
Coling 2008: Proceedings of the workshop on Cognitive Aspects of the Lexicon (COGALEX 2008), pages 55–63
Manchester, August 2008

Extracting Sense Trees from the Romanian Thesaurus by
Sense Segmentation & Dependency Parsing

Neculai Curteanu
Institute for Computer Science,

Romanian Academy, Iaşi Branch
ncurteanu@yahoo.com

Alex Moruz
Institute for Computer Science,

Romanian Academy, Iaşi Branch
Faculty of Computer Science,

“Al. I. Cuza” University, Iaşi
mmoruz@info.uaic.ro

Diana Trandabăţ
Institute for Computer Science,

Romanian Academy, Iaşi Branch
Faculty of Computer Science, “Al.

I. Cuza” University, Iaşi
dtrandabat@info.uaic.ro

Abstract

This paper aims to introduce a new pars-
ing strategy for large dictionary (thesauri)
parsing, called Dictionary Sense Segmen-
tation & Dependency (DSSD), devoted to
obtain the sense tree, i.e. the hierarchy of
the defined meanings, for a dictionary en-
try. The real novelty of the proposed ap-
proach is that, contrary to dictionary
‘standard’ parsing, DSSD looks for and
succeeds to separate the two essential
processes within a dictionary entry pars-
ing: sense tree construction and sense
definition parsing. The key tools to ac-
complish the task of (autonomous) sense
tree building consist in defining the dic-
tionary sense marker classes, establishing
a tree-like hierarchy of these classes, and
using a proper searching procedure of
sense markers within the DSSD parsing
algorithm. A similar but more general
approach, using the same techniques and
data structures for (Romanian) free text
parsing is SCD (Segmentation-Cohesion-
Dependency) (Curteanu; 1988, 2006),
which DSSD is inspired from. A DSSD-
based parser is implemented in Java,
building currently 91% correct sense
trees from DTLR (Dicţionarul Tezaur al

© 2008. Licensed under the Creative Commons Attri-
bution-Noncommercial-Share Alike 3.0 Unported
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved.

Limbii Române – Romanian Language
Thesaurus) entries, with significant re-
sources to improve and enlarge the
DTLR lexical semantics analysis.

1 Introduction

Since the last decade, researchers have proven
the need for machine readable dictionaries. The
idea behind parsing a dictionary entry is the crea-
tion of a lexical-semantic tree of senses corre-
sponding to the meanings that define the diction-
ary lexical entry. The aim of this paper is to in-
troduce a new parsing strategy for thesauri shal-
low parsing, called Dictionary Sense Segmenta-
tion & Dependency (DSSD), devoted to the task
of extracting the sense tree, i.e. the hierarchy of
the lexical-semantics defined meanings for a dic-
tionary entry. The concrete task which DSSD
algorithm was used for is to obtain the sense tree
from an entry of the Romanian Language The-
saurus (DTLR – Dicţionarul Tezaur al Limbii
Române) within the eDTLR research project
(Cristea et al., 2007) devised for DTLR elec-
tronic acquisition and processing (Curteanu et al.,
2007).

In order to obtain the sense tree for a head
word, the dictionary entry is divided into primary
and secondary senses, respecting a sense hierar-
chy introduced by sense markers. For the DTLR
dictionary, the sense markers hierarchy (pre-
sented in Section 3) includes 5 levels. Those are,
from the topmost level: capital letter markers
(A., B., etc.), Roman numeral markers (I., II.,
etc.), Arabic numeral markers (1., 2., etc.), filled
diamond ♦ and empty diamond ◊. Besides the

55

five levels, there exists also a special marker
category, the so-called literal enumeration, con-
sisting of lowercase letter markers a), b), c), etc.
The literal enumeration can appear at any of the
5 levels, as presented in Section 3.

Thus, using the sense markers, any dictionary
entry is represented as a tree of senses, the lower
levels being more specific instances of the higher
levels.

For example, for the dictionary entry verb, the
sense tree contains 3 senses corresponding to
level 3, one of them having a sub-sense corre-
sponding to level 5. Each sense/sub-sense can
have its own definition (gloss) or examples.

<entry>
 <hw>VERB</hw>
 <senses>
 <marker level=”3”>1.
 <definition>…</definition>
 <marker level=”5”>◊
 <definition>…</definition>
 </marker>
 </marker>
 <marker level=”3”>2.
 <definition>…</definition>
 </marker>
 <marker level=”3”>3.
 <definition>…</definition>
 </marker>
 </senses>
</entry>

The presented method can be applied to any
dictionary, provided that a hierarchy of the sense
markers of the dictionary is established.

The paper is organized as follows: Section 2
points out the characteristic features of DSSD
strategy, discussing the special relationship be-
tween DSSD and SCD parsing strategy for gen-
eral text, on one hand, and between DSSD and
the standard dictionary entry parsing (DEP), on
the other hand. Section 3 presents the main com-
ponents of the DSSD strategy: DTLR sense
marker classes, their dependency hyper-tree
structure, and the DSSD parsing algorithm. The
final Section 4 discusses the current stage im-
plementation (in Java) of the DSSD algorithm,
exposing several parsed examples. Possible
sources of error and ambiguity in the DSSD pars-
ing process are discussed, and further develop-
ments of DSSD analysis software are outlined.

2 DSSD compared to Free Text Parsing
and to Dictionary ‘Standard’ Parsing

This section outlines the origins of the DSSD
idea, pointing out the connections between
DSSD and free text parsing based on the SCD
linguistic strategy (Curteanu 2006), on one hand,
and between DSSD and dictionary standard
parsing, e.g. (Neff, Boguraev; 1989), (Lemnitzer,
Kunze; 2005), (Hauser, Storrer; 1993), on the
other hand. The main difference (and positive
feature) of the DSSD strategy compared to the
standard approach to dictionary entry parsing
(DEP), e.g. LexParse system in (Hauser, Storrer;
1993), (Kammerer; 2000), (Lemnitzer, Kunze;
2005), or JavaCC grammar-based parsing in
(Curteanu, Amihaesei; 2004), is that DSSD de-
tached completely the process of sense tree
building from the process of sense definition
parsing, within the DEP general task. This fact is
clearly reflected in Fig. 2, which compares, at the
macro-code level, the main four DEP operations
for standard DEP and DSSD strategies.

2.1 SCD Marker Classes, Hierarchy, and
Parsing Algorithms

 DSSD parsing strategy involves a configuration
of components that is similar (but less general) to
the SCD (Segmentation-Cohesion-Dependency)
parsing strategy, developed and applied to (Ro-
manian) free text analysis (and generation)
(Curteanu; 2006). The process of solving the
parsing of DTLR entries have been inspired by
the resemblance between the classes of DTLR
sense markers and the SCD marker classes on
one side, and between the sense trees of (DTLR)
dictionary entries and the discourse trees of fi-
nite-clause dependency trees at sentence or para-
graph levels on the other side. While discourse
trees provide a formal similarity to the sense
trees, nucleus–satellite rhetorical relations among
discourse segments is quite different to the sub-
sumption relation of lexical semantics nature
among the sub-sense definitions (sub-senses) of a
dictionary entry.

The subsumption relation is defined as fol-
lows: sense1 subsumes sense2 if (informally)
sense1 is less informative (or, more general) than
sense2, or if (formally) the sense tree of sense1 is
a (proper) subtree of sense2. DSSD parsing of an

56

entry sense tree works in an akin Breadth-First,
Top-Down manner as SCD does, for those
classes of markers that produce only segmenta-
tion and binary dependency between discourse
segments or finite clauses, ignoring the more
complex “cohesion” relationship. Thus one can
rightly say that DSSD approach is derived from
the SCD parsing strategy (Fig. 1).

SCD parsing strategy is exposed at large in
(Curteanu 2006). SCD-based discourse parsing
presents a special interest for DSSD because of
their (formal) algorithmic analogy. The method
proposed by the SCD strategy includes building
the discourse tree by the intensive use of dis-
course markers, while discourse segments are
obtained by clause parsing. Employing the re-
sults of the SCD clausal parsing and a database
which contains information about the discourse
markers, one can obtain the discourse structure
of a text. The outcome is represented as a dis-
course tree whose terminal nodes are clause-like
structures, having specified on the arcs the name
of the involved rhetorical relations.

The SCD segmentation / parsing algorithm in
(Curteanu 2006) may have the same shape of a
Breadth-First (or sequential-linear) processing
form as DSSD does, using as input a morpho-
logically tagged text, obtaining the finite clauses
and sub-clausal phrase (XG-)structures. Data

representation is in standard XML and the im-
plementation of the SCD algorithm for free text
parsing is made in Java. (Curteanu 2006) pre-
sents recursive Breadth-First (and Depth-First),
or parallel Breadth-First shapes of the SCD
segmentation-parsing algorithms.

The relationship between SCD and DSSD
parsing strategies, the former devoted to the free
text parsing and the latter to be used for DEP,
could be summarized as follows: the two strate-
gies work formally with the same technology,
using very similar analysis tools and data struc-
tures, including the same Breadth-First search
strategy. The clear distinction between SCD and
DSSD consists in the quite different kind of texts
to be analyzed (free text vs. dictionary entry
text), and the two different (but complementary)
semantics that drive the corresponding parsing
structures: predicational and rhetorical (cohe-
sion-proper) semantics for SCD, and lexical se-
mantics (cohesion-free) for DSSD. The table in
Fig. 1 gives a detailed comparison between the
two parsing strategies. The SCD parsing technol-
ogy, especially with its presently discovered
DSSD sub-sort, evolves (at least) three features:
generality (different text structures), flexibility
(different underlying semantics), and adequacy
(proper text markers and their corresponding hi-
erarchies).

Parsing
Strategy

SCD markers &
DSSD markers

Semantics to be applied on the parsed
textual spans

Resulted structures of the
parsing process

 M4-class (discourse) markers rhetorical discourse semantics , i.e. RST dis-
course (high-level cohesion) dependencies

discourse tree (of RST-based dis-
course segments)

 M3-class (inter-clause) mark-
ers

inter-clause predicational semantics, i.e. Predi-
cate-Argument (global-level cohesion) dependen-
cies among finite clauses

clause-level dependency trees based
on syntactic or semantic relations

SCD M2-class (clause) markers

single finite-clause predicational semantics, i.e.
Predicate-Argument (local-level cohesion) de-
pendencies among VG-NGs (Verbal Group –
Noun Groups)

single finite clause(s)

 M1-class intra-clausal
(phrase) markers

non-finite predicational semantics, i.e. (local-
level cohesion) dependencies inside VG and NGs
(Verbal Group – Noun Groups)

simple and complex VGs; simple
and complex (predication-related)
NGs

 M0-class flexionary markers
of lexical categories lexical semantics categories lexical textual words = inflected

words

SCD -
DSSD

M(–1)-class of lemmatization
markers for DTLR lexical
entries

semantic description at the lexicon level lexical lemmatized words =
dictionary entries

DSSD
sense and subsense defini-
tion markers of a DTLR
lexical entry

subsumption relations between the subsenses of a
DTLR lexical entry (cohesion-free semantics)

sense trees and (XCES-TEI 2007
codification-based) sense definitons
of DTLR entries

Fig. 1. DSSD vs. SCD marker classes, the corresponding semantics and textual structures

57

2.2 DSSD Approach vs. Standard DEP

Another perspective on DSSD is outlined in this
section: the novelties of DSSD approach fetched
to the standard DEP, e.g. (Neff, Boguraev;
1989), (Lemnitzer, Kunze; 2005), (Kammerer,
2000). DSSD applies the same “technology” as
SCD strategy does, i.e. marker classes, specific
hierarchies, and adequate searching procedures
embedded and governing the parsing algorithms.
Most important, DSSD parse and construct the
sense tree of a (DTLR) dictionary entry, inde-
pendently of, and possibly lacking the, DTLR
sense definition parsing process.

In the standard DEP, including the Java-
grammar based construction of parsers in the
JavaCC environment (Curteanu, Amihaesei,
2004; Curteanu et al., 2007), building the sense
tree for an entry is inherently embedded into the
general process of parsing all the sense and
sub-sense definitions enclosed into the dictionary
entry. In the same typically (standard) DEP way
works also the parser in (Neff, Boguraev; 1989)
or LexParse, (Kammerer; 2000: 10-11) specify-
ing that the LexParse recognition strategy is a
Depth-First, Top-Down one.

The advantage of the proposed DSSD ap-
proach is that it “ignores”, at least in the begin-
ning, the “details” of sense definitions, concen-
trating only on the sense marker discovery and
their dependency establishing. The result is that
DSSD parsing concentrates on and obtains, in the
first place, the sense tree of a DTLR entry. Of

course, parsing of a dictionary entry does not
means only its sense tree, but the entry sense tree
represents the essential, indispensable structure
for any kind of DEP.

Based on different types of DTD standards for
dictionary text representation, such as CON-
CEDE-TEI (Erjavec et al. 2000; Kilgarriff 1999,
Tufis 2001) or (XCES-TEI; 2007), the parsing
process may continue “in depth” for identifying
the (other important) fields of sense and
sub-sense definitions. DSSD strategy has the
quality of being able to compute independently
the entry sense tree, prior to the process of sense
definition parsing. Subsequently, the process of
parsing the sense definitions can be performed
separately, one by one, avoiding the current
situation when the general parsing of an entry
may be stopped simply because of a single (even
if the last one) unparsable sense definition.

The procedural pseudo-code in Fig. 2 shows
clearly the important difference between stan-
dard DEP and DSSD parsing, with the essential
advantage provided by DSSD: standard DEP is
based on Depth-First search, while DSSD works
with Breadth-First one. Specifically, the proce-
dural running of the four operations that are
compared for the standard DEP and DSSD
strategies, labeled with 1, 2, 3, 4, are organ-
ized in quite different cycles: in the table left-
side (standard DEP), there is a single, large run-
ning cycle, 1 + 2, under 2 being embedded
(and strictly depending) the sub-cycle 3 + 4.
The DSSD parsing exhibits two distinct (and in-

Dictionary Classical Parsing Strategy DSSD Parsing Strategy

For i from 0 to MarkerNumber
 1 Sense-i Marker Recognition;
 2 Sense-i Definition Parsing;
 If(Success)
 3 Attach (Parsed) Sense-i Definition to Node-i;
 4 Add Node-i to EntrySenseTree;
 Else Fail and Stop.
EndFor

Output: EntrySenseTree with Parsed Sense Definitions
(only if all sense definitions are parsed).

Notice: MarkerNumber is the number of the input
marker sequence.

For i from 0 to MarkerNumber
 1 Sense-i Marker Recognition;
 Assign (Unparsed) Sense-i Definition to Node-i;
 4 Add Node-i to EntrySenseTree;
 Standby on Sense-i Definition Parsing;
EndFor
Output: EntrySenseTree.

Node-k = Root(EntrySenseTree);
While not all nodes in EntrySenseTree are visited
 2 Sense-k Definition Parsing;
If(Success)
 3 Attach Sense-k Definition to Node-k;
Else Attach Sense-k Parsing Result to Node-k;
Node-k = getNextDepthFirstNode(EntrySenseTree)
Continue
EndWhile.

Output: EntrySenseTree with Parsed or Unparsed Sense
Definitions

Fig. 2. A macro-code comparison of classical and DSSD parsing strategies

58

dependently) running cycles: 1 + 4, for con-
structing the (DTLR) sense trees, and 2 + 3,
devoted to parse the sense definitions and to at-
tach the parsed or unparsed sense definitions to
their corresponding nodes in the sense tree(s).

We emphasize firstly, that the second proce-
dural cycle is optional, and secondly, that the
first cycle is working on the sense marker se-
quence of the entry (either correct or not), the
DSSD output being an entry sense tree in any
case (either correct or not). This is why the
DSSD algorithm never returns on FAIL, regard-
less whether the obtained sense tree is correct or
not.

3 DTLR Marker Classes, their Depend-
ency Structure, and the DSSD Parsing
Algorithm

As already pointed out, DSSD can be viewed as
a simplified version of SCD, since only the seg-
mentation and dependency aspects are involved,
the (local) cohesion matters being without object
for the (one-word) lexical semantics of DSSD.
As in the case of SCD, the DSSD parsing strat-
egy requires a set of marker classes (in our case,
DTLR sense markers), arranged in a hierarchy
illustrated in Fig. 3, and described below:

The capital letter marker class (A., B., etc.) is
the topmost level on the sense hierarchy of
DTLR markers (see Fig. 3) for any given dic-
tionary entry. When it appears, this marker des-
ignates the (largest-grained meaning) primary
senses of the lexical word defined. If the top
level marker has only one element of this kind,
then the marker is not explicitly represented.

The Roman numeral marker class (I., II., etc.)
is the second-level of sense analysis for a given
DTLR entry. It is subsumed by a capital letter
marker if some exists for the head word; if a
capital letter marker does not exist (it is not ex-
plicitly represented), the Roman numeral marker
appears on the topmost level of the sense tree. If
the lexical entry has only one sense value for this
analysis level, the marker is not explicitly repre-
sented.

The Arabic numeral marker class (1., 2., etc.)
is the third-level of sense analysis for a DTLR
entry. It is subsumed by a Roman numeral
marker if there exists some for the entry; if a
Roman numeral marker is not explicitly repre-
sented, it is subsumed by the first explicit marker
on a higher level. If the entry has only one sense
value for this level of sense analysis, the marker
is not explicitly represented. These first three

levels encode the primary senses of a DTLR
lexical entry.

Fig. 3. The tree-like dependency structure for
the classes of DTLR markers

The filled diamond marker class is the fourth-

level of sense analysis and it is used for enumer-
ating secondary (finer-grained) senses of a
DTLR entry. It is generally subsumed by any
explicit DTLR sense marker on a higher level,
i.e. any of the primary sense markers.

The empty diamond marker class is the fifth-
level of sense analysis and it is used for enumer-
ating expressions for a given, secondary sub-
sense. It is generally subsumed by a filled dia-
mond marker or by any primary sense marker.

The lowercase letter markers a), b), c), etc. are
not an actual class of sense markers, but rather a
procedure used to refine, through literal enu-
meration, a semantic paradigm of a DTLR entry
sense or sub-sense. A lowercase letter marker
does not have a specific level on the marker class
tree-like hierarchy since it belongs to the sense
marker level (of either primary or secondary
sense) that is its parent. The important rules of
the literal enumeration procedure in DTLR are:
(a) it associates with the hierarchy level of the
sense marker class to which is assigned (in
Fig. 3), and (b) it can embed lower (than its par-
ent level) senses, provided that each literal enu-
meration is closed finally on the sense level to
which it belongs.

Fig. 3 is a hyper-tree hierarchy of the DTLR
sense marker classes since (at least) the lowest
hyper-node contains recursively embedded dia-

 a), b), c), …
 DTLR Entry

 a), b), c),

 A., B., C., …

 a), b), c),

 I., II., III., …

 a), b), c),

 1., 2., 3.,

 a), b), c), …

 ◊

 ♦

59

mond-marker nodes. The dashed arrows point to
the upper or lower levels of DTLR sense marker
hierarchy, from the literal enumeration layer-
embedded level. The continuous-dashed arrows
in Fig. 3 point downwards from the higher to the
lower priority levels of DTLR marker class hy-
per-tree. Because of its special representation
characteristics, the literal enumeration is illus-
trated on a layer attached to the hierarchy level
to which it belongs, on each of the sense levels.
Some examples supporting the marker hierarchy
in Fig. 3, including the literal enumeration that
can appear at any DTLR sense level, are pre-
sented below:

I. Literal enumeration under a filled diamond

(secondary sense):
<entry>
 <hw>VÍŢĂ2</hw>
 <pos>s. f.</pos>
 <senses>
 <marker>I.
 <marker>1.
 <definition> (De obicei determinat prin „de
vie”) Arbust din familia vitaceelor, cu rădăcina puternică, cu
tulpina scurtă, …</definition>
 <marker>♦
 <definition> C o m p u s e: viţă-albă =
</definition>
 <marker>a)
 <definition> arbust agăţător din familia
ranunculaceelor, cu tulpina subţire, cu frunze penate...;
</definition>
 </marker>
 <marker>b)
 <definition>(regional) luminoasă
(Clematis recta). Cf. CONV. LIT. XXIII, 571, BORZA, D. 49,
301; </definition>
 </marker>
 <marker>c)
 <definition>(învechit) împărăteasă
(Bryonia alba).....</definition>
 </marker>
 </marker>
 </marker>
 </marker>
 </senses>
</entry>

II. Literal enumeration under an Arabic nu-

meral (primary sense):
<entry>
 <hw>VERIGÚŢĂ</hw>
 <pos>s. f.</pos>
 <senses>
 <definition>Diminutiv al lui v e r i g ă. Cf. LB,
POLIZU, DDRF, BARCIANU, ALEXI, W., TDRG, CADE, SCRIBAN, D.,
DL, DM, DEX.</definition>
 <marker>1.
 <marker>a)

 <definition> (Prin Transilv. şi prin sudul
Mold.) Cf. v e r i g ă (2 c). Cf. ALR II 6 653/95, 192, 605.
</definition>
 </marker>
 <marker> b)
 <definition>Cf. v e r i g ă (2 b). Şi am dat
cercel în narea ta şi veriguţe în urechile tale. BIBLIA (1688),
5431/25. La ferestre spînzurau nişte perdeluţe de adamască,
aninate în nişte veriguţe ce se înşirau pe o vargă de fier.
GANE, N. II, 160. </definition>
 </marker>
 </marker>
 <marker>2.
 <definition> (Popular) Verighetă. Cf. SCRIBAN, D.,
ŢIPLEA, P. P., BUD, P. P. Mi-o dat o veriguţă Şi-ntr-on an i-am fost
drăguţă. BÎRLEA, C. P. 143. </definition>
 </marker>
 </senses>
</entry>

III. Literal enumeration directly under the en-
try root:
<entry>
 <hw>VENTRICÉA</hw>
 <pos>s. f.</pos>
 <senses>
 <definition> Numele mai multor specii de plante
erbacee (folosite în medicină): </definition>
 <marker>a)
 <definition> ventrilică (c) (Veronica persica).
Cf. GRECESCU, FL. 442, PANŢU, PL., CADE. Un gorun negru şi
singuratic… e năpădit la poale de ventricele cu spicuri
albăstrii....; </definition>
 </marker>
 <marker>b)
 <definition> ventrilică (a) (Veronica officinalis).
Cf. TDRG, BORZA, D. 179, 300; </definition>
 </marker>
 <marker>c)
 <definition>bobornic (Veronica prostrata). Cf.
BORZA, D. 179, 300. </definition>
 </marker>
 </senses>
</entry>

The DSSD algorithm for the construction of

the DTLR sense tree, according to the marker
hierarchy described in Fig. 3, is the following:

Stack S
Tree T
S.push(root)
while article has more markers
 crt = get_next_marker()
 while crt > S.top() – get to the
first higher rank marker in the
stack
 S.pop()
 if(crt = lowercaseLetter)
 S.top.addPart(crt) – add a low-
ercase marker as a subset of the
higher level sense value

60

 crt.level=S.top.level+1 – the
lowercase letter maker is given a
level in accordance to the level of
its parent
 S.push(crt)
 else
 S.top.add_son(crt) – add the
son to the higher level marker in
the stack
 S.push(crt) – add the current
marker to the stack

The DSSD parsing algorithm was imple-

mented in Java and running examples of its ap-
plication on DTLR entries are presented in Sec-
tion 4. While the DTLR sense marker recogni-
tion in DSSD is achieved with a Breadth-First
search, the marker sequence analysis for sense
tree construction is based on a Depth-First pars-
ing of the sense marker sequence input, as it uses
a stack to keep track of previous unfinished (in
terms of attaching subsenses) sense markers.

4 DTLR Parsing with DSSD Algorithm:
Examples and Developments

4.1 DSSD Parser Applied on DTLR Entries

The enclosed Fig. 4 shows the result of applying
the DSSD Java parser described in Section 3 on a
DTLR entry. We notice that the presented input
example (VENIT2) represents just sequences of
DTLR sense markers. The entry for which the
parsing was conducted is given only as tags, in
part below (the entire entry spans for more than
two dictionary pages):

<entry>
 <hw><VENÍT2, -Ă </hw>
 <pos>adj. </pos>
 <senses>
 <definition>…</definition>
 <marker>1.
 <definition>…</definition>
 <marker>2.
 <definition>…</definition>
 <marker>◊
 <marker> a)
 <definition>…</definition>
 </marker>
 <marker> b)
 <definition>…</definition>
 </marker>
 <marker> c)
 <definition>…</definition>
 </marker>
 </marker>
 <marker>◊
 <marker> a)
 <definition>…</definition>
 </marker>

 <marker> b)
 <definition>…</definition>
 </marker>
 </marker>
 </marker>
 </senses>
</entry>

Fig. 4. DSSD parsing for the sense tree build-

ing of DTLR entry VENIT2

As one can see, the input of the sense tree

parser is the DSSD marker sequence of the con-
sidered DTLR entry (the <list> tag in Figure 4).
The output of the parsing is much less verbose
than the original dictionary entry, since the sense
definitions and the entire example text is not de-
picted, in order to better observe the sense tree of
the entry. Also, this representation proves that
the understanding of the sense definitions is not
strictly necessary for building the sense tree, a
task for which the marker hierarchy discussed in
Section 3 is sufficient.

Fig. 5 presents the sense tree for the dictionary
entry “VIÉRME” (En: worm). It can be seen that
this particular entry is quite large, with the origi-
nal dictionary text spanning for more than six
pages of DTLR thesaurus.

After its completion, the DSSD parser was
tested on more than 500 dictionary entries (of
medium and large sizes), the only ones already in
electronic format to which we had access to at
the moment (the vast majority of dictionary vol-
umes is only available in printed form). The suc-
cess rate was determined to be 91.18%, being

61

Fig. 5. Sense tree for the dictionary entry
“VIÉRME”

computed as a perfect match between the output
of the program and the gold standard.
Furthermore, it is worth noting that an article
with only one incorrect parse (i.e. one node in the
sense tree attached incorrectly) was considered to
be erroneously parsed in its entirety, an approach
which disregards all the other correctly attached

nodes in that entry. This fact shows also signifi-
cant improvement resources of the DSSD parsing
process.

4.2 Error and Ambiguity Sources in DTLR
Parsing

It is worth to mention some sources of error and
ambiguity found in DSSD parsing for DTLR
sense tree computing. We grouped the error
sources in three main classes:

I. Inconsistencies in writing the original DTLR

article
A first source of parsing errors is the non-

monotony of the marker values on the same level
of sense marker hierarchy (Fig. 3):

Ex.1. A. [B. missing] … C. etc.;
Ex.2. 2. [instead of 1.]... 2. etc.;
Ex.3. a)… b) … c) … b) [instead of d)]etc.
The tree structure returned by the parser does

not consider the consistency of each marker
level. Thus, in Ex.1, it will place the two markers
A. and C. as brother nodes in the sense tree. A
(partial but feasible) solution for the parser is to
check the strict monotony of the marker
neighbors, an operation which is useful also
when sense markers interfere with literal enu-
meration.

A validity of the marker succession at each
level will be checked after the completion of the
sense tree parsing.

II. Ambiguity in deciding which is the regent

and which is the dependent (sub)sense
An inherently ambiguity was found for the fol-

lowing sequences of DTLR sense markers:
Ex.4. 1. a) b) c) ◊ [◊]
The problem occurs since one can not discern

between attaching the first (and / or second) “◊”
as depending on c) or on the upper level marker
(1.). Solving these ambiguities is a problem re-
lated on syntactic and / or semantic contexts of
the involved (multiple) pairs of markers.
Namely, if “c)” is the last small letter in the lit-
eral enumeration, then “◊” is attached to the “1.”
marker (and sense), while if “c)” in the literal
enumeration, followed by “◊”, has a continuation
“d)” in the literal enumeration, then “◊” depends
on its small letter “c)” regent sense.

III. More refined subsense classification
A third source of errors when creating the

sense tree is met within the following marker
sequence I. 1. ♦ a) b) c) a) b). Even if at a quick

62

look the problem with the inconsistent literal
enumeration is similar to the problems presented
in the first class, at a closer inspection we real-
ized that under the full diamond ♦ there are three
subsenses (three expressions), two of them hav-
ing literal enumeration: (1) viţă-albă = a)... b)...
c); (2) viţă-neagră = ...; (3) viţa-evreilor =
a)...b). To solution this problem makes necessary
a more refined subsense classification within the
sense definition and adding possible new mark-
ers to the hierarchy. Working to solve these prob-
lems is in good progress, as it concerns types of
sense structure closely related to various sense
definition parsing, the next step in the develop-
ment of the DSSD dictionary parser.

We already identified seven definition types,
encoded as follows, together with the most im-
portant dependency conditions among the defini-
tions below, within DTLR senses and subsenses:

1. MorfDef (Morphological Definitions);
 2. SpecDef (Specification-based Definitions);
 3. SpSpec (Spaced-character Definitions);
 4. RegDef (Regular-font Definitions);
 5. BoldDef (Bold-font Definitions);
 6. ItalDef (Italic-font Definitions);
 7. ExemDef (Example-based Definitions),
The 4, 5, 6, definition types are possibly fol-

lowed by the literal enumeration scheme of
sense codification.

Further developments of DSSD analysis soft-
ware are meant to be achieved: (a) The complete
parsing of a DTLR entry entails the natural ex-
tension of DSSD approach towards sense defini-
tion parsing and representation within the XCES
TEI P5 (2007) standard set of tags. (b) A spe-
cialized subset of TEI P5 tags for representing all
the types of definitions met within the primary
and secondary senses of a DTLR entry is neces-
sary. (c) Resolution of all the references within a
DTLR entry is necessary: references to the ex-
cerpt sources (sigles), reference to a sense within
the same entry (internal reference), or to a
(sub)sense within another entry (external refer-
ence). (d) Verification of the sense-tree correct-
ness can be achieved by restoring the linear
structure of a DTLR entry from its parsed sense-
tree representation, and comparing it with the
DTLR original entry.

Acknowledgement. The present research was

financed within the eDTLR grant, PNCDI II
Project No. 91_013/18.09.2007.

References
Cristea, D., Răschip, M., Forăscu, C., Haja, G., Flo-

rescu, C., Aldea, B., Dănilă, E. (2007): The Digital
Form of the Thesaurus Dictionary of the Romanian
Language. In Proceedings of the 4th International
IEEE Conference SpeD 2007.

Curteanu, Neculai (1988): Augmented X-bar Schemes.
COLING'88 Proceedings, Budapest, pp. 130-132.

Curteanu, N., E. Amihăesei (2004): Grammar-based
Java Parsers for DEX and DTLR Romanian Dic-
tionaries. ECIT-2004 Conference, Iasi, Romania.

Curteanu, N. (2006): Local and Global Parsing with
Functional (F)X-bar Theory and SCD Linguistic
Strategy. (I.+II.), Computer Science Journal of
Moldova, Academy of Science of Moldova, Vol.
14 no. 1 (40):74-102 and no. 2 (41):155-182.

Curteanu, N., D. Trandabăţ, G. Pavel, C. Vereştiuc, C.
Bolea (2007): eDTLR – Thesaurus Dictionary of
the Romanian Language in electronic form. Re-
search Report at the PNCDI II Project No.
91_013/18.09.2007, Phase 2007, and (D. Cristea,
D. Tufiş, Eds.) eDTLR Parsing – The Current
Stage, Problems, and Development Solutions, Ro-
manian Academy Editorial House (in Romanian –
to appear).

DLR Revision Group (1952): Codification Rules for
the Dictionary (Thesaurus) of the Romanian Lan-
guage. Institute of Philology, Bucharest, Romanian
Academy.

Erjavec, T, Evans, R., Ide, N., Kilgariff A., (2000):
The CONCEDE Model for Lexical Databases. Re-
search Report on TEI-CONCEDE LDB Project,
Univ. of Ljubljana, Slovenia.

Hauser, R., Storrer, A. (1993). Dictionary Entry Pars-
ing Using the LexParse System. Lexikographica 9
(1993), 174-219

Kammerer, M. (2000): Wöterbuchparsing
Grundsätzliche Überlegungen und ein Kurzbericht
über praktische Erfahrungen, http://www.matthias-
kammerer.de/content/WBParsing.pdf

Lemnitzer, L., Kunze, C. (2005): Dictionary Entry
Parsing, ESSLLI 2005

Neff, M., Boguraev, B. (1989) Dictionaries, Diction-
ary Grammars and Dictionary Entry Parsing,
Proc. of the 27th annual meeting on Association for
Computational Linguistics Vancouver, British Co-
lumbia, Canada Pages: 91 - 101

Tufiş, Dan (2001): From Machine Readable Diction-
aries to Lexical Databases, RACAI, Romanian
Academy, Bucharest, Romania.

XCES TEI Standard, Variant P5 (2007):
http://www.tei-c.org/Guidelines/P5/

63

