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Abstract

The Conference on Computational Natu-
ral Language Learning is accompanied ev-
ery year by a shared task whose purpose
is to promote natural language processing
applications and evaluate them in a stan-
dard setting. In 2008 the shared task was
dedicated to the joint parsing of syntactic
and semantic dependencies. This shared
task not only unifies the shared tasks of
the previous four years under a unique
dependency-based formalism, but also ex-
tends them significantly: this year’s syn-
tactic dependencies include more informa-
tion such as named-entity boundaries; the
semantic dependencies model roles of both
verbal and nominal predicates. In this pa-
per, we define the shared task and describe
how the data sets were created. Further-
more, we report and analyze the results and
describe the approaches of the participat-
ing systems.

1 Introduction

In 2004 and 2005 the shared tasks of the Confer-
ence on Computational Natural Language Learn-
ing (CoNLL) were dedicated to semantic role la-
beling (SRL), in a monolingual setting (English).
In 2006 and 2007 the shared tasks were devoted to
the parsing of syntactic dependencies, using cor-
pora from up to 13 languages. The CoNLL-2008
shared task1 proposes a unified dependency-based

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1http://www.yr-bcn.es/conll2008

formalism, which models both syntactic depen-
dencies and semantic roles. Using this formalism,
this shared task merges both the task of syntactic
dependency parsing and the task of identifying se-
mantic arguments and labeling them with semantic
roles. Conceptually, the 2008 shared task can be
divided into three subtasks: (i) parsing of syntactic
dependencies, (ii) identification and disambigua-
tion of semantic predicates, and (iii) identification
of arguments and assignment of semantic roles for
each predicate. Several objectives were addressed
in this shared task:

• SRL is performed and evaluated using a
dependency-based representation for both
syntactic and semantic dependencies. While
SRL on top of a dependency treebank has
been addressed before (Hacioglu, 2004),
our approach has several novelties: (i) our
constituent-to-dependency conversion strat-
egy transforms all annotated semantic argu-
ments in PropBank and NomBank not just a
subset; (ii) we address propositions centered
around both verbal (PropBank) and nominal
(NomBank) predicates.

• Based on the observation that a richer set
of syntactic dependencies improves seman-
tic processing (Johansson and Nugues, 2007),
the syntactic dependencies modeled are more
complex than the ones used in the previous
CoNLL shared tasks. For example, we now
include apposition links, dependencies de-
rived from named entity (NE) structures, and
better modeling of long-distance grammatical
relations.

• A practical framework is provided for the
joint learning of syntactic and semantic de-
pendencies.
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Given the complexity of this shared task, we
limited the evaluation to a monolingual, English-
only setting. The evaluation is separated into two
different challenges: a closed challenge, where
systems have to be trained strictly with informa-
tion contained in the given training corpus, and an
open challenge, where systems can be developed
making use of any kind of external tools and re-
sources. The participants could submit results in
either one or both challenges.

This paper is organized as follows. Section 2
defines the task, including the format of the data,
the evaluation metrics, and the two challenges.
Section 3 introduces the corpora used and our
constituent-to-dependency conversion procedure.
Section 4 summarizes the results of the submit-
ted systems. Section 5 discusses the approaches
implemented by participants. Section 6 analyzes
the results using additional non-official evaluation
measures. Section 7 concludes the paper.

2 Task Definition

In this section we provide the definition of the
shared task, starting with the format of the shared
task data, followed by a description of the eval-
uation metrics used and a discussion of the two
shared task challenges, i.e., closed and open.

2.1 Data Format
The data format used in this shared task was highly
influenced by the formats used in the 2004–2007
shared tasks. The data follows these general rules:

• The files contain sentences separated by a
blank line.

• A sentence consists of one or more tokens and
the information for each token is represented
on a separate line.

• A token consists of at least 11 fields. The
fields are separated by one or more whites-
pace characters (spaces or tabs). Whitespace
characters are not allowed within fields.

Table 1 describes the fields stored for each token
in the closed-track data sets. Columns 1–3 and
5–8 are available at both training and test time.
Column 4, which contains gold-standard part-of-
speech (POS) tags, is not given at test time. The
same holds for columns 9 and above, which con-
tain the syntactic and semantic dependency struc-
tures that the systems should predict.

The PPOS and PPOSS fields were automati-
cally predicted using the SVMTool POS tagger
(Giménez, 2004). To predict the tags in the train-
ing set, a 5-fold cross-validation procedure was
used. The LEMMA and SPLIT LEMMA fields
were predicted using the built-in lemmatizer in
WordNet (Fellbaum, 1998) based on the most fre-
quent sense for the form and part-of-speech tag.

Since NomBank uses a sub-word anal-
ysis in some hyphenated words (such as
[finger]ARG-[pointing]PRED), the data for-
mat represents the parts in hyphenated words as
separate tokens (columns 6–8). However, the
format also represents how the parts originally fit
together before splitting (columns 2–5). Padding
characters (“ ”) are used in columns 2–5 to
ensure the same number of rows for all columns
corresponding to one sentence. All syntactic and
semantic dependencies are annotated relative to
the split word forms (columns 6–8).

Table 2 shows the columns available to the sys-
tems participating in the open challenge: named-
entity labels as in the CoNLL-2003 Shared Task
(Tjong Kim San and De Meulder, 2003) and
from the BBN Wall Street Journal Entity Corpus,2

WordNet supersense tags, and the output of an off-
the-shelf dependency parser (Nivre et al., 2007b).
Columns 1–3 were predicted using the tagger of
Ciaramita and Altun (2006). Because the BBN
corpus shares lexical content with the Penn Tree-
bank, we generated the BBN tags using a 2-fold
cross-validation procedure.

2.2 Evaluation Measures
We separate the evaluation measures into two
groups: (i) official measures, which were used for
the ranking of participating systems, and (ii) addi-
tional unofficial measures, which provide further
insight into the performance of the participating
systems.

2.2.1 Official Evaluation Measures
The official evaluation measures consist of three

different scores: (i) syntactic dependencies are
scored using the labeled attachment score (LAS),
(ii) semantic dependencies are evaluated using a
labeled F1 score, and (iii) the overall task is scored
with a macro average of the two previous scores.
We describe all these scoring measures next.

The LAS score is defined similarly as in the pre-
vious two shared tasks, as the percentage of to-

2LDC catalog number LDC2005T33.
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Number Name Description
1 ID Token counter, starting at 1 for each new sentence.
2 FORM Unsplit word form or punctuation symbol.
3 LEMMA Predicted lemma of FORM.
4 GPOS Gold part-of-speech tag from the Treebank (empty at test time).
5 PPOS Predicted POS tag.
6 SPLIT FORM Tokens split at hyphens and slashes.
7 SPLIT LEMMA Predicted lemma of SPLIT FORM.
8 PPOSS Predicted POS tags of the split forms.
9 HEAD Syntactic head of the current token, which is either a value of ID or zero (0).
10 DEPREL Syntactic dependency relation to the HEAD.
11 PRED Rolesets of the semantic predicates in this sentence.
12. . . ARG Columns with argument labels for each semantic predicate following textual order.

Table 1: Column format in the closed-track data. The columns in the lower part of the table are unseen
at test time and are to be predicted by systems.

Number Name Description
1 CONLL2003 Named entity labels using the tag set from the CoNLL-2003 shared task.
2 BBN NE labels using the tag set from the BBN Wall Street Journal Entity Corpus.
3 WNSS WordNet super senses.
4 MALT HEAD Head of the syntactic dependencies generated by MaltParser.
5 MALT DEPREL Label of syntactic dependencies generated by MaltParser.

Table 2: Column format in the open-track data.

kens for which a system has predicted the correct
HEAD and DEPREL columns (see Table 1). Same
as before, our scorer also computes the unlabeled
attachment score (UAS), i.e., the percentage of to-
kens with correct HEAD, and label accuracy, i.e.,
the percentage of tokens with correct DEPREL.

The semantic propositions are evaluated by con-
verting them to semantic dependencies, i.e., we
create a semantic dependency from every predicate
to all its individual arguments. These dependen-
cies are labeled with the labels of the correspond-
ing arguments. Additionally, we create a seman-
tic dependency from each predicate to a virtual
ROOT node. The latter dependencies are labeled
with the predicate senses. This approach guaran-
tees that the semantic dependency structure con-
ceptually forms a single-rooted, connected (but not
necessarily acyclic) graph. More importantly, this
scoring strategy implies that if a system assigns
the incorrect predicate sense, it still receives some
points for the arguments correctly assigned. For
example, for the correct proposition:

verb.01: ARG0, ARG1, ARGM-TMP

the system that generates the following output for
the same argument tokens:

verb.02: ARG0, ARG1, ARGM-LOC

receives a labeled precision score of 2/4 because
two out of four semantic dependencies are incor-
rect: the dependency to ROOT is labeled 02 in-

stead of 01 and the dependency to the ARGM-TMP
is incorrectly labeled ARGM-LOC. Using this strat-
egy we compute precision, recall, and F1 scores
for both labeled and unlabeled semantic dependen-
cies.

Finally, we combine the syntactic and semantic
measures into one global measure using macro av-
eraging. We compute macro precision and recall
scores by averaging the labeled precision and re-
call for semantic dependencies with the LAS for
syntactic dependencies:3

LMP = Wsem ∗ LPsem + (1−Wsem) ∗ LAS (1)

LMR = Wsem ∗ LRsem + (1−Wsem) ∗ LAS (2)

where LMP is the labeled macro precision and
LPsem is the labeled precision for semantic depen-
dencies. Similarly, LMR is the labeled macro re-
call and LRsem is the labeled recall for semantic
dependencies. Wsem is the weight assigned to the
semantic task.4 The macro labeled F1 score, which
was used for the ranking of the participating sys-
tems, is computed as the harmonic mean of LMP
and LMR.

3We can do this because the LAS for syntactic dependen-
cies is a special case of precision and recall, where the pre-
dicted number of dependencies is equal to the number of gold
dependencies.

4We assign equal weight to the two tasks, i.e., Wsem =
0.5.
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2.2.2 Additional Evaluation Measures
We used several additional evaluation measures

to further analyze the performance of the partici-
pating systems.

The first additional measure used is Exact
Match, which reports the percentage of sentences
that are completely correct, i.e., all the generated
syntactic dependencies are correct and all the se-
mantic propositions are present and correct. While
this score is significantly lower than any of the of-
ficial scores, it will award systems that performed
joint learning or optimization for all subtasks.

In the same spirit but focusing on the seman-
tic subtasks, we report the Perfect Proposition F1

score, where we score entire semantic frames or
propositions. This measure is similar to the PProps
accuracy score from the 2005 shared task (Carreras
and Màrquez, 2005), with the caveat that this year
this score is implemented as an F1 measure, be-
cause predicates are not provided in the test data.
Hence, propositions may be over or under gener-
ated at prediction time.

Lastly, we analyze systems based on the ratio
between labeled F1 score for semantic dependen-
cies and the LAS for syntactic dependencies. In
other words, this measure normalizes the seman-
tic scores relative to the performance of the pars-
ing component. This measure estimates the true
overall performance of the semantic subtasks, in-
dependent of the syntactic parser.5 For example,
this score addresses the situations where the se-
mantic labeled F1 score of one system is artificially
low because the corresponding syntactic compo-
nent does not perform well.

2.3 Closed and Open Challenges

Similarly to the CoNLL-2005 shared task, this
shared task evaluation is separated into two chal-
lenges:

Closed Challenge - systems have to be built
strictly with information contained in the given
training corpus, and tuned with the development
section. In addition, the PropBank and NomBank
lexical frames can be used. These restrictions
mean that constituent-based parsers or SRL sys-
tems can not be used in this challenge because the
constituent-based annotations are not provided in
our training set. The aim of this challenge is to

5A correct evaluation of the stand-alone SRL systems
would require the usage of gold syntactic dependencies, but
these were not provided for the testing corpora.

compare the performance of the participating sys-
tems in a fair environment.

Open Challenge - systems can be developed mak-
ing use of any kind of external tools and resources.
The only condition is that such tools or resources
must not have been developed with the annota-
tions of the test set, both for the input and out-
put annotations of the data. In this challenge,
we are interested in learning methods which make
use of any tools or resources that might improve
the performance. For example, we encourage the
use of semantic information, as provided by NE
recognition or word-sense disambiguation (WSD)
systems (such state-of-the-art annotations are pro-
vided by the organizers, see Table 2). Also, in
this challenge participants are encouraged to use
constituent-based parsers and SRL systems, as
long as these systems were trained only with the
sections of Penn Treebank used in the shared task
training corpus. To encourage the participation of
the groups that are only interested in SRL, the or-
ganizers provide also the output of a state-of-the-
art dependency parser as input in this challenge.
The comparison of different systems in this setting
may not be fair, and thus ranking of systems is not
necessarily important.

3 Data

The corpora used in the shared task evaluation
were generated through a process that merges
several input corpora and converts them from
the constituent-based formalism to dependencies.
This section starts with an introduction of the in-
put corpora used, followed by a description of
the constituent-to-dependency conversion process.
The section concludes with an overview of the
shared task corpora.

3.1 Input Corpora

Input to our merging procedures includes the Penn
Treebank, BBN’s named entity corpus, PropBank
and NomBank. In this section, we will pro-
vide brief descriptions of these annotations in
terms of both form and content. All annotations
are currently being distributed by the Linguistic
Data Consortium, with the exception of NomBank,
which is freely downloadable.6

6http://nlp.cs.nyu.edu/meyers/NomBank.
html
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3.1.1 Penn Treebank 3

The Penn Treebank 3 corpus (Marcus et al.,
1993) consists of hand-coded parses of the Wall
Street Journal (test, development and training) and
a small subset of the Brown corpus (W. N. Fran-
cis and H. Kuĉera, 1964) (test only). These hand
parses are notated in-line and sometimes involve
changing the strings of the input data. For ex-
ample, in file wsj 0309, the token fearlast in the
text corresponds to the two tokens fear and last
in the annotated data. In a similar way, cannot
is regularly split to can and not. It is significant
that the other annotations assume the tokeniza-
tion of the Penn Treebank, as this makes it easier
for us to merge the annotation. The Penn Tree-
bank syntactic annotation includes phrases, parts
of speech, empty category representations of vari-
ous filler/gap constructions and other phenomena,
based on a theoretical perspective similar to that
of Government and Binding Theory (Chomsky,
1981).

3.1.2 BBN Pronoun Coreference and Entity
Type Corpus

BBN’s NE annotation of the Wall Street Journal
corpus (Weischedel and Brunstein, 2005) takes the
form of SGML inline markup of text, tokenized
to be completely compatible with the Penn Tree-
bank annotation, e.g., fearlast and cannot are split
in the same ways. Named entity categories in-
clude: Person, Organization, Location, GPE, Fa-
cility, Money, Percent, Time and Date, based on
the definitions of these categories in MUC (Chin-
chor and Robinson, 1998) and ACE7 tasks. Sub-
categories are included as well. Note however that
from this corpus we only use NE boundaries to
derive NAME dependencies between NE tokens,
e.g., we create a NAME dependency from Mary to
Smith given the NE mention Mary Smith.

3.1.3 Proposition Bank I (PropBank)

The PropBank annotation (Palmer et al., 2005)
classifies the arguments of all the main verbs in the
Penn Treebank corpus, other than be. Arguments
are numbered (ARG0, ARG1, . . .) based on lexical
entries or frame files. Different sets of arguments
are assumed for different rolesets. Dependent con-
stituents that fall into categories independent of
the lexical entries are classified as various types

7http://projects.ldc.upenn.edu/ace/

of ARGM (TMP, ADV, etc.).8 Rather than us-
ing PropBank directly, we used the version created
for the CoNLL-2005 shared task (Carreras and
Màrquez, 2005). PropBank’s pointers to subtrees
are converted into the list of leaves of those sub-
trees, minus the empty categories. On occasion,
arguments of verbs end up being two non-adjacent
substrings. For example, the argument of claims in
the following sentence is indicated in bold: This
sentence, Mary claims, is self-referential. The
CoNLL-2005 format handles this by marking both
strings A1 (This sentence and is self-referential),
but adding a C- prefix to the argument tag on the
second argument. Another difference between the
PropBank annotation and the CoNLL-2005 ver-
sion of it is their treatments of filler gap construc-
tions involving empty categories. PropBank an-
notation includes the whole chain of empty cate-
gories, as well as the antecedent of the empty cate-
gory (the filler of the gap). In contrast, the CoNLL-
2005 version only includes the filler of the gap and
if there is no filler, the argument is omitted, e.g.,
no ARG0 (subject) for leave would be included in
I said to leave because the subject of leave is un-
specified.

3.1.4 NomBank
NomBank annotation (Meyers et al., 2004) uses

essentially the same framework as PropBank to an-
notate arguments of nouns. Differences between
PropBank and NomBank stem from differences
between noun and verb argument structure; differ-
ences in treatment of nouns and verbs in the Penn
Treebank; and differences in the sophistication of
previous research about noun and verb argument
structure. Only the subset of nouns that take ar-
guments are annotated in NomBank and only a
subset of the non-argument siblings of nouns are
marked as ARGM. These limitations were nec-
essary to make the NomBank task consistent and
tractable. In addition, long distance dependencies
of nouns, e.g., the relation between Mary and walk
in Mary took dozens of walks is handled as fol-
lows: Mary is marked as the ARG0 of walk and
took + dozens + of is marked as a support chain
in NomBank. In contrast, verbal long distance de-
pendencies can be handled by means of empty cat-
egories in the Penn Treebank, e.g., the relation be-

8PropBank I is used here. Later versions of PropBank
mark instances of be in addition to other verbs. PropBank’s
use of the terms roleset and ARGM correspond approximately
to sense and adjunct in common usage.
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tween John and walked in John seemed t to walk.
Support chains are needed because nominal long
distance dependencies are not captured under the
Penn Treebank’s system of empty categories.

3.2 Conversion to Dependencies
3.2.1 Syntactic Dependencies

There exists no large-scale dependency tree-
bank for English, and we thus had to construct a
dependency-annotated corpus automatically from
the Penn Treebank (Marcus et al., 1993). Since
dependency syntax represents grammatical struc-
ture by means of labeled binary head–dependent
relations rather than phrases, the task of the con-
version procedure is to identify and label the
head–dependent pairs. The idea underpinning
constituent-to-dependency conversion algorithms
(Magerman, 1994; Collins, 1999; Yamada and
Matsumoto, 2003) is that head–dependent pairs are
created from constituents by selecting one word in
each phrase as the head and setting all other as its
dependents. The dependency labels are then in-
ferred from the phrase–subphrase or phrase–word
relations.

Our conversion procedure (Johansson and
Nugues, 2007) differs from this basic approach by
exploiting the rich structure of the constituent for-
mat used in Penn Treebank 3:

• Grammatical function labels that often can be
directly used in the dependency framework.

• Long-distance grammatical relations repre-
sented by means of empty categories and sec-
ondary edges, which can be used to create (of-
ten nonprojective) dependency links.

Of the grammatical function tags available in the
Treebank, we removed the HLN, NOM, TPC, and
TTL tags since they represent structural properties
of single phrases rather than binary relations. For
compatibility between the WSJ and Brown cor-
pora, we removed the ETC, UNF, and IMP tags
from Brown and the CLR tag from WSJ.

Algorithms 1 and 2 show the constituent-to-
dependency conversion algorithm and function la-
beling, respectively. The first steps apply structural
transformations to the constituent trees. Next, a
head word is assigned to each constituent. After
this, grammatical functions are inferred, allowing
a dependency tree to be created.

To find head children (used in
assign-heads), a system of rules is used

Algorithm 1: Pseudocode for constituent-to-
dependency conversion.

procedure constituents-to-dependencies(T )
import-glarf(T )
reattach-traces(T )
split-small-clauses(T )
assign-heads(T.root)
assign-functions(T )
return create-dependency-tree(T )

procedure import-glarf(T )
Import a GLARF surface dependency graph G
for each multi-word name N inG

for each token d inN
Set the function tag of d to NAME

for each dependency link h→L d inG
if L ∈ { APPOSITE, A-POS, N-POS, POST-HON, Q-POS,

RED-RELATIVE, SUFFIX, T-POS, TITLE }
or if h and d are inside a split word

Set the function tag of d to L in T
if h and d are part of a larger constituent

Add an NX constituent to T that brackets h and d

procedure reattach-traces(T )
for each empty category t in T

if t is linked to a constituent C via a secondary edge label L
and L ∈ { *ICH*, *T*, *RNR* }
disconnect C
disconnect the secondary edge
attach C to the parent of t

procedure split-small-clauses(T )
for each verb phrase C in T

if C has a child S and the phrase label of S is S
and S is not preceded by a ‘‘ or , tag
and S has a subject child s

disconnect s
attach s to C
set the function tag of s to OBJ
set the function tag of S to OPRD

procedure assign-heads(N)
for each child C ofN
assign-heads(C)

if is-coordinated(N)
e← index of first CC or CONJP or , or :

else
e← index of last child of N

find head child H between 1 and e according to head rules (Table 3)
N.head← H.head

procedure is-coordinated(N)
ifN has the label UCP return True
ifN has a CC or CONJP child which is not leftmost return True
ifN has a , or : child c, and c is not leftmost or rightmost or
crossed by an apposition link, return True
else return False

procedure create-dependency-tree(T )
D ← {}
for each token t in T

let C be the highest constituent that t is the head of
let P be the parent of C
let L be the function tag of C
D ← D ∪ P.head→L t

returnD

(Table 3). The first column in the table indicates
the phrase type, the second is the search direction,
and the third is a priority list of phrase types to
look for. For instance, to find the head of an S
phrase, we look from right to left for a VP. If
no VP is found, look for anything with a PRD
function tag, and so on.

Moreover, since the grammatical structure in-
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ADJP ← NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT
FW RBR RBS SBAR RB

ADVP → RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
CONJP → CC RB IN
FRAG → (NN* | NP) W* SBAR (PP | IN) (ADJP | JJ) ADVP

RB
INTJ ← *
LST → LS :
NAC, NP, NX, WHNP ← (NN* | NX) NP-ε JJR CD JJ JJS RB QP NP
PP, WHPP → IN TO VBG VBN RP FW
PRN → S* N* W* PP|IN ADJP|JJ* ADVP|RB*
PRT → RP
QP ← $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
RRC → VP NP ADVP ADJP PP
S ← VP *-PRD S SBAR ADJP UCP NP
SBAR ← S SQ SINV SBAR FRAG IN DT
SBARQ ← SQ S SINV SBARQ FRAG
SINV ← VBZ VBD VBP VB MD VP *-PRD S SINV ADJP NP
SQ ← VBZ VBD VBP VB MD *-PRD VP SQ
UCP → *
VP → VBD VBN MD VBZ VB VBG VBP VP *-PRD ADJP NN NNS

NP
WHADJP ← CC WRB JJ ADJP
WHADVP → CC WRB
X → *

Table 3: Head rules.

Algorithm 2: Pseudocode for the function la-
beling procedure.

procedure assign-functions(T )
for each constituent C in T

if C has no function tag from Penn or GLARF
L← infer-function(C)
Set the function tag of C to L

procedure infer-function(C)
let c be the head of C, P the parent of C, and p the head of P
if C is an object return OBJ
if C is PRN return PRN
if h is punctuation return P
if C is coordinated with P return COORD
if C is PP, ADVP, or SBAR and P is VP return ADV
if C is PRT and P is VP return PRT
if C is VP and P is VP, SQ, or SINV return VC
if C is TO and P is VP return IM
if P is SBAR and p is IN return SUB
if P is VP, S, SBAR, SBARQ, SINV, or SQ and C is RB return ADV
if P is NP, NX, NAC, or WHNP return NMOD
if P is ADJP, ADVP, WHADJP, or WHADVP return AMOD
if P is PP or WHPP return PMOD
else return DEP

side noun phrases (NP) is under-specified in the
Penn Treebank, we imported dependencies in-
side NPs and hyphenated words from a version
of the Penn Treebank mapped into GLARF, the
Grammatical and Logical Argument Representa-
tion Framework (Meyers et al., 2007).

The parts of GLARF’s NP analysis that are most
relevant to this task include: (i) identifying ap-
posites (APPO, e.g., that book depends on gift in
Mary’s gift, a book about cheese; (ii) the iden-
tification of name boundaries taken from BBN’s

NE annotation, e.g., identifying that Smith de-
pends on Mary which depends on appointment
in the Mary Smith appointment; (iii) identifying
TITLE and POSTHON dependencies, e.g., deter-
mining that Ms. and III depend on Mary in Ms.
Mary Smith III. These identifications were car-
ried out by hand-coded rules that have been fine
tuned as part of GLARF, over the past several
years. For example, identifying apposition con-
structions requires identifying that both the head
and the apposite can stand alone – proper nouns
(John Smith), plural nouns (books), and singular
common nouns with determiners (the book) are
stand-alone cases, whereas singular nouns without
determiners (green book) do not qualify.

We split Treebank tokens at a hyphen (-) or a
forward slash (/) if the segments on either side of
these delimiters are: (a) a word in a dictionary
(COMLEX Syntax or any of the dictionaries avail-
able on the NOMLEX website); (b) part of a mark-
able Named Entity;9 or (c) a prefix from the list:
co, pre, post, un, anti, ante, ex, extra, fore, non,
over, pro, re, super, sub, tri, bi, uni, ultra. For ex-
ample, York-based was split into 3 segments: (1)
York, (2) - and (3) based.

9The CoNLL-2008 website contains a Named Entity To-
ken gazetteer to aid in this segmentation.
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3.2.2 Semantic Dependencies

When encoding the semantic dependencies, it
was necessary to convert the underlying con-
stituent analysis of PropBank and NomBank into
a dependency analysis. Because semantic predi-
cates are already assigned to individual tokens in
both PropBank (the version used for the CoNLL-
2005 shared task) and NomBank, constituent-to-
dependency conversion is thus necessary only for
semantic arguments. Conceptually, this conver-
sion can be handled using similar heuristics as de-
scribed in Section 3.2.1. However, in order to
avoid replicating this effort and to ensure compat-
ibility between syntactic and semantic dependen-
cies, we decided to generate semantic dependen-
cies using only argument boundaries and the syn-
tactic dependencies generated in Section 3.2.1, i.e.,
ignoring syntactic constituents. Given this input,
we identify the head of a semantic argument using
the following heuristic:

The head of a semantic argument is as-
signed to the token inside the argument
boundaries whose head is a token out-
side the argument boundaries.

This heuristic works remarkably well: over 99%
of the PropBank arguments in the training corpus
have a single token whose head is located outside
of the argument boundaries. As a simple example,
consider the following annotated text: [sold]PRED
[1214 cars]ARG1 [in the U.S.]ARGM-LOC. Us-
ing the above heuristic, the head of the ARG1 ar-
gument is set to cars, because it has an OBJ de-
pendency to sold, and the head of the ARGM-
LOC argument is set to in, because it modifies sold
through a LOC dependency.

While this heuristic processes the vast majority
of arguments, there are several cases that require
special treatment. We discuss these situations in
the remainder of this section.

Arguments with several syntactic heads
For 0.7% of the semantic arguments, the above
heuristic detects several syntactic heads for the
given boundary. For example, in the text [it]ARG0
[expects]PRED [its U.S. sales to remain steady
at about 1200 cars]ARG1, the above heuris-
tic assigns two syntactic heads to ARG1: sales,
which modifies expects through an OBJ depen-
dency, and to, which modifies expects through a
PRD dependency. These situations are caused

by the constituent-to-dependency conversion pro-
cess described in Section 3.2.1, which in some
cases interprets syntax differently than the orig-
inal Treebank annotation, e.g., the raising phe-
nomenon for the PRD dependency in the above
example. In such cases, we split the original argu-
ment into a sequence of discontinuous arguments,
e.g., the ARG1 in the above example becomes [its
U.S. sales]ARG1 [to remain steady at about 1200
cars]C-ARG1.

Merging discontinuous arguments
While in the above case we split arguments, there
are situations where we can merge arguments that
were initially discontinuous in PropBank or Nom-
Bank. This typically happens when the Prop-
Bank/NomBank predicate is infixed inside one of
its arguments. For example, in the text [Million-
dollar conferences]ARG1 were [held]PRED [to
chew on subjects such as... ]C-ARG1, PropBank
lists multiple constituents as aggregately filling the
ARG1 slot of held. These cases are detected au-
tomatically because the least common ancestor of
the argument pieces is actually one of the argument
segments. In the above example, to chew on sub-
jects such as... depends on Million-dollar confer-
ences because to modifies conferences through a
NMOD dependency. In these situations, we treat
the least common ancestor, e.g., conferences in the
above text, as the true argument. This heuristic al-
lowed us to merge 1665 (or 0.6% of total) argu-
ments that were initially discontinuous in the Prop-
Bank training corpus.

Empty categories
PropBank and NomBank both encode chains of
empty categories. As with the 2005 shared task
(Carreras and Màrquez, 2005), we used the head
of the antecedent of empty categories as arguments
rather than empty categories. Furthermore, empty
category arguments with no antecedents were ig-
nored.10 For example, given The man wanted t to
make a speech, we assume that the A0 of make and
speech is man, rather than the chain consisting of
the empty category represented as t and man.

Annotation disagreements
NomBank and Penn Treebank annotators some-
times disagree about constituent structure. Nom-

10Under our approach to filler gap constructions, the filler
is a shared argument (as in Relational Grammar, most Feature
Structure and Dependency Grammar frameworks), in con-
trast with the Penn Treebank’s empty category antecedent ap-
proach (more closely resembling the various Chomskian ap-
proaches).
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Label Freq. Description
NMOD 324834 Modifier of nominal
P 135260 Punctuation
PMOD 115988 Modifier of preposition
SBJ 89371 Subject
OBJ 66677 Object
ROOT 49178 Root
ADV 47379 General adverbial
NAME 41138 Name-internal link
VC 35250 Verb chain
COORD 31140 Coordination
DEP 29456 Unclassified
TMP 26305 Temporal adverbial or nominal modifier
CONJ 24522 Second conjunct (dependent on conjunction)
LOC 18500 Locative adverbial or nominal modifier
AMOD 17868 Modifier of adjective or adverbial
PRD 16265 Predicative complement
APPO 16163 Apposition
IM 16071 Infinitive verb (dependent on infinitive marker to)
HYPH 14073 Token part of a hyphenated word (dependent on a preceding part of the hyphenated word)
HMOD 13885 Token inside a hyphenated word (dependent on the head of the hyphenated word)
SUB 12995 Subordinated clause (dependent on subordinating conjuction)
OPRD 11707 Predicative complement of raising/control verb
SUFFIX 10548 Possessive suffix (dependent on possessor)
DIR 6145 Adverbial of direction
TITLE 5917 Title (dependent on name)
MNR 4753 Adverbial of manner
POSTHON 4377 Posthonorific modifier of nominal
PRP 4013 Adverbial of purpose or reason
PRT 3235 Particle (dependent on verb)
LGS 3115 Logical subject of a passive verb
EXT 2374 Adverbial of extent
PRN 2176 Parenthetical
EXTR 658 Extraposed element in cleft
DTV 496 Dative complement (to) in dative shift
PUT 271 Complement of the verb put
BNF 44 Benefactor complement (for) in dative shift
VOC 24 Vocative

Table 4: Statistics for atomic syntactic labels.

Bank annotators are in effect assuming that the
constituents provided form a phrase. In this case,
the constituents are adjacent to each other. For ex-
ample, consider the NP the human rights discus-
sion. In this case, the Penn Treebank would treat
each of the four words the, human, rights, discus-
sion as daughters of a single NP node. However,
NomBank would treat human rights as a single
ARG1 of discussion. Since noun noun modifica-
tion constructions are head final, we can easily de-
termine (via GLARF) that rights is the markable
dependent of discussion.

Support chains
Finally, NomBank’s encoding of support chains is
handled as chains of dependencies in the data (al-
though these are not scored). For example, given
Mary took dozens of walks, where Mary is the
ARG0 of walks, the support chain took + dozens +
of is represented as a sequence of dependencies: of
depends on Mary, dozens depends on of and took

depends on dozens. Each of these dependencies is
labeled SU.

3.3 Overview of Corpora

The syntactic dependency types are divided into
atomic types that consist of a single label, and non-
atomic types consisting of more than one label.
There are 38 atomic and 70 non-atomic labels in
the corpus. There are three types of non-atomic
labels: those consisting of a PRD or OPRD con-
catenated with an adverbial label such as LOC or
TMP; gapping labels such as GAP-SBJ; and com-
bined adverbial tags such as LOC-TMP.

Table 4 shows statistics for the atomic syntac-
tic dependencies: label type, the frequency of the
label in the complete corpus, and a description of
the label. Table 5 shows the corresponding statis-
tics for non-atomic dependencies, excluding gap-
ping dependencies. The non-atomic labels are rare,
which made it difficult to learn these relations ef-
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Label Frequency
LOC-PRD 798
PRD-TMP 51
PRD-PRP 45
LOC-OPRD 31
DIR-PRD 4
MNR-PRD 3
LOC-TMP 2
MNR-TMP 1
LOC-MNR 1
DIR-OPRD 1

Table 5: Statistics for non-atomic syntactic labels
excluding gapping labels.

Label Frequency
GAP-SBJ 116
GAP-OBJ 102
DEP-GAP 83
GAP-TMP 69
GAP-PRD 66
GAP-LGS 44
GAP-LOC 42
DIR-GAP 37
GAP-PMOD 22
GAP-VC 20
EXT-GAP 16
ADV-GAP 15
GAP-NMOD 13
GAP-LOC-PRD 6
DTV-GAP 6
AMOD-GAP 6
GAP-MNR 5
GAP-PRP 4
EXTR-GAP 3
GAP-SUB 1
GAP-PUT 1
GAP-OPRD 1

Table 6: Statistics for non-atomic labels containing
a gapping label.

fectively. Table 6 shows the table for non-atomic
labels containing a gapping label.

A dependency link wi → wj is said to be pro-
jective if all words occurring betweenwi and wj in
the surface word order are dominated bywi (where
dominance is the transitive closure of the direct
link relation). Nonprojective links are impossible
to handle for the search procedures in many types
of dependency parsers. It has been previously ob-
served that the majority of dependencies in all lan-
guages are projective, and this is particularly true
for English – in the complete corpus, only 4118
links (0.4%) are nonprojective. 3312 sentences, or
7.6%, contain at least one nonprojective link.

Table 7 shows statistics for different types of
nonprojective links: nonprojectivity caused by
wh-movement, such as in Where are you going?
or What have you done?; split clauses such as

Type Frequency
wh-movement 1709
Split clause 734
Split noun phrase 590
Other 1085

Table 7: Statistics for nonprojective links.

POS Frequency
NN 68477
NNS 30048
VBD 24106
VB 23650
VBN 19339
VBG 14245
VBZ 10883
VBP 6330
Other 83

Table 8: Statistics for predicates, by POS tags.

Even to make love, he says, you need experience;
split noun phrases such as hold a hearing tomor-
row on the topic; and all other types of nonprojec-
tive links.

Lastly, Tables 8 and 9 summarizes statistics for
semantic predicates and roles. Table 8 shows the
number of non-support predicates with a given
POS tag in the whole corpus (we used GPOS or
PPOSS for predicates inside hyphenated words).
The last line shows the number of predicates with
a POS tag that does not start with NN or VB. This
last table entry is generated by POS tagger mis-
takes when producing the PPOSS tags, or by errors
in our NomBank/PropBank conversion software.11

Nevertheless, the overall picture given by the table
indicates that predicates are almost perfectly dis-
tributed between nouns and verbs: there are 98525
nominal and 98553 verbal predicates.

Table 9 shows the number of arguments with a
given role label. For brevity we list only labels that
are instantiated at least 10 times in the whole cor-
pus. The total number of arguments labeled with a
role label with frequency lower than 10 is listed
in the last line in the table. The table indicates
that, while the top three most common role labels
are “core” labels (A1, A0, A2), modifier arguments
(AM-*) account for approximately 20% of the total
number of arguments. On the other hand, discon-
tinuous arguments are not common: only 0.7% of
the total number of arguments have a continuation
label (C-*).

11In very few situations, we select incorrect head tokens for
multi-word predicates.
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Label Frequency
A1 161409
A0 109437
A2 51197
AM-TMP 25913
AM-MNR 13080
AM-LOC 11409
A3 10269
AM-MOD 9986
AM-ADV 9496
AM-DIS 5369
R-A0 4432
AM-NEG 4097
A4 3281
C-A1 3118
R-A1 2565
AM-PNC 2445
AM-EXT 1428
AM-CAU 1346
AM-DIR 1318
R-AM-TMP 797
R-A2 307
R-AM-LOC 246
R-AM-MNR 155
A5 91
AM-PRD 78
C-A0 70
C-A2 65
R-AM-CAU 50
C-A3 37
R-A3 29
C-AM-MNR 24
C-AM-ADV 20
AM-REC 16
AA 14
R-AM-PNC 12
C-AM-EXT 11
C-AM-TMP 11
C-A4 11
Frequency < 10 70

Table 9: Statistics for semantic roles.

4 Submissions and Results

Nineteen groups submitted test runs in the closed
challenge and five groups participated in the open
challenge. Three of the latter groups participated
only in the open challenge, and two of these sub-
mitted results only for the semantic subtask. These
results are summarized in Tables 10 and 11.

Table 10 summarizes the official results – i.e.,
results at evaluation deadline – for the closed chal-
lenge. Note that several teams corrected bugs
and/or improved their systems and they submit-
ted post-evaluation scores (accounted in the shared
task website). The table indicates that most of the
top results cluster together: three systems had a
labeled macro F1 score on the WSJ+Brown cor-
pus around 82 points (che, ciaramita, and zhao);
five systems scored around 79 labeled macro F1

points (yuret, samuelsson, zhang, henderson, and

watanabe). Remarkably, the top-scoring system
(johansson) is in a class of its own, with scores
2–3 points higher than the next system. This is
most likely caused by the fact that Johansson and
Nugues (2008) implemented a thorough system
that addressed all facets of the task with state-of-
the-art methods: second-order parsing model, ar-
gument identification/classification models sepa-
rately tuned for PropBank and NomBank, rerank-
ing inference for the SRL task, and, finally, joint
optimization of the complete task using meta-
learning (more details in Section 5).

Table 11 lists the official results in the open chal-
lenge. The results in this challenge are lower than
in the closed challenge, but this was somewhat
to be expected considering that there were fewer
participants in this challenge and none of the top
five groups in the closed challenge submitted re-
sults in the open challenge. Only one of the sys-
tems that participated in both challenges (zhang)
improved the results submitted in the closed chal-
lenge. Zhang et al. (2008) achieved this by ex-
tracting features for their semantic subtask mod-
els both from the parser used in the closed chal-
lenge and a secondary parser that was trained on
a different corpus. The improvements measured
were relatively small for the in-domain WSJ cor-
pus (0.2 labeled macro F1 points) but larger for the
out-of-domain Brown corpus (approximately 1 la-
beled macro F1 point).

Tables 10 and 11 indicate that in both chal-
lenges the results on the out-of-domain corpus
(Brown) are much lower than the results measured
in-domain (WSJ). The difference is around 7–8
LAS points for the syntactic subtask and 12–14 la-
beled F1 points for semantic dependencies. Over-
all, this yields a drop of approximately 10 labeled
macro F1 points for most systems. This perfor-
mance decrease on out-of-domain corpora is con-
sistent with the results reported in CoNLL-2005
on SRL (using the same Brown corpus). These
results indicate that domain adaptation is a prob-
lem that is far from being solved for both syntactic
and semantic analysis of text. Furthermore, as the
scores on the syntactic and semantic subtasks in-
dicate, domain adaptation becomes even harder as
the task to be solved gets more complex.

We describe the participating systems in the next
section. Then, in Section 6, we revert to result
analysis using different evaluation measures and
different views of the data.
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Labeled Macro F1 Labeled Attachment Score Labeled F1

(complete task) (syntactic dependencies) (semantic dependencies)
WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown

johansson 84.86 (1) 85.95 75.95 89.32 (1) 90.13 82.81 80.37 (1) 81.75 69.06
che 82.66 (2) 83.78 73.57 86.75 (5) 87.51 80.73 78.52 (2) 80.00 66.37
ciaramita 82.06 (3) 83.25 72.46 86.60 (11) 87.47 79.67 77.50 (3) 79.00 65.24
zhao 81.44 (4) 82.62 71.78 86.66 (8) 87.52 79.83 76.16 (4) 77.67 63.69
yuret 79.84 (5) 80.97 70.55 86.62 (10) 87.39 80.46 73.06 (5) 74.54 60.62
samuelsson 79.79 (6) 80.92 70.49 86.63 (9) 87.36 80.77 72.94 (6) 74.47 60.18
zhang 79.32 (7) 80.41 70.48 87.32 (2) 88.14 80.80 71.31 (7) 72.67 60.16
henderson 79.11 (8) 80.19 70.34 86.91 (4) 87.78 80.01 70.97 (8) 72.26 60.38
watanabe 79.10 (9) 80.30 69.29 87.18 (3) 88.06 80.17 70.84 (9) 72.37 58.21
morante 78.43 (10) 79.52 69.55 86.07 (12) 86.88 79.58 70.51 (10) 71.88 59.23
li 78.35 (11) 79.38 70.01 86.69 (6) 87.42 80.8 69.95 (11) 71.27 59.17
baldridge 77.49 (12) 78.57 68.53 86.67 (7) 87.42 80.64 67.92 (14) 69.35 55.95
chen 77.00 (13) 77.95 69.23 84.47 (16) 85.20 78.58 69.45 (12) 70.62 59.81
lee 76.90 (14) 77.96 68.34 84.82 (15) 85.69 77.83 68.71 (13) 69.95 58.63
sun 76.28 (15) 77.10 69.58 85.75 (13) 86.37 80.75 66.61 (15) 67.62 58.26
choi 71.23 (16) 72.22 63.44 77.56 (17) 78.58 69.46 64.78 (16) 65.72 57.4
trandabat 63.45 (17) 64.21 57.41 85.21 (14) 85.96 79.24 40.63 (17) 41.36 34.75
lluis 63.29 (18) 63.74 59.65 71.95 (18) 72.30 69.14 54.52 (18) 55.09 49.95
neumann 19.93 (19) 20.13 18.14 16.25 (19) 16.22 16.47 22.36 (19) 22.86 17.94

Table 10: Official results in the closed challenge (post-evaluation scores are available on the shared
task website). Teams are denoted by the last name of the first author of the corresponding paper in
the proceedings or the last name of the person who registered the team if no paper was submitted.
Italics indicate that there is no corresponding paper in the proceedings. Results are sorted in descending
order of the labeled macro F1 score on the WSJ+Brown corpus. The number in parentheses next to the
WSJ+Brown scores indicates the system rank in the corresponding task.

Labeled Macro F1 Labeled Attachment Score Labeled F1

(complete task) (syntactic dependencies) (semantic dependencies)
WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown

vickrey – – – – – – 76.17 (1) 77.38 66.23
riedel – – – – – – 74.59 (2) 75.72 65.38
zhang 79.61 (1) 80.61 71.45 87.32 (1) 88.14 80.80 71.89 (3) 73.08 62.11
li 77.84 (2) 78.87 69.51 86.69 (2) 87.42 80.80 68.99 (4) 70.32 58.22
wang 76.19 (3) 78.39 59.89 84.56 (3) 85.50 77.06 67.12 (5) 70.41 42.67

Table 11: Official results in the open challenge (post-evaluation scores are available on the shared task
website). Teams are denoted by the last name of the first author of the corresponding paper in the
proceedings or the last name of the person who registered the team if no paper was submitted. Italics
indicate that there is no corresponding paper in the proceedings. Results are sorted in descending order of
the labeled F1 score for semantic dependencies on the WSJ+Brown corpus. The number in parentheses
next to the WSJ+Brown scores indicates the system rank in the corresponding task.

5 Approaches

Table 5 summarizes the properties of the sys-
tems that participated in the closed the open chal-
lenges. The second column of the table high-
lights the overall architectures. We used + to in-
dicate that the components are sequentially con-
nected. The lack of a + sign indicates that the cor-
responding tasks are performed jointly. For exam-
ple, Riedel and Meza-Ruiz (2008) perform pred-
icate and argument identification and classifica-
tion jointly, whereas Ciaramita et al. (2008) im-
plemented a pipeline architecture of three compo-
nents. We use the || to indicate that several differ-

ent architectures that span multiple subtasks were
deployed in parallel.

This summary of system architectures indicates
that it is common that systems combine sev-
eral components in the semantic or syntactic sub-
tasks – e.g., nine systems jointly performed pred-
icate/argument identification and classification –
but only four systems combined components be-
tween the syntactic and semantic subtasks: Hen-
derson et al. (2008), who implemented a generative
history-based model (Incremental Sigmoid Belief
Networks with vectors of latent variables) where
syntactic and semantic structures are separately
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generated but using a synchronized derivation (se-
quence of actions); Samuelsson et al. (2008),
who, within an ensemble-based architecture, im-
plemented a joint syntactic-semantic model using
MaltParser with labels enriched with semantic in-
formation; Lluı́s and Màrquez, who used a modi-
fied version of the Eisner algorithm to jointly pre-
dict syntactic and semantic dependencies; and fi-
nally, Sun et al. (2008), who integrated depen-
dency label classification and argument identifi-
cation using a maximum-entropy Markov model.
Additionally, Johansson and Nugues (2008), who
had the highest ranked system in the closed chal-
lenge, integrate syntactic and semantic analysis in
a final reranking step, which maximizes the joint
syntactic-semantic score in the top k solutions. In
the same spirit, Chen et al. (2008) search in the
top k solutions for the one that maximizes a global
measure, in this case the joint probability of the
complete problem. These joint learning strategies
are summarized in the Joint Learning/Opt. col-
umn in the table. The system of Riedel and Meza-
Ruiz (2008) deserves a special mention: even
though Riedel and Meza-Ruiz did not implement
a syntactic parser, they are the only group that per-
formed the complete SRL subtask – i.e., predicate
identification and classification, argument identifi-
cation and classification – jointly, simultaneously
for all the predicates in a sentence. They imple-
mented a joint SRL model using Markov Logic
Networks and they selected the overall best solu-
tion using inference based on the cutting-plane al-
gorithm.

Although some of the systems that implemented
joint approaches obtained good results, the top
five systems in the closed challenge are essen-
tially systems with pipeline architectures. Further-
more, Johansson and Nugues (2008) and Riedel
and Meza-Ruiz (2008) showed that joint learn-
ing/optimization improves the overall results, but
the improvement is not large. These initial ef-
forts indicate at least that the joint modeling of this
problem is not a trivial task.

The D Arch. and D Inference columns summa-
rize the parsing architectures and the correspond-
ing inference strategies. Similar to last year’s
shared task (Nivre et al., 2007), the vast majority of
parsing models fall in two classes: transition-based
(“trans” in the table) or graph-based (“graph”)
models. By and large, transition-based models use
a greedy inference strategy, whereas graph-based

models used different Maximum Spanning Tree
(MST) algorithms: Carreras (2007) – MSTC , Eis-
ner (2000) – MSTE , or Chu-Liu/Edmonds (Mc-
Donald et al., 2005; Chu and Liu, 1965; Edmonds,
1967) – MSTCL/E . More interestingly, most of
the best systems used some strategy to mitigate
parsing errors. In the top three systems in the
closed challenge, two (che and ciaramita) used
parser combination through voting and/or stacking
of different models (see the D Comb. column).
Samuelsson et al. (2008) perform a MST infer-
ence with the bag of all dependencies output by
the individual MALT parser variants. Johansson
and Nugues (2008) use a single parsing model, but
this model is extended with second-order features.

The PA Arch. and PA Inference columns sum-
marize the architectures and inference strategies
used for the identification and classification of
predicates and arguments. The columns indicate
that most systems modeled the SRL problem as a
token-by-token classification problem (“class” in
the table) with a corresponding greedy inference
strategy. Some systems (e.g., yuret, samuelsson,
henderson, lluis) incorporate SRL within parsing,
in which case we report the corresponding parsing
architecture and inference approach. Vickrey and
Koller (2008) simplify the sentences to be labeled
using a set of hand-crafted rules before deploying
a classification model on top of a constituent-based
representation. Unlike in the case of parsing, few
systems (yuret, samuelssson, and morante) com-
bine several PA models and the combination is lim-
ited to simple voting strategies (see the PA Comb.
column).

Finally, the ML Methods column lists the Ma-
chine Learning (ML) methods used. The column
indicates that maximum entropy (ME) was the
most popular method (12 distinct systems relied
on it). Support Vector Machines (SVM) (eight sys-
tems) and the Perceptron algorithm (three systems)
were also popular ML methods.

6 Analysis

Section 4 summarized the results in the closed
and open challenges using the official evaluation
measures. In this section, we analyze the sub-
mitted runs using different evaluation measures,
e.g., Exact Match or Perfect Proposition F1 scores,
and different views of the data, e.g., only non-
projective dependencies or NomBank versus Prop-
Bank frames.
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Exact Match Perfect Proposition F1

(complete task) (semantic dependencies)
closed WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown
johansson 12.46 (1) 12.46 12.68 54.12 (1) 56.12 36.90
che 10.37 (2) 10.21 11.50 48.05 (2) 50.15 30.90
ciaramita 9.27 (3) 9.04 10.80 46.05 (3) 48.05 28.61
zhao 9.20 (4) 9.00 10.56 43.19 (4) 45.23 26.14
henderson 8.11 (5) 7.75 10.33 39.24 (5) 40.64 27.51
watanabe 7.79 (6) 7.54 9.39 36.44 (6) 38.09 22.72
yuret 7.65 (7) 7.33 9.62 34.61 (9) 36.13 21.78
zhang 7.40 (8) 7.46 7.28 34.96 (8) 36.25 24.22
li 7.12 (9) 6.71 9.62 32.08 (10) 33.45 20.62
samuelsson 6.94 (10) 6.62 8.92 35.20 (7) 36.96 20.22
chen 6.83 (11) 6.46 9.15 31.02 (12) 32.08 22.14
lee 6.69 (12) 6.29 9.15 31.40 (11) 32.52 22.18
morante 6.44 (13) 6.04 8.92 30.41 (14) 31.97 17.49
sun 5.38 (14) 4.96 7.98 30.43 (13) 31.51 21.40
baldridge 5.24 (15) 4.92 7.28 25.35 (15) 26.57 15.26
choi 3.33 (16) 3.50 2.58 24.77 (16) 25.71 17.37
trandabat 3.26 (17) 3.08 4.46 6.59 (18) 6.81 4.76
lluis 2.55 (18) 1.96 6.10 16.07 (17) 16.46 13.00
neumann 0.11 (19) 0.12 0.23 0.30 (19) 0.31 0.20
open
vickrey – – – 44.94 (1) 46.68 30.28
riedel – – – 42.77 (2) 44.18 31.15
zhang 8.14 (1) 8.04 8.92 35.46 (3) 36.74 24.84
li 6.90 (2) 6.46 9.62 29.91 (4) 31.30 18.41
wang 5.17 (3) 5.12 5.63 18.63 (5) 20.31 7.09

Table 13: Exact Match and Perfect Proposition F1 scores for runs submitted in the closed and open
challenges. The closed-challenge systems are sorted in descending order of Exact Match scores on
the WSJ+Brown corpus. Open-challenge submissions are sorted in descending order of the Perfect
Proposition F1 score. The number in parentheses next to the WSJ+Brown scores indicates the system
rank according to the corresponding scoring measure.

6.1 Exact Match and Perfect Propositions

Table 13 lists the Exact Match and Perfect Propo-
sition F1 scores for test runs submitted in both
challenges. Both these scores measure the capac-
ity of a system to correctly parse structures with
granularity much larger than a simple dependency,
i.e., entire sentences for Exact Match and complete
propositions for Perfect Proposition F1 (see Sec-
tion 2.2.2 for a formal definition of these evalua-
tion measures). The table indicates that these val-
ues are much smaller than the scores previously
reported, e.g., labeled macro F1. This is to be
expected: the probability of an incorrectly parsed
unit (sentence or proposition) is much larger given
its granularity. However, the main purpose of this
analysis is to investigate if systems that focused
on joint learning or optimization performed bet-
ter than others with respect to these global mea-
sures. This indeed seems to be the case for at
least two systems. The system of Johansson and
Nugues (2008), which jointly optimizes the la-
beled F1 score (for semantic dependencies) and
then the labeled macro F1 score (for the complete

task), increases its distance from the next ranked
system: its Perfect Proposition F1 score is over
6 points higher than the score of the second sys-
tem in Table 13. The system of Henderson et
al. (2008), which was designed for joint learning
of the complete task, improves its rank from eighth
to fifth compared to the official results (Table 10).

6.2 Nonprojectivity

Table 14 shows the unlabeled F1 scores for pre-
diction of nonprojective syntactic dependencies.
Since nonprojectivity is quite rare, many teams
chose to ignore this issue. The table shows only
those systems that submitted well-formed depen-
dency trees, and whose output contained at least
one nonprojective link. The small number of non-
projective links in the training set makes it hard to
learn to predict such links, and this is also reflected
in the figures. In general, the figures for nonpro-
jective wh-movements and split clauses are higher,
and they are also the most common types. Also,
they are detectable by fairly simple patterns, such
as the presence of a wh-word or a pair of commas.
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System All wh-mov. SpCl SpNP
choi 25.43 49.49 45.47 8.72
lee 46.26 50.30 64.84 20.69
nugues 46.15 58.96 59.26 11.32
samuelsson 24.47 38.15 0 9.83
titov 42.32 50.56 48.71 0
zhang 13.39 5.71 12.33 7.3

Table 14: Unlabeled F1-measures for nonprojec-
tive links. Results are given for all links, wh-
movements, split clauses, and split noun phrases.

6.3 Normalized SRL Performance
Table 6.3 lists the scores for the semantic sub-
task measured as the ratio of the labeled F1 score
and LAS. As previously mentioned, this score es-
timates the performance of the SRL component
independent of the performance of the syntactic
parser. This analysis is not a substitute for the
actual experiment where the SRL components are
evaluated using correct syntactic information but,
nevertheless, it indicates several interesting facts.
First, the ranking of the top three systems in Ta-
ble 10 changes: the system of Che et al. (2008)
is now ranked first, and the system of Johansson
and Nugues (2008) is second. This shows that Che
et al. have a relatively stronger SRL component,
whereas Johansson and Nugues developed a bet-
ter parser. Second, several other systems improved
their ranking compared to Table 10: e.g., chen
from position thirteenth to ninth and choi from six-
teenth to eighth. This indicates that these systems
were penalized in the official ranking mainly due
to the relative poor performance of their parsers.

Note that this experiment is relevant only for
systems that implemented pipeline architectures,
where the semantic components are in fact sep-
arated from the syntactic ones; this excludes the
systems that blended syntax with SRL: henderson,
sun, and lluis. Furthermore, systems that had sig-
nificantly lower scores in syntax will receive an un-
reasonable boost in ranking according to this mea-
sure. Fortunately, there was only one such outlier
in this evaluation (neumann), shown in gray in the
table.

6.4 PropBank versus NomBank
Table 16 lists the labeled F1 scores for semantic
dependencies for two different views of the test-
ing data sets: for propositions centered around ver-
bal predicates, i.e., from PropBank, and for propo-
sitions centered around nominal predicates, i.e.,
from NomBank.

Labeled F1 / LAS
closed WSJ+Brown WSJ Brown
neumann 137.60 (1) 140.94 108.93
che 90.51 (2) 91.42 82.21
johansson 89.98 (3) 90.70 83.40
ciaramita 89.49 (4) 90.32 81.89
zhao 87.88 (5) 88.75 79.78
yuret 84.35 (6) 85.30 75.34
samuelsson 84.20 (7) 85.24 74.51
choi 83.52 (8) 83.63 82.64
chen 82.22 (9) 82.89 76.11
morante 81.92 (10) 82.73 74.43
zhang 81.67 (11) 82.45 74.46
henderson 81.66 (12) 82.32 75.47
watanabe 81.26 (13) 82.18 72.61
lee 81.01 (14) 81.63 75.33
li 80.69 (15) 81.53 73.23
baldridge 78.37 (16) 79.33 69.38
sun 77.68 (17) 78.29 72.15
lluis 75.77 (18) 76.20 72.24
trandabat 47.68 (19) 48.12 43.85
open
zhang 82.33 82.91 76.87
li 79.58 80.44 72.05
wang 79.38 82.35 55.37

Table 15: Ratio of the labeled F1 score for seman-
tic dependencies and LAS for syntactic dependen-
cies. Systems are sorted in descending order of this
ratio score on the WSJ+Brown corpus. We only
show systems that participated in both the syntac-
tic and semantic subtasks.

The table indicates that, generally, systems per-
formed much worse on nominal predicates than
on verbal predicates. This is to be expected con-
sidering that there is significant body of previ-
ous work that analyzes the SRL problem on Prop-
Bank, but minimal work for NomBank. On aver-
age, the difference between the labeled F1 scores
for verbal predicates and nominal predicates on the
WSJ+Brown corpus is 7.84 points. Furthermore,
the average difference between labeled F1 scores
on the Brown corpus alone is 12.36 points. This in-
dicates that the problem of SRL for nominal predi-
cates is more sensitive to domain changes than the
equivalent problem for verbal predicates. Our con-
jecture is that, because there is very little syntac-
tic structure between nominal predicates and their
arguments, SRL models for nominal predicates se-
lect mainly lexical features, which are more brittle
than syntactic or other non-lexicalized features.

Remarkably, there is one system (baldridge)
which performed better on the WSJ+Brown for
nominal predicates than verbal predicates. Un-
fortunately, this group did not submit a system-
description paper so it is not clear what was their
approach.
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Labeled F1 Labeled F1

(verbal predicates) (nominal predicates)
closed WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown
johansson 84.45 (1) 86.37 71.87 74.32 (2) 75.42 60.13
che 80.46 (2) 82.17 69.33 75.18 (1) 76.64 56.87
ciaramita 80.15 (3) 82.09 67.62 73.17 (4) 74.42 57.69
zhao 77.67 (4) 79.40 66.38 73.28 (3) 74.69 54.81
samuelsson 76.17 (5) 78.03 64.00 68.13 (7) 69.58 49.24
yuret 75.91 (6) 77.88 63.02 68.81 (5) 69.98 53.58
zhang 74.82 (7) 76.62 63.15 65.61 (11) 66.82 50.18
li 74.36 (8) 76.14 62.92 62.61 (14) 63.76 47.09
henderson 73.80 (9) 75.40 63.36 66.26 (10) 67.44 50.73
watanabe 73.06 (10) 75.02 60.34 67.15 (8) 68.37 50.92
sun 72.97 (11) 74.45 63.50 58.68 (15) 59.73 45.75
morante 72.81 (12) 74.36 62.72 66.50 (9) 67.92 47.97
lee 72.34 (13) 74.15 60.49 62.83 (13) 63.66 52.18
chen 72.02 (14) 73.49 62.46 65.02 (12) 66.14 50.48
choi 70.00 (15) 71.28 61.71 56.16 (16) 57.19 44.05
baldridge 67.02 (16) 68.64 56.50 68.57 (6) 69.78 52.96
lluis 62.42 (17) 63.49 55.49 42.15 (17) 42.81 34.22
trandabat 42.88 (18) 43.79 37.06 37.14 (18) 37.89 27.50
neumann 22.87 (19) 23.53 18.24 21.7 (19) 22.04 17.14
open
vickrey 78.41 (1) 79.75 69.57 71.86 (1) 73.29 53.25
riedel 77.13 (2) 78.72 66.75 70.25 (2) 71.03 60.17
zhang 75.00 (3) 76.62 64.44 66.76 (3) 67.79 53.76
li 73.74 (4) 75.57 62.05 61.24 (5) 62.38 46.36
wang 67.50 (5) 70.34 49.72 66.53 (4) 69.83 28.96

Table 16: Labeled F1 scores for frames centered around verbal and nominal predicates. The number in
parentheses next to the WSJ+Brown scores indicates the system rank in the corresponding data set.

Systems can mitigate the inherent differences
between verbal and nominal predicates with dif-
ferent models for the two sub-problems. This was
indeed the approach taken by two out of the top
three systems (johansson and che). Johansson and
Nugues (2008) developed different models for ver-
bal and nominal predicates and implemented sep-
arate feature selection processes for each model.
Che et al. (2008) followed the same method but
they also implemented separate domain constraints
for inference for the two models.

7 Conclusion

The previous four CoNLL shared tasks popular-
ized and, without a doubt, boosted research in se-
mantic role labeling and dependency parsing. This
year’s shared task introduces a new task that es-
sentially unifies the problems addressed in the past
four years under a unique, dependency-based for-
malism. This novel task is attractive both from
a research perspective and an application-oriented
perspective:

• We believe that the proposed dependency-
based representation is a better fit for many
applications (e.g., Information Retrieval, In-
formation Extraction) where it is often suffi-

cient to identify the dependency between the
predicate and the head of the argument con-
stituent rather than extracting the complete ar-
gument constituent.

• It was shown that the extraction of syntac-
tic and semantic dependencies can be per-
formed with state-of-the-art performance in
linear time (Ciaramita et al., 2008). This can
give a significant boost to the adoption of this
technology in real-world applications.

• We hope that this shared task will motivate
several important research directions. For ex-
ample, is the dependency-based representa-
tion better for SRL than the constituent-based
formalism? Does joint learning improve syn-
tactic and semantic analysis?

• Surface (string related patterns, syntax, etc.)
linguistic features can often be detected with
greater reliability than deep (semantic) fea-
tures. In contrast, deep features can cover
more ground because they regularize across
differences in surface strings. Machine learn-
ing systems can be more effective by using
evidence from both deep and surface features
jointly (Zhao, 2005).
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Even though this shared task was more complex
than the previous shared tasks, 22 different teams
submitted results in at least one of the challenges.
Building on this success, we hope to expand this
effort in the future with evaluations on multiple
languages and on larger out-of-domain corpora.
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X. Carreras and L. Màrquez. 2005. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proc. of CoNLL-2005.
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