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Abstract

Meaning cannot be based on dictionary defini-
tions all the way down: at some point the cir-
cularity of definitions must be broken in some
way, by grounding the meanings of certain
words in sensorimotor categories learned from
experience or shaped by evolution. This is the
“symbol grounding problem”. We introduce
the concept of areachableset — a larger vo-
cabulary whose meanings can be learned from
a smaller vocabulary through definition alone,
as long as the meanings of the smaller vocabu-
lary are themselves already grounded. We pro-
vide simple algorithms to compute reachable
sets for any given dictionary.

1 Introduction

We know from the 19th century philosopher-
mathematician Frege that thereferentand themeaning
(or “sense”) of a word (or phrase) are not the same
thing: two different words or phrases can refer to the
very same object without having the same meaning
(Frege, 1948): “George W. Bush” and “the current
president of the United States of America” have the
same referent but a different meaning. So do “human
females” and “daughters”. And “things that are bigger
than a breadbox” and “things that are not the size of a
breadbox or smaller”.

A word’s “extension” is the set of things to which it
refers, and its “intension” is the rule for defining what
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things fall within its extension.. A word’s meaning is
hence something closer toa rule for picking out its ref-
erent. Is the dictionary definition of a word, then, its
meaning?

Clearly, if we do not know the meaning of a word,
we look up its definition in a dictionary. But what if
we do not know the meaning of any of the words in its
dictionary definition? And what if we don’t know the
meanings of the words in the definitions of the words
defining those words, and so on? This is a problem of
infinite regress, called the “symbol grounding problem”
(Harnad, 1990; Harnad, 2003): the meanings of words
in dictionary definitions are, in and of themselves, un-
grounded. The meanings of some of the words, at least,
have to be grounded by some means other than dictio-
nary definition look-up.

How are word meanings grounded? Almost certainly
in the sensorimotor capacity to pick out their referents
(Harnad, 2005). Knowingwhat to do with whatis not
a matter of definition but of adaptive sensorimotor in-
teraction between autonomous, behaving systems and
categories of “objects” (including individuals, kinds,
events, actions, traits and states). Our embodied sen-
sorimotor systems can also be described as applying in-
formation processing rules to inputs in order to generate
the right outputs, just as a thermostat defending a tem-
perature of 20 degrees can be. But this dynamic process
is in no useful way analogous to looking up a definition
in a dictionary.

We will not be discussing sensorimotor grounding
(Barsalou, 2008; Glenberg& Robertson, 2002; Steels,
2007) in this paper. We will assume some sort of
grounding as given: when we consult a dictionary, we
already know the meanings of at least some words,
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somehow. A natural first hypothesis is that the ground-
ing words ought to be more concrete, referring to things
that are closer to our overt sensorimotor experience,
and learned earlier, but that remains to be tested (Clark,
2003). Apart from the question of the boundary condi-
tions of grounding, however, there are basic questions
to be asked about the structure of word meanings in dic-
tionary definition space.

In the path from a word, to the definition of that word,
to the definition of the words in the definition of that
word, and so on, through what sort of a structure are
we navigating (Ravasz& Barabasi, 2003; Steyvers&
Tenenbaum, 2005)? Meaning is compositional: A def-
inition is composed of words, combined according to
syntactic rules to form a proposition (with a truth value:
true or false). For example, the word to be definedw
(the “definiendum”) might meanw1 &w2 & . . . &wn,
where thewi are other words (the “definientes”) in its
definition. Rarely does that proposition provide the full
necessary and sufficient conditions for identifying the
referent of the word,w, but the approximation must at
least be close enough to allow most people, armed with
the definition, to understand and use the defined word
most of the time, possibly after looking up a few of its
definientesdw, but without having to cycle through the
entire dictionary, and without falling into circularity or
infinite regress.

If enough of the definientes are grounded, then there
is no problem of infinite regress. But we can still ask
the question: What is the size of the grounding vocab-
ulary? and what words does it contain? What is the
length and shape of the path that would be taken in a
recursive definitional search, from a word, to its defi-
nition, to the definition of the words in its definition,
and so on? Would it eventually cycle through the entire
dictionary? Or would there be disjoint subsets?

This paper raises more questions than it answers, but
it develops the formal groundwork for a new means of
finding the answers to questions about how word mean-
ing is explicitly represented in real dictionaries — and
perhaps also about how it isimplicitly represented in the
“mental lexicon” that each of us has in our brain (Hauk
et al., 2008).

The remainder of this paper is organized as follows:
In Section 2, we introduce the graph-theoretical defi-
nitions and notations used for formulating the symbol
grounding problem in Section 3. Sections 4 and 5 deal
with the implication of this approach in cognitive sci-
ences and show in what ways grounding kernels may
be useful.

2 Definitions and Notations

In this section, we give mathematical definitions for
the dictionary-related terminology, relate them to natu-
ral language dictionaries and supply the pertinent graph
theoretical definitions. Additional details are given to
ensure mutual comprehensibility to specialists in the
three disciplines involved (mathematics, linguistics and

psychology). Complete introductions to graph theory
and discrete mathematics are provided in (Bondy&
Murty, 1978; Rosen, 2007).

2.1 Relations and Functions

Let A be any set. Abinary relation onA is any subset
R of A× A. We writexRy if (x, y) ∈ R. The relation
R is said to be (1)reflexiveif for all x ∈ A, we have
xRx, (2) symmetricif for all x, y ∈ A such thatxRy,
we haveyRx and (3)transitive if for all x, y, z ∈ A
such thatxRy andyRz, we havexRz. The relationR
is anequivalence relationif it is reflexive, symmetric
and transitive. For anyx ∈ A, theequivalence class of
x, designated by[x], is given by[x] = {y ∈ A | xRy}.
It is easy to show that[x] = [y] if and only if xRy and
that the set of all equivalence classes forms a partition
of A.

Let A be any set,f : A → A a function andk a
positive integer. We designate byfk the functionf ◦
f ◦ . . . ◦ f (k times), where◦ denotes thecomposition
of functions.

2.2 Dictionaries

At its most basic level, a dictionary is a set of associ-
ated pairs: aword and itsdefinition, along with some
disambiguating parameters. Theword1 to be defined,
w, is called thedefiniendum(plural: definienda) while
the finite nonempty set of words that definesw, dw, is
called the set ofdefinientesof w (singular:definiens).

Each dictionary entry accordingly consists of a
definiendum w followed by its set of definientes
dw. A dictionary D then consists of a finite set
of pairs (w, dw) where w is a word anddw =
{w1, w2, . . . , wn}, wheren ≥ 1, is its definition, satis-
fying the property that for all(w, dw) ∈ D and for all
d ∈ dw, there exists(w′, dw′) ∈ D such thatd = w′. A
pair (w, dw) is called anentryof D. In other words, a
dictionary is a finite set of words, each of which is de-
fined, and each of its defining words is likewise defined
somewhere in the dictionary.

2.3 Graphs

A directed graphis a pairG = (V,E) such thatV is
a finite set ofverticesandE ⊆ V × V is a finite set
of arcs. GivenV ′ ⊆ V , thesubgraph induced byV ′,
designated byG[V ′], is the graphG[V ′] = (V ′, E′)
whereE′ = E ∩ (V ′ × V ′). For anyv ∈ V , N−(v)
andN+(v) designate, respectively, the set of incoming
and outgoing neighbors ofv, i.e.

N−(v) = {u ∈ V | (u, v) ∈ E}
N+(v) = {u ∈ V | (v, u) ∈ E}.

We write deg−(v) = |N−(v)| and deg+(v) =
|N+(v)|, respectively. Apath of G is a sequence

1In the context of this mathematical analysis, we will use
“word” to mean a finite string of uninterrupted letters having
some associated meaning.
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(v1, v2, . . . , vn), wheren is a positive integer,vi ∈ V
for i = 1, 2, . . . , n and (vi, vi+1) ∈ E, for i =
1, 2, . . . , n − 1. A uv-path is a path starting withu
and ending withv. Finally, we say that auv-path is a
cycleif u = v.

Given a directed graphG = (V,E) andu, v ∈ V , we
write u→ v if there exists auv-path inG. We define a
relation∼ as

u ∼ v ⇔ u→ v andv → u.

It is an easy exercise to show that∼ is an equivalence
relation. The equivalence classes ofV with respect to∼
are called thestrongly connected componentsof G. In
other words, in a directed graph, it might be possible to
go directly from pointA to pointB, without being able
to get back from pointB to pointA (as in a city with
only one-way streets). Strongly connected components,
however, are subgraphs in which whenever it is possible
to go from pointA to pointB, it is also possible to come
back from pointB to point A (the way back may be
different).

There is a very natural way of representing defini-
tional relations using graph theory, thus providing a for-
mal tool for analyzing grounding properties of dictio-
naries: words can be represented as vertices, with arcs
representing definitional relations, i.e. there is an arc
(u, v) between two wordsu andv if the wordu appears
in the definition of the wordv. More formally, for every
dictionaryD, its associated graphG = (V,E) is given
by

V = {w | ∃dw such that(w, dw) ∈ D},
E = {(v, w) | ∃dw such that(w, dw) ∈ D and

v ∈ dw}.
Note that every vertexv of G satisfiesdeg−G(v) > 0,
but it is possible to havedeg+

G(v) = 0. In other words,
whereas every word has a definition, some words are
not used in any definition.

Example 1. Let D be the dictionary whose definitions
are given in Table 1. Note that every word appearing
in some definition is likewise defined inD (this is one
of the criteria forD to be a dictionary). The associated
graph G of D is represented in Figure 1. Note that
(not, good, eatable, fruit) is a path ofG while (good,
bad, good) is a cycle (as well as a path) ofG.

3 A Graph-Theoretical Formulation of
the Problem

We are now ready to formulate the symbol grounding
problem from a mathematical point of view.

3.1 Reachable and Grounding Sets

Given a dictionaryD of n words and a personx who
knowsm out of thesen words, assume that the only
way x can learn new words is by consulting the dic-
tionary definitions. Can alln words be learned byx

Word Definition Word Definition
apple red fruit bad not good
banana yellow fruit color dark or light
dark not light eatable good
fruit eatable thing good not bad
light not dark not not
or or red dark color
thing thing tomato red fruit
yellow light color

Table 1: Definitions of the dictionaryD

apple

bad

banana

color

dark

eatable
fruit

good

light
not

or

red

thing

tomato

yellow

Figure 1: Graph representation of the dictionaryD.

through dictionary look-up alone? If not, then exactly
what subset of words can be learned byx through dic-
tionary look-up alone?

For this purpose, letG = (V,E) be a directed graph
and consider the following application, where2V de-
notes the collection of all subsets ofV :

RG : 2V 7−→ 2V

U 7−→ U ∪ {v ∈ V | N−(v) ⊆ U}.
When the context is clear, we omit the subscriptG.
Also we let Rk denote thekth power of R. We say
that v ∈ V is k-reachable fromU if v ∈ Rk(U) and
k is a nonnegative integer. It is easy to show that there
exists an integerk such thatR`(U) = Rk(U), for every
integer` > k. More precisely, we have the following
definitions:

Definition 2. Let G = (V,E) be a directed graph,U
a subset ofV , and k an integer such thatR`(U) =
Rk(U) for all ` > k. The setRk(U) is called thereach-
able set fromU and is denoted byR∗(U). Moreover, if
R∗(U) = V , then we say thatU is a grounding setof
G.

We say thatG is p-groundableif there existsU ⊆ V
such that|U | = p andU is a grounding set ofG. The
grounding numberof a graphG is the smallest integer
p such thatG is p-groundable.

Reachable sets can be computed very simply using a
breadth-first-search type algorithm, as shown by Algo-
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rithm 1.

Algorithm 1 Computing reachable sets
1: function REACHABLESET(G, U )
2: R← U
3: repeat
4: S ← {v ∈ V | N−

G (v) ⊆ R} −R
5: R← R ∪ S
6: until S = ∅
7: return R
8: end function

We now present some examples of reachable sets and
grounding sets.

Example 3. Consider the dictionaryD and the graph
G of Example 1. LetU = {bad, light, not, thing}. Note
that

R0(U) = U

R1(U) = U ∪ {dark, good},
R2(U) = R1(U) ∪ {eatable}
R3(U) = R2(U) ∪ {fruit}
R4(U) = R3(U)

so thatR∗(U) = {bad, dark, eatable, fruit, good, light,
not, thing} (see Figure 2). In particular, this means
that the word “eatable” is 2-reachable (but not1-
reachable) fromU and all words inU are 0-reachable
from U . Moreover, we observe thatU is not a ground-
ing set ofG (“color”, for example, is unreachable). On
the other hand, the setU ′ = U ∪ {or} is a grounding
set ofG, so thatG is 5-groundable.

apple

bad
0

banana

color

dark
1

eatable
2 fruit

3

good
1

light
0not

0

or

red

thing
0

tomato

yellow

Figure 2: The setR∗(U) (the words in squares) ob-
tained fromU

3.2 The Minimum Grounding Set Problem

Given a dictionary and its associated graphG, we are
interested in finding minimum grounding sets ofG.
(Note that in general, there is more than one grounding

set of minimum cardinality.) This is related to a natural
decision problem: we designate byk-GS the problem
of deciding whetherG is k-groundable. We show that
k-GS is closely related to the problem of finding mini-
mum feedback vertex sets. First, we recall the definition
of a feedback vertex set.

Definition 4. Let G = (V,E) be a directed graph and
U a subset ofV . We say thatU is a feedback vertex set
of G if for every cycleC of G, we haveU ∩ C 6= ∅. In
other words,U covers every cycle ofG.

The minimum feedback vertex set problemis the
problem of finding a feedback vertex set ofG of mini-
mum cardinality. To show that feedback vertex sets and
grounding sets are the same, we begin by stating two
simple lemmas.

Lemma 5. Let G = (V,E) be a directed graph,C a
cycle ofG and U ⊆ V a grounding set ofG. Then
U ∩ C 6= ∅.

Proof. By contradiction, assume thatU ∩ C = ∅ and,
for all v ∈ C, there exists an integerk such thatv be-
longs toRk(U). Let ` be the smallest index in the set
{k | ∃u ∈ C such thatu ∈ Rk(U)}. Let u be a vertex
in C ∩ R`(U) andw the predecessor ofu in C. Since
U ∩ C = ∅, k must be greater than0 andw a member
of R`−1(U), contradicting the minimality of̀.

Lemma 6. Every directed acyclic graphG is 0-
groundable.

Proof. We prove the statement by induction on|V |.
BASIS. If |V | = 1, then|E| = 0, so that the only vertex
v of G satisfiesN−

G (v) = ∅. HenceR(∅) = V .

INDUCTION. Let v be a vertex such thatdeg+(v) = 0.
Such a vertex exists sinceG is acyclic. Moreover,
let G′ be the (acyclic) graph obtained fromG by re-
moving vertexv and all its incident arcs. By the in-
duction hypothesis, there exists an integerk such that
Rk

G′(∅) = V − {v}. Therefore,V − {v} ⊆ Rk
G(∅) so

thatRk+1
G (∅) = V .

The next theorem follows easily from Lemmas 5 and
6.

Theorem 7. Let G = (V,E) be a directed graph and
U ⊆ V . ThenU is a grounding set ofG if and only if
U is a feedback vertex set ofG.

Proof. (⇒) Let C be a cycle ofG. By Lemma 5,U ∩
C 6= ∅, so thatU is a minimum feedback vertex set
of G. (⇐) Let G′ be the graph obtained fromG by
removingU . ThenG′ is acyclic and∅ is a grounding
set ofG′. Therefore,U ∪ ∅ = U is a grounding set of
G.

Corollary 8. k-GS is NP-complete.
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Proof. Denote by k-FVS the problem of deciding
whether a directed graphG admits a feedback vertex
set of cardinality at mostk. This problem is known
to be NP-complete and has been widely studied (Karp,
1972; Garey& Johnson, 1979). It follows directly from
Theorem 7 thatk-GS is NP-complete as well since the
problems are equivalent.

The fact that problemsk-GS andk-FVS are equiv-
alent is not very surprising. Indeed, roughly speaking,
the minimum grounding problem consists of finding a
minimum set large enough to enable the reader to learn
(reach) all the words of the dictionary. On the other
hand, the minimum feedback vertex set problem con-
sists of finding a minimum set large enough to break the
circularity of the definitions in the dictionary. Hence,
the problems are the same, even if they are stated dif-
ferently.

Although the problem is NP-complete in general, we
show that there is a simple way of reducing the com-
plexity of the problem by considering the strongly con-
nected components.

3.3 Decomposing the Problem

Let G = (V,E) be a directed graph andG1, G2, . . .,
Gm the subgraphs induced by its strongly connected
components, wherem ≥ 1. In particular, there are
no cycles ofG containing vertices in different strongly
connected components. Since the minimum ground-
ing set problem is equivalent to the minimum feed-
back vertex set problem, this means that when seeking
a minimum grounding set ofG, we can restrict our-
selves to seeking minimum grounding sets ofGi, for
i = 1, 2, . . . ,m. More precisely, we have the following
proposition.

Proposition 9. Let G = (V,E) be a directed graph
with m strongly connected components, withm ≥ 1,
and letGi = (Vi, Ei) be the subgraph induced by its
i-th strongly connected component, where1 ≤ i ≤ m.
Moreover, letUi be a minimum grounding set ofGi,
for i = 1, 2, . . . ,m. ThenU =

⋃m
i=1 Ui is a minimum

grounding set ofG.

Proof. First, we show thatU is a grounding set ofG.
Let C be a cycle ofG. ThenC is completely contained
in some strongly connected component ofG, sayGj ,
where1 ≤ j ≤ m. But Uj ⊆ U is a grounding set of
Gj , thereforeUj ∩C 6= ∅ so thatU ∩C 6= ∅. It remains
to show thatU is a minimum grounding set ofG. By
contradiction, assume that there exists a grounding set
U ′ of G, with |U ′| < |U | and letU ′

i = U ′ ∩ Vi. Then
there exists an indexj, with 1 ≤ j ≤ m, such that
|U ′

j | < |Uj |, contradicting the minimality of|Uj |.
Note that this proposition may be very useful for

graphs having many small strongly connected compo-
nents. Indeed, by using Tarjan’s Algorithm (Tarjan,
1972), the strongly connected components can be com-
puted in linear time. We illustrate this reduction by an
example.

Example 10. Consider again the dictionaryD and the
graph G of Example 1. The strongly connected com-
ponents ofG are encircled in Figure 3 and minimum
grounding sets (represented by words in squares) for
each of them are easily found. Thus the grounding num-
ber ofG is 5.

apple

bad

banana

color

dark

eatable
fruit

good

light
not

or

red

thing

tomato

yellow

Figure 3: The strongly connected components and a
minimum grounding set ofG

3.4 The Grounding Kernel

In Example 10, we have seen that there exist some
strongly connected components consisting of only one
vertex without any loop. In particular, there exist
vertices with no successor, i.e. verticesv such that
N+

G (v) = 0. For instance, this is the case of the words
“apple”, “banana” and “tomato”, which are not used in
any definition in the dictionary. Removing these three
words, we notice that “fruit”, “red” and “yellow” are
in the same situation and they can be removed as well.
Pursuing the same idea, we can now remove the words
“color” and “eatable”. At this point, we cannot remove
any further words. The set of remaining words is called
the grounding kernelof the graphG. More formally,
we have the following definition..

Definition 11. Let D be a dictionary,G = (V,E) its
associated graph andG1 = (V1, E1), G2 = (V2, E2),
. . ., Gm = (Vm, Em) the subgraphs induced by the
strongly connected components ofG, wherem ≥ 1. Let
V ′ be the set of verticesu such that{u} is a strongly
connected component without any loop (i.e.,(u, u) is
not an arc ofG). For anyu, let N∗(u) denote the set
of verticesv such thatG contains auv-path. Then the
grounding kernelof G, denoted byKG, is the setV −
{u | u ∈ V ′ andN∗(u) ⊆ V ′}.

Clearly, every dictionaryD admits a grounding ker-
nel, as shown by Algorithm 2. Moreover, the ground-
ing kernel is a grounding set of its associated graphG
and every minimum grounding set ofG is a subset of
the grounding kernel. Therefore, in studying the sym-
bol grounding problem in dictionaries, we can restrict
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Algorithm 2 Computing the grounding kernel
1: function GROUNDINGKERNEL(G)
2: G′ ← G
3: repeat
4: Let W be the set of vertices ofG′

5: U ← {v ∈W | N+
G′(v) = ∅}

6: G′ ← G′[W − U ]
7: until U = ∅
8: return G′

9: end function

ourselves to the grounding kernel of the graphG corre-
sponding toD. This phenomenon is interesting because
every dictionary contains many words that can be recur-
sively removed without compromising the understand-
ing of the other definitions. Formally, this property re-
lates to thelevel of a word: we will say of a wordw
that it is of levelk if it is k-reachable fromKG but not
`-reachable fromKG, for any` < k. In particular, level
0 indicates that the word is part of the grounding kernel.
A similar concept has been studied in (Changizi, 2008).

Example 12. Continuing Example 10 and from what
we have seen so far, it follows that the grounding kernel
of G is given by

KG = {bad, dark, good, light, not, or, thing}.

Level1 words are “color” and “eatable”, level2 words
are “fruit”, “red” and “yellow”, and level 3 words are
“apple”, “banana” and “tomato”.

4 Grounding Sets and the Mental
Lexicon

In Section 3, we introduced all the necessary terminol-
ogy to study the symbol grounding problem using graph
theory and digital dictionaries. In this section, we ex-
plain how this model can be useful and on what assump-
tions it is based.

A dictionary is a formal symbol system. The pre-
ceding section showed how formal methods can be
applied to this system in order to extract formal fea-
tures. In cognitive science, this is the basis ofcom-
putationalism(or cognitivism or “disembodied cogni-
tion” (Pylyshyn, 1984)), according to which cognition,
too, is a formal symbol system – one that can be stud-
ied and explained independently of the hardware (or,
insofar as it concerns humans, the wetware) on which
it is implemented. However, pure computationalism
is vulnerable to the problem of the grounding of sym-
bols too (Harnad, 1990). Some of this can be reme-
died by the competing paradigm of embodied cogni-
tion (Barsalou, 2008; Glenberg& Robertson, 2002;
Steels, 2007), which draws on dynamical (noncompu-
tational) systems theory to ground cognition in senso-
rimotor experience. Although computationalism and
symbol grounding provide the background context for
our investigations and findings, the present paper does

not favor any particular theory of mental representation
of meaning.

A dictionary is a symbol system that relates words to
words in such a way that the meanings of the definienda
are conveyed via the definientes. The user is intended to
arrive at an understanding of an unknown word through
an understanding of its definition. What was formally
demonstrated in Section 3 agrees with common sense:
although one can learn new word meanings from a dic-
tionary, the entire dictionary cannot be learned in this
way because of circular references in the definitions
(cycles, in graph theoretic terminology). Information
– nonverbalinformation – must come from outside the
system to ground at least some of its symbols by some
means other than just formal definition (Cangelosi&
Harnad, 2001). For humans, the two options are learned
sensorimotor grounding and innate grounding. (Al-
though the latter is no doubt important, our current fo-
cus is more on the former.)

The need for information from outside the dictio-
nary is formalized in Section 3. Apart from confirming
the need for such external grounding, we take a sym-
metric stance: In natural language, some word mean-
ings — especially highly abstract ones, such as those
of mathematical or philosophical terms — are not or
cannot be acquired through direct sensorimotor ground-
ing. They are acquired through thecompositionof pre-
viously known words. The meaning of some of those
words, or of the words in their respective definitions,
must in turn have been grounded through direct senso-
rimotor experience.

To state this in another way: Meaning is not just for-
mal definitions all the way down; nor is it just sensori-
motor experience all the way up. The two extreme poles
of that continuum aresensorimotor inductionat one
pole (trial and error experience with corrective feed-
back; observation, pointing, gestures, imitation, etc.),
andsymbolic instruction(definitions, descriptions, ex-
planation, verbal examples etc.) at the other pole. Be-
ing able to identify from their lexicological structure
which words were acquired one way or the other would
provide us with important clues about the cognitive pro-
cesses underlying language and the mental representa-
tion of meaning.

To compare the word meanings acquired via sensori-
motor induction with word meanings acquired via sym-
bolic instruction (definitions), we first need access to
the encoding of that knowledge. In this component
of our research, our hypothesis is that the representa-
tional structure of word meanings in dictionaries shares
some commonalities with the representational structure
of word meanings in the human brain (Hauk et al.,
2008). We are thus trying to extract from dictionar-
ies the grounding kernel (and eventually a minimum
grounding set, which in general is a proper subset of
this kernel), from which the rest of the dictionary can be
reached through definitions alone. We hypothesize that
this kernel, identified through formal structural analy-
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sis, will exhibit properties that are also reflected in the
mental lexicon. In parallel ongoing studies, we are find-
ing that the words in the grounding kernel are indeed
(1) more frequent in oral and written usage, (2) more
concrete, (3) more readily imageable, and (4) learned
earlier or at a younger age. We also expect they will be
(5) more universal (across dictionaries, languages and
cultures) (Chicoisne et al., 2008).

5 Grounding Kernels in Natural
Language Dictionaries

In earlier research (Clark, 2003), we have been ana-
lyzing two special dictionaries: the Longman’s Dic-
tionary of Contemporary English (LDOCE) (Procter,
1978) and the Cambridge International Dictionary of
English (CIDE) (Procter, 1995). Both are officially
described as being based upon adefining vocabulary:
a set of2000 words which are purportedly the only
words used in all the definitions of the dictionary, in-
cluding the definitions of the defining vocabulary itself.
A closer analysis of this defining vocabulary, however,
has revealed that it is not always faithful to these con-
straints: A significant number of words used in the def-
initions turn out not to be in the defining vocabulary.
Hence it became evident that we would ourselves have
to generate a grounding kernel (roughly equivalent to
the defining vocabulary) from these dictionaries.

The method presented in this paper makes it possi-
ble, given the graph structure of a dictionary, to extract
a grounding kernel therefrom. Extracting this struc-
ture in turn confronts us with two further problems:
morphologyandpolysemy. Neither of these problems
has a definite algorithmic solution. Morphology can
be treated through stemming and associated look-up
lists for the simplest cases (i.e., was→ to be, and chil-
dren→ child), but more elaborate or complicated cases
would require syntactic analysis or, ultimately, human
evaluation. Polysemy is usually treated through statisti-
cal analysis of the word context (as in Latent Semantic
Analysis) (Kintsch, 2007) or human evaluation. Indeed,
a good deal of background knowledge is necessary to
analyse an entry such as: “dominant: the fifth note of a
musical scale of eight notes” (the LDOCE notes 16 dif-
ferent meanings ofscaleand 4 fordominant, and in our
example, none of these words are used with their most
frequent meaning).

Correct disambiguation of a dictionary is time-
consuming work, as the most effective way to do it
for now is through consensus among human evaluators.
Fortunately, a fully disambiguated version of the Word-
Net database (Fellbaum, 1998; Fellbaum, 2005) has just
become available. We expect the grounding kernel of
WordNet to be of greater interest than the defining vo-
cabulary of either CIDE or LDOCE (or what we extract
from them and disambiguate automatically, and imper-
fectly) for our analysis.

6 Future Work

The main purpose of this paper was to introduce a for-
mal approach to the symbol grounding problem based
on the computational analysis of digital dictionaries.
Ongoing and future work includes the following:

The minimum grounding set problem.We have seen
that the problem of finding a minimum grounding set is
NP-complete for general graphs. However, graphs as-
sociated with dictionaries have a very specific structure.
We intend to describe a class of graphs including those
specific graphs and to try to design a polynomial-time
algorithm to solve the problem. Another approach is
to design approximation algorithms, yielding a solution
close to the optimal solution, with some known guaran-
tee.

Grounding sets satisfying particular constraints.Let
D be a dictionary,G = (V,E) its associated graph,
andU ⊆ V any subset of vertices satisfying a given
propertyP . We can use Algorithm 1 to test whether
or notU is a grounding set. In particular, it would be
interesting to test different setsU satisfying different
cognitive constraints.

Relaxing the grounding conditions.In this paper
we imposed strong conditions on the learning of new
words: One must know all the words of the definition
fully in order to learn a new word from them. This is
not realistic, because we all know one can often under-
stand a definition without knowing every single word
in it. Hence one way to relax these conditions would
be to modify the learning rule so that one need only un-
derstand at leastr% of the definition, wherer is some
number between0 and100. Another variation would
be to assign weights to words to take into account their
morphosyntactic and semantic properties (rather than
just treating them as an unordered list, as in the present
analysis). Finally, we could consider “quasi-grounding
sets”, whose associated reachable set consists ofr% of
the whole dictionary.

Disambiguation of definitional relations.Analyzing
real dictionaries raises, in its full generality, the prob-
lem of word and text disambiguation in free text; this
is a very difficult problem. For example, if the word
“make” appears in a definition, we do not know which
of its many senses is intended — nor even what its
grammatical category is. To our knowledge, the only
available dictionary that endeavors to provide fully dis-
ambiguated definitions is the just-released version of
WordNet. On the other hand, dictionary definitions
have a very specific grammatical structure, presumably
simpler and more limited than the general case of free
text. It might hence be feasible to develop automatic
disambiguation algorithms specifically dedicated to the
special case of dictionary definitions.

Concluding Remark: Definition can reach the sense
(sometimes), but only the senses can reach the referent.

Research funded by Canada Research Chair in Cog-
nitive Sciences, SSHRC (S. Harnad)and NSERC (S.
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