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Abstract things fall within its extension.. A word’s meaning is
hence something closer orule for picking out its ref-
erent. Is the dictionary definition of a word, then, its
meaning?

Clearly, if we do not know the meaning of a word,
we look up its definition in a dictionary. But what if
we do not know the meaning of any of the words in its
dictionary definition? And what if we don’t know the
meanings of the words in the definitions of the words
defining those words, and so on? This is a problem of
infinite regress, called the “symbol grounding problem”
(Harnad, 1990; Harnad, 2003): the meanings of words
in dictionary definitions are, in and of themselves, un-
grounded. The meanings of some of the words, at least,
have to be grounded by some means other than dictio-
_ nary definition look-up.

1 Introduction How are word meanings grounded? Almost certainly
We know from the 19th century philosopher-i” the sensorimotor capacity to pick qut their referents
mathematician Frege that theferentand themeaning (Harnad, 2005). Knowingvhat to do with whats not

(or “sense”) of a word (or phrase) are not the sam@ mat_ter of definition but of adaptive st—?-nsorlmotor in-
thing: two different words or phrases can refer to thd€raction between autonomous, behaving systems and
very same object without having the same meaninaategones .of “obje_cts" (including individuals, Iflnds,
(Frege, 1948): “George W. Bush” and “the currenteve_ms! actions, traits and states). Qur embodleq sen-
president of the United States of America” have th§Crimotor systems can also be described as applying in-
same referent but a different meaning. So do “humafprmation processing rules to inputs in order to generate
females” and “daughters”. And “things that are biggelthe right outputs, just as a thermostat defending a tem-

than a breadbox” and “things that are not the size of gerature of 20 degrees can be. But this dynamic process
breadbox or smaller”. is in no useful way analogous to looking up a definition

A word's “extension” is the set of things to which it N @ dictipnary. _ . _ _
refers, and its “intension” is the rule for defining what We will not be discussing sensorimotor grounding
W Licensed under the&Creative Commons (Z%E(l)r;al_ouihZ_OOS, Glenki/?/@ R_(l)lbertson, 2002; Steetls,f
Attribution-Noncommercial-Share Alike 3.0 Unporteld ) in this paper. L el L LY

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0g9rounding as given: when we consult a dictionary, we
Some rights reserved. already know the meanings of at least some words,

Meaning cannot be based on dictionary defini-
tions all the way down: at some point the cir-
cularity of definitions must be broken in some
way, by grounding the meanings of certain
words in sensorimotor categories learned from
experience or shaped by evolution. This is the
“symbol grounding problem”. We introduce
the concept of aeachableset — a larger vo-
cabulary whose meanings can be learned from
a smaller vocabulary through definition alone,
as long as the meanings of the smaller vocabu-
lary are themselves already grounded. We pro-
vide simple algorithms to compute reachable
sets for any given dictionary.
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somehow. A natural first hypothesis is that the groundssychology). Complete introductions to graph theory

ing words ought to be more concrete, referring to thingand discrete mathematics are provided in (Boldy

that are closer to our overt sensorimotor experiencéjurty, 1978; Rosen, 2007).

and learned earlier, but that remains to be tested (Clark, ) )

2003). Apart from the question of the boundary condi2-1 Relations and Functions

tions of grounding, however, there are basic questionset A be any set. Ainary relation onA is any subset

to be asked about the structure of word meanings in digz of A x A. We writexRy if (x,y) € R. The relation

tionary definition space. R is said to be (1yeflexiveif for all z € A, we have
In the path from a word, to the definition of that word, > Rz, (2) symmetridf for all =,y € A such thatr Ry,

to the definition of the words in the definition of thatwe haveyRx and (3)transitiveif for all z,y,2 € A

word, and so on, through what sort of a structure arsuch thate Ry andy Rz, we haverRz. The relationRk

we navigating (Ravas& Barabasi, 2003; Steyvefs is anequivalence relatiorif it is reflexive, symmetric

Tenenbaum, 2005)? Meaning is compositional: A defand transitive. For any € A, theequivalence class of

inition is composed of words, combined according tar, designated byz], is given by[z] = {y € A | zRy}.

syntactic rules to form a proposition (with a truth valueit is easy to show thdtr] = [y] if and only if z Ry and

true or false). For example, the word to be defined that the set of all equivalence classes forms a partition

(the “definiendum”) might mean; & w2 & ... &w,, of A.

where thew; are other words (the “definientes”) inits  Let A be any setf : A — A a function andk a

definition. Rarely does that proposition provide the fullpositive integer. We designate iy the functionf o

necessary and sufficient conditions for identifying thef o ... o f (k times), where> denotes theomposition

referent of the wordy, but the approximation must at of functions

least be close enough to allow most people, armed with

the definition, to understand and use the defined wo2 Dictionaries

most of the time, possibly after looking up a few of itsat its most basic level, a dictionary is a set of associ-
definientest,,, but without having to cycle through the ated pairs: avord and itsdefinition along with some
entire dictionary, and without falling into circularity or disambiguating parameters. Therd® to be defined,
infinite regress. w, is called thedefiniendun{plural: definienda while

If enough of the definientes are grounded, then therge finite nonempty set of words that definesd,,, is
is no problem of infinite regress. But we can still askcalled the set oflefinientesf w (singular:definien.
the question: What is the size of the grounding vocab- Each dictionary entry according|y consists of a
ulary? and what words does it contain? What is th@efiniendum w followed by its set of definientes

length and shape of the path that would be takenin@ = A dictionary D then consists of a finite set
recursive definitional search, from a word, to its defiof pairs (w,d,) where w is a word andd, =

nition, to the definition of the words in its definition, {y,; w,, ... w,}, wheren > 1, is its definition, satis-

and so on? Would it eventually cycle through the entir¢ying the property that for aliw, d,,) € D and for all

dictionary? Or would there be disjoint subsets? d € d,, there exist§w’, d,,/) € D such thatl = w’. A
This paper raises more questions than it answers, byir (w,d,,) is called arentryof D. In other words, a

it develops the formal groundwork for a new means ofjictionary is a finite set of words, each of which is de-

finding the answers to questions about how word meafined, and each of its defining words is likewise defined

ing is explicitly represented in real dictionaries — andsomewhere in the dictionary.

perhaps also about how itiimplicitly represented in the

“mental lexicon” that each of us has in our brain (Hauk2.3 Graphs

etal., 2008). A directed graphis a pairG' = (V, E) such thatV is
The remainder of this paper is organized as followsy finite set ofverticesand E C V x V is a finite set
In Section 2, we introduce the graph-theoretical defipf arcs GivenV’ C v, the subgraph induced by,
nitions and notations used for formulating the symbo}jesignated byG[V'], is the graphG[V’] = (V', E')
grounding problem in Section 3. Sections 4 and 5 deglhere B/ = E N (V' x V). Foranyv € V, N~ (v)

with the implication of this approach in cognitive SCi'andJ\H(v) designate, respectively, the set of incoming
ences and show in what ways grounding kernels mayhg outgoing neighbors of i.e.

be useful.

_ . N7 (v) = {ueV|[(uv)ekE}
2 Definitions and Notations Nt@W) = {ueV|(vu) e E}.
In this section, we give mathematical definitions for )
g We write deg—(v) = |N—(v)| and deg™(v) —

the dictionary-related terminology, relate them to natu- o\ Vel hof G i
ral language dictionaries and supply the pertinentgradﬁv (v)], respectively. Apath of G is a sequence

theoretical definitions. Additional details are given t0 1, the context of this mathematical analysis, we will use

ensure mutual comprehensibility to specialists in th@yord” to mean a finite string of uninterrupted letters having
three disciplines involved (mathematics, linguistics andome associated meaning.
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(v1,v9,...,v,), Wheren is a positive integery; € V Word  Definition Word  Definition
fori = 1,2,...,n and (v;,v;41) € E, fori = apple red fruit bad not good
1,2,...,n — 1. A uv-pathis a path starting with: banana yellow fruit | color dark or light
and ending withv. Finally, we say that av-path is a dark not light eatable good
cycleif u = v. fruit eatable thing| good not bad
Given a directed grapfy = (V, E) andu,v € V, we light not dark not not
write v — v if there exists aw-path inG. We define a or or red dark color
relation~ as thing thing tomato red fruit
yellow light color

u~uv&u—vandv — u.

) ) ) ) Table 1: Definitions of the dictionarf
It is an easy exercise to show thatis an equivalence

relation. The equivalence classedoiith respect to-

are called thestrongly connected componemfG. In Q

other words, in a directed graph, it might be possible to thing

go directly from pointA to point B, without being able /

to get back from poinf3 to point A (as in a city with gt bomato
only one-way streets). Strongly connected components, catable

however, are subgraphs in which whenever it is possible banana apple
to go from pointA to point B, itis also possible to come
back from pointB to point A (the way back may be

different). \ yellow or D
There is a very natural way of representing defini- [ \ J /Ted
tional relations using graph theory, thus providing a for- _— H&t T light //y
mal tool for analyzing grounding properties of dictio- Pad /
naries: words can be represented as vertices, with arcs \

representing definitional relations, i.e. there is an arc dark

(u, v) between two words andv if the wordu appears
in the definition of the word. More formally, for every
dictionary D, its associated graplir = (V, E) is given

good

Figure 1: Graph representation of the dictionary

by
through dictionary look-up alone? If not, then exactly
V. = {w]3d, suchthalw,d,) € D}, what subset of words can be learnedabthrough dic-
E = {(v,w)]3d, suchthafw,d,) € D and tionary look-up alone?
v e dy}. For this purpose, let = (V, E) be a directed graph

and consider the following application, whe2& de-
Note that every vertex of G satisfiesdeg;(v) > 0, notes the collection of all subsets 16t
but it is possible to havdeg,(v) = 0. In other words, Rg: 2V +— 2V
whereas every word has a definition, some words are U — UU{veV|N-(v)CU}.

not used in any definition. When the context is clear, we omit the subsciipt

Example 1. Let D be the diCtionary whose definitions Also we let Rk denote tthth power of R. We say
are given in Table 1. Note that every word appearinghaty e V is k-reachable fromlU if v € R*(U) and
in some definition is likewise defined in (this is one 1 js a nonnegative integer. It is easy to show that there
of the criteria forD to be a dictionary). The associated exists an integek such thatR! () = R*(U), for every

graph G of D is represented in Figure 1. Note thatintegers > k. More precisely, we have the following
(not, good, eatable, frujtis a path ofG while (good, definitions:

bad, goog is a cycle (as well as a path) 6. Definition 2. LetG = (V, E) be a directed graphl/
. . a subset ofi/, and k an integer such thaR‘(U) =

3 A Graph-Theoretical Formulation of  pt(q7)forall ¢ > k. The se* () is called thereach-
the Problem able set fronl/ and is denoted byR*(U). Moreover, if

We are now ready to formulate the symbol groundindg*(U) =V, then we say thall/ is agrounding sebf

problem from a mathematical point of view.
) We say that7 is p-groundablef there existd/ C V

3.1 Reachable and Grounding Sets such thafU| = p andU is a grounding set of/. The

Given a dictionaryD of n words and a persom who grounding numbenpf a graphG is the smallest integer

knows m out of thesen words, assume that the only p such thai is p-groundable.

way x can learn new words is by consulting the dic- Reachable sets can be computed very simply using a

tionary definitions. Can alh words be learned by  breadth-first-search type algorithm, as shown by Algo-
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rithm 1. set of minimum cardinality.) This is related to a natural
decision problem: we designate ByGS the problem

Algorithm 1 Computing reachable sets of deciding whethet7 is k-groundable. We show that
1. function REACHABLESET(G, U) k-GS is closely related to the problem of finding mini-
2: R—U mum feedback vertex sets. First, we recall the definition
3 repeat of a feedback vertex set.

4: S {veV[Ng() C R} - R Definition 4. LetG = (V, E) be a directed graph and
5: R—RUS .
5 until S — 0 Ua s_ubset of/. We say that/ is afeedback vertex set
7 return R of G if for every cycleC of G, we havel N C # (. In

' . other wordsU covers every cycle @f.
8: end function

The minimum feedback vertex set problesithe
We now present some examples of reachable sets aplrd:)blem O.f fm_dmg a feedback vertex set@fof mini-
grounding sets. mum cardinality. To show that feedback vertex sets and

_ o grounding sets are the same, we begin by stating two
Example 3. Consider the dictionary) and the graph  simple lemmas.

G of Example 1. Let = {bad, light, not, thing. Note

that Lemma 5. LetG = (V, E) be a directed graph(C' a
cycle ofG andU C V a grounding set ofz. Then

R(U) = U UncC #9.
RY(U) = U uU{dark good,, oroof. B dic hELA C - 0 and

2 1 roof. By contradiction, assume th&tN C' = () and,
RS(U) N RQ(U) - {eaFaqu for all v € C, there exists an integér such that be-
R*(U) = R°(U)U {fruit} longs toR*(U). Let ¢ be the smallest index in the set
RYU) = R}U) {k | Ju € C suchthat. € R*(U)}. Letu be a vertex

in C N RY(U) andw the predecessor afin C. Since
so thatR*(U) = {bad, dark, eatable, fruit, good, light, {7 1 ' = 0, k must be greater thahandw a member
not, thing: (see Figure 2). In particular, this means of R‘~1(U/), contradicting the minimality of. O
that the word “eatable” is 2-reachable (but notl-
reachable) fronl/ and all words inU are O-reachable | emma 6. Every directed acyclic graphG is 0-
from U. Moreover, we observe that is not a ground-  groundable.
ing set ofG (“color”, for example, is unreachable). On

the other hand, the sét’ = U U {or} is a grounding  proof, We prove the statement by induction Bri.
set ofG, so thatG is 5-groundable.

Basis. If |[V]| = 1, then|E| = 0, so that the only vertex
v of G satisfiesN; (v) = (. HenceR(() = V..

th(i}lg 0 INDUCTION. Letwv be a vertex such thateg* (v) = 0.
/ Such a vertex exists sino@ is acyclic. Moreover,
: let G’ be the (acyclic) graph obtained frofs by re-
3 tomat
eatablei/fruit/ e moving vertexv and all its incident arcs. By the in-
J apple duction hypothesis, there exists an integesuch that
/ banana RE,(0) = V — {v}. ThereforeV — {v} C RE(0) so

e thatR&™ (0) = V. O

The next theorem follows easily from Lemmas 5 and

1
\ yellow or D
red
noto\_} ] bcolor/) 6.
0 light 3
g~ U g Theorem 7. Let G = (V, E) be a directed graph and
\\ U C V. ThenU is a grounding set of+ if and only if
k

dar’ U is a feedback vertex set Gf.

Proof. (=) Let C be a cycle ofG. By Lemma 5,U N

C # 0, so thatU is a minimum feedback vertex set
of G. (<) Let G’ be the graph obtained fro by
removingU. ThenG’ is acyclic and) is a grounding
3.2 The Minimum Grounding Set Problem set of G’. Thereforel/ U = U is a grounding set of

Given a dictionary and its associated graphwe are G- O
interested in finding minimum grounding sets Gf _
(Note that in general, there is more than one groundingorollary 8. k-GS is NP-complete.

Figure 2: The sefR*(U) (the words in squares) ob-
tained fromU
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Proof. Denote by k-FVS the problem of deciding Example 10. Consider again the dictionarp and the
whether a directed grapfi admits a feedback vertex graph G of Example 1. The strongly connected com-
set of cardinality at most. This problem is known ponents ofG are encircled in Figure 3 and minimum
to be NP-complete and has been widely studied (Kargirounding sets (represented by words in squares) for
1972; Garey: Johnson, 1979). It follows directly from each of them are easily found. Thus the grounding num-
Theorem 7 thak-GS is NP-complete as well since theber of G is 5.

problems are equivalent. O
The fact that problem-GS andk-FVS are equiv- O
. . . /T
alent is not very surprising. Indeed, roughly speaking, ( Jshing] )
the minimum grounding problem consists of finding a 7/1/ R
minimum set large enough to enable the reader to learn e G S——lomte)
(reach) all the words of the dictionary. On the other N — :
hand, the minimum feedback vertex set problem con- <l)allatla/>
sists of finding a minimum set large enough to break the go0d
circularity of the definitions in the dictionary. Hence, Cyelow ) ( EBD)
the problems are the same, even if they are stated dif;’ \ - - —r:#/ \/

ferently. \

Although the problem is NP-complete in general, we “\\bad f@\ih\“\xv/v

I
show that there is a simple way of reducing the com-

plexity of the problem by considering the strongly con-

nected components.

dark |
-

3.3 Decomposing the Problem Figure 3: The strongly connected components and a
Let G = (V, E) be a directed graph an@;, Gs, ..., minimum grounding set ofr

G, the subgraphs induced by its strongly connected

components, wherex > 1. In particular, there are

no cycles ofG containing vertices in different strongly 3.4 The Grounding Kernel

connected components. Since the minimum groungp Example 10, we have seen that there exist some

ing set problem is equivalent to the minimum feedy iy connected components consisting of only one
back vertex set problem, this means that when seeking +ex ‘without any loop. In particular, there exist

a minimum grounding set of7, we can restrict our- yerices with no successor, i.e. verticessuch that
selves to seeking minimum grounding SetsCaf for  nr+ ;) — o, For instance, this is the case of the words
i=1,2,...,m. More precisely, we have the following “apple”, “banana” and “tomato”, which are not used in
proposition. any definition in the dictionary. Removing these three
Proposition 9. Let G = (V, E) be a directed graph words, we notice that “fruit”, “red” and “yellow” are
with m strongly connected components, with> 1,  in the same situation and they can be removed as well.
and letG; = (V;, E;) be the subgraph induced by its pursuing the same idea, we can now remove the words
i-th strongly connected component, wherel i < m.  “color” and “eatable”. At this point, we cannot remove
Moreover, letU; be a minimum grounding set 6f;,  any further words. The set of remaining words is called
fori =1,2,...,m. ThenU = |J*, U; is a minimum  the grounding kernebf the graphG. More formally,
grounding set ofs. we have the following definition..

Proof. First, we show thal is a grounding set ofs.  Definition 11. Let D be a dictionary,G = (V, E) its
LetC be a cycle ofz. ThenC'is completely contained associated graph and'; = (V1, E1), G2 = (Va, E»),

in some strongly connected component@fsayG;, ..., G,, = (Vi., En) the subgraphs induced by the
wherel < j < m. ButU; C U is a grounding set of strongly connected components#fwherem > 1. Let
G, therefore/; NC # () sothaty NC # 0. Itremains V'’ be the set of vertices such that{u} is a strongly
to show thatl/ is a minimum grounding set ak. By  connected component without any loop (i@, ) is
contradiction, assume that there exists a grounding sett an arc ofG). For anyu, let N*(u) denote the set
U’ of G, with |U’| < |U| and letU; = U'N'V;. Then of verticesv such thatG contains auv-path. Then the
there exists an index, with 1 < j < m, such that grounding kernebf G, denoted by, is the sefl” —
\U;| < |Uj], contradicting the minimality ofU;|. O {u|u € V'andN*(u) C V'}.

Note that this proposition may be very useful for Clearly, every dictionanD admits a grounding ker-
graphs having many small strongly connected comparel, as shown by Algorithm 2. Moreover, the ground-
nents. Indeed, by using Tarjan’s Algorithm (Tarjan,ing kernel is a grounding set of its associated gréph
1972), the strongly connected components can be comnd every minimum grounding set 6f is a subset of
puted in linear time. We illustrate this reduction by arthe grounding kernel. Therefore, in studying the sym-
example. bol grounding problem in dictionaries, we can restrict
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Algorithm 2 Computing the grounding kernel not favor any particular theory of mental representation

1: function GROUNDINGK ERNEL(G) of meaning.

2: G — G A dictionary is a symbol system that relates words to
3 repeat words in such a way that the meanings of the definienda
4 Let W be the set of vertices @’ are conveyed via the definientes. The user is intended to
5: U«—{veW|Ni) =0} arrive at an understanding of an unknown word through
6: G — G'W -] an understanding of its definition. What was formally
7 until U =0 demonstrated in Section 3 agrees with common sense:
8 return G’ although one can learn new word meanings from a dic-
9: end function tionary, the entire dictionary cannot be learned in this

way because of circular references in the definitions
(cycles in graph theoretic terminology). Information
ourselves to the grounding kernel of the gr&plsorre-  _ nonverbalinformation — must come from outside the
sponding taD. This phenomenon is interesting becausgystem to ground at least some of its symbols by some
every dictionary contains many words that can be recUmeans other than just formal definition (Cangelgsi
sively removed without compromising the understandyarnad, 2001). For humans, the two options are learned
ing of the other definitions. Forma”y, this property re-sensorimotor grounding and innate grounding' (A|_
lates to thelevel of a word: we will say of a wordv  though the latter is no doubt important, our current fo-
that it is oflevelk if it is k-reachable fronKG but not cus is more on the former_)
t-reachable fronkg, foranyt < k. In particular, level 1o hoeq for information from outside the dictio-
0 indicates that the word is part of the grounding kemelnary is formalized in Section 3. Apart from confirming
A similar concept has been studied in (Changizi, 2008}he need for such external grounding, we take a sym-

Example 12. Continuing Example 10 and from what metric stance: In natural language, some word mean-
we have seen so far, it follows that the grounding kernéhgs — especially highly abstract ones, such as those

of G is given by of mathematical or philosophical terms — are not or
_ _ cannot be acquired through direct sensorimotor ground-
K¢ = {bad, dark, good, light, not, or, thirjg ing. They are acquired through thempositiorof pre-

. ., . ., viously known words. The meaning of some of those
Levell words are “color” and “eatable”, level2words 4145 or of the words in their respective definitions,

are “fruit’, “red” and “yellow”, and level 3 words are st in turn have been grounded through direct senso-

apple”, “banana” and “tomato”. rimotor experience.

To state this in another way: Meaning is not just for-
mal definitions all the way down; nor is it just sensori-
motor experience all the way up. The two extreme poles

In Section 3, we introduced all the necessary terminoPf that continuum aresensorimotor inductiorat one
ogy to Studythe Symbo| grounding prob|em using grapﬁOle (trlal and error experience with corrective feed-
theory and digital dictionaries. In this section, we exback; observation, pointing, gestures, imitation, etc.),
plain how this model can be useful and on what assumgndsymbolic instructior(definitions, descriptions, ex-
tions it is based. planation, verbal examples etc.) at the other pole. Be-
A dictionary is a formal symbol system. The pre-ing able to identify from their lexicological structure
ceding section showed how formal methods can bwhich words were acquired one way or the other would
applied to this system in order to extract formal feaProvide us with important clues about the cognitive pro-
tures. In cognitive science, this is the basiscofm- cesses underlying language and the mental representa-
putationalism(or cognitivism or “disembodied cogni- tion of meaning.
tion” (Pylyshyn, 1984)), according to which cognition, To compare the word meanings acquired via sensori-
too, is a formal symbol system — one that can be studanotor induction with word meanings acquired via sym-
ied and explained independently of the hardware (oholic instruction (definitions), we first need access to
insofar as it concerns humans, the wetware) on whidhe encoding of that knowledge. In this component
it is implemented. However, pure computationalisnof our research, our hypothesis is that the representa-
is vulnerable to the problem of the grounding of symtional structure of word meanings in dictionaries shares
bols too (Harnad, 1990). Some of this can be remesome commonalities with the representational structure
died by the competing paradigm of embodied cognief word meanings in the human brain (Hauk et al.,
tion (Barsalou, 2008; Glenber§y Robertson, 2002; 2008). We are thus trying to extract from dictionar-
Steels, 2007), which draws on dynamical (noncompues the grounding kernel (and eventually a minimum
tational) systems theory to ground cognition in sensagrounding set, which in general is a proper subset of
rimotor experience. Although computationalism andhis kernel), from which the rest of the dictionary can be
symbol grounding provide the background context foreached through definitions alone. We hypothesize that
our investigations and findings, the present paper dodlsis kernel, identified through formal structural analy-

4 Grounding Sets and the Mental
Lexicon
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sis, will exhibit properties that are also reflected in thé® Future Work

mental lexicon. In parallel ongoing studies, we are find- h . ¢ thi introd ¢
ing that the words in the grounding kernel are indeed e Main purpose of this paper was to introduce a for-

(1) more frequent in oral and written usage, (2) morénal approach to .the symbol Qfound?”g proplt_am bqsed
concrete, (3) more readily imageable, and (4) learned! thg computational anglyss of digital d|gt|onar|es.
earlier or at a younger age. We also expect they will b&190ing and future work includes the following:

(5) more universal (across dictionaries, languages and 1N€ Minimum grounding set problem/e have seen
cultures) (Chicoisne et al., 2008). that the problem of finding a minimum grounding set is

NP-complete for general graphs. However, graphs as-

sociated with dictionaries have a very specific structure.

5 Grounding Kernels in Natural We intend to describe a class of graphs including those
Language Dictionaries specific graphs and to try to design a polynomial-time
algorithm to solve the problem. Another approach is
to design approximation algorithms, yielding a solution

In earlier research (Clark, 2003), we have been aNose to the optimal solution, with some known guaran-

lyzing two special dictionaries: the Longman’s Dic'tee
tionary of Contemporgry English (!‘DOCE.) (Procter, Grounding sets satisfying particular constraintset

1978) and the Cambridge International Dictionary ofD be a dictionary? — (V. E) its associated graph
English (CIDE) (Procter, 1995). Both are officially Y& =V, grapn,

! ; _ andU C V any subset of vertices satisfying a given
described as being based upodedining vocabulary )
a set of2000 words which are purportedly the only property P. We can use Algorithm 1 to test whether

words used in all the definitions of the dictionary, in-Or not U/ is a grounding set. In particular, it would be

cluding the definitions of the defining vocabulary itseh‘.mtere.stlrlg o tes_t different seté satisfying different
cognitive constraints.

A closer analysis of this defining vocabulary, however, Relaxing the grounding conditionsin this paper

has revealed that it is not always faithful to these con- . e i
LT : we imposed strong conditions on the learning of new
straints: A significant number of words used in the def- : -
o : . words: One must know all the words of the definition
initions turn out not to be in the defining vocabulary. ; o
. . fully in order to learn a new word from them. This is
Hence it became evident that we would ourselves have o
) . not realistic, because we all know one can often under-
to generate a grounding kernel (roughly equivalent tQ

- " : Stand a definition without knowing every single word
the defining vocabulary) from these dictionaries. o -
in it. Hence one way to relax these conditions would

The method presented in this paper makes it possie to modify the learning rule so that one need only un-
ble, given the graph structure of a dictionary, to extracerstand at least% of the definition, where: is some
a grounding kernel therefrom. Extracting this struchymber betweef and 100. Another variation would
ture in turn confronts us with two further problems:pe to assign weights to words to take into account their
morphologyand polysemy Neither of these problems morphosyntactic and semantic properties (rather than
has a definite algorithmic solution. Morphology canjyst treating them as an unordered list, as in the present
be treated through stemming and associated look-ighalysis). Finally, we could consider “quasi-grounding
lists for the simplest casesd,, was— to be, and chil-  sets” whose associated reachable set consist® af
dren— child), but more elaborate or complicated casege whole dictionary.
would require syntactic analysis or, ultimately, human pjsambiguation of definitional relationsnalyzing
evaluation. Polysemy is usually treated through statisting| dictionaries raises, in its full generality, the prob-
cal analysis of the word context (as in Latent Semantiem of word and text disambiguation in free text; this
Analysis) (Kintsch, 2007) or human evaluation. Indeedg 5 very difficult problem. For example, if the word
a good deal of background knowledge is necessary tghgke” appears in a definition, we do not know which
analyse an entry such asidminant the fifth note of a  gf jtg many senses is intended — nor even what its
musical scale of eight notes” (the LDOCE notes 16 difgrammatical category is. To our knowledge, the only
ferent meanings adcaleand 4 fordominantand inour  zyajlable dictionary that endeavors to provide fully dis-
example, none of these words are used with their moginpiguated definitions is the just-released version of
frequent meaning). WordNet. On the other hand, dictionary definitions

Correct disambiguation of a dictionary is time-have a very specific grammatical structure, presumably
consuming work, as the most effective way to do isimpler and more limited than the general case of free
for now is through consensus among human evaluatottext. It might hence be feasible to develop automatic
Fortunately, a fully disambiguated version of the Word-disambiguation algorithms specifically dedicated to the
Net database (Fellbaum, 1998; Fellbaum, 2005) has juspecial case of dictionary definitions.
become available. We expect the grounding kernel of Concluding RemarkDefinition can reach the sense
WordNet to be of greater interest than the defining voisometimes), but only the senses can reach the referent.
cabulary of either CIDE or LDOCE (or what we extract Research funded by Canada Research Chair in Cog-
from them and disambiguate automatically, and impemitive Sciences, SSHRC (S. Harnad)and NSERC (S.
fectly) for our analysis. Harnad & O. Marcotte)
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