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Abstract

In this paper, we propose a novel way
to include unsupervised feature selection
methods in probabilistic taxonomy learn-
ing models. We leverage on the computa-
tion of logistic regression to exploit unsu-
pervised feature selection of singular value
decomposition (SVD). Experiments show
that this way of using SVD for feature se-
lection positively affects performances.

1 Introduction

Taxonomies are extremely important knowledge
repositories in a variety of applications for nat-
ural language processing and knowledge repre-
sentation. Yet, manually built taxonomies such
as WordNet (Miller, 1995) often lack in cover-
age when used in specific knowledge domains.
Automatically creating or extending taxonomies
for specific domains is then a very interesting
area of research (O’Sullivan et al., 1995; Magnini
and Speranza, 2001; Snow et al., 2006). Auto-
matic methods for learning taxonomies from cor-
pora often use distributional hypothesis (Harris,
1964) and exploit some induced lexical-syntactic
patterns (Hearst, 1992; Pantel and Pennacchiotti,
2006). In these models, within a very large set,
candidate word pairs are selected as new word
pairs in hyperonymy and added to an existing tax-
onomy. Candidate pairs are represented in some
feature space. Often, these feature spaces are
huge and, then, models may take into considera-
tion noisy features.

In machine learning, feature selection has been
often used to reduce the dimensions in huge fea-
ture spaces. This has many advantages, e.g., re-
ducing the computational cost and improving per-
formances by removing noisy features (Guyon and
Elisseeff, 2003).

In this paper, we
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probabilistic taxonomy learning models. Given
the probabilistic taxonomy learning model intro-
duced by (Snow et al., 2006), we leverage on the
computation of logistic regression to exploit sin-
gular value decomposition (SVD) as unsupervised
feature selection. SVD is used to compute the
pseudo-inverse matrix needed in logistic regres-
sion.

To describe our idea, we firstly review how
SVD can be used as unsupervised feature selec-
tion (Sec. 2). In Section 3 we then describe the
probabilistic taxonomy learning model introduced
by (Snow et al., 2006). We will then shortly re-
view the logistic regression used to compute the
taxonomy learning model to describe where SVD
can be naturally used. We will describe our ex-
periments in Sec. 4. Finally, we will draw some
conclusions and describe our future work (Sec. 5).

2 Unsupervised feature selection with
Singular Value Decomposition

Singular value decomposition (SVD) is one of the
possible factorization of a rectangular matrix that
has been largely used in information retrieval for
reducing the dimension of the document vector
space (Deerwester et al., 1990).

The decomposition can be defined as follows.
Given a generic rectangular n X m matrix A, its
singular value decomposition is:

A=UxvT

where U is a matrix n x , VT isar x m and &
is a diagonal matrix r x r. The two matrices U
and V' are unitary, i.e., UTU = Tand VTV = I.
The diagonal elements of the 3 are the singular
values such as 7 > 99 > ... > 6, > 0 where r is
the rank of the matrix A. For the decomposition,
SVD exploits the linear combination of rows and
columns of A.

A first trivial way of using SVD as unsupervised
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of training examples represented in a feature space
of n features, we can observe it as a matrix, 1.€.
a sequence of examples £ = (€7...6,). With
SVD, the n x m matrix E can be factorized as
E = UXVT. This factorization implies we can
focus the learning problem on a new space using
the transformation provided by the matrix U. This

new space is represented by the matrix:

E =UTE=xVvT (1)

where each example is represented with r new fea-
tures. Each new feature is obtained as a linear
combination of the original features, i.e. each fea-
ture vector €; can be seen as a new feature vector
€' = UT&]. When the target feature space is big
whereas the cardinality of the training set is small,
i.e., n >> m, the application of SVD results in a
reduction of the original feature space as the rank
7 of the matrix E is r < min(n, m).

A more interesting way of using SVD as unsu-
pervised feature selection model is to exploit its
approximated computations, i.e. :

A= Ap = Unsr SiexiVien

where k is smaller than the rank . The compu-
tation algorithm (Golub and Kahan, 1965) is al-
lowed to stop at a given k different from the real
rank r. The property of the singular values, i.e.,
01 > 6o > ... > 6, > 0, guarantees that the
first k are bigger than the discarded ones. There
is a direct relation between the informativeness of
the dimension and the value of the singular value.
High singular values correspond to dimensions of
the new space where examples have more vari-
ability whereas low singular values determine di-
mensions where examples have a smaller variabil-
ity (see (Liu, 2007)). These dimensions can not
be used as discriminative features in learning al-
gorithms. The possibility of computing the ap-
proximated version of the matrix gives a power-
ful method for feature selection and filtering as
we can decide in advance how many features or,
better, linear combination of original features we
want to use.

As feature selection model, SVD is unsuper-
vised in the sense that the feature selection is done
without taking into account the final classes of the
training examples. This is not always the case,
feature selection models such as those based on
Information Gain largely use the final classes of
training examples. SVD as feature selection is in-
dependent from the classification problem.

3 Probabilistic Taxonomy Learning and
SVD feature selection

Recently, Snow et al. (2006) introduced a prob-
abilistic model for learning taxonomies form cor-
pora. This probabilistic formulation exploits the
two well known hypotheses: the distributional hy-
pothesis (Harris, 1964) and the exploitation of
the lexico-syntactic patterns as in (Robison, 1970;
Hearst, 1992). Yet, in this formulation, we can
positively and naturally introduce our use of SVD
as feature selection model.

In the rest of this section we will firstly intro-
duce the probabilistic model (Sec. 3.1) and, then,
we will describe how SVD is used as feature se-
lector in the logistic regression that estimates the
probabilities of the model. To describe this part we
need to go in depth into the definition of the logis-
tic regression (Sec. 3.2) and the way of estimating
the regression coefficients (Sec. 3.3). This will
open the possibility of describing how we exploit
SVD (Sec. 3.4)

3.1 Probabilistic model

In the probabilistic formulation (Snow et al.,
2006), the task of learning taxonomies from a cor-
pus is seen as a probability maximization prob-
lem. The taxonomy is seen as a set I’ of asser-
tions R over pairs R; ;. If R; jisin T, 7 is a con-
cept and j is one of its generalization (i.e., the di-
rect or the indirect generalization). For example,
Riog,animar € T describes that dog is an animal.
The main innovation of this probabilistic method
is the ability of taking into account in a single
probability the information coming from the cor-
pus and an existing taxonomy 7.

The main probabilities are then: (1) the prior
probability P(R;; € T) of an assertion R; ; to
belong to the taxonomy 7' and (2) the posterior
probability P(R; ; € T|€; ;) of an assertion R; ;
to belong to the taxonomy 7' given a set of evi-
dences €; ; derived from the corpus. Evidences
is a feature vector associated with a pair (i, j). For
examples, a feature may describe how many times
7 and j are seen in patterns like ”i as 77 or i is
a j”. These among many other features are in-
dicators of an is-a relation between ¢ and j (see
(Hearst, 1992)).

Given a set of evidences E over all the relevant
word pairs, in (Snow et al., 2006), the probabilis-
tic taxonomy learning task is defined as the prob-
lem of finding the taxonomy T that maximizes the
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probability of having the evidences E, i.e.:

o~

T = arg max P(E|T)

In (Snow et al., 2006), this maximization prob-
lem is solved with a local search. What is max-
imized at each step is the increase of the probabil-
ity P(E|T) of the taxonomy when the taxonomy
changes from 7' to 7" = T'U N where N are the
relations added at each step. This increase of prob-
abilities is defined as multiplicative change A(N)
as follows:

A(N) = P(E|T")/P(E|T) 2)

The main innovation of the model in (Snow et al.,
2006) is the possibility of adding at each step the
best relation N = {R; ;} as well as N = I(R; ;)
that is R; ; with all the relations by the existing
taxonomy. We will then experiment with our fea-
ture selection methodology in the two different
models:

flat: at each iteration step, a single relation is
added, i.e. R;; = argmaxg, ; A(R; ;)

inductive: at each iteration step, a set of re-
lations is added, i.e. I(R;;) where R;; =
arg maxg, ; A(I(R;j))-

The last important fact is that it is possible to
demonstrate that

P(Ri, € T,
A(Egy) = kot w)
( ’]) 1-— P(RZ’J‘ € T|?i,j)

= k- OddS(RiJ)

where k is a constant (see (Snow et al., 2006))
that will be neglected in the maximization process.
This last equation gives the possibility of using the
logistic regression as it is. In the next sections we
will see how SVD and the related feature selection
can be used to compute the odds.

3.2 Logistic Regression

Logistic Regression (Cox, 1958) is a particular
type of statistical model for relating responses Y
to linear combinations of predictor variables X. It
is a specific kind of Generalized Linear Model (see
(Nelder and Wedderburn, 1972)) where its func-
tion is the logit function and the independent vari-
able Y is a binary or dicothomic variable which
has a Bernoulli distribution. The dependent vari-
able Y takes value 0 or 1. The probability that

Y has value 1 is function of the regressors = =
(1, L1y eeny a:k)

The probabilistic taxonomy learner model in-
troduced in the previous section falls in the cat-
egory of probabilistic models where the logistic
regression can be applied as R; ; € T is the bi-
nary dependent variable and €, ; is the vector of
its regressors. In the rest of the section we will see
how the odds, i.e., the multiplicative change, can
be computed.

We start from formally describing the Logistic
Regression Model. Given the two stochastic vari-
ables Y and X, we can define as p the probability
of Y to be 1 given that X=x, i.e.:

p=PY =1X ==x)
The distribution of the variable Y is a Bernulli dis-
tribution, i.e.:

Y ~ Bernoulli(p)
Given the definition of the logit(p) as:

logit(p) = In <1p>

-Dp
and given the fact that Y is a Bernoulli distribution,
the logistic regression foresees that the logit is a
linear combination of the values of the regressors,
ie.,

3)

logit(p) = Bo + frx1 + ... + Brak )

where (g, 01, ..., B are called regression coeffi-
cients of the variables x1, ..., xj, respectively.

Given the regression coefficients, it is possible
to compute the probability of a given event where
we observe the regressors x to be Y = 1 or in our
case to belong to the taxonomy. This probability
can be computed as follows:

p(z) = exp(fo + 11 + ... + Brk)
1 +exp(Bo + 11 + ... + Brar)
It is obviously trivial to determine the
odds(R; ;) related to the multiplicative change
of the probabilistic taxonomy model. The odds
is the ratio between the positive and the negative
event. It is defined as follows:
P(R; j€T| €} )

Odds(R’L,]) = 1*P(Ri,j€T‘?z}j) (5)
Then, it is strictly related with the logit, i.e.:
odds(R; ;) = exp(fo + €1;5) (6)

The relationship between the possible values of
the probability, odds and logit is show in the Table
1.
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Probability ‘ Odds ‘ Logit ‘
0<p<05]| [0,1) | (—00,0]
0.5<p<1|[l,00) | [0,00)

Table 1: Relationship between probability, odds
and logit

3.3 Estimating Regression Coefficients

The remaining problem is how to estimate the re-
gression coefficients. This estimation is done us-
ing the maximal likelihood estimation to prepare a
set of linear equations using the above logit defini-
tion and, then, solving a linear problem. This will
give us the possibility of introducing the necessity
of determining a pseudo-inverse matrix where we
will use the singular value decomposition and its
natural possibility of performing feature selection.
Once we have the regression coefficients, we have
the possibility of assigning estimating a probabil-
ity P(R; ; € T|@; ;) given any configuration of
the values of the regressors ?i, j» 1.e., the observed
values of the features. For sake of simplicity we
will hereafter refer to e ; as €.

Let assume we have a multiset O of observa-
tions extracted from Y x E where Y € {0,1} and
we know that some of them are positive observa-
tions (i.e., Y = 1) and some of them are negative
observations (i.e., Y = 0).

For each pairs the relative configuration ¢€; €
E that appeared at least once in O, we can de-
termine using the maximal likelihood estimation
P(Y = 1|€;). Then, from the equation of the
logit (Eq. 4), we have a linear equation system,
Le.

—_
logit(p) = Qp (M

where () is a matrix that includes a constant col-
umn of 1, necessary for the Gy of the linear combi-
nation of the values of the regression. Moreover it
includes the transpose of the evidence matrix, i.e.
E = (€1...@ ). Therefore the matrix will be:

1 enn e ein
0 1 e e €2n
1 en1 em2 €mn

The set of equations in Eq. 7 can be solved us-
ing multiple linear regression.

In their general form, the equations of multiple
linear regression may be written as (Caron et al.,

1988):
y=X0+e
where:

e y is a column vector n X 1 that includes the
observed values of the dependent variables
Yl, ey Yk‘a

e X is a matrix n X m of the values of the re-
gressors that we have observed;

e [ is a column vector m X 1 of the regression
coefficients;

e ¢ is a column vector including the stochastic
components that have not been observed and
that will not be considered later.

In the case X is a rectangular and singular matrix,
the system y = X[ has not a solution. Yet, it is
possible to use the principle of the Least Square
Estimation. This principle determines the solution
[ that minimize the residual norm, i.e.:
B = argmin | X3 —y]* @®)
This problem can be solved by the Moore-
Penrose pseudoinverse X' (Penrose, 1955).
Then, the final equation to determine the (3 is

B=X"%y

It is important to remark that if the inverse matrix
exist X* = X! and that XTX and XX are
symmetric.

For our case, the following equation is valid:

3 = QT logit(p)

3.4 Computing Pseudoinverse Matrix with
SVD Analysis

We finally reached the point where it is possible
to explain our idea that is naturally using singular
value decomposition (SVD) as feature selection in
a probabilistic taxonomy learner. In the previous
sections we described how the probabilities of the
taxonomy learner can be estimated using logistic
regressions and we concluded that a way to de-
termine the regression coefficients 3 is computing
the Moore-Penrose pseudoinverse Q. It is pos-
sible to compute the Moore-Penrose pseudoin-
verse using the SVD in the following way (Pen-
rose, 1955). Given an SVD decomposition of the
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matrix Q = ULV the pseudo-inverse matrix that
minimizes the Eq. 9 is:

QT =vztu’ )
The diagonal matrix ¥ is a matrix 7 x r obtained
first transposing ¥ and then calculating the recip-
rocals of the singular value of 3. So the diagonal
elements of the =1 are %, é, ey é.

We have now our opportunity of using SVD as
natural feature selector as we can compute differ-
ent approximations of the pseudo-inverse matrix.
As we saw in Sec. 2, the algorithm for computing
the singular value decomposition can be stopped a
different dimensions. We called k£ the number of
dimensions. As we can obtain different SVD as
approximations of the original matrix (Eq. 2), we
can define different approximations of :

~ _ T
Q+ ~ QZ— - ankE;Xkkam

In our experiments we will use different values
of k to explore the benefits of SVD as feature se-
lector.

4 Experimental Evaluation

In this section, we want to empirically explore
whether our use of SVD feature selection pos-
itively affects performances of the probabilistic
taxonomy learner. The best way of determining
how a taxonomy learner is performing is to see if it
can replicate an existing “taxonomy”. We will ex-
periment with the attempt of replicating a portion
of WordNet (Miller, 1995). In the experiments, we
will address two issues: 1) determining to what
extent SVD feature selection affect performances
of the taxonomy learner; 2) determining if SVD
as unsupervised feature selection is better for the
task than some simpler model for taxonomy learn-
ing. We will explore the effects on both the flat
and the inductive probabilistic taxonomy learner.

The rest of the section is organized as follows.
In Sec. 4.1 we will describe the experimental set-
up in terms of: how we selected the portion of
WordNet, the description of the corpus used to ex-
tract evidences, a description of the feature space
we used, and, finally, the description of a baseline
models for taxonomy learning we have used. In
Sec. 4.2 we will present the results of the experi-
ments in term of performance.

4.1 Experimental Set-up

To completely define the experiments we need to
describe some issues: how we defined the taxon-
omy to replicate, which corpus we have used to
extract evidences for pairs of words, which feature
space we used, and, finally, the baseline model we
compared our feature selection model against.

As target taxonomy we selected a portion of
WordNet! (Miller, 1995). Namely, we started
from the 44 concrete nouns listed in (McRae et
al., 2005) and divided in 3 classes: animal, arti-
fact, and vegetable. For sake of comprehension,
this set is described in Tab. 2. For each word w,
we selected the synset s,, that is compliant with
the class it belongs to. We then obtained a set .S of
synsets (see Tab. 2). We then expanded the set to
S’ adding the siblings (i.e., the coordinate terms)
for each synset in S. The set S’ contains 265 co-
ordinate terms plus the 44 original concrete nouns.
For each element in .S we collected its hyperonym,
obtaining the set H. We then removed from the set
H the 4 topmosts: entity, unit, object, and whole.
The set H contains 77 hyperonyms. For the pur-
pose of the experiments we both derived from the
previous sets a taxonomy 7' and produced a set of
negative examples 7. The two sets have been ob-
tained as follows. The taxonomy 7 is the portion
of WordNet implied by O = H U S’, i.e., T con-
tains all the (s,h) € O x O that are in WordNet.
On the contrary, T' contains all the (s, h) € O x O
that are not in WordNet. We then have 5108 posi-
tive pairs in 7" and 52892 negative pairs in T

We then split the set 7"UT in two parts, training
and testing. As we want to see if it is possible to
attach the set S’ to the right hyperonym, the split
has been done as follows. We randomly divided
the set S” in two parts Sy and Sy, respectively,
of 70% and 30% of the original S’. We then se-
lected as training 73, all the pairs in 7' containing
a synset in Sy, and as testing set T3 those pairs of
T containing a synset of S;s. For the probabilistic
model, 7T}, is the initial taxonomy whereas T}, UT
is the unknown set.

As corpus we used the English Web as Corpus
(ukWaC) (Ferraresi et al., 2008). This is a web
extracted corpus of about 2700000 web pages con-
taining more than 2 billion words. The corpus con-
tains documents of different topics such as web,
computers, education, public sphere, etc.. It has
been largely demonstrated that the web documents

"We used the version 3.0
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Concrete nouns | Clas Sense Concrete nouns | Clas Sense
1 | banana Vegetable | 1 23 | boat Artifact 0
2 | bottle Artifact 0 24 | bowl Artifact 0
3 | car Artifact 0 25 | cat Animal 0
4 | cherry Vegetable | 2 26 | chicken Animal 1
5 | chisel Artifact 0 27 | corn Vegetable | 2
6 | cow Animal 0 28 | cup Artifact 0
7 | dog Animal 0 29 | duck Animal 0
8 | eagle Animal 0 30 | elephant Animal 0
9 | hammer Artifact 1 31 | helicopter Artifact 0
10 | kettle Artifact 0 32 | knife Artifact 0
11 | lettuce Vegetable | 2 33 | lion Animal 0
12 | motorcycle Artifact 0 34 | mushroom Vegetable | 4
13 | onion Vegetable | 2 35 | owl Animal 0
14 | peacock Animal 1 36 | pear Vegetable | 0
15 | pen Artifact 0 37 | pencil Artifact 0
16 | penguin Animal 0 38 | pig Animal 0
17 | pineapple Vegetable | 1 39 | potato Vegetable | 2
18 | rocket Artifact 0 40 | scissors Artifact 0
19 | screwdriver Artifact 0 41 | ship Artifact 0
20 | snail Animal 0 42 | spoon Artifact 0
21 | swan Animal 0 43 | telephone Artifact 1
22 | truck Artifact 0 44 | turtle Animal 1

Table 2: Concrete nouns, Classes and senses selected in WordNet

are good models for natural language (Lapata and
Keller, 2004).

As the focus of the paper is the analysis of the
effect of the SVD feature selection, we used as fea-
ture spaces both n-grams and bag-of-words. Out
of the T U T, we selected only those pairs that
appeared at a distance of at most 3 tokens. Us-
ing these 3 tokens, we generated three spaces:
(1) 1-gram that contains monograms, (2) 2-gram
that contains monograms and bigrams, and (3) the
3-gram space that contains monograms, bigrams,
and trigrams. For the purpose of this experiment,
we used a reduced stop list as classical stop words
as punctuation, parenthesis, the verb to be are very
relevant in the context of features for learning a
taxonomy.

Finally, we want to describe our baseline model
for taxonomy learning. This model only contains
Heart’s patterns (Hearst, 1992) as features. The
feature value is the point-wise mutual information.
These features are in some sense the best features
for the task as these have been manually selected
after a process of corpus analysis. These baseline
features are included in our 3-gram model. We can

then compare our best models with this baseline
features in order to see if our SVD feature selec-
tion model outperforms manual feature selection.

4.2 Results

In the first set of experiments we want to focus on
the issue whether or not performances of the prob-
abilistic taxonomy learner is positively affected
by the proposed feature selection model based on
the singular value decomposition. We then deter-
mined the performance with respect to different
values of k. This latter represents the number of
surviving dimensions where the pseudo-inverse is
computed. Then, it represents the number of fea-
tures the model adopts. We performed this first set
of experiments in the 1-gram feature space. Punc-
tuation has been considered. Figure 1 plots the ac-
curacy of the probabilistic learner with respect to
the size of the feature set, i.e. the number & of sin-
gle values considered for computing the pseudo-
inverse matrix. To determine if the effect of the
feature selection is preserved during the iteration
of the local search algorithm, we report curves at
different sizes of the set of added pairs. Curves are
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Figure 1: Accuracy over different cuts of the feature space
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Figure 2: Comparison of different feature spaces

with k=400

added pairs

reported for both the flat model and the inductive
model. The flat algorithm adds one pair at each
iteration. Then, we reported curves for each 20
added pairs. Each curve shows that accuracy does
not increase after a dimension of k=700. This size
of the space is necessary only for the first 20 added
pairs. Accuracy keeps increasing to k=700 and
then decreases. When we add more pairs, the opti-
mal size of the space is around k=200. For the in-
ductive model we report the accuracies for around
40, 80, 130 added pairs. Here, at each iteration,
more than one pair is added. The optimal dimen-
sion of the feature space seems to be around 500
as after that value performances decrease or stay
stable. SVD feature selection has then a positive
effect for both the flar and the inductive probabilis-
tic taxonomy learners. This has beneficial effects
both on the performances and on the computation
time.

In the second set of experiments we want to de-
termine whether or not SVD feature selection for
the probabilistic taxonomy learner behaves better
than a reduced set of known features. We then
fixed the dimension k to 400 and we compared the
baseline model with different probabilistic models
with different feature sets: 1-gram, 2-gram, and
3-gram. We can consider that the trigram model
before the cut on its dimensions contains feature
subsuming the baseline model. Figure 2 shows re-
sults. Curves report accuracy after n added pairs.
All the probabilistic models outperform the base-
line model. As what happened for the first series of
experiments (see Fig. 1) more informative spaces
such as 3-gram behaves better when the number of
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added pairs is small. Performances of the three re-
duced pairs become similar after 100 added pairs.
These experiments show that SVD feature selec-
tion has a positive effect on performances as re-
sulting models are always better with respect to
the baseline.

5 Conclusions and Future Work

We presented a model to naturally introduce
SVD feature selection in a probabilistic taxonomy
learner. The method is effective as allows the de-
signing of better probabilistic taxonomy learners.
We still need to explore at least two issues. First,
we need to determine whether or not the posi-
tive effect of SVD feature selection is preserved
in more complex feature spaces such as syntactic
feature spaces as those used in (Snow et al., 2006).
Second, we need to compare the SVD feature se-
lection with other unsupervised feature selection
models to determine whether or not this is the best
method to use in the case of probabilistic taxon-
omy learning.
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