
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 258–262
Manchester, August 2008

DeSRL: A Linear-Time Semantic Role Labeling System

Massimiliano Ciaramita†∗
massi@yahoo-inc.com

Felice Dell’Orletta‡
dellorle@di.unipi.it

†: Yahoo! Research Barcelona, Ocata 1, 08003, Barcelona, Catalunya, Spain
‡: Dipartimento di Informatica, Università di Pisa, L. B. Pontecorvo 3, I-56127, Pisa, Italy
¦: Barcelona Media Innovation Center, Ocata 1, 08003, Barcelona, Catalunya, Spain

Giuseppe Attardi‡
attardi@di.unipi.it

Mihai Surdeanu†,¦
mihai.surdeanu@barcelonamedia.org

Abstract

This paper describes the DeSRL sys-
tem, a joined effort of Yahoo! Research
Barcelona and Università di Pisa for the
CoNLL-2008 Shared Task (Surdeanu et
al., 2008). The system is characterized by
an efficient pipeline of linear complexity
components, each carrying out a different
sub-task. Classifier errors and ambigui-
ties are addressed with several strategies:
revision models, voting, and reranking.
The system participated in the closed chal-
lenge ranking third in the complete prob-
lem evaluation with the following scores:
82.06 labeled macro F1 for the overall task,
86.6 labeled attachment for syntactic de-
pendencies, and 77.5 labeled F1 for se-
mantic dependencies.

1 System description

DeSRL is implemented as a sequence of compo-
nents of linear complexity relative to the sentence
length. We decompose the problem into three sub-
tasks: parsing, predicate identification and clas-
sification (PIC), and argument identification and
classification (AIC). We address each of these sub-
tasks with separate components without backward
feedback between sub-tasks. However, the use of
multiple parsers at the beginning of the process,
and re-ranking at the end, contribute beneficial
stochastic aspects to the system. Figure 1 summa-
rizes the system architecture. We detail the parsing

∗All authors contributed equally to this work.
∗ c© 2008. Licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

sub-task in Section 2 and the semantic sub-tasks
(PIC and AIC) in Section 3.

2 Parsing

In the parsing sub-task we use a combination strat-
egy on top of three individual parsing models,
two developed in-house –DeSRleft−to−right and
DeSRrevisionright−to−left– and a third using an off-the-
shelf parser, Malt 1.0.01.

2.1 DeSRleft−to−right
This model is a version of DeSR (Attardi, 2006),
a deterministic classifier-based Shift/Reduce
parser. The parser processes input tokens advanc-
ing on the input from left to right with Shift ac-
tions and accumulates processed tokens on a stack
with Reduce actions. The parser has been adapted
for this year’s shared task and extended with addi-
tional classifiers, e.g., Multi Layer Perceptron and
multiple SVMs.2

The parser uses the following features:
1. SPLIT LEMMA: from tokens −1, 0, 1, prev(0),
leftChild(0), rightChild(0)

2. PPOSS: from −2, −1, 0, 1, 2, 3, prev(0), next(−1),
leftChild(−1), leftChild(0), rightChild(−1),
rightChild(0)

3. DEPREL: from leftChild(−1), leftChild(0),
rightChild(−1)

4. HDIST: from −1, 0

In the above list negative numbers refer to tokens
on the stack, positive numbers to tokens in the in-
put queue. We use the following path operators:
leftChild(x) refers to the leftmost child of token
x, rightChild(x) to the rightmost child of token
x, prev(x) and next(x) respectively to the token
preceding or following x in the sentence.

1http://w3.msi.vxu.se/∼nivre/research/
MaltParser.html

2This parser is available for download at: http://
sourceforge.net/projects/desr/.

258



Voting PIC AIC
Reranking

Argument
Frame

DeSR left−to−right

Malt

DeSR right−to−left
revision OutputInput

Figure 1: DeSRL system architecture.

The first three types of features are directly ex-
tracted from the attributes of tokens present in the
training corpus. The fourth feature represents the
distance of the token to the head of the noun phrase
to which it belongs, or “O” if it does not belong to
a noun phrase. This distance is computed with a
simple heuristic, based on a pattern of POS tags.
Attardi and Dell’Orletta (2008) have shown that
this feature improves the accuracy of a shift/reduce
dependency parser by providing approximate in-
formation about NP chunks in the sentence. In fact
no token besides the head of a noun phrase can
have a head referring to a token outside the noun
phrase. Hence the parser can learn to avoid creat-
ing such links. The addition of this feature yields
an increase of 0.80% in Labeled Accuracy on the
development set.

2.2 Revision Parser: DeSRrevision
right−to−left

Our second individual parsing model implements
an alternative to the method of revising parse trees
of Attardi and Ciaramita (2007) (see also (Hall &
Novak, 2005)). The original approach consisted in
training a classifier to revise the errors of a base-
line parser. The approach assumed that only lo-
cal revisions to the parse tree would be needed,
since the dependency parser mostly gets individual
phrases correctly. The experiments showed that in-
deed most of the corrections can be expressed by
a small set of (about 20) complex movement rules.
Furthermore, there was evidence that one could get
higher improvements from the tree revision classi-
fier if this was trained on the output of a lower ac-
curacy parser. The reason for this is that the num-
ber of errors is higher and this provides a larger
amount of training data.

For the CoNLL 2008 shared task, we refined this
idea, but instead of using an independent classi-
fier for the revision, we use the parser itself. The
second parser is trained on the original corpus ex-
tended with dependency information predicted by
a lower accuracy parser. To obtain the base parser
we use DeSR trained on half the training corpus
using a Maximum Entropy (ME) classifier. The

ME classifier is considerably faster to train but has
a lower accuracy: this model achieved an LAS of
76.49% on the development set. Using the out-
put of the ME-based parser we extend the original
corpus with four additional columns: the lemma
of the predicted head (PHLEMMA), the PPOSS of
the predicted head (PHPPOSS), the dependency of
the predicted head (PHDEPREL), and the indica-
tion of whether a token appears before or after its
predicted head. A second parser is trained on this
corpus, scanning sentences from right to left and
using the following additional features:

1. PHPPOSS: from −1, 0
2. PHLEMMA: from −1, 0
3. PHDEPREL: from −1, 0
4. PHHDIST: from 0

Performing parsing in reverse order helps reduce
several of the errors that a deterministic parser
makes when dependency links span a long distance
in the input sequence. Experiments on the CoNLL
2007 corpora (Dell’Orletta, 2008) have shown that
this indeed occurs, especially for distances in the
range from 6 to 23. In particular, the most signifi-
cant improvements are for dependencies with label
COORD (+ 6%) and P (+ 8%).

The revision parser achieves an LAS of 85.81%
on the development set. Note that the extra fea-
tures from the forward parser are indeed use-
ful, since a simple backward parser only achieves
82.56% LAS on the development set.

2.3 Parser Combination
The final step consists in combining the out-
puts of the three individual models a simple
voting scheme: for each token we use major-
ity voting to select its head and dependency la-
bel. In case of ties, we chose the dependency
predicted by our overall best individual model
(DeSRrevisionright−to−left).

3

Note that typical approaches to parser
combination combine the outputs of inde-
pendent parsers, while in our case one base
model (DeSRrevisionright−to−left) is trained with

3We tried several voting strategies but none performed bet-
ter.

259



information predicted by another individual
model(DeSRleft−to−right). To the best of our
knowledge, combining individual parsing models
that are inter-dependent is novel.

3 Semantic Role Labeling

We implement the Semantic Role Labeling (SRL)
problem using three components: PIC, AIC, and
reranking of predicted argument frames.

3.1 Predicate Identification and Classification
The PIC component carries out the identification
of predicates, as well as their partial disambigua-
tion, and it is implemented as a multiclass average
Perceptron classifier (Crammer & Singer, 2003).
For each token i we extract the following features
(〈, 〉 stands for token combination):

1. SPLIT LEMMA: from 〈i−1, i〉, i−1, i, i+1, 〈i, i+1〉
2. SPLIT FORM: from i− 2, i− 1, i, i+ 1.i+ 2

3. PPOSS: from 〈i−2, i−1〉, 〈i−1, i〉, i−1, i, i+1, 〈i, i+
1〉, 〈i+ 1, i+ 2〉

4. WORD SHAPE: e.g., “Xx*” for “Brazil”, from 〈i−2, i−
1, i〉, 〈i− 1, i〉, i− 1, i, i+ 1, 〈i, i+ 1〉, 〈i, i+ 1, i+ 2〉

5. Number of children of node i
6. For each children j of i: split lemmaj , ppossj ,

depreli,j , 〈split lemmai, split lemmaj〉, 〈ppossi,
ppossj〉

7. Difference of positions: j − i, for each child j of i.

The PIC component uses one single classifier map-
ping tokens to one of 8 classes corresponding to
the rolesets suffixes 1 to 6, the 6 most frequent
types, plus a class grouping all other rolesets, and
a class for non predicates; i.e., Y = {0, 1, 2, .., 7}.
Each token classified as y7 is mapped by default to
the first sense y1. This approach is capable of dis-
tinguishing between different predicates based on
features 1 and 2, but it can also exploit information
that is shared between predicates due to similar
frame structures. The latter property is intuitively
useful especially for low-frequency predicates.

The classifier has an accuracy in the multiclass
problem, considering also the mistakes due to the
non-predicted classes, of 96.2%, and an F-score of
92.7% with respect to the binary predicate iden-
tification problem. To extract features from trees
(5-7) we use our parser’s output on training, devel-
opment and evaluation data.

3.2 Argument Identification and
Classification

Algorithm 1 describes our AIC framework. The al-
gorithm receives as input a sentence S where pred-
icates have been identified and classified using the

Algorithm 1: AIC
input : sentence S; inference strategy I; model w
foreach predicate p in S do

set frame Fin = {}
foreach token i in S do

if validCandidate(i) then
ŷ = arg maxy∈Y score(Φ(p, i),w, y)
if ŷ 6= nil then

add argument (i,ŷ) to Fin

Fout = inference(Fin, I)
output: set of all frames Fout

PIC component, an inference strategy I is used
to guarantee that the generated best frames satisfy
the domain constraints, plus an AIC classification
model w. We learn w using a multiclass Percep-
tron, using as output label setY all argument labels
that appear more than 10 times in training plus a nil
label assigned to all other tokens.

During both training and evaluation we se-
lect only the candidate tokens that pass the
validCandidate filter. This function requires that
the length of the dependency path between pred-
icate and candidate argument be less than 6, the
length of the dependency path between argument
and the first common ancestor be less than 3, and
the length of the dependency path between the
predicate and the first common ancestor be less
than 5. This heuristic covers over 98% of the ar-
guments in training.

In the worst case, Algorithm 1 has quadratic
complexity in the sentence size. But, on average,
the algorithm has linear time complexity because
the number of predicates per sentence is small (av-
eraging less than five for sentences of 25 words).

The function Φ generates the feature vector for
a given predicate-argument tuple. Φ extracts the
following features from a given tuple of a predicate
p and argument a:

1. token(a)4, token(modifier of a) if a is the
head of a prepositional phrase, and token(p).

2. Patterns of PPOSS tags and DEPREL labels
for: (a) the predicate children, (b) the children
of the predicate ancestor across VC and IM
dependencies, and (c) the siblings of the same
ancestor. In all paths we mark the position of
p, a and any of their ancestors.

3. The dependency path between p and a. We
add three versions of this feature: just the

4token extracts the split lemma, split form, and PPOSS
tag of a given token.

260



path, and the path prefixed with p and a’s
PPOSS tags or split lemmas.

4. Length of the dependency path.
5. Distance in tokens between p and a.
6. Position of a relative to p: before or after.
We implemented two inference strategies:

greedy and reranking. The greedy strategy sorts
all arguments in a frame Fin in descending order
of their scores and iteratively adds each argument
to the output frame Fout only if it respects the do-
main constraints with the other arguments already
selected. The only domain constraint we use is that
core arguments cannot repeat.

3.3 Reranking of Argument Frames
The reranking inference strategy adapts the ap-
proach of Toutanova et al. (2005) to the depen-
dency representation with notable changes in can-
didate selection, feature set, and learning model.
For candidate selection we modify Algorithm 1:
instead of storing only ŷ for each argument in Fin

we store the top k best labels. Then, from the ar-
guments in Fin, we generate the top k frames with
the highest score, where the score of a frame is the
product of all its argument probabilities, computed
as the softmax function on the output of the Per-
ceptron. In this set of candidate frames we mark
the frame with the highest F1 score as the positive
example and all others as negative examples.

From each frame we extract these features:
1. Position of the frame in the set ordered by

frame scores. Hence, smaller positions in-
dicate candidate frames that the local model
considered better (Marquez et al., 2007).

2. The complete sequence of arguments and
predicate for this frame (Toutanova, 2005).
We add four variants of this feature: just the
sequence and sequence expanded with: (a)
predicate voice, (b) predicate split lemma,
and (c) combination of voice and split lemma.

3. The complete sequence of arguments and
predicate for this frame combined with their
PPOSS tags. Same as above, we add four
variants of this feature.

4. Overlap with the PropBank or NomBank
frame for the same predicate lemma and
sense. We add the precision, recall, and F1

score of the overlap as features (Marquez et
al., 2007).

5. For each frame argument, we add the features
from the local AIC model prefixed with the

WSJ + Brown WSJ Brown
Labeled macro F1 82.69 83.83 73.51

LAS 87.37 88.21 80.60
Labeled F1 78.00 79.43 66.41

Table 1: DeSRL results in the closed challenge,
for the overall task, syntactic dependencies, and
semantic dependencies.

Devel WSJ Brown
DeSRleft−to−right 85.61 86.54 79.74
DeSRrevisionright−to−left 85.81 86.19 78.91
MaltParser 84.10 85.50 77.06
Voting 87.37 88.21 80.60

Table 2: LAS of individual and combined parsers.

corresponding argument label in the current
frame (Toutanova, 2005).

The reranking classifier is implemented as multi-
layer perceptron with one hidden layer of 5 units,
trained to solve a regression problem with a least
square criterion function. Previously we experi-
mented, unsuccessfully, with a multiclass Percep-
tron and a ranking Perceptron. The limited number
of hidden units guarantees a small computational
overhead with respect to a linear model.

4 Results and Analysis

Table 1 shows the overall results of our system
in the closed challenge. Note that these scores
are higher than those of our submitted run mainly
due to improved parsing models (discussed be-
low) whose training ended after the deadline. The
score of the submitted system is the third best
for the complete task. The system throughput in
our best configuration is 28 words/second, or 30
words/second without reranking. In exploratory
experiments on feature selection for the re-ranking
model we found that several features classes do
not contribute anything and could be filtered out
speeding up significantly this last SRL step. Note
however that currently over 90% of the runtime is
occupied by the syntactic parsers’ SVM classifiers.
We estimate that we can increase throughput one
order of magnitude simply by switching to a faster,
multiclass classifier in parsing.

4.1 Analysis of Parsing
Table 2 lists the labeled attachment scores (LAS)
achieved by each parser and by their combination
on the development set, the WSJ and Brown test
sets. The results are improved with respect to the
official run, by using a revision parser trained on
the output of the lower accuracy ME parser, as

261



Labeled F1 Unlabeled F1

Syntax PIC Inference Devel WSJ Brown Devel WSJ Brown
gold gold greedy 88.95 90.21 84.95 93.71 94.34 93.29

predicted gold greedy 85.96 86.70 78.68 90.60 90.98 88.02
predicted predicted greedy 79.88 79.27 66.41 86.07 85.33 80.14
predicted predicted reranking 80.13 79.43 66.41 86.33 85.62 80.41

Table 3: Scores of the SRL component under various configurations.

Devel WSJ Brown
Unlabeled F1 92.69 90.88 86.96

Labeled F1 (PIC) 87.29 84.87 71.99
Labeled F1 (Sense 1) 79.62 78.94 70.11

Table 4: Scores of the PIC component.

mentioned earlier. These results show that vot-
ing helps significantly (+1.56% over the best single
parser) even though inter-dependent models were
used. However, our simple voting scheme does
not guarantee that a well-formed tree is generated,
leaving room for further improvements; e.g., as
in (Sagae & Lavie, 2006).

4.2 Analysis of SRL

Table 3 shows the labeled and unlabeled F1 scores
of our SRL component as we move from gold to
predicted information for syntax and PIC. For the
shared task setting –predicted syntax and predicted
PIC– we show results for the two inference strate-
gies implemented: greedy and reranking. The first
line in the table indicates that the performance of
the SRL component when using gold syntax and
gold PIC is good: the labeled F1 is 90 points for the
in-domain corpus and approximately 85 points for
the out-of-domain corpus. Argument classification
suffers the most on out-of-domain input: there is
a difference of 5 points between the labeled scores
on WSJ and Brown, even though the correspond-
ing unlabeled scores are comparable.

The second line in the table replicates the setup
of the 2005 CoNLL shared task: predicted syntax
but gold PIC. This yields a moderate drop of 3 la-
beled F1 points on in-domain data and a larger drop
of 6 points for out-of-domain data.

We see larger drops when switching to predicted
PIC (line 3): 5-6 labeled F1 points in domain and
12 points out of domain. This drop is caused by the
PIC component, e.g., if a predicate is missed the
whole frame is lost. Table 4 lists the scores of our
PIC component, which we compare with a base-
line system that assigns sense 1 to all identified
predicates. The table indicates that, even though
our disambiguation component improves signifi-
cantly over the baseline, it performs poorly, espe-

cially on out-of-domain data. Same as SRL, the
classification sub-task suffers the most out of do-
main (there is a difference of 15 points between
unlabeled and labeled F1 scores on Brown).

Finally, the reranking inference strategy yields
only modest improvements (last line in Table 3).
We attribute these results to the fact that, unlike
Toutanova et al. (2005), we use only one tree to
generate frame candidates, hence the variation in
the candidate frames is small. Considering that the
processing overhead of reranking is already large
(it quadruples the runtime of our AIC component),
we do not consider reranking a practical extension
to a SRL system when processing speed is a dom-
inant requirement.

References
G. Attardi. 2006. Experiments with a Multilan-

guage Non-Projective Dependency Parser. In Proc.
of CoNNL-X 2006.

G. Attardi and M. Ciaramita. 2007. Tree Revi-
sion Learning for Dependency Parsing. In Proc. of
NAACL/HLTC 2007.

G. Attardi, F. Dell’Orletta. 2008. Chunking and De-
pendency Parsing. In Proc. of Workshop on Partial
Parsing.

K. Crammer and Y. Singer. 2003. Ultraconservative
Online Algorithms for Multiclass Problems. Journal
of Machine Learning Research 3: pp.951-991.

F. Dell’Orletta. 2008. Improving the Accuracy of De-
pendency Parsing. PhD Thesis. Dipartimento di In-
formatica, Università di Pisa, forthcoming.

K. Hall and V. Novak. 2005. Corrective Modeling
for Non-Projective Dependency Parsing. In Proc. of
IWPT.

L. Marquez, L. Padro, M. Surdeanu, and L. Villarejo.
2007. UPC: Experiments with Joint Learning within
SemEval Task 9. In Proc. of SemEval 2007.

K. Sagae and A. Lavie. 2006. Parser Combination by
reparsing. In Proc. of HLT/NAACL.

M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez
and J. Nivre. 2008. The CoNLL-2008 Shared Task
on Joint Parsing of Syntactic and Semantic Depen-
dencies. In Proc. of CoNLL-2008.

K. Toutanova, A. Haghighi, and C. Manning. 2005.
Joint Learning Improves Semantic Role Labeling. In
Proc. of ACL.

262


