
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 33–40
Manchester, August 2008

Transforming Meaning Representation Grammars to Improve Semantic
Parsing

Rohit J. Kate

Department of Computer Sciences∗

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

rjkate@cs.utexas.edu

Abstract

A semantic parser learning system learns

to map natural language sentences into

their domain-specific formal meaning rep-

resentations, but if the constructs of the

meaning representation language do not

correspond well with the natural language

then the system may not learn a good se-

mantic parser. This paper presents ap-

proaches for automatically transforming a

meaning representation grammar (MRG)

to conform it better with the natural lan-

guage semantics. It introduces grammar

transformation operators and meaning rep-

resentation macros which are applied in an

error-driven manner to transform an MRG

while training a semantic parser learning

system. Experimental results show that the

automatically transformed MRGs lead to

better learned semantic parsers which per-

form comparable to the semantic parsers

learned using manually engineered MRGs.

1 Introduction

Semantic parsing is the task of converting natural

language (NL) sentences into their meaning repre-

sentations (MRs) which a computer program can

execute to perform some domain-specific task, like

controlling a robot, answering database queries

etc. These MRs are expressed in a formal mean-

ing representation language (MRL) unique to the

domain to suit the application, like some specific

command language to control a robot or some

∗Alumnus at the time of submission.
∗c© 2008. Licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

query language to execute database queries. A ma-

chine learning system for semantic parsing takes

NL sentences paired with their respective MRs as

training data and induces a semantic parser which

can then map novel NL sentences into their MRs.

The grammar of an MRL, which we will call

meaning representation grammar (MRG), is as-

sumed to be deterministic and context-free which

is true for grammars of almost all the computer

executable languages. A semantic parsing learn-

ing system typically exploits the given MRG of the

MRL to learn a semantic parser (Kate and Mooney,

2006; Wong and Mooney, 2006). Although in dif-

ferent ways, but the systems presented in these pa-

pers learn how the NL phrases relate to the pro-

ductions of the MRG, and using this information

they parse a test sentence to compositionally gen-

erate its best MR. In order to learn a good seman-

tic parser, it is necessary that the productions of

the MRG accurately represent the semantics be-

ing expressed by the natural language. However,

an MRL and its MRG are typically designed to

best suit the application with little consideration

for how well they correspond to the semantics of

a natural language.

Some other semantic parser learning systems

which need MRL in the form of Prolog (Tang

and Mooney, 2001) or λ-calculus (Zettlemoyer and

Collins, 2007; Wong and Mooney, 2007) do not

use productions of the MRG but instead use pred-

icates of the MRL. However, in order to learn a

good semantic parser, they still require that these

predicates correspond well with the semantics of

the natural language. There are also systems which

learn semantic parsers from more detailed train-

ing data in the form of semantically augmented

parse trees of NL sentences in which each inter-

nal node has a syntactic and a semantic label (Ge

33

(a) NL: If the ball is in our midfield then player 5 should go to (-5,0).

MR: (bpos (rec (pt -32 -35)(pt 0 35))

(do (player our {5})(pos (pt -5 0))))

(b) NL: Which is the longest river in Texas?

MR: answer(longest(river(loc_2(stateid(’Texas’)))))

(c) NL: Which is the longest river in Texas?

MR: select river.name from river where

river.traverse=’Texas’ and river.length=

(select max(river.length) from river

where river.traverse=’Texas’);

Figure 1: Examples of NL sentences and their MRs from

(a) the CLANG domain (b) GEOQUERY domain with func-

tional MRL (c) GEOQUERY domain with SQL.

and Mooney, 2005; Nguyen et al., 2006). For these

systems to work well, it is also necessary that the

semantic labels of the MRL correspond well with

natural language semantics.

If the MRG of a domain-specific MRL does not

correspond well with natural language semantics

then manually re-engineering the MRG to work

well for semantic parsing is a tedious task and re-

quires considerable domain expertise. In this pa-

per, we present methods to automatically trans-

form a given MRG to make it more suitable for

learning semantic parsers. No previous work ad-

dresses this issue to our best knowledge. We intro-

duce grammar transformation operators and mean-

ing representation macros to transform an MRG.

We describe how these are applied in an error-

driven manner using the base semantic parsing

learning algorithm presented in (Kate and Mooney,

2006) resulting in a better learned semantic parser.

Our approach, however, is general enough to im-

prove any semantic parser learning system which

uses productions of the MRG. We present exper-

imental results with three very different MRLs to

show how these grammar transformations improve

the semantic parsing performance.

2 Background

The following subsection gives some examples of

semantic parsing domains and their corresponding

MRLs and illustrates why incompatibility between

MRGs and natural language could hurt semantic

parsing. The next subsection then briefly describes

a base semantic parser learning system which we

use in our experiments.

2.1 MRLs and MRGs for Semantic Parsing

Figure 1 (a) gives an example of a natural lan-

guage sentence and its corresponding MR in an

MRL called CLANG which is a formal declar-

REGION→ (rec POINT POINT)

POINT→ (pt NUM NUM)

NUM→ -32 NUM→ -35

POINT→ (pt NUM NUM)

NUM→ 0 NUM→ 35

Figure 2: The parse for the CLANG expression “(rec (pt

-32 -35) (pt 0 35))” corresponding to the natural language ut-

terance “our midfield” using its original MRG.

ative language with LISP-like prefix notation

designed to instruct simulated soccer players in

the RoboCup1 Coach Competition. The MRL

and its MRG was designed by the Coach Com-

petition community (Chen et al., 2003) to suit

the requirements of their application independent

of how well the MRG conforms with the natural

language semantics. They were, in fact, not

aware that later (Kate et al., 2005) this will be

introduced as a test domain for learning semantic

parsers. In this original MRG for CLANG, there

are several constructs which do not correspond

well with their meanings in the natural language.

For example, the MR expression of the rectangle

(rec (pt -32 -35) (pt 0 35)) from

the example MR in Figure 1 (a), whose parse ac-

cording to the original MRG is shown in Figure 2,

corresponds to the NL utterance “our midfield”. In

the parse tree, the nodes are the MRG productions

and the tokens in upper-case are non-terminals

of the MRG while the tokens in lower-case are

terminals of the MRG, this convention will be

used throughout the paper. As can be seen,

the numbers as well as the productions in the

parse of the MR expression do not correspond to

anything in its natural language utterance. It is

also impossible to derive a semantic parse tree

of this MR expression over its natural language

utterance because there are not enough words in

it to cover all the productions present in the MR

parse at the lowest level. To alleviate this problem,

the provided MRG was manually modified (Kate

et al., 2005) to make it correspond better with

the natural language by replacing such long MR

expressions for soccer regions by shorter expres-

sions like (midfield our)2. This new MRG

was used in all the previous work which uses the

CLANG corpus. In the next sections of the paper,

we will present methods to automatically obtain a

1http://www.robocup.org
2The names for the new tokens introduced were chosen for

readability and their similarity to the natural language words
is inconsequential for learning semantic parsers.

34

(a) ANSWER→ answer (RIVER)

RIVER→ longest (RIVER)

RIVER→ river (LOCATIONS)

LOCATIONS→ loc 2 (STATE)

STATE→ STATEID

STATEID→ stateid (‘Texas’)

(b) ANSWER→ answer (RIVER)

RIVER→ QUALIFIER (RIVER)

QUALIFIER→ longest RIVER→ river (LOCATIONS)

LOCATIONS→ LOC 2 (STATE)

LOC 2→ loc 2 STATE→ STATEID

STATEID→ stateid (‘Texas’)

Figure 3: Different parse trees obtained for the MR

“answer(longest(river(loc 2(stateid(‘Texas’)))))” correspond-

ing to the NL sentence “Which is the longest river in Texas?”

using (a) a simple MRG (b) a manually designed MRG.

better MRG which corresponds well with the NL

semantics.

Figure 1 (b) shows an NL sentence and its MR

from the GEOQUERY domain (Zelle and Mooney,

1996) which consists of a database of U.S. geo-

graphical facts about which a user can query. The

MRL used for GEOQUERY in some of the previ-

ous work is a variable-free functional query lan-

guage, that was constructed from the original MRs

in Prolog (Kate et al., 2005). From this MRL, the

MRG was then manually written so that its pro-

ductions were compatible with the semantics ex-

pressible in natural language. This MRG was dif-

ferent from some simple MRG one would other-

wise design for the MRL. Figure 3 (a) shows the

parse tree obtained using a simple MRG for the

MR shown in Figure 1 (b). The MR parse ob-

tained using the simple MRG is more like a linear

chain which means that in a semantic parse of the

NL sentence each production will have to corre-

spond to the entire sentence. But ideally, different

productions should correspond to the meanings of

different substrings of the sentence. Figure 3 (b)

shows a parse tree obtained using the manually de-

signed MRG in which the productions QUALIFIER

→ longest and LOC 2 → loc 2 would correspond to

the semantic concepts of “longest” and “located

in” that are expressible in natural language.

Finally, Figure 1 (c) shows the same NL sen-

tence from the GEOQUERY domain but the MR

in SQL which is the standard database query lan-

guage. The inner expression finds the length of the

longest river in Texas and then the outer expres-

sion finds the river in Texas which has that length.

Due to space restriction, we are not showing the

parse tree for this SQL MR, but its incompatibil-

ity with the NL sentence can be seen from the MR

itself because part of the query repeats itself with

’Texas’ appearing twice while in the NL sen-

tence everything is said only once.

2.2 KRISP: A Semantic Parser Learning

System

We very briefly describe the semantic parser learn-

ing system, KRISP (Kate and Mooney, 2006),

which we will use as a base system for transform-

ing MRGs, we however note that the MRG trans-

formation methods presented in this paper are gen-

eral enough to work with any system which learns

semantic parser using MRGs. KRISP (Kernel-

based Robust Interpretation for Semantic Parsing)

is a supervised learning system for semantic pars-

ing which takes NL sentences paired with their

MRs as training data. The productions of the MRG

are treated like semantic concepts. For each of

these productions, a Support-Vector Machine clas-

sifier is trained using string similarity as the ker-

nel (Lodhi et al., 2002). Each classifier can then

estimate the probability of any NL substring rep-

resenting the semantic concept for its production.

During semantic parsing, the classifiers are called

to estimate probabilities on different substrings of

the sentence to compositionally build the most

probable MR parse over the entire sentence with

its productions covering different substrings of the

sentence. KRISP was shown to perform competi-

tively with other existing semantic parser learning

systems and was shown to be particularly robust to

noisy NL input.

3 Transforming MRGs Using Operators

This section describes an approach to transform

an MRG using grammar transformation operators

to conform it better with the NL semantics. The

following section will present another approach

for transforming an MRG using macros which is

sometimes more directly applicable.

The MRLs used for semantic parsing are always

assumed to be context-free which is true for al-

most all executable computer languages. There

has been some work in learning context-free gram-

mars (CFGs) for a language given several exam-

35

ples of its expressions (Lee, 1996). Most of the

approaches directly learn a grammar from the ex-

pressions but there also have been approaches that

first start with a simple grammar and then trans-

form it using suitable operators to a better gram-

mar (Langley and Stromsten, 2000). The goodness

for a grammar is typically measured in terms of its

simplicity and coverage. Langley and Stromsten

(2000) transform syntactic grammars for NL sen-

tences. To our best knowledge, there is no previous

work on transforming MRGs for semantic parsing.

For this task, since an initial MRG is always given

with the MRL, there is no need to first learn it from

its MRs. The next subsection describes the opera-

tors our method uses to transform an initial MRG.

The subsection following that then describes how

and when the operators are applied to transform the

MRG during training. Our criteria for goodness of

an MRG is the performance of the semantic parser

learned using that MRG.

3.1 Transformation Operators

We describe five transformation operators which

are used to transform an MRG. Each of these op-

erators preserves the coverage of the grammar,

i.e. after application of the operator, the trans-

formed grammar generates the same language that

the previous grammar generated3. The MRs do

not change but only the way they are parsed may

change because of grammar transformations. This

is important because the MRs are to be used in an

application and hence should not be changed.

1. Create Non-terminal from a Terminal

(CreateNT): Given a terminal symbol t in the

grammar, this operator adds a new production

T → t to it and replaces all the occurrences of

the terminal t in all the other productions by the

new non-terminal T . In the context of seman-

tic parsing learning algorithm, this operator intro-

duces a new semantic concept the previous gram-

mar was not explicit about. For example, this oper-

ator may introduce a production (a semantic con-

cept) LONGEST → longest to the simple grammar

whose parse was shown in Figure 3 (a). This is

close to the production QUALIFIER→ longest of the

manual grammar used in the parse shown in Fig-

ure 3 (b).

2. Merge Non-terminals (MergeNT): This op-

erator merges n non-terminals T1, T2, ..., Tn, by

introducing n productions T → T1, T → T2, ...,

3This is also known as weak equivalence of grammars.

T → Tn where T is a new non-terminal. All the

occurrences of the merged non-terminals on the

right-hand-side (RHS) of all the remaining produc-

tions are then replaced by the non-terminal T . In

order to ensure that this operator preserves the cov-

erage of the grammar, before applying it, it is made

sure that if one of these non-terminals, say T1, oc-

curs on the RHS of a production π1 then there also

exist productions π2, ..., πn which are same as π1

except that T2, ..., Tn respectively occur in them

in place of T1. If this condition is violated for any

production of any of the n non-terminals then this

operator is not applicable. This operator enables

generalization of some non-terminals which occur

in similar contexts leading to generalization of pro-

ductions in which they occur on the RHS. For ex-

ample, this operator may generalize non-terminals

LONGEST and SHORTEST in GEOQUERY MRG to

form QUALIFIER4 → LONGEST and QUALIFIER →
SHORTEST productions.

3. Combine Two Non-terminals (Combi-

neNT): This operator combines two non-terminals

T1 and T2 into one new non-terminal T by intro-

ducing a new production T → T1 T2. All the

instances of T1 and T2 occurring adjacent in this

order on the RHS (with at least one more non-

terminal5) of all the other productions are replaced

by the new non-terminal T . For example, the pro-

duction A→ a B T1 T2 will be changed to A→ a
B T . This operator will not eliminate other occur-

rences of T1 and T2 on the RHS of other produc-

tions in which they do not occur adjacent to each

other. In the context of semantic parsing, this op-

erator adds an extra level in the MR parses which

does not seem to be useful in itself, but later if

the non-terminals T1 and T2 get eliminated (by the

application of the DeleteProd operator described

shortly), this operator will be combining the con-

cepts represented by the two non-terminals.

4. Remove Duplicate Non-terminals (Re-

moveDuplNT): If a production has the same non-

terminal appearing twice on its RHS then this op-

erator adds an additional production which differs

from the first production in that it has only one oc-

currence of that non-terminal. For example, if a

production is A → b C D C, then this operator

will introduce a new production A → b C D re-

4A system generated name will be given to the new non-
terminal.

5Without the presence of an extra non-terminal on the
RHS, this change will merely add redundancy to the parse
trees using this production.

36

moving the second occurrence of the non-terminal

C. This operator is applied only when the subtrees

under the duplicate non-terminals of the produc-

tion are often found to be the same in the parse

trees of the MRs in the training data. As such this

operator will change the MRL the new MRG will

generate, but this can be easily reverted by appro-

priately duplicating the subtrees in its generated

MR parses in accordance to the original produc-

tion. This operator is useful during learning a se-

mantic parser because it eliminates the type of in-

compatibility between MRs and NL sentences il-

lustrated with Figure 1 (c) in Subsection 2.1.

5. Delete Production (DeleteProd): This last

operator deletes a production and replaces the oc-

currences of its left-hand-side (LHS) non-terminal

with its RHS in the RHS of all the other produc-

tions. In terms of semantic parsing, this operator

eliminates the need to learn a semantic concept. It

can undo the transformations obtained by the other

operators by deleting the new productions they in-

troduce.

We note that the CombineNT and MergeNT op-

erators are same as the two operators used by Lan-

gley and Stromsten (2000) to search a good syntac-

tic grammar for natural language sentences from

the space of its possible grammars. We also note

that the applications of CreateNT and CombineNT

operators can reduce a CFG to its Chomsky nor-

mal form6, and conversely, because of the reverse

transformations achieved by the DeleteProd opera-

tor, a Chomsky normal form of a CFG can be con-

verted into any other CFG which accepts the same

language.

3.2 Applying Transformation Operators

In order to transform an MRG to improve semantic

parsing, since a simple hill-climbing type approach

to search the space of all possible MRGs will be

computationally very intensive, we use the follow-

ing error-driven heuristic search which is faster al-

though less thorough.

First, using the provided MRG and the training

data, a semantic parser is trained using KRISP. The

trained semantic parser is applied to each of the

training NL sentences. Next, for each production π
in the MRG, two values totalπ and incorrectπ are

computed. The value totalπ counts how many MR

parses from the training examples use the produc-

6In which all the productions are of the form A → a or
A→ B C.

tion π. The value incorrectπ counts the number

of training examples for which the semantic parser

incorrectly uses the production π, i.e. it either did

not include the production π in the parse of the MR

it produces when the correct MR’s parse included

it, or it included the production π when it was not

present in the correct MR’s parse. These two statis-

tics for a production indicate how well the seman-

tic parser was able to use the production in seman-

tic parsing. If it was not able to use a production π
well, then the ratio incorrectπ/totalπ, which we

call mistakeRatioπ, will be high indicating that

some change needs to be made to that production.

After computing these values for all the produc-

tions, the procedure described below for applying

the first type of operator is followed. After this,

the MRs in the training data are re-parsed using

the new MRG, the semantic parser is re-trained and

the totalπ and incorrectπ values are re-computed.

Next, the procedure for applying the next operator

is followed and so on. The whole process is re-

peated for a specified number of iterations. In the

experiments, we found that the performance does

not improve much after two iterations.

1. Apply CreateNT: For each terminal t in the

grammar, totalt and incorrectt values are com-

puted by summing up the corresponding values for

all the productions in which t occurs on the RHS

with at least one non-terminal7. If totalt is greater

than β (a parameter) and mistakeRatiot =
incorrectt/totalt is greater than α (another pa-

rameter), then the CreateNT operator is applied,

provided the production T → t is not already

present.

2. Apply MergeNT: All the non-terminals oc-

curring on the RHS of all those productions π are

collected whose mistakeRatioπ value is greater

than α and whose totalπ value is greater than β.

The set of these non-terminals is then partitioned

such that the criteria for applying the MergeNT

is satisfied by the non-terminals in each partition

with size at least two. The MergeNT operator is

then applied to the non-terminals in each partition

with size at least two.

3. Apply CombineNT: For every non-terminal

pair T1 and T2, totalT1T2 and incorrectT1T2 val-

ues are computed by summing their correspond-

ing values for the productions in which the two

non-terminals are adjacent in the RHS in the

7Without a non-terminal on the RHS, the operator will
only add a redundant level to the parses which use this pro-
duction.

37

presence of at least one more non-terminal. If

mistakeRatioT1T2 = incorectT1T2/totalT1T2 is

greater than α and totalT1T2 is greater than β, then

the CombineNT operator is applied to these two

non-terminals.

4. Apply RemoveDuplNT: If a production

π has duplicate non-terminals on the RHS under

which the same subtrees are found in the MR parse

trees of the training data more than once then this

operator is applied provided its mistakeRatioπ is

greater than α and totalπ is greater than β.

5. Apply DeleteProd: The DeleteProd opera-

tor is applied to all the productions π and whose

mistakeRatioπ is greater than α and totalπ is

greater than β. This step simply deletes the pro-

ductions which are mostly incorrectly used.

For the experiments, we set the α parameter to

0.75 and β parameter to 5, these values were de-

termined through pilot experiments.

4 Transforming MRGs Using Macros

As was illustrated with Figure 2 in Subsection 2.1,

sometimes there can be large parses for MR ex-

pressions which do not correspond well with their

semantics in the natural language. While it is pos-

sible to transform the MRG using the operators

described in the previous section to reduce a sub-

tree of the parse to just one production which will

then correspond directly to its meaning in the nat-

ural language, it will require a particular sequence

of transformation operators to achieve this which

may rarely happen during the heuristic search used

in the MRG transformation algorithm. In this sec-

tion, we describe a more direct way of obtaining

such transformations using macros.

4.1 Meaning Representation Macros

A meaning representation macro for an MRG is a

production formed by combining two or more ex-

isting productions of the MRG. For example, for

the CLANG example shown in Figure 2, the pro-

duction REGION→ (rec(pt -32 -35)(pt 0 35)) is a mean-

ing representation macro. There could also be non-

terminals on its RHS. From an MR parse drawn

with non-terminals at the internal nodes (instead of

productions), a macro can be derived from a sub-

tree8 rooted at any of the internal nodes by making

its root as the LHS non-terminal and the left-to-

right sequence formed by its leaves (which could

8Each node of a subtree must either include all the chil-
dren nodes of the corresponding node from the original tree
or none of them.

be non-terminals) as the RHS. We use the follow-

ing error-driven procedure to introduce macros in

the MRG in order to improve the performance of

semantic parsing.

4.2 Learning Meaning Representation

Macros

A semantic parser is first learned from the train-

ing data using KRISP and the given MRG. The

learned semantic parser is then applied to the train-

ing sentences and if the system can not produce

any parse for a sentence then the parse tree of its

corresponding MR is included in a set called failed

parse trees. Common subtrees in these failed parse

trees are likely to be good candidates for introduc-

ing macros. Then a set of candidate trees is cre-

ated as follows. This set is first initialized to the

set of failed parse trees. The largest common sub-

tree of every pair of trees in the candidate trees is

then also included in this set if it is not an empty

tree. The process continues with the newly added

trees until no new tree can be included. This pro-

cess is similar to the repeated bottom-up general-

ization of clauses used in the inductive logic pro-

gramming system GOLEM (Muggleton and Feng,

1992). Next, the trees in this set are sorted based

on the number of failed parse trees of which they

are a subtree. The trees which are part of fewer

than β subtrees are removed. Then in highest to

lowest order, the trees are selected one-by-one to

form macros, provided their height is greater than

two (otherwise it will be an already existing MRG

production) and an already selected tree is not its

subtree. A macro is formed from a tree by mak-

ing the non-terminal root of the tree as its LHS

non-terminal and the left-to-right sequence of the

leaves as its RHS.

These newly formed macros (productions) are

then included in the MRG. The MRs in the train-

ing data are re-parsed and the semantic parser is

re-trained using the new MRG. In order to delete

the macros which were not found useful, a pro-

cedure similar to the application of DeleteProd is

used. The totalπ and incorrectπ values for all the

macros are computed in a manner similar to de-

scribed in the previous section. The macros for

which mistakeRatioπ = totalπ/incorrectπ is

greater than α and totalπ is greater than β are re-

moved. This whole procedure of adding and delet-

ing macros is repeated a specified number of it-

erations. In the experiments, we found that two

38

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

Manual grammar
Transformed grammar

Initial grammar

Figure 4: The results comparing the performances of the

learned semantic parsers on the GEOUQERY domain with the

functional query language using different MRGs.

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

Transformed grammar
Initial grammar

Figure 5: The results comparing the performances of

the learned semantic parsers on the GEOUQERY domain with

SQL as the MRL using different MRGs.

iterations are usually sufficient.

5 Experiments

We tested our MRG transformation methods with

MRGs of three different MRLs which were de-

scribed in the Background section. In each case,

we first transformed the given MRG using macros

and then using grammar transformation operators.

The training and testing was done using standard

10-fold cross-validation and the performance was

measured in terms of precision (the percentage of

generated MRs that were correct) and recall (the

percentage of all sentences for which correct MRs

were obtained). Since we wanted to evaluate how

the grammar transformation changes the perfor-

mance on the semantic parsing task, in each of

the experiments, we used the same system, KRISP,

and compared how it performs when trained using

different MRGs for the same MRL. Since KRISP

assigns confidences to the MRs it generates, an en-

tire range of precision-recall trade-off was plotted

by measuring precision and recall values at various

confidence levels.

Figure 4 shows the results on the GEOQUERY

domain using the functional query language whose

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

Manual grammar
Transformed grammar

Initial grammar

Figure 6: The results comparing the performances of the

learned semantic parsers on the CLANG corpus using different

MRGs.

corpus contained total 880 NL-MR pairs. As can

be seen, the performance of the semantic parser

that KRISP learns when trained using the initial

simple MRG for the MRL is not good. But

when that MRG is transformed, the performance

of the semantic parser dramatically improves and

is very close to the performance obtained with the

manually-engineered grammar. The macro trans-

formations did not help improve the performance

with this MRG, and most of the the performance

gain was obtained because of the CreateNT and

DeleteProd operators.

We next tested our MRG transformation algo-

rithm on SQL as the MRL for the GEOQUERY do-

main. This corpus contains 700 NL-MR pairs in

which the NL sentences were taken from the orig-

inal 880 examples. This corpus was previously

used to evaluate the PRECISION system (Popescu

et al., 2003), but since that system is not a machine

learning system, its results cannot be directly com-

pared with ours. The initial MRG we used con-

tained the basic SQL productions. Figure 5 shows

that results improve by a large amount after MRG

transformations. We did not have any manually-

engineered MRG for SQL for this domain avail-

able to us. With this MRG, most of the improve-

ment was obtained using the macros and the Re-

moveDuplNT transformation operator.

Finally, we tested our MRG transformation al-

gorithm on the CLANG domain using its origi-

nal MRG in which all the chief regions of the

soccer field were in the form of numeric MR ex-

pressions which do not correspond to their mean-

ings in the natural language. Its corpus contains

300 examples of NL-MR pairs. Figure 6 shows

the results. After applying the MRG transforma-

tions the performance improved by a large margin.

The gain was due to transformations obtained us-

39

ing macros while the grammar transformation op-

erators did not help with this MRG. Although the

precision was lower for low recall values, the re-

call increased by a large quantity and the best F-

measure improved from 50% to 63%. But the per-

formance still lagged behind that obtained using

the manually-engineered MRG. The main reason

for this is that the manual MRG introduced some

domain specific expressions, like left, right,

left-quarter etc., which correspond directly

to their meanings in the natural language. On

the other hand, the only way to specify “left” of

a region using the original CLANG MRG is by

specifying the coordinates of the left region, like

(rec(pt -32 -35)(pt 0 0)) is the left of

(rec (pt -32 -35) (pt 0 35)) etc. It

is not possible to learn the concept of “left” from

such expressions even with MRG transformations.

6 Conclusions

A meaning representation grammar which does not

correspond well with the natural language seman-

tics can lead to a poor performance by a learned

semantic parser. This paper presented grammar

transformation operators and meaning representa-

tion macros using which the meaning representa-

tion grammar can be transformed to make it better

conform with the semantics of natural language.

Experimental results on three different grammars

demonstrated that the performance on semantic

parsing task can be improved by large amounts by

transforming the grammars.

Acknowledgments

I would like to thank Raymond Mooney for many

useful discussions regarding the work described in

this paper.

References

Chen et al. 2003. Users manual: RoboCup soccer server manual for soc-

cer server version 7.07 and later. Available at http://sourceforge.

net/projects/sserver/.

Ge, R. and R. J. Mooney. 2005. A statistical semantic parser that integrates

syntax and semantics. In Proc. of CoNLL-2005, pages 9–16, Ann Arbor,

MI.

Kate, R. J. and R. J. Mooney. 2006. Using string-kernels for learning se-

mantic parsers. In Proc. of COLING/ACL-2006, pages 913–920, Sydney,

Australia.

Kate, R. J., Y. W. Wong, and R. J. Mooney. 2005. Learning to transform natural

to formal languages. In Proc. of AAAI-2005, pages 1062–1068, Pittsburgh,

PA.

Langley, Pat and Sean Stromsten. 2000. Learning context-free gramamr with a

simplicity bias. In Proc. of ECML-2000, pages 220–228, Barcelona, Spain.

Lee, Lillian. 1996. Learning of context-free languages: A survey of the lit-

erature. Technical Report TR-12-96, Center for Research in Computing

Technology, Harvard University.

Lodhi, Huma, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. 2002. Text classification using string kernels. Journal of Machine

Learning Research, 2:419–444.

Muggleton, Stephen and C. Feng. 1992. Efficient induction of logic programs.

In Muggleton, Stephen, editor, Inductive Logic Programming, pages 281–

297. Academic Press, New York.

Nguyen, Le-Minh, Akira Shimazu, and Xuan-Hieu Phan. 2006. Semantic

parsing with structured SVM ensemble classification models. In Proc. of

COLING/ACL 2006 Main Conf. Poster Sessions, pages 619–626, Sydney,

Australia.

Popescu, Ana-Maria, Oren Etzioni, and Henry Kautz. 2003. Towards a theory

of natural language interfaces to databases. In Proc. of IUI-2003, pages

149–157, Miami, FL.

Tang, L. R. and R. J. Mooney. 2001. Using multiple clause constructors in in-

ductive logic programming for semantic parsing. In Proc. of ECML-2001,

pages 466–477, Freiburg, Germany.

Wong, Y. W. and R. Mooney. 2006. Learning for semantic parsing with statis-

tical machine translation. In Proc. of HLT/NAACL-2006, pages 439–446,

New York City, NY.

Wong, Y. W. and R. J. Mooney. 2007. Learning synchronous grammars for

semantic parsing with lambda calculus. In Proc. of ACL-2007, pages 960–

967, Prague, Czech Republic.

Zelle, J. M. and R. J. Mooney. 1996. Learning to parse database queries using

inductive logic programming. In Proc. of AAAI-1996, pages 1050–1055,

Portland, OR.

Zettlemoyer, Luke S. and Michael Collins. 2007. Online learning of relaxed

CCG grammars for parsing to logical form. In Proc. of EMNLP-CoNLL-

2007, pages 678–687, Prague, Czech Republic.

40

