theories that
can take vector representations of meaning beyond

the word level, to the phrasal and sentence lev-
els and beyond are essential for vector based se-
mantics to truly compete with logical semantics,
both in their academic standing and in application
to real problems in natural language processing.
Moreover the time is ripe for such a theory: never
has there been such an abundance of immediately
available textual data (in the form of the world-
wide web) or cheap computing power to enable
vector-based representations of meaning to be ob-
tained. The need to organise and understand the
new abundance of data makes these techniques all
the more attractive since meanings are determined
automatically and are thus more robust in compar-
ison to hand-built representations of meaning. A
guiding theory of vector based semantics would
undoubtedly be invaluable in the application of
these representations to problems in natural lan-
guage processing.

The context-theoretic framework does not pro-
vide a formula for how to compose meaning;
rather it provides mathematical guidelines for the-
ories of meaning. It describes the nature of the
vector space in which meanings live, gives some
restrictions on how meanings compose, and pro-
vides us with a measure of the degree of entail-
ment between strings for any implementation of
the framework.

The remainder of the paper is structured as fol-
lows: in Section 2 we present the framework; in
Section 3 we present applications of the frame-
work:

• We describe subsequence matching (Section
3.1) and the lexical entailment model of (Da-
gan et al., 2005) (Section 3.2), both of which
have been applied to the task of recognising
textual entailment.

• We show how a vector based representation
of a taxonomy incorporating probabilistic in-
formation about word meanings can be con-
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d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

orange fruit orange∧ fruit

Figure 1: Vector representations of two terms in
a spaceL1(S) whereS = {d1, d2, d3, d4, d5, d6}
and their vector lattice meet (the darker shaded
area).

structed in Section 3.3.

• We show how syntax can be represented
within the framework in Section 3.4.

• We summarise our approach to representing
uncertainty in logical semantics in Section
3.5.

2 Context-theoretic Framework

The context-theoretic framework is based on the
idea that the vector representation of the meaning
of a word is derived from the contexts in which it
occurs. However it extends this idea to strings of
any length: we assume there is some setS con-
taining all the possible contexts associated with
any string. Acontext theoryis an implementa-
tion of the context-theoretic framework; a key re-
quirement for a context theory is a mapping from
strings to vectors formed from the set of contexts.

In vector based techniques, the set of contexts
may be the set of possible dependency relations
between words, or the set of documents in which
strings may occur; in context-theoretic semantics
however, the set of “contexts” can be any set.
We continue to refer to it as a set of contexts
since the intuition and philosophy which forms the
basis for the framework derives from this idea;
in practice the set may even consist of logical
sentences describing the meanings of strings in
model-theoretic terms.

An important aspect of vector-based techniques
is measuring the frequency of occurrence of
strings in each context. We model this in a gen-
eral way as follows: letA be a set consisting of
the words of the language under consideration.
The first requirement of a context theory is a map-
ping x 7→ x̂ from a stringx ∈ A∗ to a vector

x̂ ∈ L1(S)+, whereL1(S) means the set of all
functions fromS to the real numbersR which are
finite under theL1 norm,

‖u‖1 =
∑

s∈S

|u(s)|

andL1(S)+ restricts this to functions to the non-
negative real numbers,R+; these functions are
called the positive elements of the vector space
L1(S). The requirement that theL1 norm is finite,
and that the map is only to positive elements re-
flects the fact that the vectors are intended to repre-
sent an estimate of relative frequency distributions
of the strings over the contexts, since a frequency
distribution will always satisfy these requirements.
Note also that thel1 norm of the context vector of
a string is simply the sum of all its components
and is thus proportional to its probability.

The set of functionsL1(S) is a vector space un-
der the point-wise operations:

(αu)(s) = αu(s)

(u+ v)(s) = u(s) + v(s)

for u, v ∈ L1(S) andα ∈ R, but it is also a lattice
under the operations

(u ∧ v)(s) = min(u(s), v(s))

(u ∨ v)(s) = max(u(s), v(s)).

In fact it is avector latticeor Riesz space(Alipran-
tis and Burkinshaw, 1985) since it satisfies the fol-
lowing relationships

if u ≤ v then αu ≤ αv

if u ≤ v then u+ w ≤ v + w,

whereα ∈ R
+ and≤ is the partial ordering asso-

ciated with the lattice operations, defined byu ≤ v
if u ∧ v = u.

Together with thel1 norm, the vector lattice
defines anAbstract Lebesgue space(Abramovich
and Aliprantis, 2002) a vector space incorporating
all the properties of a measure space, and thus can
also be thought of as defining a probability space,
where∨ and∧ correspond to the union and inter-
section of events in theσ algebra, and the norm
corresponds to the (un-normalised) probability.

2.1 Distributional Generality

The vector lattice nature of the space under consid-
eration is important in the context-theoretic frame-
work since it is used to define a degree of entail-
ment between strings. Our notion of entailment is
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based on the concept ofdistributional generality
(Weeds et al., 2004), a generalisation of the distri-
butional hypothesis of Harris (1985), in which it
is assumed that terms with a more general mean-
ing will occur in a wider array of contexts, an
idea later developed by Geffet and Dagan (2005).
Weeds et al. (2004) also found that frequency
played a large role in determining the direction
of entailment, with the more general term often
occurring more frequently. The partial ordering
of the vector lattice encapsulates these properties
sincex̂ ≤ ŷ if and only if y occurs more frequently
in all the contexts in whichx occurs.

This partial ordering is a strict relationship,
however, that is unlikely to exist between any two
given vectors. Because of this, we define adegree
of entailment

Ent(u, v) =
‖u ∧ v‖1
‖u‖1

.

This value has the properties of a conditional prob-
ability; in the case ofu = x̂ and v = ŷ it is a
measure of the degree to which the contexts string
x occurs in are shared by the contexts stringy oc-
curs in.

2.2 Multiplication

The map from strings to vectors already tells us ev-
erything we need to know about the composition
of words: given two wordsx andy, we have their
individual context vectorŝx andŷ, and the mean-
ing of the stringxy is represented by the vector
x̂y. The question we address is what relationship
should be imposed between the representation of
the meanings of individual wordŝx andŷ and the
meaning of their composition̂xy. As it stands, we
have little guidance on what maps from strings to
context vectors are appropriate.

The first restriction we propose is that vector
representations of meanings should be compos-
able in their own right, without consideration of
what words they originated from. In fact we place
a strong requirement on the nature of multiplica-
tion on elements: we require that the multiplica-
tion · on the vector space defines alattice-ordered
algebra. This means that multiplication is asso-
ciative, distributive with respect to addition, and
satisfiesu · v ≥ 0 if u ≥ 0 andv ≥ 0, i.e. the
product of positive elements is also positive.

We argue that composition of context vectors
needs to be compatible with concatenation of

words, i.e.
x̂ · ŷ = x̂y,

i.e. the map from strings to context vectors defines
a semigroup homomorphism. Then the require-
ment that multiplication is associative can be seen
to be a natural one since the homomorphism en-
forces this requirement for context vectors. Sim-
ilarly since all context vectors are positive their
product in the algebra must also be positive, thus it
is natural to extend this to all elements of the alge-
bra. The requirement for distributivity is justified
by our own model of meaning as context in text
corpora, described in full elsewhere.

2.3 Context Theory

The above requirements give us all we need to de-
fine a context theory.

Definition 1 (Context theory). 〈A,S, ˆ, · 〉 defines
a context theory ifL1(S) is a lattice-ordered al-
gebra under the multiplication defined by· andˆ
defines a semigroup homomorphismx 7→ x̂ from
A∗ toL1(S)+.

3 Context Theories for Natural
Language

In this section we describe applications of the
context-theoretic framework to applications in
computational linguistics and natural language
processing. We shall commonly use a construc-
tion in which there is a binary operation◦ on S
that makes it a semigroup. In this caseL1(S) is a
lattice-ordered algebra with convolution as multi-
plication:

(u · v)(r) =
∑

s◦t=r

u(s)v(t)

for r, s, t ∈ S andu, v ∈ L1(S). We denote the
unit basis element associated with an elementx ∈
S by ex, that isex(y) = 1 if and only if y = x,
otherwiseex(y) = 0.

3.1 Subsequence Matching

A string x ∈ A∗ is called a “subsequence” of
y ∈ A∗ if each element ofx occurs iny in the
same order, but with the possibility of other ele-
ments occurring in between, so for exampleabba
is a subsequence ofacabcba in {a, b, c}∗. We de-
note the set of subsequences ofx (including the
empty string) bySub(x). Subsequence match-
ing compares the subsequences of two strings: the
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more subsequences they have in common the more
similar they are assumed to be. This idea has
been used successfully in text classification (Lodhi
et al., 2002) and recognising textual entailment
(Clarke, 2006).

We can describe such models using a context
theory 〈A,A∗, ˆ, · 〉, where · is convolution in
L1(A∗) and

x̂ = (1/2|x|)
∑

y∈Sub(x)

ey,

i.e. the context vector of a string is a weighted sum
of its subsequences. Under this context theoryx̂ ≤
ŷ, i.e.x completely entailsy if x is a subsequence
of y.

Many variations on this context theory are pos-
sible, for example using more complex mappings
toL1(A∗). The context theory can also be adapted
to incorporate a measure of lexical overlap be-
tween strings, an approach that, although simple,
performs comparably to more complex techniques
in tasks such as recognising textual entailment
(Dagan et al., 2005)

3.2 Lexical Entailment Model

Glickman and Dagan (2005) define their own
model of entailment and apply it to the task of
recognising textual entailment. They estimate
entailment between words based on occurrences
in documents: they estimate alexical entailment
probability LEP(x, y) between two termsx andy
to be

LEP(x, y) ≃
nx,y

ny

whereny and nx,y denote the number of docu-
ments that the wordy occurs in and the wordsx
andy both occur in respectively.

We can describe this using a context theory
〈A,D, ˆ, · 〉, whereD is the set of documents, and

x̂(d) =

{
1 if x occurs in documentd
0 otherwise.

.

In this case the estimate ofLEP(x, y) coincides
with our own degree of entailmentEnt(x, y).

There are many ways in which the multiplica-
tion · can be defined onL1(D). The simplest one
definesed · ef = ed if d = f andedef = 0 oth-
erwise. The effect of multiplication of the context
vectors of two strings is then set intersection:

(x̂·ŷ)(d) =

{
1 if x andy occur in documentd
0 otherwise.

Model Accuracy CWS

Dirichlet (106) 0.584 0.630
Dirichlet (107) 0.576 0.642
Bayer (MITRE) 0.586 0.617
Glickman (Bar Ilan) 0.586 0.572
Jijkoun (Amsterdam) 0.552 0.559
Newman (Dublin) 0.565 0.6

Table 1: Results obtained with our Latent Dirichlet
projection model on the data from the first Recog-
nising Textual Entailment Challenge for two doc-
ument lengthsN = 106 andN = 107 using a cut-
off for the degree of entailment of0.5 at which
entailment was regarded as holding. CWS is the
confidence weighted score — see (Dagan et al.,
2005) for the definition.

Glickman and Dagan (2005) do not use this
measure, possibly because the problem of data
sparseness makes it useless for long strings. How-
ever the measure they use can be viewed as an ap-
proximation to this context theory.

We have also used this idea to determine en-
tailment, using latent Dirichlet allocation to get
around the problem of data sparseness. A model
was built using a subset of around 380,000 docu-
ments from the Gigaword corpus, and the model
was evaluated on the dataset from the first Recog-
nising Textual Entailment Challenge; the results
are shown in Table 1. In order to use the model, a
document length had to be chosen; it was found
that very long documents yielded better perfor-
mance at this task.

3.3 Representing Taxonomies

In this section we describe how the relationships
described by a taxonomy, the collection ofis-
a relationships described by ontologies such as
WordNet (Fellbaum, 1989), can be embedded in
the vector lattice structure that is crucial to the
context-theoretic framework. This opens up the
way to the possibility of new techniques that
combine the vector-based representations of word
meanings with the ontological ones, for example:

• Semantic smoothing could be applied to
vector based representations of an ontology,
for example using distributional similarity
measures to move words that are distribution-
ally similar closer to each other in the vector
space. This type of technique may allow the
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benefits of vector based techniques and on-
tologies to be combined.

• Automatic classification: representing the
taxonomy in a vector space may make it
easier to look for relationships between the
meanings in the taxonomy and meanings de-
rived from vector based techniques such as
latent semantic analysis, potentially aiding in
classifying word meanings in a taxonomy.

• The new vector representation could lead to
new measures ofsemantic distance, for ex-
ample, theLp norms can all be used to
measure distance between the vector rep-
resentations of meanings in a taxonomy.
Moreover, the vector-based representation al-
lows ambiguity to be represented by adding
the weighted representations of individual
senses.

We assume that theis-a relation is a partial or-
dering; this is true for many ontologies. We wish
to incorporate the partial ordering of the taxonomy
into the partial ordering of the vector lattice. We
will make use of the following result relating to
partial orders:

Definition 2 (Ideals). A lower setin a partially
ordered setS is a setT such that for allx, y ∈ S,
if x ∈ T andy ≤ x theny ∈ T .

Theprincipal ideal generated by an elementx in
a partially ordered setS is defined to be the lower
set

y(x) = {y ∈ S : y ≤ x}.

Proposition 3 (Ideal Completion). If S is a par-
tially ordered set, then

y(·) can be considered as
a function fromS to the powerset2S . Under the
partial ordering defined by set inclusion, the set of
lower sets form a complete lattice, and

y(·) is a
completion ofS, theideal completion.

We are also concerned with the probability of
concepts. This is an idea that has come about
through the introduction of “distance measures”
on taxonomies (Resnik, 1995). Since terms can
be ascribed probabilities based on their frequen-
cies of occurrence in corpora, the concepts they re-
fer to can similarly be assigned probabilities. The
probability of a concept is the probability of en-
countering an instance of that concept in the cor-
pus, that is, the probability that a term selected
at random from the corpus has a meaning that is
subsumed by that particular concept. This ensures

that more general concepts are given higher proba-
bilities, for example if there is a most general con-
cept (a top-most node in the taxonomy, which may
correspond for example to “entity”) its probability
will be one, since every term can be considered an
instance of that concept.

We give a general definition based on this idea
which does not require probabilities to be assigned
based on corpus counts:

Definition 4 (Real Valued Taxonomy). A real val-
ued taxonomy is a finite setS of conceptswith a
partial ordering≤ and a positive real functionp
overS. Themeasureof a concept is then defined
in terms ofp as

p̂(x) =
∑

y∈↓(x)

p(y).

The taxonomy is calledprobabilistic if∑
x∈S p(s) = 1. In this casep̂ refers to the

probability of a concept.

Thus in a probabilistic taxonomy, the function
p corresponds to the probability that a term is ob-
served whose meaning corresponds (in that con-
text) to that concept. The function̂p denotes the
probability that a term is observed whose meaning
in that context is subsumed by the concept.

Note that ifS has a top elementI then in the
probabilistic case, clearlŷp(I) = 1. In studies of
distance measures on ontologies, the concepts in
S often correspond to senses of terms, in this case
the functionp represents the (normalised) proba-
bility that a given term will occur with the sense
indicated by the concept. The top-most concept
often exists, and may be something with the mean-
ing “entity”—intended to include the meaning of
all concepts below it.

The most simple completion we consider is into
the vector latticeL1(S), with basis elements{ex :
x ∈ S}.

Proposition 5 (Ideal Vector Completion). Let S
be a probabilistic taxonomy with probability dis-
tribution functionp that is non-zero everywhere on
S. The functionψ fromS toL1(S) defined by

ψ(x) =
∑

y∈↓(x)

p(y)ey

is a completion of the partial ordering ofS un-
der the vector lattice order ofL1(S), satisfying
‖ψ(x)‖1 = p̂(x).
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entity

organism

plant

grass

cereal

oat rice barley

tree

beech chestnut oak

Figure 2: A small example taxonomy extracted
from WordNet (Fellbaum, 1989).

Proof. The functionψ is clearly order-preserving:
if x ≤ y in S then since

y(x) ⊆
y(y) , neces-

sarily ψ(x) ≤ ψ(y). Conversely, the only way
thatψ(x) ≤ ψ(y) can be true is if

y(x) ⊆
y(y)

sincep is non-zero everywhere. If this is the case,
thenx ≤ y by the nature of the ideal completion.
Thusψ is an order-embedding, and sinceL1(S) is
a complete lattice, it is also a completion. Finally,
note that‖ψ(x)‖1 =

∑
y∈↓(x) p(y) = p̂(x).

This completion allows us to represent concepts
as elements within a vector lattice so that not only
the partial ordering of the taxonomy is preserved,
but the probability of concepts is also preserved as
the size of the vector under theL1 norm.

3.4 Representing Syntax

In this section we give a description link grammar
(Sleator and Temperley, 1991) in terms of a con-
text theory. Link grammar is a lexicalised syntac-
tic formalism which describes properties of words
in terms oflinks formed between them, and which
is context-free in terms of its generative power; for
the sake of brevity we omit the details, although a
sample link grammar parse is show in Figure 3.

Our formulation of link grammar as a context
theory makes use of a construction called afree
inverse semigroup. Informally, the free inverse
semigroup on a setS is formed from elements
of S and their inverses,S−1 = {s−1 : s ∈ S},
satisfying no other condition than those of an in-
verse semigroup. Formally, the free inverse semi-
group is defined in terms of a congruence rela-
tion on(S∪S−1)∗ specifying the inverse property
and commutativity of idempotents — see (Munn,

they mashed their way through the thick mud

a

d

j

d

o

m

s

Figure 3: A link grammar parse. Link types:
s: subject, o: object, m: modifying phrases,
a: adjective,j: preposition,d: determiner.

1974) for details. We denote the free inverse semi-
group onS by FIS(S).

Free inverse semigroups were shown by Munn
(1974) to be equivalent tobirooted word trees. A
birooted word-tree on a setA is a directed acyclic
graph whose edges are labelled by elements ofA
which does not contain any subgraphs of the form
•

a
−→ •

a
←− • or •

a
←− •

a
−→ •, together with

two distinguished nodes, called the start node,2

and finish node,◦.
An element in the free semigroupFIS(S) is de-

noted as a sequencexd1

1 x
d2

2 . . . xdn

n wherexi ∈ S
anddi ∈ {1,−1}.

We construct the birooted word tree by starting
with a single node as the start node, and for eachi
from 1 ton:

• Determine if there is an edge labelledxi leav-
ing the current node ifdi = 1, or arriving at
the current node ifdi = −1.

• If so, follow this edge and make the resulting
node the current node.

• If not, create a new node and join it with an
edge labelledxi in the appropriate direction,
and make this node the current node.

The finish node is the current node after then iter-
ations.

The product of two elementsx andy in the free
inverse semigroup can be computed by finding the
birooted word-tree ofx and that ofy, joining the
graphs by equating the start node ofy with the fin-
ish node ofx (and making it a normal node), and
merging any other nodes and edges necessary to
remove any subgraphs of the form•

a
−→ •

a
←− •

or •
a
←− •

a
−→ •. The inverse of an element

has the same graph with start and finish nodes ex-
changed.
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We can represent parses of sentences in link
grammar by translating words to syntactic cate-
gories in thefree inverse semigroup. The parse
shown earlier for “they mashed their way through
the thick mud” can be represented in the inverse
semigroup onS = {s,m, o, d, j, a} as

ss−1modd−1o−1m−1jdaa−1d−1j−1

which has the following birooted word-tree (the
words which the links derive from are shown in
brackets):

s(they,mashed)
m(mashed, through)

o(mashed,way)

d(their,way)

j(through,mud)

d(the,mud)

a(thick,mud)

Let A be the set of words in the natural lan-
guage under consideration,S be the set of link
types. Then we can form a context theory
〈A,FIS(S), ˆ, · 〉 where· is multiplication defined
by convolution onFIS(S), and a worda ∈ A is
mapped to a probabilistic sum̂a of its link possible
grammar representations (calleddisjuncts). Thus
we have a context theory which maps a stringx
to elements ofL1(FIS(S)); if there is a parse for
this string then there will be some component of
x̂ which corresponds to an idempotent element of
FIS(S). Moreover we can interpret the magnitude
of the component as the probability of that par-
ticular parse, thus the context theory describes a
probabilistic variation of link grammar.

3.5 Uncertainty in Logical Semantics

For the sake of brevity, we summarise our ap-
proach to representing uncertainty in logical se-
mantics, which is described in full elsewhere. Our
aim is to be able to reason with probabilistic infor-
mation about uncertainty in logical semantics. For
example, in order to represent a natural language
sentence as a logical statement, it is necessary
to parse it, which may well be with a statistical
parser. We may have hundreds of possible parses
and logical representations of a sentence, and as-
sociated probabilities. Alternatively, we may wish

to describe our uncertainty about word-sense dis-
ambiguation in the representation. Incorporating
such probabilistic information into the representa-
tion of meaning may lead to more robust systems
which are able to cope when one component fails.

The basic principle we propose is to first repre-
sent unambiguous logical statements as a context
theory. Our uncertainty about the meaning of a
sentence can then be represented as a probability
distribution over logical statements, whether the
uncertainty arises from parsing, word-sense dis-
ambiguation or any other source. Incorporating
this information is then straightforward: the rep-
resentation of the sentence is the weighted sum
of the representation of each possible meaning,
where the weights are given by the probability dis-
tribution.

Computing the degree of entailment using this
approach is computationally challenging, however
we have shown that it is possible to estimate the
degree of entailment by computing a lower bound
on this value by calculating pairwise degrees of
entailment for each possible logical statement.

4 Related Work

Mitchell and Lapata (2008) proposed a framework
for composing meaning that is extremely gen-
eral in nature: there is no requirement for linear-
ity in the composition function, although in prac-
tice the authors do adopt this assumption. Indeed
their “multiplicative models” require composition
of two vectors to be a linear function of their ten-
sor product; this is equivalent to our requirement
of distributivity with respect to vector space addi-
tion.

Various ways of composing vector based repre-
sentations of meaning were investigated by Wid-
dows (2008), including the tensor product and di-
rect sum. Both of these are compatible with the
context theoretic framework since they are dis-
tributive with respect to the vector space addition.

Clark et al. (2008) proposed a method of com-
posing meaning that generalises Montague seman-
tics; further work is required to determine how
their method of composition relates to the context-
theoretic framework.

Erk and Pado (2008) describe a method of com-
position that allows the incorporation of selec-
tional preferences; again further work is required
to determine the relation between this work and
the context-theoretic framework.
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5 Conclusion

We have given an introduction to the context-
theoretic framework, which provides mathemat-
ical guidelines on how vector-based representa-
tions of meaning should be composed, how en-
tailment should be determined between these rep-
resentations, and how probabilistic information
should be incorporated.

We have shown how the framework can be ap-
plied to a wide range of problems in computational
linguistics, including subsequence matching, vec-
tor based representations of taxonomies and statis-
tical parsing. The ideas we have presented here are
only a fraction of those described in full in (Clarke,
2007), and we believe that even that is only the tip
of the iceberg with regards to what it is possible to
achieve with the framework.
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