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In global linear models (GLMs) for structured pre-
diction, (e.g., (Johnson et al., 1999; Lafferty et al.
2001; Collins, 2002; Altun et al., 2003; Taskar e

al., 2004)), the optimal labef* for an inputx is

where)(x) is the set of possible labels for the in-
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Abstract

We describe a parsing approach that makes use
of the perceptron algorithm, in conjunction with
dynamic programming methods, to recover full
constituent-based parse trees. The formalism allows
a rich set of parse-tree features, including PCFG-
based features, bigram and trigram dependency fea-
tures, and surface features. A severe challenge in
applying such an approach to full syntactic pars-
ing is the efficiency of the parsing algorithms in-
volved. We show that efficient training is feasi-
ble, using a Tree Adjoining Grammar (TAG) based
parsing formalism. A lower-order dependency pars-
ing model is used to restrict the search space of the
full model, thereby making it efficient. Experiments
on the Penn WSJ treebank show that the model
achieves state-of-the-art performance, for both con-
stituent and dependency accuracy.

Introduction

(1)

* = arg max w-f(x,
y g max, (x,9)

putx; f(x,y) € R?is a feature vector that rep-
resents the paifx,y); andw is a parameter vec-

tor. This paper describes a GLM for natural lan
guage parsing, trained using the averaged perce?—
tron. The parser we describe recovers full synta

tic representations, similar to those derived by
probabilistic context-free grammar (PCFG). A ke

motivation for the use of GLMs in parsing is that .
they allow a great deal of flexibility in the features

which can be included in the definition 8fx, y).
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A critical problem when training a GLM for
parsing is the computational complexity of the
inference problem. The averaged perceptron re-
quires the training set to be repeatedly decoded
under the model; under even a simple PCFG rep-
resentation, finding therg max in Eqg. 1 requires
O(n3G) time, wheren is the length of the sen-
tence, and~ is a grammar constant. The average
sentence length in the data set we use (the Penn
WSJ treebank) is over 23 words; the grammar con-
stantG can easily take a value abH00 or greater.
These factors make exact inference algorithms vir-
tually intractable for training or decoding GLMs
for full syntactic parsing.

As a result, in spite of the potential advantages
of these methods, there has been very little previ-
ous work on applying GLMs for full parsing with-
out the use of fairly severe restrictions or approxi-

ations. For example, the model in (Taskar et al.,

004) is trained on only sentences of 15 words or
less; reranking models (Collins, 2000; Charniak
and Johnson, 2005) restri@{(x) to be a small set
of parses from a first-pass parser; see section 1.1
for discussion of other related work.

The following ideas are central to our approach:
(1) A TAG-based, splittable grammar. We
describe a novel, TAG-based parsing formalism
at allows full constituent-based trees to be recov-

red. A driving motivation for our approach comes

i{:om the flexibility of the feature-vector represen-

ationsf(x, y) that can be used in the model. The
formalism that we describe allows the incorpora-
tion of: (1) basic PCFG-style features; (2) the
use of features that are sensitivebigram depen-
dencies between pairs of words; and (3) features
that are sensitive tarigram dependencies. Any
gf these feature types can be combined vsitin-
face featuref the sentence, in a similar way
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to the use of surface features in conditional rarald et al., 2005). Dependency parsing can be
dom fields (Lafferty et al., 2001). Crucially, in implemented inO(n3) time using the algorithms
spite of these relatively rich representations, thef Eisner (2000). In this case there is no gram-
formalism can be parsed efficiently (if(n*G) mar constant, and parsing is therefore efficient. A
time) using dynamic-programming algorithms dedisadvantage of these approaches is that they do
scribed by Eisner (2000) (unlike many other TAG+ot recover full, constituent-based syntactic struc-
related approaches, our formalism is “splittabletures; the increased linguistic detail in full syntac-
in the sense described by Eisner, leading to mote& structures may be useful in NLP applications,
efficient parsing algorithms). or may improve dependency parsing accuracy, as
(2) Use of a lower-order model for pruning. is the case in our experimertts.
The O(n*G) running time of the TAG parser is There has been some previous work on GLM
still too expensive for efficient training with the approaches for full syntactic parsing that make use
perceptron. We describe a method that leverage$ dynamic programming. Taskar et al. (2004)
a simple, first-order dependency parser to restrickescribe a max-margin approach; however, in this
the search space of the TAG parser in training angork training sentences were limited to be of 15
testing. The lower-order parser runs@(n3H) words or less. Clark and Curran (2004) describe
time whereH < G; experiments show that it is a log-linear GLM for CCG parsing, trained on the
remarkably effective in pruning the search spacPenn treebank. This method makes use of paral-
of the full TAG parser. lelization across an 18 node cluster, together with
Experiments on the Penn WSJ treebank shoup to 25GB of memory used for storage of dy-
that the model recovers constituent structures withamic programming structures for training data.
higher accuracy than the approaches of (Charnia€lark and Curran (2007) describe a perceptron-
2000; Collins, 2000; Petrov and Klein, 2007),based approach for CCG parsing which is consid-
and with a similar level of performance to theerably more efficient, and makes use of a super-
reranking parser of (Charniak and Johnson, 2005gagging model to prune the search space of the full
The model also recovers dependencies with sigarsing model. Recent work (Petrov et al., 2007;
nificantly higher accuracy than state-of-the-art deFinkel et al., 2008) describes log-linear GLMs ap-
pendency parsers such as (Koo et al., 2008; M@lied to PCFG representations, but does not make
Donald and Pereira, 2006). use of dependency features.

1.1 Related Work 2 The TAG-Based Parsing Model

Previous v_vork_has made use of various re_st.rlctlorgl Derivations

or approximations that allow efficient training of

GLMs for parsing. This section describes the relalhis section describes the idea @érivationsin

tionship between our work and this previous workour parsing formalism. As in context-free gram-
In reranking approaches, a first-pass parsefars or TAGs, a derivation in our approach is a

is used to enumerate a small set of candidafata structure that specifies the sequence of opera-

parses for an input sentence; the reranking moddions used in combining basic (elementary) struc-

which is a GLM, is used to select between thesBires in a grammar, to form a full parse tree. The

parses (e.g., (Ratnaparkhi et al., 1994; Johnson rarsing formalism we use is related to the tree ad-

al., 1999; Collins, 2000; Charniak and Johnsori0ining grammar (TAG) formalisms described in

2005)). A crucial advantage of our approach is thdChiang, 2003; Shen and Joshi, 2005). However,

it considers a very large set of alternativegjifx), an important difference of our work from this pre-

and can thereby avoid search errors that may Béous work is that our formalism is defined to be

made in the first-pass parder. “splittable”, allowing use of the efficient parsing
Another approach that allows efficient training2lgorithms of Eisner (2000).

of GLMs is to usesimpler syntactic representa- A derivation in our model is a paji©z, D) where

tions in particular dependency structures (McDonE is a set ospinesandD is a set odependencies

1Some features used within reranking approaches may be ?Note however that the lower-order parser that we use to
difficult to incorporate within dynamic programming, but it restrict the search space of the TAG-based parser is based on
is nevertheless useful to make use of GLMs in the dynamidhe work of McDonald et al. (2005). See also (Sagae et al.,
programming stage of parsing. Our parser could, of cours@007) for a method that uses a dependency parser to restrict
be used as the first-stage parser in a reranking approach. the search space of a more complex HPSG parser.
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@ S b) s clear from context, we will use; to refer to the
VP VP spine inE corresponding to théth word.

VBD/\NP VP/\NP oD 'is a set ofn dependencie_s. Ea_ch depen-
‘ ‘ ‘ ‘ dency is a tuplgh, m,l). Hereh is the index of
ate NN VBD NN the head-wordof the dependency, corresponding

Ca‘\ke a‘te Ca‘lke to the spiney, which contains a node that is being
adjoined into.m is the index of thenmodifier-word
Figure 1: Two example trees. of the dependency, corresponding to the spine

which is being adjoined intg;,. [ is alabel.

The labell is a tuple(P0S, A, np, m, L). 1, and

are the head and modifier spines that are be-
combined.P0S specifies which node ipy, is

being adjoined intoA is a binary flag specifying

NP S NP  ADVP  ADVP whether the combination operation being used is s-
| | | | | adjunction or r-adjunctiorL is a binary flag spec-

specifying how the spines are combined to form
a parse tree. The spines are similar to eIementa?IY1

: Ing
trees in TAG. Some examples are as follows:

NNP VP NN RB RB s : .
‘ ‘ \ | | ifying whether or not any “previous” modifier has
John  VBD  cake quickly  luckily been r-adjoined into the positid@s in 7;,. By a
a‘te previous modifier, we mean a modifier that was

gjoined from the same direction as (i.e., such

These structures do not have substitution nodes, , ,
thath < m’ < morm <m' <h).

is common in TAGS Instead, the spines consist o _ _
of a lexical anchor together with a series of unary !t Would be sufficient to definé to be the pair
projections, which usually correspond to differentP0S; A)—the inclusion ofny, 7, andL adds re-
X-bar levels associated with the anchor. dundant information that can be recovered from

The operations used to combine spines are siffl® SetZ, and other dependencies B—but it

ilar to the TAG operations of adjunction and sisWill be convenient to include this information in

ter adjunction. We will call these operatioregu- the 1abel. In particular, it is important that given
lar adjunction(r-adjunction) andsister adjunction this definition ofl, it is possible to define a func-

(s-adjunction). As one example, tioake spine tion GRM(!) that maps a labdl to a triple of non-
shown above can be s-adjoined into ¥fenode of terminals that represents the grammatical relation

theatespine, to form the tree shown in figure 1(a)Petweenn andh in the dependency structure. For

In contrast, if we use the r-adjunction operation t&*@mple, in the tree shown in figure 1(a), the gram-
adjoin thecaketree into theVP node, we get a dif- matical relation betweeocakeandateis the triple

ferent structure, which has an additiond® level GRM(I) = (VP VBD NP). In the tree shown in

created by the r-adjunction operation: the resultinfjgure 1(b), the grammatical relation betwezake

tree is shown in figure 1(b). The r-adjunction op2ndateis the triplecri(l) = (VP VP NP).

eration is similar to the usual adjunction operation The conditions under which a pdif/, D) forms
in TAGs, but has some differences that allow ouft Valid derivation for a sentence are similar to
grammars to be splittable; see section 2.3 for mot§0se in conventional LTAGs. Eachi,n) € E
discussion. must be such thag is an elementary tree whose
We now give formal definitions of the sefisand ~ @nchor is the word:;. The dependencied must
D. Takex to be a sentence consisting of+ 1 form a directed, projective tree spanning words
words, zo . . . 7, Wherezg is a specialoot sym- 0...n, with x at the root of this tree, as is also
bol, which we will denote as. A derivation forthe the case in previous work on discriminative ap-
input sentence consists of a paitE, D), where: Proches to dependency parsing (McDonald et al.,
o £is aset of(n + 1) tuples of the form(i, ), 2005). We allow any modifier treg, to adjoin
wherei € {0...n} is an index of a word in the INto any position in any head treg,, but the de-
sentence, ang is the spine associated with thePendencied) must nevertheless be coherent—for
word z;. The setE specifies one spine for eachexample they must be consistent with the spines in
of the (n + 1) words in the sentence. Where it isZ» @nd they must be nested correctie will al-

31t would be straightforward to extend the approach to in- “For example, closer modifiers to a particular head must
clude substitution nodes, and a substitution operation. adjoin in at the same or a lower spine position than modifiers
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low multiple modifier spines to s-adjoin or r—adjoin(a) i (b) /S\
into the same node in a head spine; see section 2.3 VP NP VP
for more details. VE e NP acte Ve
N fB 3ahn RE viD
2.2 A Global Linear Model Z_ ¥ ey N

The model used for parsing with this approach is \ \
a global linear model. For a given sentenceve e
define)’(x) to be the set of valid derivations far,

where eacly € Y(x) is a pair(E, D) as described Figure 2: Two Example Trees

in the previous section. A functiohmaps(x, y)
S

pairs to feature-vectoyx, y) € RY. The param-
eter vectorw is also a vector irR?. Given these /\

definitions, the optimal derivation for an input sen- NP P
tencex is y* = arg max,cy(x) w - £(x, y). NP /\
We now come to how the feature-vecfix, y) Jomn ve AOvP
is defined in our approach. A simple “first-order” /’\ Rf
m | woul fin ADVP VP NP quickly
odel would define S |
fxy) = > elx(im)+ Wy e ot
(i) EE () cae

Z d(x, (h,m,1)) (2) Figure 3: An example tree, formed by a combina-
(hom ) €D(y) tion of the two structures in figure 2.

Here we useé?(y) and D(y) to respectively refer
to the set of spines and dependencieg.inThe e Q(y) is an additional set of grandparent de-
functione maps a sentence paired with a spine pendencies, of type 2. Each of these dependencies
(i,7m) to a feature vector. The functiahmaps de- is a tuple(h,m, [, ¢). Again, there is one member
pendencies withiny to feature vectors. This de- of Q for every member of. The additional infor-
composition is similar to the first-order model ofmation, the indey;, is the index of the word that is
McDonald et al. (2005), but with the addition ofthe first modifier to théeft of the spine fom.
thee features. The feature-vector definition then becomes:

We will extend our model to include higher-
order features, in particular features baseditn
ling dependencies (McDonald and Pereira, 2006),

f(X7 y) = Z e(x7 <7:a 77>) +

(i,m €E(y)

d(x, (h,m,1 h,m, 1
and grandparentdependencies, as in (Carrera§n,m§mw(x’< 1 >)+<hﬂm,§es(;(x’< b))+
2007). Ify = (E, D) is a derivation, then:
, (hym, 1, g)) + , (hym, 1,
e S(y) is a set of sibling dependencies. Eac@,mg;emi(x ot (h,m,l,Zq;GQ(;l)(X b
sibling dependency is a tuplé, m, [, s). For each ©)

(h,m,l, sy € Sthe tuple(h,m,!) is an element of
D; there is one member df for each member of \ypares & andq are feature vectors corresponding
D._ The indexs is t_he mde_x of th_e word that was to the new, higher-order elemerits.

adjoined to the spine fat immediately beforen

(or theNULL symbol if no previous adjunction has2.3 Recovering Parse Trees from Derivations
taken place).

e GG(y) is a set of grandparent dependencies
type 1. Each type 1 grandparent dependency is
tuple (h,m,l,g). There is one member a¥ for
every member ofD. The additional information,
the indexg, is the index of the word that is the first

35 in TAG approaches, there is a mapping from

? erivations(F, D) to parse trees (i.e., the type of
tfes generated by a context-free grammar). In our
case, we map a spine and its dependencies to a con-
stituent structure by first handling the dependen-

modifier to theright of the spine fom. *We also added constituent-boundary features to the
model, which is a simple change that led to small improve-
that are further from the head. ments on validation data; for brevity we omit the details.
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cies on each side separately and then combinimgake use of this idea of automata, and also make
the left and right sides. direct use of the method described in section 4.2 of
First, it is straightforward to build the con- (Eisner, 2000) that allows a set of possible senses
stituent structure resulting from multiple adjunc-for each word in the input string. In our use of
tions on the same side of a spine. As one exanthe algorithm, each possible sense for a word cor-
ple, the structure in figure 2(a) is formed by firstresponds to a different possible spine that can be
s-adjoining the spine with anchoakeinto theVP  associated with that word. The left and right au-
node of the spine foate then r-adjoining spines tomata are used to keep track of the last position
anchored byodayandquicklyinto the same node, in the spine that was adjoined into on the left/right
where all three modifier words are to the right of the head respectively. We can make use of sep-
the head word. Notice that each r-adjunction oparate left and right automata—i.e., the grammar is
eration creates a neMP level in the tree, whereas splittable—because left and right modifiers are ad-
s-adjunctions do not create a new level. Now corjeined independently of each other in the tree. The
sider a tree formed by first r-adjoining a spine foextension of Eisner’s algorithm to the second-order
luckily into the VP node forate, followed by s- modelis similar to the algorithm described in (Car-
adjoining the spine fodohninto the S node, in reras, 2007), but again with explicit use of word
both cases where the modifiers are to the left afenses and left/right automata. The resulting algo-
the head. In this case the structure that would béthms run inO(Gn?) and O(Hn*) time for the
formed is shown in figure 2(b). first-order and second-order models respectively,
Next, consider combining the left and rightwhereG andH are grammar constants.
structures of a spine. The main issue is how to
handle multiple r-adjunctions or s-adjunctions or8.2 Efficient Parsing
both sides of a node in a spine, because our deriv_?l

tions do not specify how adjunctions from different he efficiency of the parsing algorithm is impor-

sides embed with each other. In our approach, thtgnt in applying the parsing model to test sen-

combination operation preserves the height of thignces, and also when training the model using dis-

different modifiers from the left and right direc-cng];"_it've dmetglquh The grammar.constaﬁtsl
tions. To illustrate this, figure 3 shows the resulf” Introduced in the previous section are poly-

of combining the two structures in figure 2. Thenomlal in factors such as the number of possible

combination of the left and right modifier struc-s‘pines in the model, and the number of possible

tures has led to flat structures, for example the rul%tates in the finite-state automata implicit in the

VP — ADVP VP NP in the above tree parsing algorithm. These constants are large, mak-

Note that our r-adjunction operation is different"'9 exhausze pgrsmg VEry Expensive. ] o
To deal with this problem, we use a simple ini-

from the usual adjunction operation in TAGs, in

that “wrapping” adjunctions are not possible, andial model to prune the §earch space of the more
r-adjunctions from the left and right directions aré?®mplex model.  The first-stage model we use

independent from each other; because of this ol @ first-order dependency model, with labeled
grammars are splittable. dependencies, as described in (McDonald et al.,

2005). As described shortly, we will use this model

3 Parsing Algorithms to computemarginal scores for dependencies in
_ _ both training and test sentences. A marginal score
3.1 Use of Eisner's Algorithms u(x, h,m,l) is a value between and 1 that re-

This section describes the algorithm for findingdlects the plausibility of a dependency for sentence
y* = argmax,cy) w - £(x,y) wheref(x,y) is  x with head-wordz;,, modifier wordz,,, and la-
defined through either the first-order model (Eq. 2pell. In the first-stage pruning model the labéls
or the second-order model (Eq. 3). are triples of non-terminals representing grammat-
For the first-order model, the methods describeigal relations, as described in section 2.1 of this
in (Eisner, 2000) can be used for the parsing alggaper—for example, one possible label would be
rithm. In Eisner’s algorithms for dependency pars{VP VBD NP), and in general any triple of non-
ing each word in the input has left and right finiteterminals is possible.
state (weighted) automata, which generate the left Given a sentenceg, and an indexn of a word
and right modifiers of the word in question. Wein that sentence, we defiAX(x,m) to be the

13



highest scoring dependency withhas a modifier: to the number of non-terminals in the grammar,
which is far more manageable. We use the algo-
rithm described in (Globerson et al., 2007) to train
) the conditional log-linear model; this method was
For a sentenc&,_we then define the set of allow- found to converge to a good model after 10 itera-
able dependencies to be tions over the training data.

DMAX(x, m) = max p(x, h,m,l)

m(x) = {{hm. ) 2 pulx hom, 1) 2 aDMAX(m)} 44y slementation Details

whereq is a constant dictating the beam size tha}l 1 Features
is used (in our experiments we used= 1075). '

The setr(x) is used to restrict the set of pos-Section 2.2 described the use of feature vectors
sible parses under the full TAG-based model. I@ssociated with spines used in a derivation, to-
section 2.1 we described how the TAG model hagether with first-order, sibling, and grandparent
dependency labels of the fortR0S, A, 1, 7m, L), dependencies. The dependency features used in
and that there is a functioRM that maps labels our experiments are closely related to the features
of this form to triples of non-terminals. The ba-described in (Carreras, 2007), which are an ex-
sic idea of the pruned search is to only allow detension of the McDonald and Pereira (2006) fea-
pendencies of the forrth, m, (POS, A, 1y, m, L)) tUres to cover grandparent dependencies in addi-
if the tuple (h, m, GRM((POS, A, 7, nm, L)) is a tion to first-order and sibling dependencies. The
member ofr(x), thus reducing the search spacdeatures take into account the identity of the la-
for the parser. bels! used in the derivations. The features could

We now turn to how the marginals(x, h, m, [) potentially look at any information in the la-
are defined and computed. A simple approachels, which are of the form(PGS, A, 7, 7, L),
would be to use a conditional log-linear modePut in our experiments, we map labels to a pair
(Lafferty et al., 2001), with features as defined byGRM((POS, A, 1, 7, L)), A). Thus the label fea-
McDonald et al. (2005), to define a distributiontures are sensitive only to the triple of non-
P(y|x) where the parse structurgsare depen- terminals corresponding to the grammatical rela-
dency structures with labels that are triples of nortion involved in an adjunction, and a binary flag

terminals. In this case we could define specifiying whether the operation is s-adjunction
or r-adjunction.
p(x,h,m, )= Y P(ylx) For the spine features(x, (i,7)), we use fea-
y:(h,m,l)ey ture templates that are sensitive to the identity of

which can be computed with inside-outside styld® SPinen, together with contextual features of

algorithms, applied to the data structures from'€ Stringx. These features consider the iden-

(Eisner, 2000). The complexity of training and aplity Of the words and part-of-speech tags in a win-

plying such a model is agaifi(Gn3), whereG is dow that is centered om; and spans the range
the number of possible labels, and the number df(i-2) - - - T(i+2)-

possible Iab_els (triples of non-terminals) IS arour_ujLZ Extracting Derivations from Parse Trees

G = 1000 in the case of treebank parsing; this _ o _
value forG is still too large for the method to be ef- N the experiments in this paper, the following
ficient. Instead, we train three separate mogigls thrée-step process was used: (1) derivations were
112, and us for the three different positions in the extracted from a training set drawn fro_m the Pepn
non-terminal triples. We then takex, i, m, [) to WSJ treebank, and then used to train a parsing

be a product of these three models, for example wg0del; (2) the test data was parsed using the re-

would calculate sulting model, giving a derivation for each test
data sentence; (3) the resulting test-data deriva-
p(x, h,m, (VP VBD NP)) = tions were mapped back to Penn-treebank style
p1(x, h,m, (VP)) x ua(x, h,m, (VBD)) trees, using the method described in section 2.1.

% p13(x, b, m, (NP)) To achieve step (1), we first apply a set of head-

finding rules which are similar to those described
Training the three models, and calculating thén (Collins, 1997). Once the head-finding rules
marginals, now has a grammar constant equabve been applied, it is straightforward to extract
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[ [ precision recall | 1st stage 2nd stage
PPKO7 — — 3883 « active coverage oraclek  speed r
FKMO08 88.2 87.8 88.0 107* ] 0.07 97.7 97.0 5:15 91.1
CH2000 89.5 89.6 89.6 107° 0.16 98.5 97.9 11:45 91.6
C02000 89.9 89.6 89.8 1076 | 0.34 99.0 98.5 21:50 92.0
PKO7 90.2 89.9 90.1
this paper 91.4 90.7 911
CJO5 - - 91.4 Table 3: Effect of the beam size, controlled lay, on the
HO08 - - 91.7 performance of the parser on the development set (1,699 sen-
C02000(s24) 896 886 89.1 tences). In each casgerefers to the beam size used in both
this paper (s24) 91.1 899 905 training and testing the model. “active”: percentage of de-

pendencies that remain in the beam out of the total number of

] ] labeled dependencies (1,000 triple labels times 1,138,167 un-
Table 1: Results for different methods. PPK07, FKMO8, |abeled dependencies); “coverage”: percentage of correct de-

CH2000, CO2000, PK07, CJ05 and HO8 are results on sectigendencies in the beam out of the total number of correct de-
23 of the Penn WSJ treebank, for the models of Petrov et gbendencies. “oracle;F: maximum achievable score of con-
(2007), Finkel et al. (2008), Charniak (2000), Collins (2000)stituents, given the beam. “speed”: parsing timeniim:sec
Petrov and Klein (2007), Charniak and Johnson (2005), an@dr the TAG-based model (this figure does notinclude the time

Huang (2008). (CJO5 is the performance of an updateghken to calculate the marginals using the lower-order model);
model at http://www.cog.brown.edu/mj/software.htm.) “s24™g " score of predicted constituents.

denotes results on section 24 of the treebank.

[ [ s23 ] s24 | . . .
0T S eESie 5.0 ToL0 d|_ct|on§1ry listing the spines that havg been seen
KCCO8 labeled | 92.5 | 91.7 with this POS tag in training data; during parsing
this paper 935 92.5 we only allow spines that are compatible with this

dictionary. (For test or development data, we used
Table 2:Table showing unlabeled dependency accuracy fothe part-of-speech tags generated by the parser of

sections 23 and 24 of the treebank, using the method of (Y ; : -
mada and Matsumoto, 2003) to extract dependencies froi]ColllnS,.1997). Fumre work S_hC_)UId ConSIder_lr?
parse trees from our model. KCCO8 unlabeled is from (Ko&Orporating the tagging step within the model; it is

et al., 2008), a model that has previously been shown to haygpt challenging to extend the model in this way.)
higher accuracy than (McDonald and Pereira, 2006). KCC08

labeled is the labeled dependency parser from (Koo et al., .
2008); here we only evaluate the unlabeled accuracy. 5 Experiments

Sections 2-21 of the Penn Wall Street Journal tree-

derivations from the Penn treebank trees. bank were used as training data in our experiments,

Note that the mapping from parse trees t@nd section 22 was used as a development set. Sec-
derivations is many-to-one: for example, the extions 23 and 24 were used as test sets. The model
ample trees in section 2.3 have structures that ayés trained for 20 epochs with the averaged per-
as “flat” (have as few levels) as is possible, givegeptron algorithm, with the development data per-
the setD that is involved. Other similar trees, formance being used to choose the best epoch. Ta-
but with more VP levels, will give the same setble 1 shows the results for the method.
D. However, this issue appears to be benign in the Our experiments show an improvement in per-
Penn WSJ treebank. For example, on section 22 fsfrmance over the results in (Collins, 2000; Char-
the treebank, if derivations are first extracted usingiak, 2000). We would argue that the Collins
the method described in this section, then mappd@000) method is considerably more complex than
back to parse trees using the method described dirs, requiring a first-stage generative model, to-
section 2.3, the resulting parse trees score 100gether with a reranking approach. The Char-
precision and 99.81% recall in labeled constituerniak (2000) model is also arguably more com-
accuracy, indicating that very little information isplex, again using a carefully constructed genera-

lost in this process. tive model. The accuracy of our approach also
' shows some improvement over results in (Petrov
4.3 Part-of-Speech Tags, and Spines and Klein, 2007). This work makes use of a

Sentences in training, test, and development daRCFG with latent variables that is trained using
are assumed to have part-of-speech (POS) tagssplit/merge procedure together with the EM al-
POS tags are used for two purposes: (1) in thgorithm. This work is in many ways comple-
features described above; and (2) to limit the sehentary to ours—for example, it does not make
of allowable spines for each word during parsinguse of GLMs, dependency features, or of repre-
Specifically, for each POS tag we create a separatentations that go beyond PCFG productions—and
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some combination of the two methods may givdReferences

further gains. Altun, Y., I. Tsochantaridis, and T. Hof 2003. Hidd
: un, Y., I. Tsochantaridis, and T. Hofmann. . Hidden
Charniak and Johnson (2005), and Huang markov support vector machines. IDML.

(2008), describe approaches that make use of noBarreras, X. 2007. Experiments with a higher-order projec-
local features in conjunction with the Charniak “‘;‘Z dependency parser. Rroc. EMNLP-CONLL Shared
(2000) model; future work may consider extendcharniak, £. and M. Johnson. 2005. Coarse-to-fine n-best
ing our approach to include non-local features. parsing and maxent discriminative reranking. Rroc.

. . ACL
Finally, other recent work (Petrov et al., 2007'Charniak, E. 2000. A maximum-entropy-inspired parser. In

Finkel et al., 2008) has had a similar goal of scal- proc. NAACL
ing GLMs to full syntactic parsing. These mod-Chiang, D. 2003. Statistical parsing with an automatically

. extracted tree adjoining grammar. In Bod, R., R. Scha, and
els make use of PCFG representations, but do notKl Sima’an, editorsData Oriented Parsingpages 299

explicitly model bigram or trigram dependencies. 316. CSLI Publications.
The results in this work (88.3%/88.0% JFare Clark, S. and J. R. Curran. 2004. Parsing the wsj using ccg

O thic i : and log-linear models. IRroc. ACL
lower than our fr score of 91.1%; this is evidence Clark, Stephen and James R. Curran. 2007. Perceptron train-

of the benefits of the richer representations enableding for a wide-coverage lexicalized-grammar parser. In
by our approach. Proc. ACL Workshop on Deep Linguistic Processing

. Collins, M. 1997. Three generative, lexicalised models for
Table 2 shows the accuracy of the model in"g,istical parsing. IProc. ACL
recovering unlabeled dependencies. The methallins, M. 2000. Discriminative reranking for natural lan-

shows improvements over the method described 9uage parsing. IRroc. ICML
P gollins, M. 2002. Discriminative training methods for hid-

in (Koo et al., 2008), which is a state-of-the-art" yen markov models: Theory and experiments with percep-
second-order dependency parser similar to that of tron algorithms. IrProc. EMNLP

; : jsner, J. 2000. Bilexical grammars and their cubic-time
(McDonald and Pereira, 2006), suggesting that the parsing algorithms. In Bunt, H. C. and A. Nijholt, editors,

incorporation of constituent structure can improve New Developments in Natural Language Parsipgges
dependency accuracy. 29-62. Kluwer Academic Publishers.

o Finkel, J. R., A. Kleeman, and C. D. Manning. 2008. Effi-
Table 3 shows the effect of the beam-size on the cient, feature-based, conditional random field parsing. In

accuracy and speed of the parser on the develop-proc. ACL/HLT
ment set. With the beam setting used in our expefloberson, A., T. Koo, X. Carreras, and M. Collins. 2007.

. 106 0 . _ Exponentiated gradient algorithms for log-linear struc-
iments @ = 107°), only 0.34% of possible depen- ;o4 prediction. IProc. ICML.

dencies are considered by the TAG-based modeluang, L. 2008. Forest reranking: Discriminative parsing

but 99% of all correct dependencies are included, With non-local features. IRroc. ACL/HLT ,

At this b ize the best ible Gonstit t Johnson, M., S. Geman, S. Canon, Z. Chi, and S. Riezler.
'S_ eam S'Z_e € best possible ¢onstituen ~1999. Estimators for stochastic unification-based gram-

score is 98.5. Tighter beams lead to faster parsing mars. InProc. ACL

times. with Slight drops in accuracy. Koo, Terry, Xavier Carreras, and Michael Collins. 2008.
! ' Simple semi-supervised dependency parsing. Piac.
6 Conclusions ACL/HLT.

. _ Lafferty, J., A. McCallum, and F. Pereira. 2001. Conditonal
We have described an efficient and accurate parseriandom fields: Probabilistic models for segmenting and la-

for constituent parsing. A key to the approach has beling sequence data. Rroc. ICML

been to use a splittable grammar that allows ef.f’\_/IcDonald, R. and F. Pereira. 2006. Online learning of ap-
proximate dependency parsing algorithmsPtoc. EACL

cient dynamic programming algorithms, in com-ycponald, R., K. Crammer, and F. Pereira. 2005. On-
bination with pruning using a lower-order model. line large-margin training of dependency parsersPioc.

. . . ACL
The method allows relatively easy incorporation OEetrov, S. and D. Klein. 2007. Improved inference for unlex-

features; future work should leverage this in pro- calized parsing. IfProc. of HLT-NAACL

ducing more accurate parsers, and in applying tH%elt_rOVy S., A. Pauls, anhdlD- Klein-_2§07-$0rm§§twe log-
. . Inear grammars with latent variables. C.
parser to different Ianguages or domains. Ratnaparkhi, A., S. Roukos, and R. Ward. 1994. A maximum

entropy model for parsing. IRroc. ICSLP
Acknowledgments X. Carreras was supported by the Sagae, Kenji, Yusuke Miyao, and Jun’ichi Tsujii. 2007. Hpsg

Catalan Ministry of Innovation, Universities and Enterprise, parsing with shallow dependency constraints. Plroc.
by the GALE program of DARPA, Contract No. HR0011-06-  ACL, pages 624—631.

C-0022, and by a grant from NTT, Agmt. Did. 6/21/1998.> g bt a0d Aol Joshi. 2005. Incremental ltag parsing. In

T. Koo was funded by NSF grant 11S-0415030. M. CollinsTaskar, B., D. Klein, M. Collins, D. Koller, and C. Man-

was funded by NSF grant 11S-0347631 and DARPA contract Ning. 2004. Max-margin parsing. Rroceedings of the
EMNLP-2004

No. HRO0011-06-C-0022. Thanks to Jenny Rose Finkel fof3mada; H. and Y. Matsumoto. 2003. Statistical dependency
suggesting that we evaluate dependency parsing accuracies. analysis with support vector machines.Rroc. IWPT

16



