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We focus on enhancing robustness and ens
ing maintainability and re-usability for a large-
scaledeepgrammar of German (GG; (Crysmann,
2003)), developed in the framework of Head-
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Abstract

In this paper we illustrate and underline
the importance of making detailed linguis-
tic information a central part of the pro-
cess of automatic acquisition of large-scale
lexicons as a means for enhancing robust-
ness and at the same time ensuring main-
tainability and re-usability ofdeep lexi-
calised grammars. Using the error mining
techniques proposed in (van Noord, 2004)
we show very convincingly that the main
hindrance to portability ofleeplexicalised
grammars to domains other than the ones
originally developed in, as well as to ro-
bustness of systems using such grammars
is low lexical coverage. To this effect,
we develop linguistically-driven methods
that use detailed morphosyntactic informa-
tion to automatically enhance the perfor-
mance ofdeeplexicalised grammars main-
taining at the same time their usually al-
ready achieved high linguistic quality.

I ntroduction

In recent years, various technigues and re-
sources have been developed in order to improve
robustness of deep grammars for real-life applica-
tions in various domains. Nevertheleksy cover-
ageof such grammars remains the main hindrance
to their employment in open domain natural lan-
guage processing. (Baldwin et al., 2004), as well
as (van Noord, 2004) and (Zhang and Kordoni,
2006) have clearly shown that the majority of pars-
ing failures with large-scale deep grammars are
caused by missing or wrong entries in the lexicons
accompanying grammars like the aforementioned
ones. Based on these findings, it has become clear
that it is crucial to explore and develop efficient
methods fomautomated (Deep) Lexical Acquisition
(henceforward (D)LA), the process of automati-
cally recovering missing entries in the lexicons of
deep grammars.

Recently, various high-quality DLA approaches
have been proposed. (Baldwin, 2005), as well
as (Zhang and Kordoni, 2006), (van de Cruys,
2006) and (Nicholson et al., 2008) describe effi-
cient methods towards the task of lexicon acqui-
sition for large-scale deep grammars for English,
Dutch and German. They treat DLA as a classi-
fication task and make use of various robust and

ur-

efficient machine learning techniques to perform
the acquisition process.

However, it is our claim that to achieve bet-

driven Phrase Structure Grammar (HPSG). Specife' and more practically useful results, apart from
ically, we show that the incorporation of detaileddo0d learning algorithms, we also needirtcorpo-
linguistic information into the process of auto-rate into the learning process fine-grained linguis-
matic extension of the lexicon of such a languag#¢ information which deep grammars inherently
resource enhances its performance and providd¥lude and provide for. As we clearly show in
linguistically sound and more informative predic-the following, it isnot sufficient to only develop
tions which bring a bigger benefit for the grammala“d use good and complicated classification algo-
when employed in practical real-life applications. rithms. We must look at the detailed linguistic in-
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formation that is already included and provided for
by the grammar itself and try to capture and make
as much use of it as possible, for this is the infor-
mation we aim at learning when performing DLA.
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In this way, the learning process is facilitated and\s an HPSG grammar, the GG is based on typed
at the same time it is as much as possible ensuréehture structures. The GG types are strictly de-
that its outcome be linguistically more informativefined within a type hierarchy. The GG also con-
and, thus, practically more useful. tains constructional and lexical rules and a lexicon
We use the GG deep grammar for the work wavith its entries belonging to lexical types which
present in this paper because German is a languagfe themselves defined again within the type hier-
with rich morphology and free word order, whicharchy. The grammar originates from (Muller and
exhibits a range of interesting linguistic phenomKasper, 2000), but continued to improve after the
ena, a fair number of which are already analysed iand of the Verbmobil project (Wahlster, 2000) and
the GG. Thus, the grammar is a valuable linguistiét currently consists of 5K types, 115 rules and the
resource since it provides linguistically sound andexicon contains approximately 35K entries. These
detailed analyses of these phenomena. Apart frofntries belong to 386 distinct lexical types.
the interesting syntactic structures, though, the lex- In the experiments we report here two corpora
ical entries in the lexicon of the aforementionedf different kind and size have been used. The
grammar also exhibit a rich and complicated strudirst one has been extracted from the Frankfurter
ture and contain various important linguistic conRundschau newspaper and contains about 614K
straints. Based on our claim above, in this pasentences that have between 5 and 20 tokens. The
per we show how the information these constraintsecond corpus is a subset of the German part of the
provide can be captured and usedimguistically- Wacky project (Kilgarriff and Grefenstette, 2003).
motivatedDLA methods which we propose here.The Wacky project aims at the creation of large
We then apply our approach on real-life data andorpora for different languages, including German,
observe the impact it has on the the grammar coffom various web sources, such as online news-
erage and its practical application. In this way wepapers and magazines, legal texts, internet fora,
try to prove our assumption that the linguistic in-university and science web sites, etc. The Ger-
formation we incorporate into our DLA methodsman part, named deWaC (Web as Corpus), con-
is vital for the good performance of the acquisitiortains about 93M sentences and 1.65 billion tokens.
process and for the maintainability and re-usabilityrhe subset used in our experiments is extracted
of the grammar, as well for its successful practicaby randomly selecting 2.57M sentences that have
application. between 4 and 30 tokens. These corpora have
The remainder of the paper is organised as foPeen chosen because it is interesting to observe
lows. In Section 2 we show that low (lexical) cov-the grammar performance on a relatively balanced
erage is a serious issue for the GG when employdtewspaper corpus that does not include so many
for open domain natural language processing. Sel@ng sentences and sophisticated linguistic con-
tion 3 presents the types in the lexical architecturgtructions and to compare it with the performance
of the GG that are considered to be relevant for thef the grammar on a random open domain text cor-
purposes of our experiments. Section 4 describ&$is.
the extensive linguistic analysis we perform in or- The sentences are fed into the PET HPSG parser
der to deal with the linguistic information these(Callmeier, 2000) with the GG loaded. The parser
types provide and presents the target type invefias been configured with a maximum edge num-
tory for our DLA methods. Section 5 reports onber limit of 100K and it is running in thbest-only
statistical approaches towards automatic DLA anghode so that it does not exhaustively find all pos-
shows the importance of a good and linguisticallysible parses. The result of each sentence is marked
motivated feature selection. Section 6 illustrategs one of the following four cases:
the practical usage of the proposed DLA methods
and their impact on grammar coverage. Section 7
concludes the paper.

e P means at least one parse is found for the
sentence;

_ e L means the parser halted after the morpho-
2 Coverage Test with the GG logical analysis and was not able to construct

: . any lexical item for the input token;
We start off adopting the automated error mining

method described in (van Noord, 2004) for iden- e N means that the parser exhausted the search-
tification of the major type of errors in the GG. ing and was not able to parse the sentence;
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e E means the parser reached the maximumve propose aimventory of open-class lexical types
edge number limit and was still not able towith sufficient type and token frequendhetype
find a parse.

frequency of a given lexical type is defined as
the number of lexical entries in the lexicon of the

_Table 1 shows the results of the eXperimentarammarthat belong to this type and token fre-
with the two corpora. From these results it Caluency is the number of words in some corpus that

belong to this type.

FR deWaC
Result | #Sentences % | #Sentences % We use sentences from the Verbmobil corpus
P 62,768  10.22%| 109,498  4.3% i i i
L 464117 75550 2328490  90.5% which haye been treebanked with the GG in order
N 87,415  14.23%| 134,917 52% o determine the token frequency and to map the
E 3 - 14 - lexemes to their correct entries in the lexicon for
Total: | 614298  100% | 2,572,919 100%  the pyrposes of the experiment. This set contains

Table 1: Parsing results with the GG and the tedtK sentences and about 73K tokens; this gives an
corpora average of 6.8 words per sentence. The sentences

are taken from spoken dialogues. Hence, they are
)?ot long and most of them do not exhibit interest-
: linguistic properties which is a clear drawback
a small portion of the sentences— about 25% a Hg g propel
ut currently there is no other annotated data com-
10% for the Frankfurter Rundschau and the deWacgC . .
patible with the GG.

corpora, respectively. The output of the error min- .
corpora, resp Y outp . : We used a type frequency threshold of 10 entries
ing confirms our assumption that missing lexical

entries are the main problem when it comes {n the lexicon and a token frequency threshold of

, % occurrences in the treebanked sentences to form
robust performance of the GG and illustrates the | .
- a list of relevant open-class lexical types. The re-

need for efficient DLA methods. o . . ) .
sulting list contains 38 atomic lexical types with a

total of 32,687 lexical entries.

be seen that the GG has full lexical span for onl

3 Atomic Lexical Types

Before describing the proposed DLA algorithmg
we should define what exactly is being learnt.
Most of the so calledleepgrammars are strongly However, in the case of the GG this type inventory
lexicalised. As mentioned in the previous sectionis not a sufficient solution. As already mentioned,
the GG employs a type inheritance system and ii8 the lexicon of the grammar much of the relevant
lexicon has a flat structure with each lexical entryinguistic information is encoded not in the type
mapped onto one type in the inheritance hierarchglefinition itself but in the form of constraints in the
Normally, the types assigned to the lexical entriefeature structures of the various types. Moreover,
are maximal on the type hierarchy, i.e., they do nagiven that German has a rich morphology, a given
have any subtypes. They provide the most specifaitribute may have many different values among
information available for this branch of the hierar-exical entries of the same type and it is crucial for
chy. These maximal types which the lexical entrieghe DLA process to capture all the different com-
are mapped onto are calledomic lexical types binations. That is why we expand the identified
Thus, in our experiment setup, we can define th@8 atomic lexical type definitions by including the
lexicon of the grammar as being a one-to-one mapalues of various features into them.
ping from word stems to atomic lexical types. Itis By doing this, we are trying to facilitate the
this mapping which must be automatically learnDLA process because, in that way, it can ‘learn’
(guessed) by the different DLA methods. to differentiate not only the various lexical types
We are interested in learning open-class wordgut also significant morphosyntactic differences
i.e., nouns, adjectives, verbs and adverbs. We ammong entries that belong to the same lexical type.
sume that the close-class words are already in tfdat gives the DLA methods access to much more
lexicon or the grammar can handle them throughnguistic information and they are able to apply
various lexical rules and they are not crucial fomore linguistically fine-tuned classification crite-
the grammar performance in real life applicationsria when deciding which lexical type the unknown
Thus, for the purposes of our experiments, we corword must be assigned to. Furthermore, we en-
sider only the open-class lexical types. Moreovesure that the learning process deliver linguistically

Incor poration of Linguistic Features
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Feature Values Meaning

+ in some cases the article for the noun can be omitted
SUBJOPT (subject options) - thc_a noun always goes with an article

+ raising verb

- non-raising verb

- case-number-gender information for nouns
KEYAGR (key agreement) c-s-n underspecified-singular-neutral

c-p-g underspecified-plural-underspecified

(O)COMPAGR ((oblique) "é-n-g, d-n-g, etc. case-numberdgemnformation

complement - for (oblique) verb complements
agreement - case-number-gender of the modified noun (fectad}s)
(O)COMPTORPT ((oblique) — verbs can take a different numbb@omplements
complement + the respective (oblique) complement is ptesen
options - the respective (oblique) complement is absent

— the auxiliary verb used for the formation of perfect tense
KEYFORM haben the auxiliary verb is ‘haben’

sein the auxiliary verb is ‘sein’

Table 2: Relevant features used for type expansion

plausible, precise and more practically useful re- Verkehrsmittel.

sults. The more the captured and used linguistic transportation means _ _

information is, the better and more useful the DLA J;rfs;grtgﬂgr?_,s a good connection to public

results will be. b. Die AnbindunganRom mit
However, we have to avoid creating data sparse det.FEM.NOMconnectiorto Romewith

problems. We do so by making the assumption ggTMASC.DATﬁgignEé.SPER.SQ?ggd

that not every feature could really contribute to the “The train connection to Rome is good.

classification process and by filtering out these fea-
tures that we considérrelevant for the enhance-  The distinction between raising and non-raising
ment of the DLA task. Naturally, the questionverbs that this feature expresses is also an impor-
which features are to be considered relevant arisg@nt contribution to the classification process.
After performing an extensive linguistic analysis, The case-number-gender data the KEYAGR and
we have decided to take the features shown in T§©)COMPAGR features provide allows for a bet-
ble 2 into account. ter usage of morphosyntactic information for the
We have thoroughly analysed each of these fegurposes of DLA. Based on this data, the classifi-
tures and selected them on the basis of their lircation method is able to capture words with sim-
guistic meaning and their significance and contrilar morphosyntactic behaviour and give various
bution to the DLA process. The SUBJOPT feaindications for their syntactic nature; for instance,
ture can be used to differentiate among nouns thétthe word is a subject, direct or indirect object.
have a similar morphosyntactic behaviour but difThis is especially relevant and useful for languages
fer only in the usage of articles; 4 out of the considwith rich morphology and relatively free word or-
ered 9 noun atomic lexical types do not define thider such as German. The same is also valid for
feature. Furthermore, using this feature, we cathe (O)COMPOPT and KEYFORM features— they
also refine our classification within a single atomi@llow the DLA method to successfully learn and
lexical type. For example, the entrpdresse-h  classify verbs with similar syntactic properties.
(address) of the type ‘count-noundehas ‘-’ for The values of the features are just attached to the
the SUBJOPT value, whereas the value for the emld type name to form a new type definition. In this
try ‘anbindung-h(connection) of the same type is way, we ‘promote’ them and these features are now
+ part of the type hierarchy of the grammar which
makes them accessible for the DLA process since
1) a. Das Hotel hat gute )
det.NEUT.NOMnhotel have.3PER.S@ood this operates on the type level. For example, the
Anbindungandie offentlichen original type of the entry for the noun ‘abenteuer’

connectiorto det.PL.ACCpublic (adventure):
1count noun lexeme; all lexical entries in the lexicon encabent euer-n : = count-noun-le &
with le which stands for lexeme. [ [ --SUBJOPT -,
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KEYAGR c-n-n, lexical type definitions by also attaching the

KEYREL " _abenteuer_n_rel”, KEYSORT semantic feature to them. KEYSORT
KEYSORT si tuation, . . . . i
MCLASS ncl ass-2_-u_-e | . defines a certain situation semantics category

i (‘fanything’, ‘actionsit’, ‘mentalsit’) which the

will become.abenteuer-n = count-noun-le.c-n- lexical entry belongs to. However, this has caused
n when we incorporate the_ values of _th_e fealtureSgain a sparse data problem because the semantic
SUBJOPT and KEYAGR into the original type classification is too specific and, thus, the number

deflnlthn. The new expanded type inventory %t possible classes is too large. Moreover, seman-
shown in Table 3.

tic classification is done based on completely dif-

Original | Expanded ferent criteria and it cannot be directly linked to the

_ lexicon | lexicon morphosyntactic features. That is why we have fi-
Number of lexical types 386 485 nally excluded this feature, as well.
Atomic lexical types 38 137 i ) )
-nouns 9 72 Armed with this elaborate target type inventory,
-verbs 19 53 we now proceed with the DLA experiments for the
-adjectives 3 5 GG
-adverbs 7 7 :

Table 3: Expanded atomic lexical types 5 DLA Experimentswith the GG

The features we have ignored do not contributgq, our DLA experiments, we adopted the Max-
to the learning process and are likely to crémym Entropy based model described in (Zhang
ate sparse data problems. The (O)COMPFORMq Kordoni, 2006), which has been applied to the
((oblique) complement form) features which degrg (Copestake and Flickinger, 2000), a wide-
note dependent to verbs prepositions are not COBpverage HPSG grammar for English. For the pro-
sidered to be relevant. An example of OCOMPpsed prediction model, the probability of a lexical

FORM is the lexical entry ‘begrindemit-v’ (jus-  tynet given an unknown word and its contexis:
tify with) where the feature has the preposition

‘mit (with) as its value. Though for German ()  p(f]¢) = P2 Oifilte)

prepositions can be considered as case markers, the 2 prer exp(d; Oifilt0))

DLA has already a reliable access to case informggnere £, (¢, ¢) may encode arbitrary characteristics
tion through the (O)COMPAGR features. More-uf the context and; is a weighting factor esti-
over, a given dependent preposition is distributethated on a training corpus. Our experiments have
across many types and it does not indicate clearlyaen performed with the feature set shown in Table

which type the respective verb belongs to. 4.
The same is valid for the feature VCOPMFORM

(verb complement form) that denotes the separa- __Features

. . . . the prefix of the unknown word
ble particle (if present) of the verb in question. (length is less or equal 4)
An example of this feature is the lexical entry the suffix of the unknown word
‘abdecken-Vv’ (to cover) where VCOMPFORM has (length is less or equal 4)

. , . the 2 words before and after the unknown ward

the separable particlaly as its value. However, the 2 types before and after the unknown word

treating such discontinuous verb-particle combina- '
tions as a lexical unit could help for the acquisi- Table 4: Features for the DLA experiment

tion of subc_ategorizational frames. For example, \we have also experimented with prefix and suf-
anhoren (to listen to someone/something) takes afy jengths up to 3. To evaluate the contribution

accusative NP as argumeathoren (to listen 1) - 4¢ \arious features and the overall precision of the
takes a dative NP analfhoren (to stop, to termi- ME-based unknown word prediction model, we

nate) takes an infinitival complement. Thus, ignor5ye gone a 10-fold cross validation on the Verb-
ing VCOMPFORM could be a hindrance for thep, 5 treebanked data. For each fold, words that

acquisition of some verb typés do not occur in the training partition are assumed

We have also tried to incorporate some sort of, pe ynknown and are temporarily removed from
semantic information into the expanded atomig,e |exicon.

We thank the anonymous reviewer who pointed this out For comparison, We_ have alsp t_)u”t a baseline
for us. model that always assigns a majority type to each
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unknown word according to its POS tag. Specifito the majority adverb type, the predictor is biased
cally, we tag the input sentence with a small PO®%wards assigning it to the unknown words which
tagset. It is then mapped to a most popular lexihave been identified as adverbs.

cal type for that POS. Table 5 shows the relevant The results in the top half of the Table 6 show
mappings. that morphological features are already very good
for predicting adjectives. In contrast with ad-

POS Majority lexical type verbs, adjectives occur in pretty limited number of
noun count-noun-le _c-n-f . .

verb  trans-nerg-str-verb-leaben-auxf contexts. Moreover, when dealing with morpho-
adj adj-non-prd-le logically rich languages such as German, adjec-
adv intersect-adv-le

tives are typically marked by specific affixes cor-
Table 5: POS tags to lexical types mapping  'esponding to a specific case-number-gender com
bination. Since we have incorporated this kind of

_Aglalrz)for I_compags?n, we E_ave built another; g jistic information into our target lexical type
simple baseline model using T POS tagger definitions, this significantly helps the prediction

(Brants, 2000). TnT is a general-purpose HMM'process based on morphological features.

based trigram tagger. 'We have trained the tagging Surprisingly, nouns seem to be hard to learn.
models with all the lexical types as the tagset. Th parently, the vast majority of the wrong pre-
tagger tags the whole sentence but only the OUIpH ctions have been made for nouns that belong to

}[ag's f?r tr][e_ unkn(()jvxf[n \g/ords ar_z taksr; tot%enera fe expanded variants of the lexical typmunt-
exical entries and to be considered Tor the eva'oun-lé which is also the most common non-

uation. The precisions of the different preOIICt'onexpanded lexical type for nouns in the original lex-
models are given in Table 6.

? _ - icon. Many nouns have been assigned the right lex-
The baseline achieves a precision of about 38(%/8al type except for the gender:

and the POS tagger outperforms it by nearly 10%.
These results can be explained by the nature of t@  Betrieb(business, company, enterprise)
Verbmobil data. The vast majority of the adjec- ng?;g'?;pg%ﬁn??&ﬁ;gﬂ "
tives and the adverbs in the sentences belong to
the majority types shown in Table 5 and, thus, théccording to the stricexact-matctevaluate mea-
baseline model assigns the correct lexical types &ure we use, such cases are considered to be errors
almost every adjective and adverb, which bringbecause the predicted lexical type does not match
up the overall precision. The short sentence lengtihe type of the lexical entry in the lexicon.
facilitates the tagger extremely, for TnT, as an The low numbers for verbs and adverbs show
HMM-based tagger, makes predictions based atlearly that we also need to incorporate some sort
the whole sentence. The longer the sentences agf syntactic information into the prediction model.
the more challenging the tagging task for TnT isWe adopt the method described in (Zhang and Ko-
The results of these models clearly show that theloni, 2006) where the disambiguation model of
task of unknown word type prediction for deepthe parser is used for this purpose. We also believe
grammars is non-trivial. that the kind of detailed morphosyntactic informa-
Our ME-based models give the best results ition which the learning process now has access
terms of precision. However, verbs and adverb® would facilitate the disambiguation model be-
remain extremely difficult for classification. Thecause the input to the model is linguistically more
simple morphological features we use in the MHine-grained. In another DLA experiment we let
model are not good enough for making good prePET use the top 3 predictions provided by the lex-
dictions for verbs. Morphology cannot captureical type predictor in order to generate sentence
such purely syntactic features as subcategorizanalyses. Then we use the disambiguation model,
tional frames, for example. trained on the Verbmobil data, to choose the best
While the errors for verbs are pretty randompne of these analyses and the corresponding lexical
there is one major type of wrong predictions forentry is taken to be the final result of the prediction
adverbs. Most of them are correctly predicted agrocess.
such but they receive the majority type for adverbs, As shown in the last line of Table 6, we achieve
namely intersect-adv-le Since most of the ad- an increase of 19% which means that in many
verbs in the Verbmobil data we are using belongases the correct lexical type has been ranked sec-
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Model Precision| Nouns Adjectives Verbs  Adverbs
Baseline 37.89% | 27.03% 62.69% 3357% 67.14%

™nT 47.53% | 53.76% 74.52% 26.94%  32.68%

ME (affix length=3) | 51.2% | 48.25% 75.41% 44.06% 44.13%
ME(affix length=4) | 54.63% | 53.55%  76.79%  47.10% 43.55%
ME + disamb. 73.54% 75% 88.24% 65.98% 65.90%

Table 6: Precision of unknown word type predictors

ond or third by the predictor. This proves that - ,hpﬁfsed %OYPUS_ - Cg\g;ge Agfél;/racy
. . with the vanilla version . (1} 0
the expanded lexical types improve also the perfor- ER with the GG + DLA 21.08% 83%

mance of the disambiguation model and allow fordewaC with the vanilla version GG 7.46% -
its successful application for the purposes of DLA, __dewaC with the GG + DLA 16.95% -
It also shows, once again, the importance of the
morphology in the case of the GG and proves the
rightness of our decision to expand the type definisame. Thus, with our linguistically-oriented DLA
tions with detailed linguistic informatiof. method, we have managed to increase parsing cov-
erage and at the same time to preserve the high
accuracy of the grammar. It is also interesting to
Since our main claim in this paper is that fornote the increase in coverage for the dewacC cor-
good andpractically usefulDLA, which at the pus. Itis about 10%, and given the fact that dewaC
same time may facilitate robustness and ensure an open and unbalanced corpus, this is a clear
maintainability and re-usability afeeplexicalised improvement. However, we do not measure ac-
grammars, we do not only need good machineuracy on the dewaC corpus because many sen-
learning algorithms but also classification and featences are not well formed and the corpus itself
ture selection that are based on an extensive ligontains much ‘noise’. Still, these results show
guistic analysis, we apply our DLA methods to reathat the incorporation of detailed linguistic infor-
test data. We believe that due to our expanded lemation in the prediction process contributed to the
ical type definitions, we provide much more lin-parser performance and the robustness of the gram-
guistically accurate predictions. With this type ofmar without harming the quality of the delivered
predictions, we anticipate a bigger improvement cnalyses.
the grammar coverage and accuracy for the pre-
diction process delivers much molieguistically 7 Conclusion
relevantinformation which facilitates parsing with
the GG. In this paper, we have tackled from a more
We have conducted experiments with PET anHnguistically-oriented point of view the lexicon
the two corpora we have used for the error miningcquisition problem for a large-scale deep gram-
to determine whether we can improve coverage byar for German, developed in HPSG. We have
using our DLA method to predict the types of un-Shown clearly that missing lexical entries are the
known words online. We have trained the predicain cause for parsing failures and, thus, illus-
tor on the whole set of treebanked sentences aff@ted the importance of increasing the lexical cov-
extracted a subset of 50K sentences from each c&t@ge of the grammar. The target type inventory
pus. Since lexical types are not available for thesfr the learning process has been developed in a
sentences, we have used POS tags instead as ff@uistically motivated way in an attempt to cap-
tures for our prediction model. Coverage is mealire significant morphosyntactic information and,
sured as the number of sentences that receivedtBS, achieve a better performance and more prac-
least one parse and accuracy is measured as f#if&lly useful resulits.
number of sentences that receivecoarectanaly-  With the proposed DLA approach and our elab-
sis. The results are shown in Table 7. orate target type inventory we have achieved nearly
The coverage for FR improves with more than/5% precision and this way we have illustrated the

12% and the accuracy number remains almost th@portance of fine-grained linguistic information
— o _ for the lexical prediction process. In the end, we
Another reason for this high result is the short averag

length of the treebanked sentences which facilitates the di?'a've shown that with Ol_"r linguistically motivated
ambiguation model of the parser. DLA methods, the parsing coverage of the afore-

Table 7: Coverage results

6 Practical Application
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mentioned deep grammar improves significantly English grammar using HPSG. Rroceedings of the Sec-
while its linauistic quality remains intact. ond conference on Language Resources and Evaluation
9 . q y . N (LREC 2000) Athens, Greece.
The conclusion, therefore, is that it is vital to
be able to capture linguistic information and sucCrysmann, Berthold. 2003. On the efficient implementation
: o .. of German verb placement in HPSG. Rmoceedings of
ces:s_fully incorporate it in DLA processes, for |_t RANLP 2003pages 112-116, Borovets, Bulgaria.
facilitates deep grammars and makes processing
with them much more robust for applications. AtKilgarriff, Adam and G Grefenstette. 2003. Introduction to

. . . the special issue on the web as corpemputational Lin-
the same time, the almost self-evident portability guisﬂpcs 29:333-347. pasmp

to new domains and the re-usability of the gram- lor. Steoh o Walter K 2000, HPSG analveis of
: - Miller, Stephan and Walter Kasper. . analysis o
rnar fo_r_open domain natural language proceSSIrM German. In Wahlster, Wolfgang, edit&erbmobil: Foun-
is significantly enhanced. dations of Speech-to-Speech Translatipages 238-253.
The DLA method we propose can be used as Springer-Verlag.

an external module that can help the grammar Qgcholson, Jeremy, Valia Kordoni, Yi Zhang, Timothy Bald-

ported and operate on different domains. Thus, win, and Rebecca Dridan. 2008. Evaluating and extend-

specifically in the case of HPSG, DLA can also ing the coverage of HPSG grammars.Irproceedings of

Lo LREC Marrakesh, Marocco.

be seen as a way for achieving more modular-

ity in the grammar. Moreover, in a future re-vande Cruys, Tim. 2006. Automatically extending the lexi-
h. th d kind of DLA might also b con for parsing. In Huitink, Janneke and Sophia Katrenko,

searc_ » the prOpose__ Ind o = mignt aiso _e editors, Proceedings of the Student Session of the Euro-

used in order to facilitate the division and transi- pean Summer School in Logic, Language and Information

tion from acore deep grammawith a core lex- ~ (ESSLLI) pages 180-191, Malaga, Spain.
icon towardssubgrammarswith domain specific van Noord, Gertjan. 2004. Error mining for wide coverage
lexicons/lexical constraint a linguistically mo- grammar engineering. Rroceedings of the 42nd Meeting

tivated way. The use of both these divisions nat- ‘J;?ne\faslj'rﬁ'sggg:;r &%Tﬁ’géatg);r{égl‘g;%”';tp')gsin(AC"'oA')
urally leads to a highly modular structure of the ' '

' of Speech-to-Speech Translatiorrtificial Intelligence.

at the same time helps in controlling its complex-  gpringer.

ity.
: ot : : Zhang, Yi and Valia Kordoni. 2006. Automated deep lexical
Our linguistically motivated approach provides acquisition for robust open text processing. Rroceed-

fine-grained results that can be used in a number ings of the Fifth International Conference on Language
of different ways. It is a valuable linguistic tool Resourses and Evaluation (LREC 2008gnoa, Italy.

and it is up to the grammar developer to choose

how to use the many opportunities it provides.
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