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Abstract 

We present a puristic approach for com-

bining dependency parsing and semantic 

role labeling. In a first step, a data-driven 

strict incremental deterministic parser is 

used to compute a single syntactic de-

pendency structure using a MEM trained 

on the syntactic part of the CoNLL 2008 

training corpus. In a second step, a cas-

cade of MEMs is used to identify predi-

cates, and, for each found predicate, to 

identify its arguments and their types. All 

the MEMs used here are trained only 

with labeled data from the CoNLL 2008 

corpus. We participated in the closed 

challenge, and obtained a labeled macro 

F1 for WSJ+Brown of 19.93 (20.13 on 

WSJ only, 18.14 on Brown). For the syn-

tactic dependencies we got similar bad 

results (WSJ+Brown=16.25, WSJ= 16.22, 

Brown=16.47), as well as for the seman-

tic dependencies (WSJ+Brown=22.36, 

WSJ=22.86, Brown=17.94). The current 

results of the experiments suggest that 

our risky puristic approach of following a 

strict incremental parsing approach to-

gether with the closed data-driven per-

spective of a joined syntactic and seman-

tic labeling was actually too optimistic 

and eventually too puristic. 

The CoNLL 2008 shared task on joint parsing of 

syntactic and semantic dependencies (cf. Sur-

deanu, 2008) offered to us an opportunity to ini-

tiate, implement and test new ideas on large-

scale data-driven incremental dependency pars-

ing. The topic and papers of the ACL-2004 

workshop “Incremental Parsing: Bringing Engi-
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neering and Cognition Together” (accessible at 

http://aclweb.org/anthology-new/W/W04/#0300) 

present a good recent overview into the field of 

incremental processing from both an engineering 

and cognitive point of view. 

Our particular interest is the exploration and 

development of strict incremental deterministic 

strategies as a means for fast data-driven depend-

ency parsing of large-scale online natural lan-

guage processing. By strict incremental process-

ing we mean, that the parser receives a stream of 

words w1 to wn word by word in left to right or-

der, and that the parser only has information 

about the current word wi, and the previous 

words w1 to wi-1.
1
 By deterministic processing we 

mean that the parser has to decide immediately 

and uniquely whether and how to integrate the 

newly observed word wi with the already con-

structed (partial) dependency structure without 

the possibility of revising its decision at later 

stages. The strategy is data-driven in the sense 

that the parsing decisions are made on basis of a 

statistical language model, which is trained on 

the syntactic part of the CoNLL 2008 training 

corpus. The whole parsing strategy is based on 

Nivre (2007), but modifies it in several ways, see 

sec. 2 for details. 

Note that there are other approaches of incre-

mental deterministic dependency parsing that 

assume that the complete input string of a sen-

tence is already given before parsing starts and 

that this additional right contextual information 

is also used as a feature source for language 

modeling, e.g., Nivre (2007). 

In light of the CoNLL 2008 shared task, this 

actually means that, e.g., part-of-speech tagging 

and lemmatization has already been performed 

                                                 
1
 Note that in a truly strict incremental processing 

regime the input to the NLP system is actually a 

stream of signals where even the sentence segmenta-

tion is not known in advance. Since in our current 

system, the parser receives a sentence as given input, 

we are less strict as we could be. 
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for the complete sentence before incremental 

parsing starts, so that this richer source of infor-

mation is available for defining the feature space. 

Since, important word-based information espe-

cially for a dependency analysis is already 

known for the whole sentence before parsing 

starts, and actually heavily used during parsing, 

one might wonder, what the benefit of such a 

weak incremental parsing approach is compared 

to a non-incremental approach. Since, we 

thought that such an incremental processing per-

spective is a bit too wide (especially when con-

sidering the rich input of the CoNLL 2008 shared 

task), we wanted to explore a strict incremental 

strategy. 

Semantic role labeling is considered as a post-

process that is applied on the output of the syn-

tactic parser. Following Hacioglu (2004), we 

consider the labeling of semantic roles as a clas-

sification problem of dependency relations into 

one of several semantic roles. However, instead 

of post-processing a dependency tree firstly into 

a sequence of relations, as done by Hacioglu 

(2004), we apply a cascade of statistical models 

on the unmodified dependency tree in order to 

identify predicates, and, for each found predicate, 

to identify its arguments and their types. All the 

language models used here are trained only with 

labeled data from the CoNLL 2008 corpus; cf. 

sec. 3 for more details. 

Both, the syntactic parser and the semantic 

classifier are language independent in the sense 

that only information contained in the given 

training corpus is used (e.g., PoS tags, depend-

ency labels, information about direction etc.), but 

no language specific features, e.g., no PropBank 

frames nor any other external language and 

knowledge specific sources. 

The complete system has been designed and 

implemented from scratch after the announce-

ment of the CoNLL 2008 shared task. The main 

goal of our participation was therefore actually 

on being able to create some initial software im-

plementation and baseline experimentations as a 

starting point for further research in the area of 

data-driven incremental deterministic parsing. 

In the rest of this brief report, we will describe 

some more details of the syntactic and semantic 

component in the next two sections, followed by 

a description and discussion of the achieved re-

sults. 

1 Syntactic Parsing 

Our syntactic dependency parser is a variant of 

the incremental non-projective dependency 

parser described in Nivre (2007). Nivres’ parser 

is incremental in the sense, that although the 

complete list of words of a sentence is known, 

construction of the dependency tree is performed 

strictly from left to right. It uses Treebank-

induced classifiers to deterministically predict 

the actions of the parser. The classifiers are 

trained using support vector machines (SVM). A 

further interesting property of the parser is its 

capability to derive (a subset of) non-projective 

structures directly. The core idea here is to ex-

ploit a function permissible(i, j, d) that returns 

true if and only if the dependency links i → j and 

j → i have a degree less than or equal to d given 

the dependency graph built so far. A degree d=0 

gives strictly projective parsing, while setting 

d=∞ gives unrestricted non-projective parsing; cf. 

Nivre (2007) for more details. The goal of this 

function is to restrict the call of a function link(i, 

j) which is a nondeterministic operation that adds 

the arc i → j, the arc j → i, or does nothing at all. 

Thus the smaller the value of d is the fewer links 

can be drawn. 

The function link(i, j) is directed by a trained 

SVM classifier that takes as input the feature rep-

resentation of the dependency tree built so far 

and the (complete) input x = w1, …, wn and out-

puts a decision for choosing exactly one of the 

three possible operations.  

We have modified Nivres algorithm as follows: 

1. Instead of using classifiers learned by 

SVM, we are using classifiers based on 

Maximum Entropy Models (MEMs), cf. 

(Manning and Schütze, 1999).
2
 

2. Instead of using the complete input x, we 

only use the prefix from w1 up to the cur-

rent word wi. In this way, we are able to 

model a stricter incremental processing 

regime. 

3. We are using a subset of feature set de-

scribed in Nivre (2007).
3
 In particular, 

we had to discard all features from 

Nivre’s set that refer to a word right to 

the current word in order to retain our 

                                                 
2
 We are using the opennlp.maxent package available 

via http://maxent.sourceforge.net/. 
3
 We mean here all features that are explicitly de-

scribed in Nivre (2007). He also mentions the use of 

some additional language specific features, but they 

are not further described, and, hence not known to us. 
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strict incremental behavior. Additionally, 

we added the following features: 

a. Has j more children in the current 

dependency graph compared with 

the average number of children of 

element of same POS. 

b. Analogously for node i 

c. Distance between i and j 

Although some results – for example Wang et 

al. (2006) – suggest that SVMs are actually more 

suitable for deterministic parsing strategies than 

MEMs, we used MEMs instead of SVM basi-

cally for practical reasons: 1) we already had 

hands-on experience with MEMs, 2) training 

time was much faster than SVM, and 3) the theo-

retical basis of MEMs should give us enough 

flexibility for testing with different sets of fea-

tures. 

Initial experiments applied on the same cor-

pora as used by Nivre (2007), soon showed that 

our initial prototype is certainly not competitive 

in its current form. For example, our best result 

on the TIGER Treebank of German (Brants et al., 

2002) is 53.6% (labeled accuracy), where Nivre 

reports 85.90%; cf. Volokh (2008) and sec. 4 for 

more details 

Anyway, we decided to use it as a basis for the 

CoNLL 2008 shared task and to combine it with 

a component for semantic role labeling at least to 

get some indication of “what went wrong”. 

2 Semantic Role Labeling 

On the one hand, it is clear that we should expect 

that our current version of the strict incremental 

deterministic parsing regime still returns too er-

roneous dependency analysis. On the other hand, 

we decided to apply semantic role labeling on the 

parser’s output. Hence, the focus was set towards 

a robust strictly data-driven approach. 

Semantic role labeling is modeled as a se-

quence of classifiers that follow the structure of 

predicates, i.e., firstly candidate predicates are 

identified and then the arguments are looked up. 

Predicate and argument identification both 

proceed in two steps: first determine whether a 

word can be a predicate or argument (or not), and 

then, each found predicate (argument) is typed. 

More precisely, semantic role labeling receives 

the output of the syntactic parser and performs 

the following steps in that order: 

1. Classify each word as being a predicate 

or not using a MEM-based classifier. 

2. Assign to each predicate its reading. Cur-

rently, this is done on basis of the fre-

quency readings as determined from the 

corpus (for unknown words, we simply 

assign the reading .01 to the lemma if the 

whole word was classified as a predicate). 

3. For each predicate identified in a sen-

tence, classify each word as argument for 

this predicate or not using a MEM-based 

classifier. 

4. For each argument identified for each 

predicate, assign its semantic role using a 

MEM-based classifier. 

For step 1 the following features are used for 

word wi: 1) word form, 2) word lemma, 3) POS, 

4) dependency type, 5) number of dependent 

elements in subtree of wi, 6) POS of parent, 7) 

dependency type of parent, 8) children or parent 

of word belong to prepositions, and 9) parent is 

predicate. 

For step 3 the same features are used as in step 

1, but 5) (for arguments the number of children is 

not important) and two additional features are 

used: 10) left/right of predicate (arguments are 

often to the right of its predicate), and 11) dis-

tance to predicate (arguments are not far from the 

predicate). Finally, for step 4 the same features 

are used as in step 1, but 5) and 9). 

3 Experiments 

As mentioned above, we started the develop-

ment of the system from scratch with a very 

small team (actually only one programmer). 

Therefore we wanted to focus on certain aspects, 

totally abandoning our claims for achieving de-

cent results for the others. One of our major 

goals was the construction of correct syntactic 

trees and the recognition of the predicate-

argument structure - a subtask which mainly cor-

responds to the unlabeled accuracy. For that rea-

son we reduced the scale of our experiments 

concerning such steps as dependency relation 

labeling, determining the correct reading for the 

predicates or the proper type of the arguments. 

Unfortunately only the labeled accuracy was 

evaluated at this year’s task, which was very 

frustrating in the end. 

3.1 Syntactic Dependencies 

For testing the strict incremental dependency 

parser we used the CoNLL 2008 shared task 

training and development set. Our best syntactic 

score that we could achieve on the development 

data was merely unlabeled attachment score 

(UAL) of 45.31%. However, as mentioned in sec. 

2, we used a set of features proposed by Nivre, 
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which contains 5 features relying on the depend-

ency types. Since we couldn’t develop a good 

working module for this part of the task due to 

the lack of time, we couldn’t exploit these fea-

tures.  

Note that for this experiment and all others re-

ported below, we used the default settings of the 

opennlp MEM trainer. In particular this means 

that 100 iterations were used in all training runs 

and that for all experiments no tuning of parame-

ters and smoothing was done, basically because 

we had no time left to exploit it in a sensible way. 

These parts will surely be revised and improved 

in the future. 

3.2 Semantic Dependencies 

As we describe in the sec. 3 our semantic module 

consists of 4 steps. For the first step we achieve 

the F-score of 76.9%. Whereas the verb predi-

cates are recognized very well (average score for 

every verb category is almost 90%), we do badly 

with the noun categories. Since our semantic 

module depends on the input produced by the 

syntactic parser, and is influenced by its errors, 

we also did a test assuming a 100% correct parse. 

In this scenario we could achieve the F-score of 

79.4%. 

We have completely neglected the second step 

of the semantic task. We didn’t even try to do the 

feature engineering and to train a model for this 

assignment, basically because of time con-

straints. Neither did we try to include some in-

formation about the predicate-argument structure 

in order to do better on this part of the task. The 

simple assignment of the statistically most fre-

quent reading for each predicate reduced the ac-

curacy from 76.9% down to 69.3%. In case of 

perfect syntactic parse the result went down from 

79.4% to 71.5%. 

Unfortunately the evaluation software doesn’t 

provide the differentiation between the unlabeled 

and labeled argument recognition, which corre-

sponds to our third and fourth steps respectively. 

Whereas we put some effort on identifying the 

arguments, we didn’t focus on their classifica-

tion. Therefore the overall best labeled attach-

ment score for our system is 29.38%, whereas 

the unlabeled score is 50.74%. Assuming the 

perfect parse the labeled score is 32.67% and the 

unlabeled score is 66.73%. In our further work 

we will try to reduce this great deviation between 

both results. 

3.3 Runtime performance 

One of the main strong sides of the strict incre-

mental approach is its runtime performance. 

Since we are restricted in our feature selection 

to the already seen space to the left of the current 

word, both the training and the application of our 

strategy are done fast.  

The training of our MEMs for the syntactic 

part requires 62 minutes. The training of the 

models for our semantic components needs 31 

minutes. The test run of our system for the test 

data from the Brown corpus (425 sentences with 

7207 tokens) lasted 1 minute and 18 seconds. 

The application on the WSJ test data (2399 sen-

tences with 57676 tokens) took 20 minutes and 

42 seconds. The experiments have been per-

formed on a computer with one Intel Pentium 

1,86 Ghz processor and 1GB memory. 

4 Results and Discussion 

The results of running our current version on the 

CoNLL 2008 shared task test data were actually 

a knockdown blow. We participated in the closed 

challenge, and obtained for the complete problem 

a labeled macro F1 for WSJ+Brown of 19.93 

(20.13 on WSJ only, 18.14 on Brown). For the 

syntactic dependencies we got similar bad results 

(WSJ+Brown = 16.25, WSJ = 16.22, Brown = 

16.47), as well as for the semantic dependencies 

(WSJ+Brown = 22.36, WSJ = 22.86, Brown = 

17.94).  

We see at least the following two reasons for 

this disastrous result: On the one hand we fo-

cused on the construction of correct syntactic 

trees and the recognition of the predicate-

argument structure which were only parts of the 

task. On the other hand we stuck to our strict in-

cremental approach, which greatly restricted the 

scope of development of our system. 

Whereas the labeling part, which was so far 

considerably neglected, will surely be improved 

in the future, the strict incremental strategy in its 

current form will probably have to be revised. 

4.1 Post-evaluation experiments 

We have already started beginning the im-

provement of our parsing system, and we briefly 

discuss our current findings. On the technical 

level we already found a software bug that at 

least partially might explain the unexpected high 

difference in performance between the results 

obtained for the development set and the test set. 

Correcting this error now yields an UAL of 

53.45% and an LAL of 26.95% on the syntactic 
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part of the Brown test data which is a LAL-

improvement of about 10%. 

On the methodological level we are studying 

the effects of relaxing some of the assumptions 

of our strict incremental parsing strategy. In or-

der to do so, we developed a separate model for 

predicting the unlabeled edges and a separate 

model for labeling them. In both cases we used 

the same features as described in sec. 2, but 

added features that used a right-context in order 

to take into account the PoS-tag of the N-next 

words viz. N=5 for the syntactic parser and N=3 

for the labeling case. Using both models during 

parsing interleaved, we obtained UAL=65.17% 

and LAL=28.47% on the development set.  

We assumed that the low LAL might have 

been caused by a too narrow syntactic context. In 

order to test this assumption, we decoupled the 

prediction of the unlabeled edges and their label-

ing, such that the determination of the edge la-

bels is performed after the complete unlabeled 

dependency tree is computed. Labeling of the 

dependency edges is then simply performed by 

running through the constructed parse trees as-

signing each edge the most probable dependency 

type. This two-phase strategy achieved an LAL 

of 60.44% on the development set, which means 

an improvement of about 43%. Applying the 

two-phase parser on the WSJ test data resulted in 

UAL=65.22% and LAL=62.83%; applying it on 

the Brown test data resulted in UAL=66.50% and 

LAL=61.11%, respectively. 

Of course, these results are far from being op-

timal. Thus, beside testing and improving our 

parser on the technical level, we will run further 

experiments for different context sizes, exploit-

ing different settings of parameters of the classi-

fier and feature values, and eventually testing 

other ML approaches. The focus here will be on 

the development of unlabeled edge models, be-

cause it seems that an improvement here is sub-

stantial for an overall improvement. For exam-

ple, applying the decoupled edge labeling model 

directly on the given unlabeled dependency trees 

of the development set (i.e. we assume an UAL 

of 100%) gave as an LAL of 92.88%. 

Beside this, we will also re-investigate inter-

leaved strategies of unlabeled edge and edge la-

beling prediction as a basis for (mildly-) strict 

incremental parsing. Here, it might be useful to 

relax the strict linear control regime by exploring 

beam search strategies, e.g. along the lines of 

Collins and Roark (2004). 

5 Conclusion 

We have presented a puristic approach for 

joint dependency parsing and semantic role la-

beling. Since, the development of our approach 

has been started from scratch, we didn’t manage 

to deal with all problems. Our focus was on set-

ting up a workable backbone, and then on trying 

to do as much feature engineering as possible. 

Our bad results on the CoNLL 2008 suggest that 

our current strategy was a bit too optimistic and 

risky, and that the strict incremental deterministic 

parsing regime seemed to have failed in its cur-

rent form. We are now in the process of analysis 

of “what went wrong”, and have already indi-

cated some issues in the paper. 
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