
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 238–242
Manchester, August 2008

A Cascaded Syntactic and Semantic Dependency Parsing System

Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting Liu, Sheng Li
Information Retrieval Lab

School of Computer Science and Technology
Harbin Institute of Technology, China, 150001

{car, lzh, yxhu, yqli, qinb, tliu, ls}@ir.hit.edu.cn

Abstract

We describe our CoNLL 2008 Shared Task
system in this paper. The system includes
two cascaded components: a syntactic and
a semantic dependency parsers. A first-
order projective MSTParser is used as our
syntactic dependency parser. In order to
overcome the shortcoming of the MST-
Parser, that it cannot model more global in-
formation, we add a relabeling stage after
the parsing to distinguish some confusable
labels, such as ADV, TMP, and LOC. Be-
sides adding a predicate identification and
a classification stages, our semantic de-
pendency parsing simplifies the traditional
four stages semantic role labeling into two:
a maximum entropy based argument clas-
sification and an ILP-based post inference.
Finally, we gain the overall labeled macro
F1 = 82.66, which ranked the second posi-
tion in the closed challenge.

1 System Architecture

Our CoNLL 2008 Shared Task (Surdeanu et al.,
2008) participating system includes two cascaded
components: a syntactic and a semantic depen-
dency parsers. They are described in Section 2
and 3 respectively. Their experimental results are
shown in Section 4. Section 5 gives our conclusion
and future work.

2 Syntactic Dependency Parsing

MSTParser (McDonald, 2006) is selected as our
basic syntactic dependency parser. It views the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

syntactic dependency parsing as a problem of
finding maximum spanning trees (MST) in di-
rected graphs. MSTParser provides the state-of-
the-art performance for both projective and non-
projective tree banks.

2.1 Features
The score of each labeled arc is computed through
the Eq. (1) in MSTParser.

score(h, c, l) = w · f(h, c, l) (1)

where node h represents the head node of the arc,
while node c is the dependent node (or child node).
l denotes the label of the arc.

There are three major differences between our
feature set and McDonald (2006)’s:

1) We use the lemma as a generalization feature
of a word, while McDonald (2006) use the word’s
prefix.

2) We add two new features: “bet-pos-h-same-
num” and “bet-pos-c-same-num”. They represent
the number of nodes which locate between node h
and node c and whose POS tags are the same with
h and c respectively.

3) We use more back-off features than McDon-
ald (2006) by completely enumerating all of the
possible combinatorial features.

2.2 Relabeling
By observing the current results of MSTParser on
the development data, we find that the performance
of some labels are far below average, such as ADV,
TMP, LOC. We think the main reason lies in that
MSTParser only uses local features restricted to a
single arc (as shown in Eq. (1)) and fails to use
more global information. Consider two sentences:
“I read books in the room.” and “I read books in
the afternoon.”. It is hard to correctly label the arc

238



Deprel Total Mislabeled as

NMOD 8,922 NAME [0.4], DEP [0.4], LOC [0.1],
AMOD [0.1]

OBJ 1,728 TMP [0.5], ADV [0.4], OPRD[0.3]
ADV 1,256 TMP [2.9], LOC [2.3], MNR [1.8],

DIR [1.5]
NAME 1,138 NMOD [2.2]
VC 953 PRD [0.9]
DEP 772 NMOD [4.0]
TMP 755 ADV [9.9], LOC [6.5]
LOC 556 ADV [12.6], NMOD [7.9], TMP [5.9]
AMOD 536 ADV [2.2]
PRD 509 VC [4.7]
APPO 444 NMOD [2.5]
OPRD 373 OBJ [4.6]
DIR 119 ADV [18.5]
MNR 109 ADV [28.4]

Table 1: Error Analysis of Each Label

between “read” and “in” unless we know the object
of “in”.

We count the errors of each label, and show the
top ones in Table 1. “Total” refers to the total num-
ber of the corresponding label in the development
data. The column of “Mislabeled as” lists the la-
bels that an arc may be mislabeled as. The number
in brackets shows the percentage of mislabeling.
As shown in the table, some labels are often con-
fusable with each other, such as ADV, LOC and
TMP.

2.3 Relabeling using Maximum Entropy
Classifier

We constructed two confusable label set which
have a higher mutual mislabeling proportion:
(NMOD, LOC, ADV, TMP, MNR, DIR) and (OBJ,
OPRD). A maximum entropy classifier is used to
relabel them.

Features are shown in Table 2. The first column
lists local features, which contains information of
the head node h and the dependent node c of an arc.
“+ dir dist” means that conjoining existing features
with arc direction and distance composes new fea-
tures. The second column lists features using the
information of node c’s children. “word c c” rep-
resents form or lemma of one child of the node
c. “dir c” and “dist c” represents the direction and
distance of the arc which links node c to its child.
The back-off technique is also used on these fea-
tures.

Local features (+ dir dist) Global features (+ dir c dist c)

word h word c word h word c word c c

Table 2: Relabeling Feature Set (+ dir dist)

3 Semantic Dependency Parsing

3.1 Architecture
The whole procedure is divided into four separate
stages: Predicate Identification, Predicate Classifi-
cation, Semantic Role Classification, and Post In-
ference.

During the Predicate Identification stage we ex-
amine each word in a sentence to discover target
predicates, including both noun predicates (from
NomBank) and verb predicates (from PropBank).
In the Predicate Classification stage, each predi-
cate is assigned a certain sense number. For each
predicate, the probabilities of a word in the sen-
tence to be each semantic role are predicted in the
Semantic Role Classification stage. Maximum en-
tropy model is selected as our classifiers in these
stages. Finally an ILP (Integer Linear Program-
ming) based method is adopted for post infer-
ence (Punyakanok et al., 2004).

3.2 Predicate Identification
The predicate identification is treated as a binary
classification problem. Each word in a sentence is
predicted to be a predicate or not to be. A set of
features are extracted for each word, and an opti-
mized subset of them are adopted in our final sys-
tem. The following is a full list of the features:

DEPREL (a1): Type of relation to the parent.
WORD (a21), POS (a22), LEMMA (a23),

HEAD (a31), HEAD POS (a32), HEAD LEMMA
(a33): The forms, POS tags and lemmas of a word
and it’s headword (parent) .

FIRST WORD (a41), FIRST POS (a42),
FIRST LEMMA (a43), LAST WORD (a51),
LAST POS (a52), LAST LEMMA (a53): A
corresponding “constituent” for a word consists
of all descendants of it. The forms, POS tags and
lemmas of both the first and the last words in the
constituent are extracted.

POS PAT (a6): A “POS pattern” is produced for
the corresponding constituent as follows: a POS
bag is produced with the POS tags of the words
in the constituent except for the first and the last
ones, duplicated tags removed and the original or-
der ignored. Then we have the POS PAT feature

239



by combining the POS tag of the first word, the
bag and the POS tag of the last word.

CHD POS (a71), CHD POS NDUP (a72),
CHD REL (a73), CHD REL NDUP (a74): The
POS tags of the child words are joined to-
gether to form feature CHD POS. With adja-
cently duplicated tags reduced to one, feature
CHD POS NDUP is produced. Similarly we can
get CHD REL and CHD REL NDUP too, with
the relation types substituted for the POS tags.

SIB REL (a81), SIB REL NDUP (a82),
SIB POS (a83), SIB POS NDUP (a84): Sibling
words (including the target word itself) and the
corresponding dependency relations (or POS tags)
are considered as well. Four features are formed
similarly to those of child words.

VERB VOICE (a9): Verbs are examined for
voices: if the headword lemma is either “be” or
“get”, or else the relation type is “APPO”, then the
verb is considered passive, otherwise active.

Also we used some “combined” features which
are combinations of single features. The final op-
timized feature set is (a1, a21, a22, a31, a32, a41,
a42, a51, a52, a6, a72, a73, a74, a81, a82, a83,
a1+a21, a21+a31, a21+a6, a21+a74, a73+a81,
a81+a83).

3.3 Predicate Classification

After predicate identification is done, the resulting
predicates are processed for sense classification. A
classifier is trained for each predicate that has mul-
tiple senses on the training data (There are totally
962 multi-sense predicates on the training corpus,
taking up 14% of all) In additional to those fea-
tures described in the predicate identification sec-
tion, some new ones relating to the predicate word
are introduced:

BAG OF WORD (b11), BAG OF WORD O
(b12): All words in a sentence joined, namely
“Bag of Words”. And an “ordered” version is in-
troduced where each word is prefixed with a letter
“L”, “R” or “T” indicating it’s to the left or right of
the predicate or is the predicate itself.

BAG OF POS O (b21), BAG OF POS N
(b22): The POS tags prefixed with “L”, “R” or
“T” indicating the word position joined together,
namely “Bag of POS (Ordered)”. With the
prefixed letter changed to a number indicating
the distance to the predicate (negative for being
left to the predicate and positive for right), an-
other feature is formed, namely “Bag of POS

(Numbered)”.
WIND5 BIGRAM (b3): 5 closest words from

both left and right plus the predicate itself, in total
11 words form a “window”, within which bigrams
are enumerated.

The final optimized feature set for the task of
predicate classification is (a1, a21, a23, a71, a72,
a73, a74, a81, a82, a83, a84, a9, b11, b12, b22, b3,
a71+a9).

3.4 Semantic Role Classification

In our system, the identification and classifica-
tion of semantic roles are achieved in a single
stage (Liu et al., 2005) through one single classi-
fier (actually two, one for noun predicates, and the
other for verb predicates). Each word in a sentence
is given probabilities to be each semantic role (in-
cluding none of the these roles) for a predicate.
Features introduced in addition to those of the pre-
vious subsections are the following:

POS PATH (c11), REL PATH (c12): The “POS
Path” feature consists of POS tags of the words
along the path from a word to the predicate. Other
than “Up” and “Down”, the “Left” and “Right” di-
rection of the path is added. Similarly, the “Re-
lation Path” feature consists of the relation types
along the same path.

UP PATH (c21), UP REL PATH (c22): “Up-
stream paths” are parts of the above paths that stop
at the common ancestor of a word and the predi-
cate.

PATH LEN (c3): Length of the paths
POSITION (c4): The relative position of a word

to the predicate: Left or Right.
PRED FAMILYSHIP (c5): “Familyship rela-

tion” between a word and the predicate, being one
of “self”, “child”, “descendant”, “parent”, “ances-
tor”, “sibling”, and “not-relative”.

PRED SENSE (c6): The lemma plus sense
number of the predicate

As for the task of semantic role classification,
the features of the predicate word in addition to
those of the word under consideration can also
be used; we mark features of the predicate with
an extra ‘p’. For example, the head word of
the current word is represented as a31, and the
head word of the predicate is represented as pa31.
So, with no doubt for the representation, our fi-
nal optimized feature set for the task of seman-
tic role classification is (a1, a23, a33, a43, a53,
a6, c11, c12, c21, c3, c4, c6, pa23, pa71, pa73,

240



pa83, a1+a23+a33, a21+c5, a23+c12, a33+c12,
a33+c22, a6+a33, a73+c5, c11+c12, pa71+pa73).

3.5 ILP-based Post Inference
The final semantic role labeling result is gener-
ated through an ILP (Integer Linear Programming)
based post inference method. An ILP problem is
formulated with respect to the probability given by
the above stage. The final labeling is formed at the
same time when the problem is solved.

Let W be the set of words in the sentence, and
R be the set of semantic role labels. A virtual label
“NULL” is also added to R, representing “none of
the roles is assigned”.

For each word w ∈ W and semantic role label
r ∈ R we create a binary variable vwr ∈ (0, 1),
whose value indicates whether or not the word w
is labeled as label r. pwr denotes the possibil-
ity of word w to be labeled as role r. Obviously,
when objective function f =

∑
w,r log(pwr · vwr)

is maximized, we can read the optimal labeling for
a predicate from the assignments to the variables
vwr. There are three constrains used in our system:

C1: Each relation should be and only be la-
beled with one label (including the virtual label
“NULL”), i.e.: ∑

r

vwr = 1

C2: Roles with a small probability should never
be labeled (except for the virtual role “NULL”).
The threshold we use in our system is 0.3, which
is optimized from the development data. i.e.:

vwr = 0, if pwr < 0.3 and r 6= “NULL”

C3: Statistics shows that the most roles (ex-
cept for the virtual role “NULL”) usually appear
only once for a predicate, except for some rare ex-
ception. So we impose a no-duplicated-roles con-
straint with an exception list, which is constructed
according to the times of semantic roles’ duplica-
tion for each single predicate (different senses of a
predicate are considered different) and the ratio of
duplication to non-duplication.∑

r vwr ≤ 1,
if < p, r > /∈ {< p, r > |p ∈ P, r ∈ R;

dpr

cpr−dpr
> 0.3 ∧ dpr > 10}

(2)

where P is the set of predicates; cpr denotes the
count of words in the training corpus, which are

Predicate Type Predicate Label

Noun president.01 A3
Verb match.01 A1
Verb tie.01 A1
Verb link.01 A1
Verb rate.01 A0
Verb rate.01 A2
Verb attach.01 A1
Verb connect.01 A1
Verb fit.01 A1
Noun trader.01 SU

Table 3: No-duplicated-roles constraint exception
list (obtained by Eq. (2))

labeled as r ∈ R for predicate p ∈ P ; while dpr

denotes something similar to cpr, but what taken
into account are only those words labeled with r,
and there are more than one roles within the sen-
tence for the same predicate. Table 3 lists the com-
plete exception set, which has a size of only 10.

4 Experiments

The original MSTParser1 is implemented in Java.
We were confronted with memory shortage when
trying to train a model with the entire CoNLL 2008
training data with 4GB memory. Therefore, we
rewrote it with C++ which can manage the mem-
ory more exactly. Since the time was limited, we
only rewrote the projective part without consider-
ing second-order parsing technique.

Our maximum entropy classifier is implemented
with Maximum Entropy Modeling Toolkit2. The
classifier parameters: gaussian prior and iterations,
are tuned with the development data for different
stages respectively.

lp solve 5.53 is chosen as our ILP problem
solver during the post inference stage.

The training time of the syntactic and the se-
mantic parsers are 22 and 5 hours respectively, on
all training data, with 2.0GHz Xeon CPU and 4G
memory. While the prediction can be done within
10 and 5 minutes on the development data.

4.1 Syntactic Dependency Parsing
The experiments on development data show that
relabeling process is helpful, which improves the

1http://sourceforge.net/projects/mstparser
2http://homepages.inf.ed.ac.uk/s0450736/maxent

toolkit.html
3http://sourceforge.net/projects/lpsolve

241



Precision (%) Recall (%) F1

Pred Identification 91.61 91.36 91.48
Pred Classification 86.61 86.37 86.49

Table 4: The performance of predicate identifica-
tion and classification

Precision (%) Recall (%) F1

Simple 81.02 76.00 78.43
ILP-based 82.53 75.26 78.73

Table 5: Comparison between different post infer-
ence strategies

LAS performance from 85.41% to 85.94%. The fi-
nal syntactic dependency parsing performances on
the WSJ and the Brown test data are 87.51% and
80.73% respectively.

4.2 Semantic Dependency Parsing

The semantic dependency parsing component is
based on the last syntactic dependency parsing
component. All stages of the system are trained
with the closed training corpus, while predicted
against the output of the syntactic parsing.

Performance for predicate identification and
classification is given in Table 4, wherein the clas-
sification is done on top of the identification.

Semantic role classification and the post infer-
ence are done on top of the result of predicate iden-
tification and classification. The final performance
is presented in Table 5. A simple post inference
strategy is given for comparison, where the most
possible label (including the virtual label “NULL”)
is select except for those duplicated non-virtual la-
bels with lower probabilities (lower than 0.5). Our
ILP-based method produces a gain of 0.30 with re-
spect to the F1 score.

The final semantic dependency parsing perfor-
mance on the development and the test (WSJ and
Brown) data are shown in Table 6.

Precision (%) Recall (%) F1

Development 82.53 75.26 78.73
Test (WSJ) 82.67 77.50 80.00
Test (Brown) 64.38 68.50 66.37

Table 6: Semantic dependency parsing perfor-
mances

4.3 Overall Performance
The overall macro scores of our syntactic and se-
mantic dependency parsing system are 82.38%,
83.78% and 73.57% on the development and two
test (WSJ and Brown) data respectively, which is
ranked the second position in the closed challenge.

5 Conclusion and Future Work

We present our CoNLL 2008 Shared Task system
which is composed of two cascaded components:
a syntactic and a semantic dependency parsers,
which are built with some state-of-the-art methods.
Through a fine tuning features and parameters, the
final system achieves promising results. In order
to improve the performance further, we will study
how to make use of more resources and tools (open
challenge) and how to do joint learning between
syntactic and semantic parsing.

Acknowledgments

The authors would like to thank the reviewers for
their helpful comments. This work was supported
by National Natural Science Foundation of China
(NSFC) via grant 60675034, 60575042, and the
“863” National High-Tech Research and Develop-
ment of China via grant 2006AA01Z145.

References
Liu, Ting, Wanxiang Che, Sheng Li, Yuxuan Hu, and

Huaijun Liu. 2005. Semantic role labeling system
using maximum entropy classifier. In Proceedings
of CoNLL-2005, June.

McDonald, Ryan. 2006. Discriminative Learning and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Punyakanok, Vasin, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer
linear programming inference. In Proceedings of
Coling-2004, pages 1346–1352.

Surdeanu, Mihai, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the 12th Conference on Computational Natural Lan-
guage Learning (CoNLL-2008).

242


