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Abstract

Our submission to the CoNLL-2008
shared task (Surdeanu et al., 2008) focused
on applying a novel method for semantic
role labeling to the shared task. Our system
first simplifies each sentence to be labeled
using a set of hand-constructed rules; the
weights of the system are trained on se-
mantic role labeling data to generate sim-
plifications which are as useful as possible
for semantic role labeling. Our system is
only a semantic role labeling system, and
thus did not receive a score for Syntactic
Dependencies (or, by extension, a score for
the complete problem). Unlike most sys-
tems in the shared task, our system took
constituency parses as input. On the sub-
task of semantic dependencies, our system
obtained an F1 score of 76.17, the high-
est in the open task. In this paper we give
a high-level overview of the sentence sim-
plification system, and discuss and analyze
the modifications to this system required
for the CoNLL-2008 shared task.

1 Sentence Simplification

The main technical interest of our method is a sen-
tence simplification system. This system is de-
scribed in depth in (Vickrey and Koller, 2008); for
lack of space, we omit many details, including a
discussion of related work, from this paper.

Current semantic role labeling systems rely pri-
marily on syntactic features in order to identify
and classify roles. Features derived from a syntac-
tic parse of the sentence have proven particularly
useful (Gildea and Jurafsky, 2002). For example,
the syntactic subject of “eat” is nearly always the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

S

NP VP

VP

NP

PP

Tom wants S

a

to

eat

VP

NP

NPsalad

croutons

with

Tom: NP S(NP) VPVP VPS T

NP1
croutons:

VP
PP(with)

Tsalad: 
NP1 VP T

Figure 1: Constituency parse with path features for verb
“eat”.

I was not given a chance to eat.

Someone gave me a chance to eat.

I had a chance to eat.

I ate.

depassivize

give -> have

chance to X

I was given a chance to eat.

remove not

Figure 2: Example simplification

ARG0. An example sentence with extracted path
features is shown in Figure 1.

A major problem with this approach is that the
path from a phrase to the verb can be quite com-
plicated. In the sentence “He expected to receive a prize
for winning,” the path from “win” to its ARG0, “he”,
involves the verbs “expect” and “receive” and the
preposition “for.” The corresponding path through
the parse tree likely occurs a small number of times
(or not at all) in the training corpus. If the test set
contained exactly the same sentence but with “ex-
pected” replaced by “did not expect” we would ex-
tract a different parse path feature; therefore, as far
as the classifier is concerned, the syntax of the two
sentences is totally unrelated.

The idea of our method is to learn a mapping
from full, complicated sentences to simplified sen-
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Figure 3: Rule for depassivizing a sentence

tences. Figure 2 shows an example of a series
of simplifications applied to the sentence “I was
not given a chance to eat.” Our method com-
bines hand-written syntactic simplification rules
with machine learning, which determines which
rules to prefer. We then use the output of the sim-
plification system as input to an SRL system that
is trained to label simplified sentences.

There are several reasons to simplify sentences
before doing semantic role labeling. First, label-
ing simplified sentences is much easier than label-
ing raw sentences. Second, by mapping all sen-
tences to a common, canonical form, we can gener-
alize more effectively across sentences with differ-
ing syntax. Third, our model is effective at sharing
information across verbs, since most of our simpli-
fication rules apply equally well regardless of the
target verb. These latter two benefits are particu-
larly important for verbs with few labeled training
instances; using training examples efficiently can
lead to considerable gains in performance.

Note that unlike most participants in the
CoNLL-2008 Shared Task (Surdeanu et al., 2008),
our model took as input constituency parses as
generated by the Charniak parser (specifically, we
used the parses provided with the CoNLL-2005
shared task distribution). This was the only labeled
data used that was not available in the closed task.

1.1 Transformation Rules
At the center of our sentence simplification system
is a hand-written set of transformation rules. A
transformation rule takes as input a parse tree and
produces as output a different, changed parse tree.
Since our goal is to produce a simplified version
of the sentence, the rules are designed to bring all
sentences toward the same common format.

A rule (see left side of Figure 3) consists of two
parts. The first is a “tree regular expression”, a tree
fragment with optional constraints at each node.
The rule assigns numbers to each node which are
referred to in the second part of the rule. Formally,
a rule node X matches a parse-tree node A if: (1)

SimplifiedOriginal#Rule Category

I atethe food.Float(The food) I 
ate.

5Floating nodes

He slept.I said he slept.4Sentence extraction

Food is tasty.Salt makes food 
tasty.

8“Make” rewrites

The total 
includestax.

Includingtax, the 
total…

7Verb acting as PP/NP

John has a 
chance to eat.

John’s chance to 
eat…

7Possessive

I will eat.Will I eat?7Questions

I will eat.Nor will I eat.7Inverted sentences

Float(The food) I 
ate.

The food I ate…8Modified nouns

I eat.I have a chance to 
eat.

7Verb RC (Noun)

I eat.I am likely to eat.6Verb RC (ADJP/ADVP)

I eat.I wantto eat.17Verb Raising/Control (basic)

I eat.I must eat.14Verb Collapsing/Rewriting

I ate.I ateand slept.8Conjunctions

John is a lawyer.John, a lawyer, …20Misc Collapsing/Rewriting

A car hitme.I was hitby a car.5Passive

I sleptThursday.Thursday, I slept.24Sentence normalization
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Table 1: Rule categories with sample simplifica-
tions. Target verbs are underlined.

All constraints of node X (e.g., constituent cate-
gory, head word, etc.) are satisfied by node A.
(2) For each child node Y of X, there is a child
B of A that matches Y; two children of X cannot
be matched to the same child B. There are no other
requirements. A can have other children besides
those matched, and leaves of the rule pattern can
match to internal nodes of the parse (correspond-
ing to entire phrases in the original sentence). For
example, the same rule is used to simplify both “I
had a chance to eat,” and “I had a chance to eat a
sandwich,” (into “I ate,” and “I ate a sandwich,”).

The second part of the rule is a series of simple
steps that are applied to the matched nodes. For ex-
ample, one type of simple step applied to the pair
of nodes (X,Y) removes X from its current parent
and adds it as the final child of Y. Figure 3 shows
the depassivizing rule and the result of applying it
to the sentence “I was given a chance.” The trans-
formation steps are applied sequentially from top
to bottom. Any nodes not matched are unaffected
by the transformation; they remain where they are
relative to their parents. For example, “chance”
is not matched by the rule, and thus remains as a
child of the VP headed by “give.”

1.2 Rule Set
Altogether, we currently have 154 (mostly unlex-
icalized) rules. Table 1 shows a summary of our
rule-set, grouped by type. Note that each row lists
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only one possible sentence and simplification rule
from that category; many of the categories handle a
variety of syntax patterns. Our rule set was devel-
oped by analyzing performance and coverage on
the PropBank WSJ training set; neither the devel-
opment set nor (of course) the test set were used
during rule creation. Please refer to (Vickrey and
Koller, 2008) for more details about the rule set.

In the context of the CoNLL-2008 Shared Task,
the rule set might be viewed as consisting of out-
side information. Since we only submitted a sys-
tem to the open task, this was not an issue.

1.3 Generating Simple Sentences
We now describe how to produce all possible sim-
plified sentences for a given input sentence. We
maintain a set of derived parses S which is initial-
ized to contain only the original, untransformed
parse. One iteration of the algorithm consists of
applying every possible matching transformation
rule to every parse in S, and adding all resulting
parses to S. With carefully designed rules, re-
peated iterations are guaranteed to converge; that
is, we eventually arrive at a set Ŝ such that if we
apply an iteration of rule application to Ŝ, no new
parses are added. Note that we simplify the whole
sentence without respect to a particular verb.

We then find all parses in Ŝ that have “eat” as
the main verb. We call such a parse a valid simple
sentence; this is exactly the canonicalized version
of the sentence which our simplification rules are
designed to produce.

1.4 Labeling Simple Sentences
For a particular sentence/target verb pair s, v, the
output from the previous section is a set Ssv =
{tsvi }i of valid simple sentences. From the train-
ing set, we now extract a set of role patterns
Gv = {gv

j }j for each verb v. For example, a
common role pattern for “give” is that of “I gave
him a sandwich”. We represent this pattern as
ggive
1 = {ARG0 = Subject NP, ARG1 =

Postverb NP2, ARG2 = Postverb NP1}.
For each simple sentence tsvi ∈ Ssv, we ap-

ply all extracted role patterns gv
j to tsvi , obtaining

a set of possible role labelings. We call a sim-
ple sentence/role labeling pair a simple labeling
and denote the set of candidate simple labelings
Csv = {csv

k }k.

1.5 Probabilistic Model
Given a (possibly large) set of candidate simple la-
belings Csv, we need to select a correct one. We

Rule = Depassivize
Pattern = {ARG0 = Subj NP, ARG1 = PV NP2, ARG2 = PV NP1}
Role = ARG0, Head Word = John
Role = ARG1, Head Word = sandwich
Role = ARG2, Head Word = I
Role = ARG0, Category = NP
Role = ARG1, Category = NP
Role = ARG2, Category = NP
Role = ARG0, Position = Subject NP
Role = ARG1, Position = Postverb NP2
Role = ARG2, Position = Postverb NP1

Figure 4: Features for “John gave me a sandwich.”

assign a score to each candidate based on its fea-
tures: which rules were used to obtain the simple
sentence, which role pattern was used, and fea-
tures about the assignment of constituents to roles.
The set of extracted features for the sentence “I
was given a sandwich by John” with simplification
“John gave me a sandwich” is shown in Figure 4.

We now define a log-linear model which as-
signs a probability to each candidate simple label-
ing based on its score. Specifically, the probability
of a simple labeling csv

k with respect to a weight

vector w is P (csv
k ) = e

wT fsv
k∑

k′ e
wT fsv

k′
.

Unfortunately, we do not have labeled examples
of correct simplifications. To get around this, we
treat the correct simplification as a hidden variable.
Thus, we say that the probability of a particular
semantic role labeling is

∑
csv
k
∈Ksv P (csv

k ). This
leads to our final objective,

∑
s,v

log

∑
csv
k
∈Ksv ewT fsv

k∑
csv
k′∈Csv ewT fsv

k′

− wTw
2σ2

.

We train our model by optimizing the objective
using standard methods, specifically BFGS. Due
to the summation over the hidden variable repre-
senting the choice of simplification (not observed
in the training data), our objective is not convex.
Thus, we are not guaranteed to find a global opti-
mum; in practice we have gotten good results using
the initialization of setting all weights to 0.

2 Baseline Model

In addition to our simplification system, we also
built a high-performing logistic regression model
for semantic role labeling, which we refer to as
Baseline. This model uses a slightly modified ver-
sion of the features used in (Pradhan et al., 2005).
This model was also trained on the PropBank train-
ing set, using Charniak constituency parses.
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Both our simplification model and Baseline pro-
duce labeled constituencies. Since we were re-
quired to produce semantic dependency relations,
we simply labeled the head word of each con-
stituent with the role chosen by the model.

3 Labeling Nouns

The 2008 shared task requires systems to label the
arguments of both nouns and verbs. However, our
sentence simplification system was built to handle
only verbs. While in principle the model can nat-
urally be extended to label nouns by the addition
of further syntactic simplification rules, we were
not able to complete this extension in time for the
contest deadline. Instead, we trained our Baseline
model to label the arguments of nouns as well as
verbs. The features of this model are the same as
those used to label verbs, and were not extended to
handle special features of nouns.

4 Identifying Predicates

Another important subtask was to identify the
predicates to be labeled. In the labeled training
corpus, nouns with no labeled arguments are gen-
erally skipped (i.e., not labeled as predicates at all).
Thus, we made a strong simplifying assumption: if
a predicate (either noun or verb) is labeled by our
system as having no arguments, we should not la-
bel it as being a predicate. On the development
set, out of a total of 6390 labeled predicates, only
23 had no labeled arguments; thus, this assumption
appears to be quite reasonable.

Our system architecture was as follows. First,
we modified the training (and test) set by mark-
ing as a potential predicate every word that was ei-
ther: a) a verb that wasn’t “do”, “be”, or “have” or
b) a noun found in the nombank index. Then, we
trained our system on all potential predicates (not
just predicates that were actually labeled). Finally,
after applying our classifier to the test data, we re-
moved any predicate with no labeled arguments.

5 Sense-Tagging Predicates

We tried three simple heuristics for sense-labeling
the predicates. All of them were applied at the end
of our pipeline, and thus did not interact with the
argument labeling decisions.

The simplest heuristic labeled every predicate as
sense 1. A slightly more intelligent heuristic la-
beled every predicate with its most common sense
in the training set. Finally, we extended this heuris-
tic to label each verb with its most common sense

for the subcategorization (i.e., set of roles) actu-
ally produced by the labeling system. Thus, if one
sense was intransitive while the other was transi-
tive, we would be able to distinguish between them
(assuming that our labeling system produced the
correct set of arguments). For this third heuris-
tic, we ignored all but the core arguments (ARG0 -
ARG5). The final heuristic was the most effective,
as discussed in the results section.

6 Results

The first stage of Baseline, which tries to filter out
constituents which are obviously not arguments,
took about three hours and approximately 4Gb of
memory to train1. The second stage, which per-
forms the final classification of arguments, took
about four hours and 3Gb of memory to train.

The sentence simplification system, which we
will refer to as Simplification, works in two steps.
First, it generates the set of all possible simplifi-
cations for each sentence. This step took a rela-
tively small amount of memory, under 1Gb, but
took around 24 hours to complete. The set of sim-
plifications is stored in a compact form; the total
storage required for all simplifications of all sen-
tences was roughly 4 times the (compressed) size
of the Charniak input parses. The second step,
which trains the model using the possible simplifi-
cations, took around 12 hours and 3Gb of memory.

We only submitted results for the semantic de-
pendencies portion of the competition. The sys-
tem we used was the Combined system described
in (Vickrey and Koller, 2008), which combines
the simplification procedure with the Baseline
model. The Combined model was augmented
with the modifications described above. Our sys-
tem achieved an official F1 score on the SRL
subtask of 76.17, the highest in the open task.
Our results are not strictly comparable to those
in the closed task, due to the use of the Char-
niak parser trained on Penn Treebank constituency
parses. However, a comparison still provides in-
sight into the relative strength of our system; our
score would place us tied for fourth in the closed
challenge for semantic dependencies.

We will now discuss the relative contributions
of various components of our system. All results
in this section are for TestWSJ + TestBrown.

Our Combined model provides the same ben-
efit over Baseline as described in (Vickrey and

1All runs were done on a dual core 2.66Mhz Xeon ma-
chine with 4Gb of RAM
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Koller, 2008) for labeling the arguments of verbs2.
When applied to just verb predicates, the Com-
bined model provides a statistically significant im-
provement of 1.2 points of F1 score over Base-
line. However, since the CoNLL-2008 shared task
adds both labeling of noun dependencies and pred-
icate identification and sense tagging, the gain due
to better labeling arguments of verbs is reduced.
The Baseline model achieves an F1 score of 75.31
on the semantic dependencies task, .86 F1 points
lower than the Combined system.

Note that while most of this gain is directly due
to better verb argument labeling, better verb ar-
gument labeling also indirectly slightly improves
predicate identification and sense-tagging since we
use the predicted arguments for both of of these
subtasks. We do in fact see a small increase for
labeling and sense-tagging predicates, from 80.72
F1 for the Baseline to 80.81 F1 for Combined.

As mentioned, we use Baseline to label the ar-
guments of nouns. Noun argument labeling ap-
pears to be more difficult than verb argument la-
beling, or at least requires some modification of
the features. Baseline obtains an F1 score of 75.64
for verbs, but only 68.19 F1 for nouns.

On the subtask of predicate identification, Com-
bined achieved an F1 of 90.65. It performed bet-
ter on verbs than nouns. For predicates with part
of speech VB*3 it scored 95.43 F1; for predicates
with part of speech NN*, it scored 85.97 F1. Verbs
without arguments are often labeled in the gold
data, so the verb score could perhaps be improved
by retaining verb predicates without arguments.

As described above, we tried three heuristics for
sense-labeling predicates. Our final system used
the third heuristic, which chose the most com-
mon sense for the set of labeled arguments pro-
duced by the system. Combined obtained an F1
score of 80.81 on the combined predicate identifi-
cation/classification task, with a score of 82.58 for
verbs and 79.28 for nouns. The decrease in per-
formance by adding classification is much larger
for verbs than nouns; verb sense classification is
apparently significantly more difficult than noun
sense classification (at least for verbal nouns).

Table 2 compares the results of the Combined
system using each of the three heuristics. Going

2Note that the scoring metrics are different between the
CoNLL-2005 and CoNLL-2008 shared tasks. The CoNLL-
2005 required the constituent boundaries to be labeled cor-
rectly, while the CoNLL-2008 only requires identifying the
head word of each argument.

3This category includes some nouns, e.g. gerunds.

Overall Predicate ID/Class
Heuristic Score All Verbs Nouns
Always 1 75.69 79.29 81.26 77.58
Most common 76.02 80.33 81.73 79.21
Best for subcat 76.17 80.81 82.58 79.28

Table 2: Relative performance of sense-labeling heuristics

from the simplest heuristic to the third heuristic
gained 1.52 points of F1 score on the subtask of
predicate identification/classification, and an im-
provement of .48 F1 score for the overall seman-
tic dependency score. Another interesting thing to
note is that all of improvement for noun predicates
came from choosing the most common sense in-
stead of always choosing sense 1. On the other
hand, using subcategorization information is quite
important for sense-tagging verbs.

7 Discussion and Future Work
The CoNLL-08 task introduces two new sub-
tasks for labeling semantic dependencies: predi-
cate identification and predicate classification. Our
experimental results show that both are non-trivial
and suggest that there is room for additional im-
provement on these subtasks.

We are particularly interested in two extensions
to our simplification model related to the 2008
shared task. The first is extending our simplifica-
tion model to handle the arguments of nouns. As
discussed above, there is a large amount of room
for improvement for argument labeling of nouns.
The second is incorporating uncertainty from the
parser into our model. Specifically, we would like
to extract a complete parse forest from the Char-
niak parser and use it as input to our model. This
would allow our simplification model to jointly
reason about the correct parse, possible simplifica-
tions of those parses, and semantic role labelings
of the resulting simplified sentences.
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