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Abstract 

This paper presents an iterative model of 

knowledge acquisition of gender infor-

mation associated with word endings in 

French. Gender knowledge is represented 

as a set of rules containing exceptions. 

Our model takes noun-gender pairs as in-

put and constantly maintains a list of 

rules and exceptions which is both coher-

ent with the input data and minimal with 

respect to a minimum description length 

criterion. This model was compared to 

human data at various ages and showed a 

good fit. We also compared the kind of 

rules discovered by the model with rules 

usually extracted by linguists and found 

interesting discrepancies. 

1 Introduction 

In several languages, nouns have a gender. In 

French, nouns are either masculine or feminine. 

For example, you should say le camion (the 

truck) but la voiture (the car). Gender assignment 

in French can be performed using two kinds of 

information. Firstly, lexical information, related 

to the co-occurring words (e.g., articles, adjec-

tives) which most of times marks gender unam-

biguously. Secondly, sublexical information, es-

pecially noun-endings, are pretty good predictors 

of their grammatical gender (e.g., almost all 

nouns endings in –age are masculine). Several 

word endings can be used to reliably predict 

gender of new words but this kind of rules is 

never explicitly taught to children: they have to 

implicitly learn that knowledge from exposure to 

noun-gender pairs. It turns out that children as 

young as 3 already constructed some of these 
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rules, which can be observed by testing them on 

pseudo-words (Karmiloff-Smith, 1979). 

This paper presents an iterative model of the 

way children may acquire this gender knowl-

edge. Its input is a large random sequence of 

noun-gender pairs following the distribution of 

word frequency at a given age. It is supposed to 

represent the words children are exposed to. The 

model constantly maintains a list of rules and 

exceptions both coherent with the input data and 

minimal with respect to an information theory 

criterion. This model was compared to human 

data at various ages and showed a good fit. We 

also compared the kind of rules discovered by 

the model with rules usually extracted by lin-

guists and found interesting discrepancies. 

2 Principle of Simplicity 

Gender knowledge is learned from examples. 

Children are exposed to thousands of nouns 

which are most of the time accompanied with a 

gender clue because of their corresponding de-

terminer or adjective. For instance, when hearing 

“ta poussette est derrière le fauteuil” [your 

stroller is behind the armchair], a child knows 

that poussette is feminine because of the femi-

nine possessive determiner ta, and that fauteuil is 

masculine because of the masculine determiner 

le. After processing thousands of such 

noun/gender pairs, children acquired some gen-

der knowledge which allows them to predict the 

gender of pseudo-words (Marchal et al., 2007; 

Meunier et al., 2008). This knowledge is largely 

dependent on the end of the words since the end-

ings of many nouns in French are associated 

more often with one gender than the other 

(Holmes & Segui, 2004). For instance children 

would predict that pseudo-words such as limette 

or mossette are rather feminine words although 

they never heard them before. It means that they 

should have constructed a rule-like knowledge 

saying that “words ending in -ette are rather 

feminine”. Or maybe it is “words ending in -te 

are rather feminine” or even “words ending in -e 
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are rather feminine”… Actually, there are many 

ways to structure this knowledge, especially be-

cause this kind of rule generally has exceptions. 

Let us take an example. Consider the following 

words and their gender (masculine or feminine): 

barrage [weir] (m), image [image] (f), courage 

[courage] (m), plage [beach] (f), étage [floor] 

(m), garage [garage] (m), collage [collage] (m). 

Several rules could be constructed from this data: 

(1) words ending in -age are masculine except 

image and plage; 

(2) words ending in -age are feminine except 

barrage, courage, étage, garage and collage; 

(3) words ending in -age are feminine except 

words ending in -rage, étage and collage. 

The latter is an example of a rule whose excep-

tions may themselves contain rules. The question 

is to know which rules may be constructed and 

used by children, and which cognitive mecha-

nisms may lead to the construction of such rules.  

In order to investigate that issue, we relied on the 

assumption that children minds obey a principle 

of simplicity. 

This principle is a cognitive implementation of 

the Occam’s razor, saying that one should choose 

the simplest hypothesis consistent with the data. 

This idea has already been used in the field of 

concept learning where it would dictate that we 

induce the simplest category consistent with the 

observed examples—the most parsimonious gen-

eralization available (Feldman, 2003). Chater & 

Vitányi (2003) view it as a unifying principle in 

cognitive science to solve the problem of induc-

tion in which infinitely many patterns are com-

patible with any finite set of data. They assume 

“that the learner chooses the underlying theory of 

the probabilistic structure of the language that 

provides the simplest explanation of the history 

of linguistic input to which the learner has been 

exposed.” (Chater & Vitányi, 2007). 

One way to implement this idea is to consider 

that the simplest description of a hypothesis is 

the shortest one. Without considering frequency 

of the rule usage, rule 1 in the previous example 

seems intuitively more likely to be used by hu-

mans because it is the shortest. 

Intuitively, counting the number of characters 

of each hypothesis could seem a good method 

but it is better to choose the most compact repre-

sentation (Chater, 1999). More important, the 

choice should also depend on the frequency of 

rule usage: the description length of a rule that 

would be frequently used should not be counted 

like a seldom used rule. For instance, rule 2 

could be a more appropriate coding if it is used 

very frequently in the language as opposed to the 

frequency of its exceptions. That is the reason 

why we rely on word frequencies for various 

ages in our simulations. 

Information theory provides a formal version 

of this assumption: the minimum description 

length (MDL) principle (Rissanen, 1978). The 

goal is to minimize the coding cost of both the 

hypothesis and the data reconstructed from the 

hypothesis (two-part coding). However, we will 

see that, in our case, the model contains all the 

data which lead to a simpler mechanism: the idea 

is to select the hypothesis which represents the 

data in the most compact way, that is which has 

the shortest code length. Given a realization x of 

a random variable X with probability distribution 

p, x can be optimally coded with a size of 

−log2(p(x)) bits. 

For instance, suppose you are exposed to only 

4 words A, B, C and D with frequencies .5, .25, 

.125, .125. For example, exposure could be: 

BAACADBABACADBAA. An optimal coding 

would need only 1 bit (−log2(.5)) to code word A 

since it occurs 50% of the time. For instance, A 

would be 0 and all other words would begin with 

1. B needs 2 bits (−log2(.25)), for instance 10. C 

and D both needs 3 bits (−log2(.125)), for in-

stance 110 for C and 111 for D.  

The average code length for a realization of 

the random variable X is computed by weighting 

each code length by the corresponding probabil-

ity. It is exactly what is called entropy: 

H(X)= − ∑ p(x).log2(p(x)) 

In the previous example, the average code length 

is 1×.5+2×.25+3×.125+3×.125=1.75 bits 

From this point of view, learning is data com-

pression (Grünwald, 2005). To sum up, the gen-

eral idea of our approach is to generate rules that 

are coherent with the data observed so far and to 

select the one with the smallest entropy. 

3 Model 

Some computational models have been proposed 

in the literature, but they are concerned with the 

problem of gender assignment given an existing 

lexicon rather than dynamically modeling the 

acquisition of gender knowledge. Their input is 

therefore a set of words representative of all the 

words in the language. Analogical modeling 

(Skousen, 2003) is such a model. It predicts the 

gender of a new word by constructing a set of 

words that are analogous to it, with respect to 
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morphology. Matthews (2005) compared ana-

logical modeling and a neural net and could not 

find any significant difference. Our model takes 

noun-gender pairs as input and dynamically up-

dates the set of rules it has constructed so far in 

order to minimize their description length. 

3.1 Input 

The input to our model is supposed to represent 

the noun/gender pairs children are exposed to.  

We used Manulex (Lété et al., 2004), a French 

lexical database which contains word frequencies 

of 48,900 lexical forms from the analysis of 54 

textbooks. Word frequencies are provided for 3 

levels: grades 1, 2 and 3-5. 

We used the phonetic form of words
2
 because 

the development of the gender knowledge is only 

based on phonological data during the first six 

years of life. It would also be interesting to study 

the development of written-specific rules, but 

this will be done in a future work. 

We constructed a learning corpus by randomly 

selecting in this database 200,000 words and 

their gender such that their distribution is akin to 

their frequency distribution in Manulex. In other 

words, the probability of picking a given word in 

the corpus is just its frequency. In fact, we sup-

pose that the construction of the rule depends on 

the frequency of words children are exposed to 

and not just on the words at a type level.  

It would have been more accurate to take real 

corpora as input, in particular because the order 

in which words are considered probably plays a 

role, but such French corpora for specific ages, 

large enough to be sufficiently accurate, do not 

exist to our knowledge. 

We now present how our model handles these 

noun-gender pairs, one after the other. 

3.2 Knowledge Representation 

Gender knowledge is represented as rules con-

taining exceptions. The premise of a rule is a 

word ending and the conclusion is a gender. The 

* character indicates any substring preceding the 

word ending. A natural language example of a 

rule is: 

(4) */yR/ are feminine nouns (f) except 

/azyR/, /myR/, /myRmyR/ which are mascu-

line (m). 

                                                           
2
 We used an ASCII version of the International Phonetic 

Alphabet. 

Exceptions may contain words that could also be 

organized in rules, which itselves may contain 

exceptions. Here is an example: 

(5) */R/→m except: 

     /tiRliR/, /istwaR/→f 

     */jER/→f except /gRyjER/→m 

     */yR/→f except /azyR/ and /myR/→m 

The gender knowledge corresponding to a given 

corpus is represented as a set of such rules. Such 

a set contains about 80 rules for a grade-1 learn-

ing corpus. We now present how this knowledge 

is updated according to a new noun-gender pair 

to be processed. 

3.3 Rule Construction 

Each time a new noun-gender pair is processed, 

all possible set of rules that are coherent with the 

data are generated, and the best one, with respect 

to the minimum description length criterion, will 

be selected. As an example, consider this little 

current set of two rules which was constructed 

from the words /azyR/, /baRaZ/, /etaZ/, /imaZ/, 

/plaZ/, /SosyR/ and /vwAtyR/
3
 (words above be-

low square brackets are the examples which were 

used to form the rule): 

(6) */yR/→f [/SosyR/, /vwAtyR/] except 

/azyR/→m 

(7a) */aZ/→f [/imaZ/, /plaZ/] except 

/etaZ/, /baRaZ/→m 

Then a new word is processed: /kuRaZ/ which is 

of masculine gender. Since it is not coherent with 

the most specific rule (rule 7a) matching its end-

ing (genders are different), the algorithm at-

tempts to generalize it with the first-level excep-

tions in order to make a new rule. /etaZ/ is taken 

first. It can be generalized with the new word 

/kuRaZ/ to form the new rule: 

(8a) */aZ/→m [/etaZ/, /kuRaZ/] 

All other exceptions which could be included are 

added. The new rule becomes: 

(8b) */aZ/→m [/baRaZ/, /etaZ/, /kuRaZ/] 

Once a new rule has been created, the algorithm 

needs to maintain the coherence of the base. It 

checks whether this new rule is in conflict with 

other rules with a different gender. This is the 
                                                           
3
  Translations: /azyR/ (azur [azure]), /baRaZ/ (bar-

rage [weir]), /etaZ/ (étage [floor]), /imaZ/ (image 

[image]), /plaZ/ (plage [beach]), /SosyR/ (chaus-

sure [shoe]) and /vwAtyR/ (voiture [car]) 
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case since we have the exact same rule but for 

the feminine gender (rule 7a). Conflicting exam-

ples are therefore removed from the old rule and 

put as exceptions to the new rule. In that case of 

identity between old and new rule, all examples 

are removed and the rule disappears. The new 

rule is: 

(8c) */aZ/→m [/baRaZ/, /etaZ/, /kuRaZ/] except 

/imaZ/, /plaZ/→f 

After having checked for rules with a different 

gender, the algorithm now checks for existing 

rules with the same gender that the new rule, ei-

ther more specific or more general. This is not 

the case here. We thus created our first candidate 

set of rules (rules 6 and 8c): 

CANDIDATE SET #1: 
*/yR/→f [/SosyR/, /vwAtyR/] except  

/azyR/→m 

*/aZ/→m [/baRaZ, /etaZ/, /kuRaZ/] except 

/imaZ/, /plaZ/→f 

Other rules could have been generated from the 

set of exceptions of */aZ/→f. The word /etaZ/ was 

taken first but the algorithm needs to consider all 

other exceptions. It then takes /baRaZ/ to form 

the rule: 

(9) */RaZ/→m [/baRaZ/, /kuRaZ/] 

Note that this is a more specific rule than the 

previous one: it is based on a 3-letter ending 

whereas /etaZ/ and /kuRaZ/ generated a 2-letter 

ending. No other exceptions can be added. The 

algorithm now checks for conflicting rules with 

the same gender and puts this new rule as an ex-

ception of the previous rule. Then it checks for 

possible conflict with rules of different gender, 

but there are none. The second candidate set is 

therefore:  

CANDIDATE SET #2: 

*/yR/→f [/SosyR/, /vwAtyR/] except 

/azyR/→m 

*/aZ/→f [/imaZ/, /plaZ/] except  

/etaZ/→m 

*/RaZ/ [/baRaZ/, /kuRaZ/]→m 

Something else needs to be done: removing 

words from a rule and putting them as exceptions 

may lead to new generalizations between them or 

with other existing words. In our case, the algo-

rithm memorized the fact that /imaZ/ and /plaZ/ 

have been put as exceptions. 

It now applies the same mechanism as before: 

adding those words to the new set of rules, as if 

they were new words. By the same previous al-

gorithm, it gives the new rule: 

(7b) */aZ/→f [/imaZ/, /plaZ/] 

In order to maintain the coherence of the rule 

base, examples of conflicting rules are removed 

and put as exceptions: 

(7c) */aZ/→f [/imaZ/, /plaZ/] except  

/baRaZ/, /etaZ/, /kuRaZ/→m 

We now have our third candidate set of rules: 

CANDIDATE SET #3: 
*/yR/→f [/SosyR/, /vwAtyR/] except  

/azyR/→m 

*/aZ→f/ [imaZ,plaZ] except  

/etaZ/, /baRaZ/, /kuRaZ/→m 

Figure 1 summarizes the model’s architecture. 

 
Figure 1. Overall architecture 

3.4 Model Selection 

This section describes how to choose between 

candidate models. As we mentioned before, the 

idea is to select the most compact model. For 

each exception, we compute its frequency F from 

the number of times it appeared so far. For each 

rule, F is just the sum of the frequencies of all 

examples it covered. 

The description length of each rule or excep-

tion is –log2(F). Since the overall value needs to 

take into account the variation of frequency of 

each rule or exception, each description length is 

weighted by its frequency, which gives the aver-

age description length of a candidate set of rules 

(corresponding to the entropy):  

weigth(Model) = –∑Fi.log2 (Fi) 

Suppose the words of the previous example were 

given in that order: /imaZ/ - /vwAtyR/ - /SosyR/ 

- /imaZ/ - /plaZ/ - /SosyR/ - /plaZ/ - /imaZ/ - 

/etaZ/ - /vwAtyR/ - /baRaZ/ - /azyR/ - /plaZ/ - 

/imaZ/ - /imaZ/ - /kuRaZ/ 
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Candidate set #2 would then have an average 

description length of 1.875 bits: 

azyR m -1/16 x log2(1/16) = .25 

*yR f SosyR,vwAtyR -4/16 x log2(4/16) = .5  

*RaZ m baRaZ,kuRaZ -2/16 x log2(2/16) = .375 

etaZ m -1/16 x log2(1/16) = .25 

*aZ f imaZ,plaZ -8/16 x log2(8/16) = .5 

 Sum = 1.875 bits 

In the same way, candidate set #1 would have a 

value of 2.18 bits. Candidate set #3 would have a 

value of 2 bits. The best model is therefore 

model #2 which is the most compact one, ac-

cording to the word frequencies.  

4 Implementation 

For computational purposes, the knowledge in-

ternal representation is slightly different than the 

one we use here: rules and exceptions are repre-

sented on different lines such that exceptions are 

written before their corresponding rules and if a 

rule is more specific than another one, it is writ-

ten before. For instance, candidate set #2 is writ-

ten that way: 

azyR m 
*yR f SosyR,vwAtyR 
*RaZ m baRaZ,kuRaZ 
etaZ m 
*aZ f imaZ,plaZ 

This allows a linear inspection of the rule base in 

order to predict the gender of a new word: the 

first rule which matches the new word gives the 

gender. For instance, if the previous model were 

selected, it would predict that the word /caZ/ is 

feminine, the pseudo-word /tapyR/ is feminine 

and the pseudo-word /piRaZ/ is masculine. 

We could have improved the efficiency of the 

algorithm by organizing words in a prefix tree 

where the keys would be in the reverse order of 

words. However, we are not concerned with the 

efficiency of the model for the moment, but 

rather its ability to account for human data. 

The algorithm is the following (R1<R2 indi-

cates that R1 is more specific than R2. For in-

stance, */tyR/ is more specific than */yR/, which 

in turn is more specific than */R/). 

updateModel(word W, rule base B): 

if W matches a rule R∈B then 

   if R did not contain W as an example 
      add W to the examples of B 
   return B 
else 
   for all exceptions E of B 
      if E and W can be generalized 

         create the new rule N from them 
         include possible other exceptions 

         # More general rule of different gender 

         if ∃R∈B/ R<N and gender(R)≠gender(N) 

            put examples of N matching R as exceptions 
            memorize those exceptions 
            if N now contains one example 
               put that example as an exception 
            if N contains no examples 
               remove N 

         # More specific rule of different gender 

         if ∃R∈B/ R≥N and gender(R)≠gender(N) 

            put examples of R matching N as exceptions  
            memorize those exceptions 
            if R now contains one example 
               put that example as an exception 
            if R contains no examples 
               remove R 

         # Conflicting rule of same gender 

         if ∃R∈B/ N>R and gender(R)=gender(N) 

            include R into N 

         if ∃R∈B/ N<R and gender(R)=gender(N) 

            include N into R 

        Solutions = {B} 

         # Run the algorithm with new exceptions 
         for all memorized exceptions E 

           Solutions=Solutions ∪ updateModel(E,B) 

   if no generalizations was possible 
      Add W to B 
      Solutions = {B} 

return(Solutions) 

5 Simulations 

We ran this model on two corpora, representing 

words grade-1 and grade-2 children are exposed 

to (each 200,000-word long). 76 rules were ob-

tained in running the grade-1 corpus, and 83 

rules with the grade-2 corpus. 

End-

ings 

Gen-

der 

Gender 

Predict-

ability 

Nb  

Exam-

ples 

Nb  

excep-

tions 

*/l/ f 56% 79 62 

*/sol/ m 57% 4 3 

*/i/ m 57% 74 55 

*/R/ m 72% 188 71 

*/am/ f 77% 7 2 

*/sy/ m 83% 5 1 

*/jER/ f 88% 31 4 

*/5/ m 97% 91 2 

*/fon/ m 100% 5 0 

*/sj6/ f 100% 58 0 

Table 1. Sample of rules (with endings and pre-

dicted gender) constructed from grade-1 corpus. 
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Some of the rules of the first set are listed in 

Table I (from grade-1 corpus). For each rule, rep-

resented by a word ending, is detailed its pre-

dicted gender, the number of words (as types) 

following the rule, the number of exceptions. 

Moreover, the “gender predictability” of each 

rule is computed (third column) as the percentage 

of words matching the rule over the total number 

of words with this ending. 

The results of the simulations show that the 

lengths of word endings vary from only one pho-

neme (e.g., /*l/, /*i/) to three (/*jER/, /*fon/). 

These rules do not really correspond to the kind 

of rules linguists would have produced. They 

usually consider that the appropriate ending to 

associate to a given gender is the suffix (Riegel 

et al., 2005). Actually, the nature of the word 

ending that humans may rely on to predict gen-

der is an open question in psycholinguistics. Do 

we rely on the suffix, the last morpheme, the last 

phoneme? The results of our model which did 

not use any morphological knowledge, suggests 

another answer: it may only depend on the statis-

tical regularities of word endings in the language 

and can vary in French from one phoneme to 

three and these endings are sometimes matching 

morphological units. 

However, it is worth noting that the model has 

yet some obvious limitations. The first one is that 

the gender predictability of rules is variable: 

while some rules are highly predictive (e.g., 

*/sj§/ 100% feminine, */@/ 97% masculine), 

other are not (e.g., */l/ 56% feminine, */i/ 57% 

masculine). The second limitation is that the 

rules found by our model are accounting for a 

variable amount of examples. For instance, the 

rule */R/ masculine accounts for 188 examples 

while */sol/ masculine does only 4. One could 

wonder what it means from a developmental 

point of view to create rules that are extracted 

from very few examples. Do children build such 

rules? This is far from sure and we shall have to 

further address these clear limitations. 

Another of our research goals was to test to 

what extent our model could predict human data. 

To that end, the model’s gender assignment per-

formance was compared to children’s one. 

6 Comparison to Experimental Data 

6.1 Experiment 

An experiment was conducted to study how and 

when French native children acquire regularities 

between words endings and their associated gen-

der. Nine endings were selected, five which are 

more likely associated to the feminine gender 

(/ad/, /asj§/, /El/, /ot/, /tyR/) and four to the mas-

culine gender (/aZ/, /m@/, /waR/, /O/). Two lists 

of 30 pseudo-words were created containing each 

15 pseudo-words whose expected gender is mas-

culine (such as “brido” or “rinloir”) and 15 

whose expected gender is feminine (such as 

“surbelle” or “marniture”). The presentation of 

each list was counterbalanced across participants.  

Participants were 136 children from Grenoble 

(all French native speakers): 28 children at the 

end of preschool, 30 children at the beginning of 

grade 1, 36 children at the end of grade 1 and 42 

children at the beginning of grade 2. Each par-

ticipant was given a list and had to perform a 

computer-based gender decision task. Each 

pseudo-word was simultaneously spoken and 

displayed in the center of the screen when the 

determiners “le” (masculine) and “la” (feminine) 

were displayed at the bottom of the screen. Then 

children had to press the keyboard key corre-

sponding to their intuition, which was recorded. 

 

    

Pre-

school 

Beg.  

Grade1 

End  

Grade1 

Beg.  

Grade2 

End-

ings Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

/ad/ f 45.24 56.67 67.59** 57.14 

/asj§/ f 58.33 58.89 70.37** 65.08** 

/El/ f 60.71* 62.22* 76.85** 64.29** 

/ot/ f 53.57 71.11** 82.41** 72.22** 

/tyR/ f 50.00 68.89** 77.78** 68.25** 

/aZ/ m 51.19 64.44** 64.81** 61.11** 

/m@/ m 60.71* 55.56 57.41 50.00 

/O/ m 61.90* 65.56** 80.56** 78.57** 

/waR/ m 52.38 62.22* 64.81** 68.25** 

Legend: Gd.:Gender; Beg.:Beginning; 

% Exp. Gd.:% Expected Gender; 

* p<.05,**p<.01   

Table 2. Gender attribution rate as a function of 

endings and grade level. 

 

In brief, results are twofold. First, children 

have acquired some implicit knowledge regard-

ing gender information associated with word 

ending. As can be seen in Table 2, at the begin-

ning of grade 1, children respond above chance 

and in the expected direction for the majority of 

endings (Chi2 test was used to assess statistical 

significance). At preschool children responded 

also above chance for three word endings. Sec-

ond, there is a clear developmental trend since 

gender attribution increases in the expected di-

rection with grade level and more endings are 

determined by the older children. The exposure 
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to written language during the first school year 

probably reinforces the implicit knowledge de-

veloped by children before primary school. 

6.2 Human vs. Model Data Comparison 

Two types of analyses were drawn in order to 

compare model and data. Firstly, the gender pre-

dictions obtained from the model were correlated 

to those given by children, regarding the gender 

of pseudo-words. Secondly, the endings created 

by the model were compared  to those used in the 

experimental material. Correlations were com-

puted between our model and human data (Table 

3) by taking into account the rate of predicted 

masculine gender, for each pseudo-word. 

 

 Model Grade 1 Model Grade 2 

Preschool 0.31 0.33 

Beg. Grade 1 0.6 0.64 

End Grade 1 0.82 0.86 

Beg. Grade 2 0.74 0.77 

Table 3. Correlations between model and data. 

 

The highest correlations are obtained for children 

at the end of grade 1 and at the beginning of 

grade 2. This result is interesting since the cor-

pora are precisely intended to represent the lexi-

cal knowledge corresponding to the school level 

of these children. Moreover, the correlations ob-

tained with the grade-2 model are higher (though 

not significantly) than those obtained with the 

grade-1 model. It thus seems that our model is 

fairly well suited to account for children’s re-

sults, at least for the older ones. The low correla-

tions observed with the younger children of our 

sample cannot be interpreted unambiguously; 

one could say that children before grade 1 have 

not built much knowledge regarding gender of 

word endings but this conclusion contradicts 

previous results (Meunier et al., 2008) and it re-

mains to be explored by using a corpora appro-

priated to the lexicon of preschool children. 

The endings used by the model to predict the 

gender of pseudo-words were also compared 

with the endings used in the experiment. Table 4 

presents these endings as well as the rate of mas-

culine gender predicted for the experimental end-

ings by the two models trained with grade-1 and 

grade-2 lexicons. First, note that the endings 

used by the models are the same for both grade-1 

and grade-2 lexicons. The growth of the lexicon 

between grade 1 and grade 2 does not modify 

these rules. Secondly, one can notice that grade-2 

model results are more defined than grade-1 re-

sults. Third, a very salient result is that model 

endings are short. For example, the model did 

not create a rule such */ad/ and rather used the 

more compact rule */d/ to predict the gender of 

the pseudo-word /bOSad/. 

 

 Model Grade 1 Model Grade 2 

Endings 

End-

ings 

% Gd. 

Masc 

End-

ings 

% Gd. 

Masc 

/ad/ */d/ 0.28 */d/ 0.17 

/asj§/ */sj§/ 0 */sj§/ 0 

/El/ */l/ 0.44 */l/ 0.32 

/ot/ */t/ 0.14 */t/ 0.09 

/tyR/ */yR/ 0.09 */yR/ 0.05 

/aZ/ */Z/ 0.8 */Z/ 0.91 

/m@/ */@/ 0.95 */@/ 0.98 

/O/ */O/ 0.93 */O/ 0.96 

/waR/ */R/ 0.72 */R/ 0.82 

Table 4. Rate for expected masculine gender 

predicted by our models. 

 

In fact, the majority of the endings used by the 

model are short, i.e. composed with one pho-

neme. Very few endings created by the model are 

morphological units such as suffixes. In fact, the 

endings /d/ or /R/ are not derivational mor-

phemes, but the endings /sj§/ or /yR/ are suffixes. 

So the MDL-based model establishes rules that 

take into account different types of linguistic 

units from phonemes to morphemes depending 

of the statistical predictability of each ending 

type. This result is related to an important con-

cern about the study of the acquisition of gram-

matical gender: to which unit do children rely on 

to predict gender? Do they rely on the last pho-

neme, biphone, morpheme? 

7 Do children rely on morphemes? 

In grammatical gender acquisition studies, the 

kind of endings used often mixes up phonologi-

cal, derivational and even orthographic cues. 

Several studies used true suffixes (Marchal et al., 

2007, Meunier et al., 2008) to ask children to 

assign gender to pseudo-words. As those studies 

consistently showed that children from 3 years 

old onwards assign a gender to those pseudo-

words following the excepted suffix gender, the 

tentative conclusion was to say that children rely 

on suffixes to assign the gender of new words. 

This is an appealing interpretation as the devel-

opment of morphological structure of words is an 

important aspect of lexical development and 

some of this knowledge is acquired very early 

(Casalis et al., 2000; Karmiloff-Smith, 1979).  
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However, the observations from the MDL-

based model strongly question this assumption: 

the units retained in the model’s rules are often 

shorter than suffixes and the last phoneme seems 

often as predictive as the suffix itself as it leads 

to satisfying correlations with children’s data.  

So, one would conclude that gender knowl-

edge is not attached to morphological units such 

as suffix but is rather a knowledge associated 

with the smaller ending segment that best pre-

dicts gender. Note however that despite the high 

correlations observed, the actual gender predic-

tions issued from children’s data and those is-

sued from the model are not exactly of the same 

magnitude and this would suggest that the MDL-

based model presented here must still be worked 

on in order to better describe gender acquisition. 

For example, the notion of gender predictability 

would benefit from being computed from token 

counts instead of type counts. 

8 Conclusion 

The purpose of this research was to know which 

kind of gender information may be constructed 

and used by children, and which cognitive 

mechanisms may lead to the construction of such 

rules. To investigate that issue, we constructed a 

model based on the MDL principle which reveals 

to be an interesting way to describe the gram-

matical gender acquisition in French, although 

we do not claim that children employ such an 

algorithm. Our model predicts the gender of a 

new word by sequentially scanning exceptions 

and rules. This process appears quite similar to 

the decision lists technique in machine learning 

(Rivest, 1987) which has already been combined 

with the MDL principle (Pfahringer, 1997). 

However, we are not committed to this formal-

ism: we are more interested in the content of the 

model rather than its knowledge representation. 

The comparison between model’s results and 

human data opens a way of reflection on the kind 

of relevant units on which children would rely 

on. Perhaps it is not a kind of ending in particular 

that plays a role but different units varying fol-

lowing the principle of parsimony. 
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