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Abstract

We describe a parsing approach that makes use
of the perceptron algorithm, in conjunction with
dynamic programming methods, to recover full
constituent-based parse trees. The formalism allows
a rich set of parse-tree features, including PCFG-
based features, bigram and trigram dependency fea-
tures, and surface features. A severe challenge in
applying such an approach to full syntactic pars-
ing is the efficiency of the parsing algorithms in-
volved. We show that efficient training is feasi-
ble, using a Tree Adjoining Grammar (TAG) based
parsing formalism. A lower-order dependency pars-
ing model is used to restrict the search space of the
full model, thereby making it efficient. Experiments
on the Penn WSJ treebank show that the model
achieves state-of-the-art performance, for both con-
stituent and dependency accuracy.

1 Introduction

In global linear models (GLMs) for structured pre-
diction, (e.g., (Johnson et al., 1999; Lafferty et al.,
2001; Collins, 2002; Altun et al., 2003; Taskar et
al., 2004)), the optimal labely∗ for an inputx is

y∗ = arg max
y∈Y(x)

w · f(x, y) (1)

whereY(x) is the set of possible labels for the in-
put x; f(x, y) ∈ Rd is a feature vector that rep-
resents the pair(x, y); andw is a parameter vec-
tor. This paper describes a GLM for natural lan-
guage parsing, trained using the averaged percep-
tron. The parser we describe recovers full syntac-
tic representations, similar to those derived by a
probabilistic context-free grammar (PCFG). A key
motivation for the use of GLMs in parsing is that
they allow a great deal of flexibility in the features
which can be included in the definition off(x, y).
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A critical problem when training a GLM for
parsing is the computational complexity of the
inference problem. The averaged perceptron re-
quires the training set to be repeatedly decoded
under the model; under even a simple PCFG rep-
resentation, finding thearg max in Eq. 1 requires
O(n3G) time, wheren is the length of the sen-
tence, andG is a grammar constant. The average
sentence length in the data set we use (the Penn
WSJ treebank) is over 23 words; the grammar con-
stantG can easily take a value of1000 or greater.
These factors make exact inference algorithms vir-
tually intractable for training or decoding GLMs
for full syntactic parsing.

As a result, in spite of the potential advantages
of these methods, there has been very little previ-
ous work on applying GLMs for full parsing with-
out the use of fairly severe restrictions or approxi-
mations. For example, the model in (Taskar et al.,
2004) is trained on only sentences of 15 words or
less; reranking models (Collins, 2000; Charniak
and Johnson, 2005) restrictY(x) to be a small set
of parses from a first-pass parser; see section 1.1
for discussion of other related work.

The following ideas are central to our approach:
(1) A TAG-based, splittable grammar. We

describe a novel, TAG-based parsing formalism
that allows full constituent-based trees to be recov-
ered. A driving motivation for our approach comes
from the flexibility of the feature-vector represen-
tationsf(x, y) that can be used in the model. The
formalism that we describe allows the incorpora-
tion of: (1) basic PCFG-style features; (2) the
use of features that are sensitive tobigramdepen-
dencies between pairs of words; and (3) features
that are sensitive totrigram dependencies. Any
of these feature types can be combined withsur-
face featuresof the sentencex, in a similar way
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to the use of surface features in conditional ran-
dom fields (Lafferty et al., 2001). Crucially, in
spite of these relatively rich representations, the
formalism can be parsed efficiently (inO(n4G)
time) using dynamic-programming algorithms de-
scribed by Eisner (2000) (unlike many other TAG-
related approaches, our formalism is “splittable”
in the sense described by Eisner, leading to more
efficient parsing algorithms).

(2) Use of a lower-order model for pruning.
The O(n4G) running time of the TAG parser is
still too expensive for efficient training with the
perceptron. We describe a method that leverages
a simple, first-order dependency parser to restrict
the search space of the TAG parser in training and
testing. The lower-order parser runs inO(n3H)
time whereH ≪ G; experiments show that it is
remarkably effective in pruning the search space
of the full TAG parser.

Experiments on the Penn WSJ treebank show
that the model recovers constituent structures with
higher accuracy than the approaches of (Charniak,
2000; Collins, 2000; Petrov and Klein, 2007),
and with a similar level of performance to the
reranking parser of (Charniak and Johnson, 2005).
The model also recovers dependencies with sig-
nificantly higher accuracy than state-of-the-art de-
pendency parsers such as (Koo et al., 2008; Mc-
Donald and Pereira, 2006).

1.1 Related Work
Previous work has made use of various restrictions
or approximations that allow efficient training of
GLMs for parsing. This section describes the rela-
tionship between our work and this previous work.

In reranking approaches, a first-pass parser
is used to enumerate a small set of candidate
parses for an input sentence; the reranking model,
which is a GLM, is used to select between these
parses (e.g., (Ratnaparkhi et al., 1994; Johnson et
al., 1999; Collins, 2000; Charniak and Johnson,
2005)). A crucial advantage of our approach is that
it considers a very large set of alternatives inY(x),
and can thereby avoid search errors that may be
made in the first-pass parser.1

Another approach that allows efficient training
of GLMs is to usesimpler syntactic representa-
tions, in particular dependency structures (McDon-

1Some features used within reranking approaches may be
difficult to incorporate within dynamic programming, but it
is nevertheless useful to make use of GLMs in the dynamic-
programming stage of parsing. Our parser could, of course,
be used as the first-stage parser in a reranking approach.

ald et al., 2005). Dependency parsing can be
implemented inO(n3) time using the algorithms
of Eisner (2000). In this case there is no gram-
mar constant, and parsing is therefore efficient. A
disadvantage of these approaches is that they do
not recover full, constituent-based syntactic struc-
tures; the increased linguistic detail in full syntac-
tic structures may be useful in NLP applications,
or may improve dependency parsing accuracy, as
is the case in our experiments.2

There has been some previous work on GLM
approaches for full syntactic parsing that make use
of dynamic programming. Taskar et al. (2004)
describe a max-margin approach; however, in this
work training sentences were limited to be of 15
words or less. Clark and Curran (2004) describe
a log-linear GLM for CCG parsing, trained on the
Penn treebank. This method makes use of paral-
lelization across an 18 node cluster, together with
up to 25GB of memory used for storage of dy-
namic programming structures for training data.
Clark and Curran (2007) describe a perceptron-
based approach for CCG parsing which is consid-
erably more efficient, and makes use of a super-
tagging model to prune the search space of the full
parsing model. Recent work (Petrov et al., 2007;
Finkel et al., 2008) describes log-linear GLMs ap-
plied to PCFG representations, but does not make
use of dependency features.

2 The TAG-Based Parsing Model

2.1 Derivations

This section describes the idea ofderivationsin
our parsing formalism. As in context-free gram-
mars or TAGs, a derivation in our approach is a
data structure that specifies the sequence of opera-
tions used in combining basic (elementary) struc-
tures in a grammar, to form a full parse tree. The
parsing formalism we use is related to the tree ad-
joining grammar (TAG) formalisms described in
(Chiang, 2003; Shen and Joshi, 2005). However,
an important difference of our work from this pre-
vious work is that our formalism is defined to be
“splittable”, allowing use of the efficient parsing
algorithms of Eisner (2000).

A derivation in our model is a pair〈E, D〉where
E is a set ofspines, andD is a set ofdependencies

2Note however that the lower-order parser that we use to
restrict the search space of the TAG-based parser is based on
the work of McDonald et al. (2005). See also (Sagae et al.,
2007) for a method that uses a dependency parser to restrict
the search space of a more complex HPSG parser.
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Figure 1: Two example trees.

specifying how the spines are combined to form
a parse tree. The spines are similar to elementary
trees in TAG. Some examples are as follows:
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These structures do not have substitution nodes, as
is common in TAGs.3 Instead, the spines consist
of a lexical anchor together with a series of unary
projections, which usually correspond to different
X-bar levels associated with the anchor.

The operations used to combine spines are sim-
ilar to the TAG operations of adjunction and sis-
ter adjunction. We will call these operationsregu-
lar adjunction(r-adjunction) andsister adjunction
(s-adjunction). As one example, thecakespine
shown above can be s-adjoined into theVP node of
theatespine, to form the tree shown in figure 1(a).
In contrast, if we use the r-adjunction operation to
adjoin thecaketree into theVP node, we get a dif-
ferent structure, which has an additionalVP level
created by the r-adjunction operation: the resulting
tree is shown in figure 1(b). The r-adjunction op-
eration is similar to the usual adjunction operation
in TAGs, but has some differences that allow our
grammars to be splittable; see section 2.3 for more
discussion.

We now give formal definitions of the setsE and
D. Takex to be a sentence consisting ofn + 1
words,x0 . . . xn, wherex0 is a specialroot sym-
bol, which we will denote as∗. A derivation for the
input sentencex consists of a pair〈E, D〉, where:
• E is a set of(n + 1) tuples of the form〈i, η〉,

wherei ∈ {0 . . . n} is an index of a word in the
sentence, andη is the spine associated with the
word xi. The setE specifies one spine for each
of the (n + 1) words in the sentence. Where it is

3It would be straightforward to extend the approach to in-
clude substitution nodes, and a substitution operation.

clear from context, we will useηi to refer to the
spine inE corresponding to thei’th word.
• D is a set ofn dependencies. Each depen-

dency is a tuple〈h, m, l〉. Hereh is the index of
the head-wordof the dependency, corresponding
to the spineηh which contains a node that is being
adjoined into.m is the index of themodifier-word
of the dependency, corresponding to the spineηm

which is being adjoined intoηh. l is a label.
The labell is a tuple〈POS, A, ηh, ηm, L〉. ηh and

ηm are the head and modifier spines that are be-
ing combined.POS specifies which node inηh is
being adjoined into.A is a binary flag specifying
whether the combination operation being used is s-
adjunction or r-adjunction.L is a binary flag spec-
ifying whether or not any “previous” modifier has
been r-adjoined into the positionPOS in ηh. By a
previous modifier, we mean a modifierm′ that was
adjoined from the same direction asm (i.e., such
thath < m′ < m or m < m′ < h).

It would be sufficient to definel to be the pair
〈POS, A〉—the inclusion ofηh, ηm andL adds re-
dundant information that can be recovered from
the setE, and other dependencies inD—but it
will be convenient to include this information in
the label. In particular, it is important that given
this definition ofl, it is possible to define a func-
tion GRM(l) that maps a labell to a triple of non-
terminals that represents the grammatical relation
betweenm andh in the dependency structure. For
example, in the tree shown in figure 1(a), the gram-
matical relation betweencakeandate is the triple
GRM(l) = 〈VP VBD NP〉. In the tree shown in
figure 1(b), the grammatical relation betweencake
andate is the tripleGRM(l) = 〈VP VP NP〉.

The conditions under which a pair〈E, D〉 forms
a valid derivation for a sentencex are similar to
those in conventional LTAGs. Each〈i, η〉 ∈ E
must be such thatη is an elementary tree whose
anchor is the wordxi. The dependenciesD must
form a directed, projective tree spanning words
0 . . . n, with ∗ at the root of this tree, as is also
the case in previous work on discriminative ap-
proches to dependency parsing (McDonald et al.,
2005). We allow any modifier treeηm to adjoin
into any position in any head treeηh, but the de-
pendenciesD must nevertheless be coherent—for
example they must be consistent with the spines in
E, and they must be nested correctly.4 We will al-

4For example, closer modifiers to a particular head must
adjoin in at the same or a lower spine position than modifiers
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low multiple modifier spines to s-adjoin or r-adjoin
into the same node in a head spine; see section 2.3
for more details.

2.2 A Global Linear Model

The model used for parsing with this approach is
a global linear model. For a given sentencex, we
defineY(x) to be the set of valid derivations forx,
where eachy ∈ Y(x) is a pair〈E, D〉 as described
in the previous section. A functionf maps(x, y)
pairs to feature-vectorsf(x, y) ∈ Rd. The param-
eter vectorw is also a vector inRd. Given these
definitions, the optimal derivation for an input sen-
tencex is y∗ = arg maxy∈Y(x) w · f(x, y).

We now come to how the feature-vectorf(x, y)
is defined in our approach. A simple “first-order”
model would define

f(x, y) =
∑

〈i,η〉∈E(y)

e(x, 〈i, η〉) +

∑
〈h,m,l〉∈D(y)

d(x, 〈h, m, l〉) (2)

Here we useE(y) andD(y) to respectively refer
to the set of spines and dependencies iny. The
functione maps a sentencex paired with a spine
〈i, η〉 to a feature vector. The functiond maps de-
pendencies withiny to feature vectors. This de-
composition is similar to the first-order model of
McDonald et al. (2005), but with the addition of
thee features.

We will extend our model to include higher-
order features, in particular features based onsib-
ling dependencies (McDonald and Pereira, 2006),
and grandparentdependencies, as in (Carreras,
2007). Ify = 〈E, D〉 is a derivation, then:
• S(y) is a set of sibling dependencies. Each

sibling dependency is a tuple〈h, m, l, s〉. For each
〈h, m, l, s〉 ∈ S the tuple〈h, m, l〉 is an element of
D; there is one member ofS for each member of
D. The indexs is the index of the word that was
adjoined to the spine forh immediately beforem
(or theNULL symbol if no previous adjunction has
taken place).
• G(y) is a set of grandparent dependencies of

type 1. Each type 1 grandparent dependency is a
tuple 〈h, m, l, g〉. There is one member ofG for
every member ofD. The additional information,
the indexg, is the index of the word that is the first
modifier to theright of the spine form.

that are further from the head.
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Figure 2: Two Example Trees
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Figure 3: An example tree, formed by a combina-
tion of the two structures in figure 2.

• Q(y) is an additional set of grandparent de-
pendencies, of type 2. Each of these dependencies
is a tuple〈h, m, l, q〉. Again, there is one member
of Q for every member ofD. The additional infor-
mation, the indexq, is the index of the word that is
the first modifier to theleft of the spine form.

The feature-vector definition then becomes:

f(x, y) =
X

〈i,η〉∈E(y)

e(x, 〈i, η〉) +

X
〈h,m,l〉∈D(y)

d(x, 〈h, m, l〉) +
X

〈h,m,l,s〉∈S(y)

s(x, 〈h, m, l, s〉) +

X
〈h,m,l,g〉∈G(y)

g(x, 〈h, m, l, g〉) +
X

〈h,m,l,q〉∈Q(y)

q(x, 〈h, m, l, q〉)

(3)

wheres, g andq are feature vectors corresponding
to the new, higher-order elements.5

2.3 Recovering Parse Trees from Derivations

As in TAG approaches, there is a mapping from
derivations〈E, D〉 to parse trees (i.e., the type of
trees generated by a context-free grammar). In our
case, we map a spine and its dependencies to a con-
stituent structure by first handling the dependen-

5We also added constituent-boundary features to the
model, which is a simple change that led to small improve-
ments on validation data; for brevity we omit the details.
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cies on each side separately and then combining
the left and right sides.

First, it is straightforward to build the con-
stituent structure resulting from multiple adjunc-
tions on the same side of a spine. As one exam-
ple, the structure in figure 2(a) is formed by first
s-adjoining the spine with anchorcakeinto theVP
node of the spine forate, then r-adjoining spines
anchored bytodayandquickly into the same node,
where all three modifier words are to the right of
the head word. Notice that each r-adjunction op-
eration creates a newVP level in the tree, whereas
s-adjunctions do not create a new level. Now con-
sider a tree formed by first r-adjoining a spine for
luckily into the VP node forate, followed by s-
adjoining the spine forJohn into theS node, in
both cases where the modifiers are to the left of
the head. In this case the structure that would be
formed is shown in figure 2(b).

Next, consider combining the left and right
structures of a spine. The main issue is how to
handle multiple r-adjunctions or s-adjunctions on
both sides of a node in a spine, because our deriva-
tions do not specify how adjunctions from different
sides embed with each other. In our approach, the
combination operation preserves the height of the
different modifiers from the left and right direc-
tions. To illustrate this, figure 3 shows the result
of combining the two structures in figure 2. The
combination of the left and right modifier struc-
tures has led to flat structures, for example the rule
VP→ ADVP VP NP in the above tree.

Note that our r-adjunction operation is different
from the usual adjunction operation in TAGs, in
that “wrapping” adjunctions are not possible, and
r-adjunctions from the left and right directions are
independent from each other; because of this our
grammars are splittable.

3 Parsing Algorithms

3.1 Use of Eisner’s Algorithms

This section describes the algorithm for finding
y∗ = arg maxy∈Y(x) w · f(x, y) wheref(x, y) is
defined through either the first-order model (Eq. 2)
or the second-order model (Eq. 3).

For the first-order model, the methods described
in (Eisner, 2000) can be used for the parsing algo-
rithm. In Eisner’s algorithms for dependency pars-
ing each word in the input has left and right finite-
state (weighted) automata, which generate the left
and right modifiers of the word in question. We

make use of this idea of automata, and also make
direct use of the method described in section 4.2 of
(Eisner, 2000) that allows a set of possible senses
for each word in the input string. In our use of
the algorithm, each possible sense for a word cor-
responds to a different possible spine that can be
associated with that word. The left and right au-
tomata are used to keep track of the last position
in the spine that was adjoined into on the left/right
of the head respectively. We can make use of sep-
arate left and right automata—i.e., the grammar is
splittable—because left and right modifiers are ad-
joined independently of each other in the tree. The
extension of Eisner’s algorithm to the second-order
model is similar to the algorithm described in (Car-
reras, 2007), but again with explicit use of word
senses and left/right automata. The resulting algo-
rithms run inO(Gn3) andO(Hn4) time for the
first-order and second-order models respectively,
whereG andH are grammar constants.

3.2 Efficient Parsing

The efficiency of the parsing algorithm is impor-
tant in applying the parsing model to test sen-
tences, and also when training the model using dis-
criminative methods. The grammar constantsG
andH introduced in the previous section are poly-
nomial in factors such as the number of possible
spines in the model, and the number of possible
states in the finite-state automata implicit in the
parsing algorithm. These constants are large, mak-
ing exhaustive parsing very expensive.

To deal with this problem, we use a simple ini-
tial model to prune the search space of the more
complex model. The first-stage model we use
is a first-order dependency model, with labeled
dependencies, as described in (McDonald et al.,
2005). As described shortly, we will use this model
to computemarginal scores for dependencies in
both training and test sentences. A marginal score
µ(x, h, m, l) is a value between0 and 1 that re-
flects the plausibility of a dependency for sentence
x with head-wordxh, modifier wordxm, and la-
bel l. In the first-stage pruning model the labelsl
are triples of non-terminals representing grammat-
ical relations, as described in section 2.1 of this
paper—for example, one possible label would be
〈VP VBD NP〉, and in general any triple of non-
terminals is possible.

Given a sentencex, and an indexm of a word
in that sentence, we defineDMAX(x, m) to be the
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highest scoring dependency withm as a modifier:

DMAX(x, m) = max
h,l

µ(x, h, m, l)

For a sentencex, we then define the set of allow-
able dependencies to be

π(x) = {〈h, m, l〉 : µ(x, h, m, l) ≥ αDMAX(x, m)}
whereα is a constant dictating the beam size that
is used (in our experiments we usedα = 10−6).

The setπ(x) is used to restrict the set of pos-
sible parses under the full TAG-based model. In
section 2.1 we described how the TAG model has
dependency labels of the form〈POS, A, ηh, ηm, L〉,
and that there is a functionGRM that maps labels
of this form to triples of non-terminals. The ba-
sic idea of the pruned search is to only allow de-
pendencies of the form〈h, m, 〈POS, A, ηh, ηm, L〉〉
if the tuple 〈h, m, GRM(〈POS, A, ηh, ηm, L〉)〉 is a
member ofπ(x), thus reducing the search space
for the parser.

We now turn to how the marginalsµ(x, h, m, l)
are defined and computed. A simple approach
would be to use a conditional log-linear model
(Lafferty et al., 2001), with features as defined by
McDonald et al. (2005), to define a distribution
P (y|x) where the parse structuresy are depen-
dency structures with labels that are triples of non-
terminals. In this case we could define

µ(x, h, m, l) =
∑

y:(h,m,l)∈y

P (y|x)

which can be computed with inside-outside style
algorithms, applied to the data structures from
(Eisner, 2000). The complexity of training and ap-
plying such a model is againO(Gn3), whereG is
the number of possible labels, and the number of
possible labels (triples of non-terminals) is around
G = 1000 in the case of treebank parsing; this
value forG is still too large for the method to be ef-
ficient. Instead, we train three separate modelsµ1,
µ2, andµ3 for the three different positions in the
non-terminal triples. We then takeµ(x, h, m, l) to
be a product of these three models, for example we
would calculate

µ(x, h, m, 〈VP VBD NP〉) =
µ1(x, h, m, 〈VP〉)× µ2(x, h, m, 〈VBD〉)
×µ3(x, h, m, 〈NP〉)

Training the three models, and calculating the
marginals, now has a grammar constant equal

to the number of non-terminals in the grammar,
which is far more manageable. We use the algo-
rithm described in (Globerson et al., 2007) to train
the conditional log-linear model; this method was
found to converge to a good model after 10 itera-
tions over the training data.

4 Implementation Details

4.1 Features

Section 2.2 described the use of feature vectors
associated with spines used in a derivation, to-
gether with first-order, sibling, and grandparent
dependencies. The dependency features used in
our experiments are closely related to the features
described in (Carreras, 2007), which are an ex-
tension of the McDonald and Pereira (2006) fea-
tures to cover grandparent dependencies in addi-
tion to first-order and sibling dependencies. The
features take into account the identity of the la-
bels l used in the derivations. The features could
potentially look at any information in the la-
bels, which are of the form〈POS, A, ηh, ηm, L〉,
but in our experiments, we map labels to a pair
(GRM(〈POS, A, ηh, ηm, L〉), A). Thus the label fea-
tures are sensitive only to the triple of non-
terminals corresponding to the grammatical rela-
tion involved in an adjunction, and a binary flag
specifiying whether the operation is s-adjunction
or r-adjunction.

For the spine featurese(x, 〈i, η〉), we use fea-
ture templates that are sensitive to the identity of
the spineη, together with contextual features of
the stringx. These features consider the iden-
tity of the words and part-of-speech tags in a win-
dow that is centered onxi and spans the range
x(i−2) . . . x(i+2).

4.2 Extracting Derivations from Parse Trees

In the experiments in this paper, the following
three-step process was used: (1) derivations were
extracted from a training set drawn from the Penn
WSJ treebank, and then used to train a parsing
model; (2) the test data was parsed using the re-
sulting model, giving a derivation for each test
data sentence; (3) the resulting test-data deriva-
tions were mapped back to Penn-treebank style
trees, using the method described in section 2.1.
To achieve step (1), we first apply a set of head-
finding rules which are similar to those described
in (Collins, 1997). Once the head-finding rules
have been applied, it is straightforward to extract
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precision recall F1
PPK07 – – 88.3
FKM08 88.2 87.8 88.0
CH2000 89.5 89.6 89.6
CO2000 89.9 89.6 89.8
PK07 90.2 89.9 90.1

this paper 91.4 90.7 91.1
CJ05 – – 91.4
H08 – – 91.7

CO2000(s24) 89.6 88.6 89.1
this paper (s24) 91.1 89.9 90.5

Table 1: Results for different methods. PPK07, FKM08,
CH2000, CO2000, PK07, CJ05 and H08 are results on section
23 of the Penn WSJ treebank, for the models of Petrov et al.
(2007), Finkel et al. (2008), Charniak (2000), Collins (2000),
Petrov and Klein (2007), Charniak and Johnson (2005), and
Huang (2008). (CJ05 is the performance of an updated
model at http://www.cog.brown.edu/mj/software.htm.) “s24”
denotes results on section 24 of the treebank.

s23 s24
KCC08 unlabeled 92.0 91.0
KCC08 labeled 92.5 91.7

this paper 93.5 92.5

Table 2:Table showing unlabeled dependency accuracy for
sections 23 and 24 of the treebank, using the method of (Ya-
mada and Matsumoto, 2003) to extract dependencies from
parse trees from our model. KCC08 unlabeled is from (Koo
et al., 2008), a model that has previously been shown to have
higher accuracy than (McDonald and Pereira, 2006). KCC08
labeled is the labeled dependency parser from (Koo et al.,
2008); here we only evaluate the unlabeled accuracy.

derivations from the Penn treebank trees.
Note that the mapping from parse trees to

derivations is many-to-one: for example, the ex-
ample trees in section 2.3 have structures that are
as “flat” (have as few levels) as is possible, given
the setD that is involved. Other similar trees,
but with more VP levels, will give the same set
D. However, this issue appears to be benign in the
Penn WSJ treebank. For example, on section 22 of
the treebank, if derivations are first extracted using
the method described in this section, then mapped
back to parse trees using the method described in
section 2.3, the resulting parse trees score 100%
precision and 99.81% recall in labeled constituent
accuracy, indicating that very little information is
lost in this process.

4.3 Part-of-Speech Tags, and Spines

Sentences in training, test, and development data
are assumed to have part-of-speech (POS) tags.
POS tags are used for two purposes: (1) in the
features described above; and (2) to limit the set
of allowable spines for each word during parsing.
Specifically, for each POS tag we create a separate

1st stage 2nd stage
α active coverage oracle F1 speed F1

10−4 0.07 97.7 97.0 5:15 91.1
10−5 0.16 98.5 97.9 11:45 91.6
10−6 0.34 99.0 98.5 21:50 92.0

Table 3: Effect of the beam size, controlled byα, on the
performance of the parser on the development set (1,699 sen-
tences). In each caseα refers to the beam size used in both
training and testing the model. “active”: percentage of de-
pendencies that remain in the beam out of the total number of
labeled dependencies (1,000 triple labels times 1,138,167 un-
labeled dependencies); “coverage”: percentage of correct de-
pendencies in the beam out of the total number of correct de-
pendencies. “oracle F1”: maximum achievable score of con-
stituents, given the beam. “speed”: parsing time inmin:sec
for the TAG-based model (this figure does not include the time
taken to calculate the marginals using the lower-order model);
“F1”: score of predicted constituents.

dictionary listing the spines that have been seen
with this POS tag in training data; during parsing
we only allow spines that are compatible with this
dictionary. (For test or development data, we used
the part-of-speech tags generated by the parser of
(Collins, 1997). Future work should consider in-
corporating the tagging step within the model; it is
not challenging to extend the model in this way.)

5 Experiments

Sections 2-21 of the Penn Wall Street Journal tree-
bank were used as training data in our experiments,
and section 22 was used as a development set. Sec-
tions 23 and 24 were used as test sets. The model
was trained for 20 epochs with the averaged per-
ceptron algorithm, with the development data per-
formance being used to choose the best epoch. Ta-
ble 1 shows the results for the method.

Our experiments show an improvement in per-
formance over the results in (Collins, 2000; Char-
niak, 2000). We would argue that the Collins
(2000) method is considerably more complex than
ours, requiring a first-stage generative model, to-
gether with a reranking approach. The Char-
niak (2000) model is also arguably more com-
plex, again using a carefully constructed genera-
tive model. The accuracy of our approach also
shows some improvement over results in (Petrov
and Klein, 2007). This work makes use of a
PCFG with latent variables that is trained using
a split/merge procedure together with the EM al-
gorithm. This work is in many ways comple-
mentary to ours—for example, it does not make
use of GLMs, dependency features, or of repre-
sentations that go beyond PCFG productions—and
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some combination of the two methods may give
further gains.

Charniak and Johnson (2005), and Huang
(2008), describe approaches that make use of non-
local features in conjunction with the Charniak
(2000) model; future work may consider extend-
ing our approach to include non-local features.
Finally, other recent work (Petrov et al., 2007;
Finkel et al., 2008) has had a similar goal of scal-
ing GLMs to full syntactic parsing. These mod-
els make use of PCFG representations, but do not
explicitly model bigram or trigram dependencies.
The results in this work (88.3%/88.0% F1) are
lower than our F1 score of 91.1%; this is evidence
of the benefits of the richer representations enabled
by our approach.

Table 2 shows the accuracy of the model in
recovering unlabeled dependencies. The method
shows improvements over the method described
in (Koo et al., 2008), which is a state-of-the-art
second-order dependency parser similar to that of
(McDonald and Pereira, 2006), suggesting that the
incorporation of constituent structure can improve
dependency accuracy.

Table 3 shows the effect of the beam-size on the
accuracy and speed of the parser on the develop-
ment set. With the beam setting used in our exper-
iments (α = 10−6), only 0.34% of possible depen-
dencies are considered by the TAG-based model,
but 99% of all correct dependencies are included.
At this beam size the best possible F1 constituent
score is 98.5. Tighter beams lead to faster parsing
times, with slight drops in accuracy.

6 Conclusions
We have described an efficient and accurate parser
for constituent parsing. A key to the approach has
been to use a splittable grammar that allows effi-
cient dynamic programming algorithms, in com-
bination with pruning using a lower-order model.
The method allows relatively easy incorporation of
features; future work should leverage this in pro-
ducing more accurate parsers, and in applying the
parser to different languages or domains.
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