
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 213–217
Manchester, August 2008

A Puristic Approach for Joint Dependency Parsing and Semantic

Role Labeling

Alexander Volokh

LT-lab, DFKI

66123 Saarbrücken, Germany

Alexander.Volokh@dfki.de

Günter Neumann

LT-lab, DFKI

66123 Saarbrücken, Germany

neumann@dfki.de

Abstract

We present a puristic approach for com-

bining dependency parsing and semantic

role labeling. In a first step, a data-driven

strict incremental deterministic parser is

used to compute a single syntactic de-

pendency structure using a MEM trained

on the syntactic part of the CoNLL 2008

training corpus. In a second step, a cas-

cade of MEMs is used to identify predi-

cates, and, for each found predicate, to

identify its arguments and their types. All

the MEMs used here are trained only

with labeled data from the CoNLL 2008

corpus. We participated in the closed

challenge, and obtained a labeled macro

F1 for WSJ+Brown of 19.93 (20.13 on

WSJ only, 18.14 on Brown). For the syn-

tactic dependencies we got similar bad

results (WSJ+Brown=16.25, WSJ= 16.22,

Brown=16.47), as well as for the seman-

tic dependencies (WSJ+Brown=22.36,

WSJ=22.86, Brown=17.94). The current

results of the experiments suggest that

our risky puristic approach of following a

strict incremental parsing approach to-

gether with the closed data-driven per-

spective of a joined syntactic and seman-

tic labeling was actually too optimistic

and eventually too puristic.

The CoNLL 2008 shared task on joint parsing of

syntactic and semantic dependencies (cf. Sur-

deanu, 2008) offered to us an opportunity to ini-

tiate, implement and test new ideas on large-

scale data-driven incremental dependency pars-

ing. The topic and papers of the ACL-2004

workshop “Incremental Parsing: Bringing Engi-

© 2008. Licensed under the Creative Commons Attri-

bution-Noncommercial-Share Alike 3.0 Unported

license (http://creativecommons.org/licenses/by-nc-

sa/3.0/). Some rights reserved.

neering and Cognition Together” (accessible at

http://aclweb.org/anthology-new/W/W04/#0300)

present a good recent overview into the field of

incremental processing from both an engineering

and cognitive point of view.

Our particular interest is the exploration and

development of strict incremental deterministic

strategies as a means for fast data-driven depend-

ency parsing of large-scale online natural lan-

guage processing. By strict incremental process-

ing we mean, that the parser receives a stream of

words w1 to wn word by word in left to right or-

der, and that the parser only has information

about the current word wi, and the previous

words w1 to wi-1.
1
 By deterministic processing we

mean that the parser has to decide immediately

and uniquely whether and how to integrate the

newly observed word wi with the already con-

structed (partial) dependency structure without

the possibility of revising its decision at later

stages. The strategy is data-driven in the sense

that the parsing decisions are made on basis of a

statistical language model, which is trained on

the syntactic part of the CoNLL 2008 training

corpus. The whole parsing strategy is based on

Nivre (2007), but modifies it in several ways, see

sec. 2 for details.

Note that there are other approaches of incre-

mental deterministic dependency parsing that

assume that the complete input string of a sen-

tence is already given before parsing starts and

that this additional right contextual information

is also used as a feature source for language

modeling, e.g., Nivre (2007).

In light of the CoNLL 2008 shared task, this

actually means that, e.g., part-of-speech tagging

and lemmatization has already been performed

1
 Note that in a truly strict incremental processing

regime the input to the NLP system is actually a

stream of signals where even the sentence segmenta-

tion is not known in advance. Since in our current

system, the parser receives a sentence as given input,

we are less strict as we could be.

213

for the complete sentence before incremental

parsing starts, so that this richer source of infor-

mation is available for defining the feature space.

Since, important word-based information espe-

cially for a dependency analysis is already

known for the whole sentence before parsing

starts, and actually heavily used during parsing,

one might wonder, what the benefit of such a

weak incremental parsing approach is compared

to a non-incremental approach. Since, we

thought that such an incremental processing per-

spective is a bit too wide (especially when con-

sidering the rich input of the CoNLL 2008 shared

task), we wanted to explore a strict incremental

strategy.

Semantic role labeling is considered as a post-

process that is applied on the output of the syn-

tactic parser. Following Hacioglu (2004), we

consider the labeling of semantic roles as a clas-

sification problem of dependency relations into

one of several semantic roles. However, instead

of post-processing a dependency tree firstly into

a sequence of relations, as done by Hacioglu

(2004), we apply a cascade of statistical models

on the unmodified dependency tree in order to

identify predicates, and, for each found predicate,

to identify its arguments and their types. All the

language models used here are trained only with

labeled data from the CoNLL 2008 corpus; cf.

sec. 3 for more details.

Both, the syntactic parser and the semantic

classifier are language independent in the sense

that only information contained in the given

training corpus is used (e.g., PoS tags, depend-

ency labels, information about direction etc.), but

no language specific features, e.g., no PropBank

frames nor any other external language and

knowledge specific sources.

The complete system has been designed and

implemented from scratch after the announce-

ment of the CoNLL 2008 shared task. The main

goal of our participation was therefore actually

on being able to create some initial software im-

plementation and baseline experimentations as a

starting point for further research in the area of

data-driven incremental deterministic parsing.

In the rest of this brief report, we will describe

some more details of the syntactic and semantic

component in the next two sections, followed by

a description and discussion of the achieved re-

sults.

1 Syntactic Parsing

Our syntactic dependency parser is a variant of

the incremental non-projective dependency

parser described in Nivre (2007). Nivres’ parser

is incremental in the sense, that although the

complete list of words of a sentence is known,

construction of the dependency tree is performed

strictly from left to right. It uses Treebank-

induced classifiers to deterministically predict

the actions of the parser. The classifiers are

trained using support vector machines (SVM). A

further interesting property of the parser is its

capability to derive (a subset of) non-projective

structures directly. The core idea here is to ex-

ploit a function permissible(i, j, d) that returns

true if and only if the dependency links i → j and

j → i have a degree less than or equal to d given

the dependency graph built so far. A degree d=0

gives strictly projective parsing, while setting

d=∞ gives unrestricted non-projective parsing; cf.

Nivre (2007) for more details. The goal of this

function is to restrict the call of a function link(i,

j) which is a nondeterministic operation that adds

the arc i → j, the arc j → i, or does nothing at all.

Thus the smaller the value of d is the fewer links

can be drawn.

The function link(i, j) is directed by a trained

SVM classifier that takes as input the feature rep-

resentation of the dependency tree built so far

and the (complete) input x = w1, …, wn and out-

puts a decision for choosing exactly one of the

three possible operations.

We have modified Nivres algorithm as follows:

1. Instead of using classifiers learned by

SVM, we are using classifiers based on

Maximum Entropy Models (MEMs), cf.

(Manning and Schütze, 1999).
2

2. Instead of using the complete input x, we

only use the prefix from w1 up to the cur-

rent word wi. In this way, we are able to

model a stricter incremental processing

regime.

3. We are using a subset of feature set de-

scribed in Nivre (2007).
3
 In particular,

we had to discard all features from

Nivre’s set that refer to a word right to

the current word in order to retain our

2
 We are using the opennlp.maxent package available

via http://maxent.sourceforge.net/.
3
 We mean here all features that are explicitly de-

scribed in Nivre (2007). He also mentions the use of

some additional language specific features, but they

are not further described, and, hence not known to us.

214

strict incremental behavior. Additionally,

we added the following features:

a. Has j more children in the current

dependency graph compared with

the average number of children of

element of same POS.

b. Analogously for node i

c. Distance between i and j

Although some results – for example Wang et

al. (2006) – suggest that SVMs are actually more

suitable for deterministic parsing strategies than

MEMs, we used MEMs instead of SVM basi-

cally for practical reasons: 1) we already had

hands-on experience with MEMs, 2) training

time was much faster than SVM, and 3) the theo-

retical basis of MEMs should give us enough

flexibility for testing with different sets of fea-

tures.

Initial experiments applied on the same cor-

pora as used by Nivre (2007), soon showed that

our initial prototype is certainly not competitive

in its current form. For example, our best result

on the TIGER Treebank of German (Brants et al.,

2002) is 53.6% (labeled accuracy), where Nivre

reports 85.90%; cf. Volokh (2008) and sec. 4 for

more details

Anyway, we decided to use it as a basis for the

CoNLL 2008 shared task and to combine it with

a component for semantic role labeling at least to

get some indication of “what went wrong”.

2 Semantic Role Labeling

On the one hand, it is clear that we should expect

that our current version of the strict incremental

deterministic parsing regime still returns too er-

roneous dependency analysis. On the other hand,

we decided to apply semantic role labeling on the

parser’s output. Hence, the focus was set towards

a robust strictly data-driven approach.

Semantic role labeling is modeled as a se-

quence of classifiers that follow the structure of

predicates, i.e., firstly candidate predicates are

identified and then the arguments are looked up.

Predicate and argument identification both

proceed in two steps: first determine whether a

word can be a predicate or argument (or not), and

then, each found predicate (argument) is typed.

More precisely, semantic role labeling receives

the output of the syntactic parser and performs

the following steps in that order:

1. Classify each word as being a predicate

or not using a MEM-based classifier.

2. Assign to each predicate its reading. Cur-

rently, this is done on basis of the fre-

quency readings as determined from the

corpus (for unknown words, we simply

assign the reading .01 to the lemma if the

whole word was classified as a predicate).

3. For each predicate identified in a sen-

tence, classify each word as argument for

this predicate or not using a MEM-based

classifier.

4. For each argument identified for each

predicate, assign its semantic role using a

MEM-based classifier.

For step 1 the following features are used for

word wi: 1) word form, 2) word lemma, 3) POS,

4) dependency type, 5) number of dependent

elements in subtree of wi, 6) POS of parent, 7)

dependency type of parent, 8) children or parent

of word belong to prepositions, and 9) parent is

predicate.

For step 3 the same features are used as in step

1, but 5) (for arguments the number of children is

not important) and two additional features are

used: 10) left/right of predicate (arguments are

often to the right of its predicate), and 11) dis-

tance to predicate (arguments are not far from the

predicate). Finally, for step 4 the same features

are used as in step 1, but 5) and 9).

3 Experiments

As mentioned above, we started the develop-

ment of the system from scratch with a very

small team (actually only one programmer).

Therefore we wanted to focus on certain aspects,

totally abandoning our claims for achieving de-

cent results for the others. One of our major

goals was the construction of correct syntactic

trees and the recognition of the predicate-

argument structure - a subtask which mainly cor-

responds to the unlabeled accuracy. For that rea-

son we reduced the scale of our experiments

concerning such steps as dependency relation

labeling, determining the correct reading for the

predicates or the proper type of the arguments.

Unfortunately only the labeled accuracy was

evaluated at this year’s task, which was very

frustrating in the end.

3.1 Syntactic Dependencies

For testing the strict incremental dependency

parser we used the CoNLL 2008 shared task

training and development set. Our best syntactic

score that we could achieve on the development

data was merely unlabeled attachment score

(UAL) of 45.31%. However, as mentioned in sec.

2, we used a set of features proposed by Nivre,

215

which contains 5 features relying on the depend-

ency types. Since we couldn’t develop a good

working module for this part of the task due to

the lack of time, we couldn’t exploit these fea-

tures.

Note that for this experiment and all others re-

ported below, we used the default settings of the

opennlp MEM trainer. In particular this means

that 100 iterations were used in all training runs

and that for all experiments no tuning of parame-

ters and smoothing was done, basically because

we had no time left to exploit it in a sensible way.

These parts will surely be revised and improved

in the future.

3.2 Semantic Dependencies

As we describe in the sec. 3 our semantic module

consists of 4 steps. For the first step we achieve

the F-score of 76.9%. Whereas the verb predi-

cates are recognized very well (average score for

every verb category is almost 90%), we do badly

with the noun categories. Since our semantic

module depends on the input produced by the

syntactic parser, and is influenced by its errors,

we also did a test assuming a 100% correct parse.

In this scenario we could achieve the F-score of

79.4%.

We have completely neglected the second step

of the semantic task. We didn’t even try to do the

feature engineering and to train a model for this

assignment, basically because of time con-

straints. Neither did we try to include some in-

formation about the predicate-argument structure

in order to do better on this part of the task. The

simple assignment of the statistically most fre-

quent reading for each predicate reduced the ac-

curacy from 76.9% down to 69.3%. In case of

perfect syntactic parse the result went down from

79.4% to 71.5%.

Unfortunately the evaluation software doesn’t

provide the differentiation between the unlabeled

and labeled argument recognition, which corre-

sponds to our third and fourth steps respectively.

Whereas we put some effort on identifying the

arguments, we didn’t focus on their classifica-

tion. Therefore the overall best labeled attach-

ment score for our system is 29.38%, whereas

the unlabeled score is 50.74%. Assuming the

perfect parse the labeled score is 32.67% and the

unlabeled score is 66.73%. In our further work

we will try to reduce this great deviation between

both results.

3.3 Runtime performance

One of the main strong sides of the strict incre-

mental approach is its runtime performance.

Since we are restricted in our feature selection

to the already seen space to the left of the current

word, both the training and the application of our

strategy are done fast.

The training of our MEMs for the syntactic

part requires 62 minutes. The training of the

models for our semantic components needs 31

minutes. The test run of our system for the test

data from the Brown corpus (425 sentences with

7207 tokens) lasted 1 minute and 18 seconds.

The application on the WSJ test data (2399 sen-

tences with 57676 tokens) took 20 minutes and

42 seconds. The experiments have been per-

formed on a computer with one Intel Pentium

1,86 Ghz processor and 1GB memory.

4 Results and Discussion

The results of running our current version on the

CoNLL 2008 shared task test data were actually

a knockdown blow. We participated in the closed

challenge, and obtained for the complete problem

a labeled macro F1 for WSJ+Brown of 19.93

(20.13 on WSJ only, 18.14 on Brown). For the

syntactic dependencies we got similar bad results

(WSJ+Brown = 16.25, WSJ = 16.22, Brown =

16.47), as well as for the semantic dependencies

(WSJ+Brown = 22.36, WSJ = 22.86, Brown =

17.94).

We see at least the following two reasons for

this disastrous result: On the one hand we fo-

cused on the construction of correct syntactic

trees and the recognition of the predicate-

argument structure which were only parts of the

task. On the other hand we stuck to our strict in-

cremental approach, which greatly restricted the

scope of development of our system.

Whereas the labeling part, which was so far

considerably neglected, will surely be improved

in the future, the strict incremental strategy in its

current form will probably have to be revised.

4.1 Post-evaluation experiments

We have already started beginning the im-

provement of our parsing system, and we briefly

discuss our current findings. On the technical

level we already found a software bug that at

least partially might explain the unexpected high

difference in performance between the results

obtained for the development set and the test set.

Correcting this error now yields an UAL of

53.45% and an LAL of 26.95% on the syntactic

216

part of the Brown test data which is a LAL-

improvement of about 10%.

On the methodological level we are studying

the effects of relaxing some of the assumptions

of our strict incremental parsing strategy. In or-

der to do so, we developed a separate model for

predicting the unlabeled edges and a separate

model for labeling them. In both cases we used

the same features as described in sec. 2, but

added features that used a right-context in order

to take into account the PoS-tag of the N-next

words viz. N=5 for the syntactic parser and N=3

for the labeling case. Using both models during

parsing interleaved, we obtained UAL=65.17%

and LAL=28.47% on the development set.

We assumed that the low LAL might have

been caused by a too narrow syntactic context. In

order to test this assumption, we decoupled the

prediction of the unlabeled edges and their label-

ing, such that the determination of the edge la-

bels is performed after the complete unlabeled

dependency tree is computed. Labeling of the

dependency edges is then simply performed by

running through the constructed parse trees as-

signing each edge the most probable dependency

type. This two-phase strategy achieved an LAL

of 60.44% on the development set, which means

an improvement of about 43%. Applying the

two-phase parser on the WSJ test data resulted in

UAL=65.22% and LAL=62.83%; applying it on

the Brown test data resulted in UAL=66.50% and

LAL=61.11%, respectively.

Of course, these results are far from being op-

timal. Thus, beside testing and improving our

parser on the technical level, we will run further

experiments for different context sizes, exploit-

ing different settings of parameters of the classi-

fier and feature values, and eventually testing

other ML approaches. The focus here will be on

the development of unlabeled edge models, be-

cause it seems that an improvement here is sub-

stantial for an overall improvement. For exam-

ple, applying the decoupled edge labeling model

directly on the given unlabeled dependency trees

of the development set (i.e. we assume an UAL

of 100%) gave as an LAL of 92.88%.

Beside this, we will also re-investigate inter-

leaved strategies of unlabeled edge and edge la-

beling prediction as a basis for (mildly-) strict

incremental parsing. Here, it might be useful to

relax the strict linear control regime by exploring

beam search strategies, e.g. along the lines of

Collins and Roark (2004).

5 Conclusion

We have presented a puristic approach for

joint dependency parsing and semantic role la-

beling. Since, the development of our approach

has been started from scratch, we didn’t manage

to deal with all problems. Our focus was on set-

ting up a workable backbone, and then on trying

to do as much feature engineering as possible.

Our bad results on the CoNLL 2008 suggest that

our current strategy was a bit too optimistic and

risky, and that the strict incremental deterministic

parsing regime seemed to have failed in its cur-

rent form. We are now in the process of analysis

of “what went wrong”, and have already indi-

cated some issues in the paper.

Acknowledgement

The work presented here was partially supported

by a research grant from the German Federal

Ministry of Education, Science, Research and

Technology (BMBF) to the DFKI project HyLaP,

(FKZ: 01 IW F02). We thank the developers of

the Opennlp.maxent software package.

References

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolf-

gang Lezius, and George Smith. 2002. The TIGER

Treebank in Proceedings of the Workshop on

Treebanks and Linguistic Theories Sozopol.

Collins, Michael, and Brian Roark. (2004). Incre-

mental Parsing with the Perceptron Algorithm.

ACL 2004.

Hacioglu, Kadri. 2004. Semantic Role Labeling Using

Dependency Trees. Coling 2004.

Nivre, Joakim. 2007. Incremental Non-Projective De-

pendency Parsing. NAACL-HLT 200).

Manning, Christopher, and Hinrich Schutze. 1999.

Foundations of statistical natural language process-

ing. Cambridge, Mass.: MIT Press.

Surdeanu, Mihai, Richard Johansson, Adam Meyers,

Lluís Màrquez, and Joakim Nivre. 2008. The

CoNLL-2008 Shared Task on Joint Parsing of Syn-

tactic and Semantic Dependencies. In Proceedings

of the 12th Conference on Computational Natural

Language Learning (CoNLL-2008).

Volokh, Alexander. 2008. Datenbasiertes De-

pendenzparsing. Bachelor Thesis, Saarland Uni-

versity.

Wang, Mengqui, Kenji Sagae, and Teruko Mitamura.

2006. A Fast, Accurate Deterministic Parser for

Chinese. ACL 2006.

217

