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Abstract design accurate systems, we should rely upon the

_ ) o application of machine learning. In this perspec-
In this paper, we provide a statistical ma-  tiye, TE training examples have to be represented
chine learning representation of textual en- i terms of statistical feature distributions. These
tailment via syntactic graphs constituted  ypjically consist in word sequences (along with
by tree pairs. We show that the naturalway  tpeir lexical similarity) and the syntactic structures
of representing the syntactic relations be-  of poth text and hypothesis (e.g. their parse trees).
tween text and hypothesis consists in the  The interesting aspect with respect to other natural
huge feature space of all possible syntac- |anguage problems is that, in TE, features useful
tic tree fragment pairs, which can only be 5t describing an example are composed by pairs of
managed using kernel methods. EXperi- features from Text and Hypothesis.

ments with Support Vector Machines and For example, using a word representation, a text
our new kernels for paired trees show the 504 hypothesis paiT, H), can be represented
validity of our interpretation. by the sequences of words of the two sentences,

i.e. (t1,..,tn) and{hq, .., hy,), respectively. If we
carry out a blind and complete statistical correla-
Recently, a lot of valuable work on the recognition analysis of the two sequences, the entailment
tion of textual entailment (RTE) has been carrieghroperty would be described by the set of subse-
out (Bar Haim et al., 2006). The aim is to detecjuence pairs fron" and H, i.e. the setR =
implications between sentences like: {(st,8n) : 86 = (tiys s i) s = (Rjy, s Ry ), U <

1 Introduction

n,r < m}. The relation setR constitutes a
T\ = H, naive and complete representation of the example
71 “Wanadoo bought KStories (T, H) in the feature spacg(v, w) : v,w € V*},

H; “Wanadoo owns KStories

whereV is the corpus vocabulaty

. Although the above representation is correct and
whereT; and 1, stand for text and hypothesis, r€ complete from a statistically point of view, it suf-

spectively. _fers from two practical drawbacks: (a) it is expo-

Several models, ranging from the simple lexi\o i) iny and (b) it is subject to high degree of

cal similarity betweng andH to advanced Logic data sparseness which may prevent to carry out ef-
Form Representations, have been proposed (C%'ctive learning. The traditional solution for this

ley and Mihalcea, 2005; Glickman and Daganproblem relates to consider the syntactic structure

2004; de Salvo Braz et al., 2005; Bos and Markg¢ 04 sequences which provides their general-

ert, 2005). However, since a linguistic theory able?Zation
to analytically show how to computationally solve The use of syntactic trees poses the problem
the RTE problem has not been developed yet, tgf representing structures in learning algorithms.

(© 2008. Licensed under theCreative Commons

Attribution-Noncommercial-Share Alike 3.0 Unporteli 1y* is larger than the actual space, which is the one of
cense  (http://creativecommons.org/licenses/by-ng8-88/ all possible subsequences with gaps, i.e. it only contdins a
Some rights reserved. possible concatenations of words respecting their order.
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For this purpose, kernel methods, and in partic- _{ ( NP NP Vo S S >
H H - / ) / ] N ) PN ]

ular tree kernels. allow for represgntlng trees i NNP . NNP NPVP ~ NPVP

terms of all possible subtrees (Collins and Duffy, S S

2002). Unfortunately, the representation in entail- __——_ o~

ment recognition problems requires the definition NP VP NP VP

of kernels over graphs constituted by tree pairs, N\Np VBP NP NNP VBP NP

which are in general different from kernels applied ! ! ! !

to single trees. In (Zanzotto and Moschitti, 2006), bought NNP owns NNP

this has been addressed by introducing semantic

: ) VP VP

links (placeholders) between text and hypothesis o~ o~

parse trees and evaluating two distinct tree ker- ( VBP NP, VBP NP ), }

nels for the trees of texts and for those of hypothe- bm‘]ght NNP owns NNP

ses. In order to make such disjoint kernel combi-

nation effective, all possible assignments between These features (relational pairs) generalize the

the placeholders of the first and the second emntailment property, e.g. the paive vap bought (NPT,

tailment pair were generated causing a remarkabie (ver own NP]}) generalizes many word sequences,

slowdown. i.e. those external to the verbal phrases and inter-
In this paper, we describe the feature space ol to theN Ps.

all possible tree fragment pairs and we show that it We can improve this space by adding semantic

can be evaluated with a much simpler kernel thalinks between the tree fragments. Such links

the one used in previous work, both in terms obr placeholders have been firstly proposed in

design and computational complexity. Moreover(Zanzotto and Moschitti, 2006). A placeholder

the experiments on the RTE datasets show that oassigned to a node of and a node of, states

proposed kernel provides higher accuracy than thibat such nodes dominate the same (or similar) in-

simple union of tree kernel spaces. formation. In particular, placeholders are assigned

to nodes whose words in T are equal, similar, or
2 Fragmentsof Tree Pair-based Graphs  semantically dependent on worllsin H. Using

placeholders, we obtain a richer fragment pair

The previous section has pointed out that RTE cgi, <. q representation that we dail?, exemplified
be seen as a relational problem between word SRareafter:

quences of Text and Hypothesis. The syntactic S S
structures embedded in such sequences can be gen- NP/\VP NP/\VP
eral!zeql by.natura! language gram'm'ars._Such gel{- / iy ’ / ey
eralization is very important since it is evident that NNP[X] VBP NP NNP[X] VBP NP
entailment cases depend on the syntactic structures ! ‘ : ‘

) oo bought Y owns Y
of Text and Hypothesis. More specifically, the set ght NNPLY] NNPLY]
R described in the previous section can be ex- S S
tended and generalized by considering syntactic /\VP NP/\VP
de_rlv_atlon§ that generate word sequences in th(? ey : Py
training examples. This corresponds to the follow- VBP NP VBP NP
ing set of tree fragment pairs: ! ! ! !

9 9 P bought NNP[Y] owns NNP[Y]
RT:{<Tthh> ITth(T),ThGF(H)}, (1) S S
2 N N I }
NPVP  NPVP

whereF(-) indicates the set of tree fragments of a

parse tree (i.e. the one of the tektor of the hy- e piaceholders (or variables) indicated with
pothesisH). R contains less sparse relations than, o4 v specify that the NNPs labeled by

R. Forinstance, giveff; and [1; of the previous yha same variables dominate similar or identical
section, we would have the following relational de'words. Therefore, an automatic algorithm that

Scription: assigns placeholders to semantically similar con-

2By cutting derivation at different depth, different deggee St'_tuents IS needed" Moreover, althouff¥’ con-
of generalization can be obtained. tains more semantic and less sparse features than
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both R™ andR, its cardinality is still exponential in entailment and derivational morphology are
the number of the words &f and H. This means applied.
that standard machine learning algorithms cannot
be applied. In contrast, tree kernels (Collins and 3. The edit distance measure is finally used to
Duffy, 2002) can be used to efficiently generate  capture the similarity between words that are
the huge space of tree fragments but, to generate missed by the previous analysis (for mis-
the space of pairs of tree fragments, a new kernel  spelling errors or for the lack of derivational
function has to be defined. forms in WordNet).

The next section provides a solution to both
problems. i.e. an algorithm for placeholders as- |n the second step, we select the final anchor set
signments and for the computation of paired treet’ C A, such thatvw, (or wy,) INwy, wp,) € A
kernels which generateB™ and R™” representa- The selection is based on a simple greedy algo-

tions. rithm that given two pairw;, w;,) and (w}, wy,)
VP VP to be selected and a pdi#;, s;,) already selected,
Pl PN VP considers word proximity (in terms of number of
- Y BE _ { v L\‘z VANP words) betweenw; ands; and betweem, ands;;
bookD N D N | o~ the nearest word will be chosen.
;ﬂiéht ;ﬂig‘]ht DN Once the graph has been enriched with seman-
tic information we need to represent it in the learn-
NP NP NP ing algorithm; for this purpose, an interesting ap-
5NN 5 N NAP ’T' ) proach is based on kernel methods. Since the con-
A . DN flight sidered graphs are composed by only two trees, we
aflight a flight can carried out a simplified computation of a graph

Figure 1: A syntactic parse tree. kernel based on tree kernel pairs.

3.1 TreeKernels

3 Kernelsover Semantic Tree Pair-based  Tree Kernels (e.g. see NLP applications in (Giu-
Graphs glea and Moschitti, 2006; Zanzotto and Moschitti,

2006; Moschitti et al., 2007; Moschitti et al.,

The previous section has shown that placeholde%oa_ Moschitti and Bejan, 2004)) represent trees

enrich a tree-based graph with relational informa- . )
. . . in terms of their substructures (fragments) which
tion, which, in turn, can be captured by means

R are mapped into feature vector spacegy. R".
of word semantic similaritiesim., (w;, w), €. The kernel function measures the similarity be-
(Corley and Mihalcea, 2005; Glickman et al., y

o tween two trees by counting the number of their
2005). More specifically, we use a two-step greedX .
ommon fragments. For example, Figure 1 shows

algorithm to anchor the content words (verbs

N . Some substructures for the parse tree of the sen-
nouns, adjectives, and adverbs) in the hypothestlgnce" book a fliaht". The main advantage of
Wy to words in the textV. gnt = 9

. . . tree kernels is that, to compute the substructures
In the first step, each wordy, in Wy is con- P

. shared by two trees, andr, the whole fragment
nected to all wordsy; in W that have the max- . y 1 h T?, lowi 9 h
imum similarity sim., (ws, wy) With it (more than space is not used. In the following, we report the
WA Th) TN formal definition presented in (Collins and Duffy,
onew; can have the maximum similarity withy,).

2002).
As result, we have a set of anchotsC W x Wy. )

simy, (wy, wy, ) iIs computed by means of three tech- (_5|ven the S?t of frag_mem@fl, fQ’ b =7, the
niques: indicator functionZ;(n) is equal 1 if the targef; is

rooted at nodex and O otherwise. A tree kernel is

1. Two words are maximally similar if they have then defined as:

the same surface form; = wy,.
TK(r,m) = Z Z A(ni,n2)  (2)
2. Otherwise, WordNet (Miller, 1995) similari- n1€N7, n2€Nr,
ties (as in (Corley and Mihalcea, 2005)) and
different relation between words such as verlwhereN,, andN;, are the sets of the,’s and’s
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nodes, respectively and grammatical and lexical property is at the same
time held byT" and H to trig the implication.
Therefore to generate the space of the frag-
A(n1,m2) ZI (n1)1 ment pairs we need to define the kernel between
two pairs of entailment example§’, H;) and
The latter is equal to the number of common frag¢Z2, Hz2) as
ments rooted in the; andn, nodes and\ can be
evaluated with the following algorithm:

= A(ny,n9,n3,n4),
1. if the productions at; andny are different Z Z Z Z (1, m2, 13, 10)
n1€T1 no€Ta n3€Hy na€Ho
thenA(ny,ng) = 0;

171

Ky((Th, Hy), (T, H2)) =

where A evaluates the number of subtrees rooted

2. if the productions atn; and ny are the jn gy, andn, combined with those rooted iy and

same, anc; andn; have only leaf children ,,,  More specifically, each fragment rooted into

(i.e. they are pre-terminals symbols) thenpe nodes of the two texts’ trees is combined with

A(ni,n2) = 1; each fragment rooted in the two hypotheses’ trees.
Now, since the number of subtrees rooted in the
texts is independent of the number of trees rooted
in the hypotheses,

3. if the productions at; andn, are the same,
andn, andns are not pre-terminals then

n]_7n2 H 1 + A 07712)) (3) A(n17n27n37n4) = A(n17n2)A(n37n4)'

Therefore, we can rewrit&, as:
where nc(nq) is the number of the children of

ny andd, is the j-th child of the noden. Note  K,((T1, Hy), (Ts, Ha)) =

that since the productions are the same(n;) =  _ DY) D A(niyna)A(ng,ng) =
nc(n2).' . n1 €T no€T> ng€H1 na€Ho

Additionally, we add the decay factarby mod-
ifying steps (2) and (3) as follows = ; EE:T A(n1,n2) ;{ ;{ A(ng,na) =

ni 1 N2 2 n3 1 N4 2
2. A(nl,ng) =}, = Kt(TLTQ) X Kt(Hl,HQ).
TLC al (4)
3. A(n1, n2) H (1+A(cy6,)). This result shows that the natural kernel to rep-

resent textual entailment sentences is the kernel
The computational complexity of Eq. 2 isproduct, which corresponds to the set of all possi-
O(|N,,| x |N,,|) although the average runningble syntactic fragment pairs. Note that, such kernel

time tends to be linear (Moschitti, 2006). can be also used to evaluate the space of fragment
pairs for trees enriched with relational information,
32 Tree-based Graph Kernels i.e. by placeholders.

The above tree kernel function can be applied to _
the parse trees of two texts or those of the two hy? APProximated Graph Kernel

potheses to measure their similarity in terms of thghe feature space described in the previous sec-
shared fragments. If we sum the contributions ofion correctly encodes the fragment pairs. How-
the two kernels (for texts and for hypotheses) agyer, such huge space may result inadequate also
proposed in (Zanzotto and Moschitti, 2006), We&or algorithms such as SVMs, which are in general
just obtain the feature space of the union of thephyst to many irrelevant features. An approxima-
fragments which is completely different from thetion of the fragment pair space is given by the ker-
space of the tree fragments pairs, i.B”. Note ne| described in (Zanzotto and Moschitti, 2006).
that the union space is not useful to describe whichereafter we illustrate its main points.

3To have a similarity score between 0 and 1, we also ap- First, tree kernels applied to two texts or two hy-

ply the normalization in the kernel space, iE/(m1,72) = potheses match identical fragments. When place-
VTR ot holders are added to trees, the labeled fragments
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are matched only if the basic fragments and the To assign the placeholdei3], and (3 of
assigned placeholders match. This means théfy, Hs) to those of(T}, H), i.e. [X] and[Y], we
we should use the same placeholders for all texteeed to maximize the similarity between the two
and all hypotheses of the corpus. Moreover, theiexts’ trees and between the two hypotheses’ trees.
should be assigned in a way that similar syntadt is straightforward to derive that X=1 and Y=3 al-
tic structures and similar relational information bedow more substructures (i.e. large part of the trees)
tween two entailment pairs can be matched, i.¢o be identical, e.g. [S [NEIX]VP]], [VP [VBP
same placeholders should be assigned to the paP3[Y]], [S [NPLIX] VP [VBP NH3[YT]].
tentially similar fragments. Finally, it should be noted that, (a)
Second, the above task cannot be carried out &L ((7, H), (7", H')) is a symmetric function
pre-processing time, i.e. when placeholders aince the set of derivatio@' are always computed
assigned to trees. At the running time, insteadyith respect to the pair that has the largest anchor
we can look at the comparing trees and make set and (b) it is not a valid kernel as theax
more consistent decision on the type and order dfinction does not in general produce valid kernels.
placeholders. Although, there may be several apiowever, in (Haasdonk, 2005), it is shown that
proaches to accomplish this task, we apply a baswhen kernel functions are not positive semidef-
heuristic which is very intuitive: inite like in this case, SVMs still solve a data
Choose the placeholder assignment that maxseparation problem in pseudo Euclidean spaces.
mizes the tree kernel function over all possible corThe drawback is that the solution may be only a
respondences local optimum. Nevertheless, such solution can
More formally, letA and A’ be the placeholder sets still be valuable as the problem is modeled with a
of (T, H) and (1", H'), respectively, without loss very rich feature space.
of generality, we considgrd| > |A’| and we align Regarding the computational complexity, run-
a subset ofd to A’. The best alignment is the onening the above kernel on a large training set may
that maximizes the syntactic and lexical overlapresult very expensive. To overcome this drawback,
ping of the two subtrees induced by the aligned sét (Moschitti and Zanzotto, 2007), it has been de-
of anchors. By callingC' the set of all bijective signed an algorithm to factorize the evaluation of
mappings fromS C A, with |S| = |A/|, to A, tree subparts with respect to the different substitu-
an element € C'is a substitution function. We tion. The resulting speed-up makes the application
define the best alignment,,,. the one determined of such kernel feasible for datasets of ten of thou-
by sands of instances.

Cmaz = argmazecc(TK (t(T,c),t(T",i))+

TK(t(H,c),t(H' 1)),
, . The aim of th [ ts is to show that th
where (1)t(-, ¢) returns the syntactic tree enriched € aim of Ihe expenments IS 0 Sho at the
. space of tree fragment pairs is the most effective
with placeholders replaced by means of the sub-

stitution ¢, (2) 4 is the identity substitution and (3) o represent Tree Pair-based Graphs for the design

. . of Textual Entailment classifiers.
TK(m1,72) is a tree kernel function (e.g. the one

specified by Eq. 2) applied to the two tregsand 51 Experimental Setup

T92. . .
. , Lo To compare our model with previous work we
At the same time, the desired similarity value P . Previc .
: . : 2~ mplemented the following kernels in SVM-light
to be used in the learning algorithm is given

by the kernel sum:TK (t(T, ¢pmaz), t(T",1)) + (Joachims, 1999):
TK(t(H,cmaz), t(H',1)), i.e. by solving the fol-

5 Experiments

lowing optimization problem: o K e1,e3) = KT, Ty) + Ki(Hy, H),
wheree; = (T1,H;) andey = (I3, Ho)
Ks((T,H),(T',H")) = are two text and hypothesis pairs ahd is
mazeec(TK (T, c), t(T",i))+ (5) the syntactic tree kernel (Collins and Duffy,
TK(t(H, ), t(H',)), 2002) presented in the previous section.
For example, let us compare the following two e K, (ei,e2) = K (T1,T>) x K (Hy, Ha),
pairs(T, Hy) and(T5, Hs) in Fig. 2. which (as shown in the previous sections) en-
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NP[X] VP

/ T
NNPX] vBP NP[Y]

| | |
Wanadoobought NNP[Y]

/\
NP[X] VP

| T
NNPX] VvBP NP[Y]
| | |

Wanadoo owns NNP[Y]
| |
KStones KStones
Ty = H,
S S
/\ /\
NP[1] VP NP[1] VP
NP[1] PP[2] VBP NP[3] NP[1] PP[2] VBP NP[3]

P P AN
DT NN[ IN NP2 ownpTNN[3|
| |

a castle

P P | PN
DT NN[] IN NP[2] boughtpT NN 3]
[ [ [ [ \ \ [ [ [ [
the presidentof NNP[2] a castle the presidentof NNP[2]

| |
Miramax Miramax

Figure 2:The problem of finding the correct mapping between placetsld

codes the tree fragment pairs with and withb.2 Evaluation and Discussion

out placeholders. Table 1 shows the results of the above kernels

on the split used for the RTE competitions. The
o Kpaz(er,es) = max (Ki(¢e(Th), ¢c(T))+  first column reports the kernel model. The second
¢ : . and third columns illustrate the model accuracy for
Ki(¢c(H), 6c(H2))), Where c is @ POSS preq wnereas column 4 and 5 show the accuracy
ble placeholder_aSS|g_nm_ent which connect%r RTE2. Moreover;- P indicates the use of stan-
nodes from the first pair with those of the >€Chard syntactic trees and P the use of trees enriched
ond pair andp.(+) transforms trees according with placeholders. We note that:
toc. . .
First, the space of tree fragment pairs, gener-
ated byk, improves the one generated hj, (i.e.
the simple union of the fragments of texts and hy-
potheses) of 4 (58.9% vs 54.9%) and 0.9 (53.5%
vs 52.6%) points on RTE1 and RTEZ2, respectively.
This suggests that the fragment pairs are more ef-
Note thatk’, ., is the kernel proposed in (Zanzottofective for encoding the syntactic rules describing
and MOSChitti, 2006) an(ﬂ(pmx is a hybrld kernel the entailment Concept_
based on the maximurfy,,, which uses the space  Second, on RTE1, the introduction of placehold-
of tree fragment pairs. For all the above kernelsgrs does not improv&, or K, suggesting that for
we set the default cost factor and trade-off parameir correct exploitation an extension of the space
eters and we setto 0.4. of tree fragment pairs should be modeled.
To experiment with entailment relations, we Third, on RTE2, the impact of placeholders
used the data sets made available by the first (Daeems more important but onli,,.. and K,
gan etal., 2005) and second (Bar Haim et al., 200@ye able to fully exploit their semantic contribu-
Recognizing Textual Entailment Challenge. Thestion. A possible explanation is that in order to
corpora are divided in the development sé&l$ use the set of all possible assignments (required by
and D2 and the test sets1 andT'2. D1 contains K,,...), we needed to prune the "too large” syntac-
567 examples wheredsl, D2 andT2 all have the tic trees as also suggested in (Zanzotto and Mos-
same size, i.e. 800 instances. Each example is ahitti, 2006). This may have negatively biased the
ordered pair of texts for which the entailment relastatistical distribution of tree fragment pairs.
tion has to be decided. Finally, although we show thaf(, is better

o Kpmal(er,e2) = I?QCX (Kt(¢C(Tl)a¢C(T2)) X
Kt(¢c(H1)>¢C(H2)))'
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