
Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 49–56
Manchester, August 2008

Designing Testsuites for Grammar-based Systems in Applications

Valeria de Paiva
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304 USA

valeria.paiva@gmail.com

Tracy Holloway King
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304 USA
thking@parc.com

Abstract

In complex grammar-based systems, even
small changes may have an unforeseeable
impact on overall system performance. Re-
gression testing of the system and its com-
ponents becomes crucial for the grammar
engineers developing the system. As part
of this regression testing, the testsuites
themselves must be designed to accurately
assess coverage and progress and to help
rapidly identify problems. We describe
a system of passage-query pairs divided
into three types of phenomenon-based test-
suites (sanity, query, basic correct). These
allow for rapid development and for spe-
cific coverage assessment. In addition,
real-world testsuites allow for overall per-
formance and coverage assessment. These
testsuites are used in conjunction with the
more traditional representation-based re-
gression testsuites used by grammar engi-
neers.

1 Introduction

In complex grammar-based systems, even small
changes may have an unforeseeable impact on
overall system performance.1 Systematic regres-
sion testing helps grammar engineers to track
progress, and to recognize and correct shortcom-
ings in linguistic rule sets. It is also an essential tool

c 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1We would like to thank Rowan Nairn for his design and
implementation of the regression platform that runs these test-
suites. We would also like to thank the PARC Natural Lan-
guage Theory and Technology group for their work with these
testsuites and their comments on this paper.

for assessing overall system status in terms of task
and runtime performance.

As discussed in (Chatzichrisafis et al., 2007),
regression testing for grammar-based systems in-
volves two phases. The first includes systematic
testing of the grammar rule sets during their de-
velopment. This is the part of regression testing
that grammar engineers are generally most familiar
with. The second phase involves the deployment
of the grammar in a system and the regression test-
ing of the grammar as a part of the whole system.
This allows the grammar engineer to see whether
changes have any effect on the system, positive or
negative. In addition, the results of regression test-
ing in the system allow a level of abstraction away
from the details of the grammar output, which can
ease maintenance of the regression testsuites so
that the grammar engineers do not need to change
the gold standard annotation every time an interme-
diate level of representation changes.

In this paper, we focus on the design of testsuites
for grammar-based systems, using a question-
answering system as a model. In particular, we are
interested in what types of testsuites allow for rapid
development and efficient debugging.

1.1 The Question-Answering System

To anchor the discussion, we focus on regression
testsuites designed for a grammar-based question-
answering system (Bobrow et al., 2007). The
Bridge system uses the XLE (Crouch et al., 2008)
parser to produce syntactic structures and then the
XLE ordered rewrite system to produce linguistic
semantics (Crouch and King, 2006) and abstract
knowledge representations. Abstract knowledge
representations for passages and queries are pro-
cessed by an entailment and contradiction detec-
tion system which determines whether the query is

49



entailed, contradicted, or neither by the passage.
Entailment and contradiction detection between

passages and queries is a task well suited to regres-
sion testing. There are generally only two or three
possible answers given a passage and a query: en-
tails, contradicts or neither (or in the looser case:
relevant or irrelevant). Wh-questions (section 5.1)
receive a YES answer if an alignment is found be-
tween the wh-word in the query and an appropriate
part of the passage representation; in this case, the
proposed alignment is returned as well as the YES

answer. This is particularly important for who and
what questions where more than one entity in the
passage might align with the wh-word.

From the standpoint of regression testing, two
important aspects of the question-answering appli-
cation are:

(1) The correct answer for a given pair is indepen-
dent of the representations used by the system
and even of which system is used.

(2) The passage-query pairs with answers can be
constructed by someone who does not know
the details of the system.

The first aspect means that even drastic changes in
representation will not result in having to update
the regression suites. This contrasts sharply with
regressions run against representative output which
require either that the gold standard be updated or
that the mapping from the output to that standard be
updated. The second aspect means that externally
developed testsuites (e.g. FraCaS (Cooper et al.,
1996), Pascal RTE (Sekine et al., 2007)) can eas-
ily be incorporated into the regression testing and
that grammar engineers can rapidly add new test-
suites, even if they do not have experience with the
internal structure of the system. These aspects also
mean that such passage-query pairs can be used
for cross-system comparisons of coverage (Bos,
2008).

1.2 Testsuite Types

In the regression testsuites designed for the
question-answering system, the passage-query
pair testsuites are divided into two main types:
those that focus on single phenomena (section 2)
and those that use real-world passages (section
3). The phenomenon-based testsuites allow the
grammar engineer to track the behavior of the
system with respect to a given construction, such
as implicativity, noun-noun compounds, temporal

expressions, or comparatives. In contrast, the
real-world passages allow the grammar engineer
to see how the system will behave when applied
to real data, including data which the system will
encounter in applications. Such sentences tend to
stress the system in terms of basic performance
(e.g. efficiency and memory requirements for
processing of long sentences) and in terms of
interactions of different phenomena (e.g. coordi-
nation ambiguity interacting with implicativity).

In addition to the passage-query pairs, the sys-
tem includes regression over representations at
several levels of analysis (section 4). These are
limited in number, focus only on core phenomena,
and are not gold standard representations but in-
stead the best structure of the ones produced. These
are used to detect whether unintentional changes
were introduced to the representations (e.g. new
features were accidentally created).

2 Phenomenon Sets

Real-world sentences involve analysis of multiple
interacting phenomena. Longer sentences tend to
have more diverse sets of phenomena and hence
a higher chance of containing a construction that
the system does not handle well. This can lead to
frustration for grammar engineers trying to track
progress; fixing a major piece of the system can
have little or no effect on a testsuite of real-world
examples. To alleviate this frustration, we have
extensive sets of hand-crafted test examples that
are focused as much as possible on single phe-
nomenon. These include externally developed test-
suites such as the FraCaS (Cooper et al., 1996) and
HP testsuites (Nerbonne et al., 1988). Focused test-
suites are also good for quickly diagnosing prob-
lems. If all the broken examples are in the deverbal
testsuite, for example, it gives grammar engineers
a good idea of where to look for bugs.

The majority of the testsuites are organized by
syntactic and semantic phenomena and are de-
signed to test all known variants of that phe-
nomenon (see (Cohen et al., 2008) on the need
to use testsuites designed to test system coverage
as well as real-world corpora). For the question-
answering system, these include topics such as
anaphora, appositives, copulars, negation, dever-
bal nouns and adjectives, implicatives and factives,
temporals, cardinality and quantifiers, compara-
tives, possessives, context introducing nouns, and
pertainyms. These categories align with many of

50



those cited by (Bos, 2008) in his discussion of se-
mantic parser coverage. Some example passage-
query pairs for deverbal nouns are shown in (3).

(3) a. P: Ed’s abdication of the throne was wel-
come.
Q: Ed abdicated the throne.
A: YES

b. P: Ed’s abdication was welcome.
Q: Ed abdicated.
A: YES

c. P: Ed is an abdicator.
Q: Ed abdicated.
A: YES

Each of the phenomena has three sets of test-
suites associated with it. Sanity sets (section 2.1)
match a passage against itself. The motivation be-
hind this is that a passage should generally entail
itself and that if the system cannot capture this en-
tailment, something is wrong. Query sets (sec-
tion 2.2) match the passage against query versions
of the passage. The simplest form of this is to
have a polarity question formed from the passage.
More complex versions involve negative polarity
questions, questions with different adjuncts or ar-
gument structures, and questions with synonyms or
antonyms. Basic correct sets (section 2.3) are se-
lected passage-query pairs in which the system is
known to obtain the correct answer for the correct
reason. The idea behind these sets is that they can
be run immediately by the grammar engineer af-
ter making any changes and the results should be
100% correct: any mistakes indicates a problem in-
troduced by the grammar engineer’s changes.

2.1 Sanity Sets

The entailment and contradiction detection part
of the system is tested in isolation by matching
queries against themselves. Some example sanity
pairs from the copula testsuite are shown in (4).

(4) a. P: A boy is tall.
Q: A boy is tall.
A: YES

b. P: A girl was the hero.
Q: A girl was the hero.
A: YES

c. P: The boy is in the garden.
Q: The boy is in the garden.
A: YES

d. P: The boy is not in the garden.
Q: The boy is not in the garden.
A: YES

Note that queries in the question-answering sys-
tem do not have to be syntactically interrogative.
This allows the sanity pairs to be processed by
the same mechanism that processes passage-query
pairs with syntactically interrogative queries.

The sanity check testsuites are largely composed
of simple, hand-crafted examples of all the syntac-
tic and semantic patterns that the system is known
to cover. This minimal check ensures that at least
identical representations trigger an entailment.

2.2 Query Sets

The query sets form the bulk of the regression
sets. The query sets comprise passages of the types
found in the sanity sets, but with more complex
queries. The simplest form of these is to form the
polarity question from the passage, as in (5). More
complex queries can be formed by switching the
polarity from the passage to the query, as in (6).

(5) a. P: A boy is tall.
Q: Is a boy tall?
A: YES

b. P: A girl was the hero.
Q: Was a girl the hero?
A: YES

(6) P: The boy is not in the garden.
Q: Is the boy in the garden?
A: NO

To form more complex pairs, adjuncts and ar-
gument structure can be altered from the passage
to the query. These have to be checked carefully
to ensure that the correct answer is coded for the
pair since entailment relations are highly sensitive
to such changes. Some examples are shown in
(7). Alternations such as those in (7c) are crucial
for testing implicativity, which plays a key role in
question answering.

(7) a. P: An older man hopped.
Q: A man hopped.
A: YES

b. P: John broke the box.
Q: The box broke.
A: YES

51



c. P: Ed admitted that Mary arrived.
Q: Mary arrived.
A: YES

A similar type of alteration of the query is to
substitute synonyms for items in the passage, as in
(8). This is currently done less systematically in the
testsuites but helps determine lexical coverage.

(8) a. P: Some governments ignore historical
facts.
Q: Some governments ignore the facts of
history.
A: YES

b. P: The boys bought some candy.
Q: The boys purchased some candy.
A: YES

In addition to the testsuites created by the
question-answering system developers, the query
sets include externally developed pairs, such as
those created for FraCaS (Cooper et al., 1996).
These testsuites also involve handcrafted passage-
query pairs, but the fact that they were developed
outside of the system helps to detect gaps in sys-
tem coverage. In addition, some of the FraCaS
pairs involve multi-sentence passages. Since the
sentences in these passages are very short, they are
appropriate for inclusion in the phenomenon-based
testsuites. Some externally developed testsuites
such as the HP testsuite (Nerbonne et al., 1988) do
not involve passage-query pairs but the same tech-
niques used by the grammar engineers to create the
sanity and the query sets are applied to these test-
suites as well.

2.3 Basic Correct Sets

A subset of the query sets described above are used
to form a core set of basic correct testsuites. These
testsuites contain passage-query pairs that the de-
velopers have determined the system is answering
correctly for the correct reason.

Since these testsuites are run each time the gram-
mar engineer makes a change to the system be-
fore checking the changes into the version control
repository, it is essential that the basic correct test-
suites can be run quickly. Each pair is processed
rapidly because the query sets are composed of
simple passages that focus on a given phenomenon.
In addition, only one or two representatives of any
given construction is included in the basic correct

set; that is, the sanity sets and query sets may con-
tain many pairs testing copular constructions with
adjectival complements, but only a small subset of
these are included in the basic correct set. In the
question-answering system, 375 passage-query
pairs are in the basic correct sets; it takes less than
six minutes to run the full set on standard machines.
In addition, since the basic correct sets are divided
by phenomena, developers can first run those test-
suites which relate directly to the phenomena they
have been working on.

Examining the basic correct sets gives an
overview of the expected base coverage of the
system. In addition, since all of the pairs are
working for the correct reason when they are
added to the basic correct set, any breakage is a
sign that an error has been introduced into the
system. It is important to fix these immediately so
that grammar engineers working on other parts of
the system can use the basic correct sets to assess
the impact of their changes on the system.

3 Real-world Sets

The ultimate goal of the system is to work on real-
world texts used in the application. So, tests of
those texts are important for assessing progress on
naturally occurring data. These testsuites are cre-
ated by extracting sentences from the corpora ex-
pected to be used in the run-time system, e.g. news-
paper text or the Wikipedia.2 Queries are then cre-
ated by hand for these sentences. Once the system
is being used by non-developers, queries posed by
those users can be incorporated into the testsuites to
ensure that the real-world sets have an appropriate
range of queries. Currently, the system uses a com-
bination of hand-crafted queries and queries from
the RTE data which were hand-crafted, but not by
the question-answering system developers. Some
examples are shown in (9).

(9) a. P: The interest of the automotive industry
increases and the first amplifier project, a
four-channel output module for the Ger-
man car manufacturer, Porsche, is fin-
ished.
Q: Porsche is a German car manufacturer.
A: YES

b. P: The Royal Navy servicemen being held
captive by Iran are expected to be freed to-

2If the application involves corpora containing ungram-
matical input (e.g. email messages), it is important to include
both real-world and phenomenon sets for such data.

52



day.
Q: British servicemen detained
A: YES

c. P: “I guess you have to expect this in
a growing community,” said Mardelle
Kean, who lives across the street from
John Joseph Famalaro, charged in the
death of Denise A. Huber, who was 23
when she disappeared in 1991.
Q: John J. Famalaro is accused of having
killed Denise A. Huber.
A: YES

These real-world passages are not generally use-
ful for debugging during the development cycle.
However, they serve to track progress over time,
to see where remaining gaps may be, and to pro-
vide an indication of system performance in appli-
cations. For example, the passage-query pairs can
be roughly divided as to those using just linguis-
tic meaning, those using logical reasoning, those
requiring plausible reasoning, and finally those re-
quiring world knowledge. Although the bound-
aries between these are not always clear (Sekine et
al., 2007), having a rough division helps in guiding
development.

4 Regression on Representations

There has been significant work on regression test-
ing of a system’s output representations (Nerbonne
et al., 1988; Cooper et al., 1996; Lehmann et al.,
1996; Oepen et al., 1998; Oepen et al., 2002): de-
signing of the testsuites, running and maintaining
them, and tracking the results over time. As men-
tioned in the previous discussion, for a complex
system such as a question-answering system, hav-
ing regression testing that depends on the perfor-
mance of the system rather than on details of the
representations has significant advantages for de-
velopment because the regression testsuites do not
have to be redone whenever there is a change to the
system and because the gold standard items (i.e.,
the passage-query pairs with answers) can be cre-
ated by those less familiar with the details of the
system.

However, having a small but representative set
of banked representations at each major level of
system output has proven useful for detecting un-
intended changes that may not immediately disturb
the passage-query pairs.3 This is especially the case

3In addition to running regression tests against representa-

with the sanity sets and the most basic query sets:
with these the query is identical to or very closely
resembles the passage so that changes to the repre-
sentation on the passage side will also be in the rep-
resentation on the query side and hence may not be
detected as erroneous by the entailment and contra-
diction detection.

For the question-answering system, 1200 sen-
tences covering basic syntactic and semantic types
form a testsuite for representations. The best rep-
resentation currently produced by the system is
stored for the syntax, the linguistic semantics, and
the abstract knowledge representation levels. To
allow for greater stability over time and less sen-
sitivity to minor feature changes in the rule sets, it
is possible to bank only the most important features
in the representations may, e.g. the core predicate-
argument structure. The banked representations
are then compared with the output of the system
after any changes are made. Any differences are
examined to see whether they are intentional. If
they were intended, then new representations need
to be banked for the ones that have changed (see
(Rosén et al., 2005) for ways to speed up this pro-
cess by use of discrimants). If the differences were
not intended, then the developer knows which con-
structions were affected by their changes and can
more easily determine where in the system the er-
ror might have been introduced.

5 Discussion and Conclusions

The testsuites discussed above are continually un-
der development. We believe that the basic ideas
behind these testsuites should be applicable to
other grammar-based systems used in applications.
The passage-query pairs are most applicable to
question-answering and search/retrieval systems,
but aspects of the approach can apply to other sys-
tems.

Some issues that remain for the testsuites dis-
cussed above are extending the use of wh-questions
in passage-query pairs, the division between devel-
opment and test sets, and the incorporation of con-
text into the testing.

5.1 Wh-questions

The testsuites as described have not yet been sys-
tematically extended to wh-questions. The query

tions, the syntax, semantics, and abstract knowledge represen-
tation have type declarations (Crouch and King, 2008) which
help to detect malformed representations.

53



sets can be easily extended to involve some substi-
tution of wh-phrases for arguments and adjuncts in
the passage, as in (10).

(10) a. P: John broke the box.
Q: Who broke the box?

b. P: John broke the box.
Q: What did John break?

c. P: John broke the box.
Q: What broke?

d. P: John broke the box.
Q: What did John do?

e. P: We went to John’s party last night.
Q: Who went to John’s party?

There is a long-standing issue as to how to eval-
uate responses to wh-questions (see (Voorhees and
Tice, 2000a; Voorhees and Tice, 2000b) and the
TREC question-answering task web pages for dis-
cussion and data). For example, in (10a) most peo-
ple would agree that the answer should be John, al-
though there may be less agreement as to whether
John broke the box. is an appropriate answer. In
(10b) and (10c) there is an issue as to whether the
answer should be box or the box and how to assess
partial answers. This becomes more of an issue as
the passages become more complicated, e.g. with
heavily modified nominals that serve as potential
answers. While for (10d) the passage is a good an-
swer to the question, for (10e) presumably the an-
swer should be a list of names, not simply “we”.
Obtaining such lists and deciding how complete
and appropriate they are is challenging. Since most
question-answering systems are not constrained to
polarity questions, it is important to assess per-
formance on wh-questions as the system develops.
Other, even more complicated questions, for exam-
ple how to questions are also currently out of the
scope of our testsuites.

5.2 Development vs. Testing

For development and evaluation of systems, test-
suites are usually divided into development sets,
which the system developers examine in detail, and
test sets, which represent data unseen by the de-
velopers.4 To a limited extent, the real-world sets

4The usual division is between training, development, and
test sets, with the training set generally being much larger than
the development and test sets. For rule based systems, the
training/development distinction is often irrelevant, and so a

serve as a form of test set since they reflect the per-
formance of the system on real data and are of-
ten not examined in detail for why any given pair
fails to parse. However, the testsuites described
above are all treated as development sets. There are
no reserved phenomenon-based testsuites for blind
testing of the system’s performance on each phe-
nomenon, although there are real-world testsuites
reserved as test sets.

If a given testsuite was created all at once, a ran-
dom sampling of it could be held out as a test set.
However, since there are often only a few pairs per
construction or lexical item, it is unclear whether
this approach would give a fair view of system cov-
erage. In addition, for rule-based systems such
as the syntax and semantics used in the question-
answering system, the pairs are often constructed
based on the rules and lexicons as they were being
developed. As such, they more closely match the
coverage of the system than if it were possible to
randomly select such pairs from external sources.

As a system is used in an application, a test set of
unseen, application-specific data becomes increas-
ingly necessary. Such sets can be created from the
use of the application: for example, queries and
returned answers with judgments as to correctness
can provide seeds for test sets, as well as for ex-
tending the phenomenon-based and real-world de-
velopment testsuites.

5.3 Context

The real sentences that a question-answering sys-
tem would use to answer questions appear in a
larger textual and metadata context. This context
provides information as to the resolution of pro-
nouns, temporal expressions such as today and this
morning, ellipsis, etc. The passage-query pairs in
the testsuites do not accurately reflect how well the
system handles the integration of context. Small
two sentence passages can be used to, for example,
test anaphora resolution, as shown in (11).

(11) P: Mary hopped. Then, she skipped.
Q: Did Mary skip?
A: YES

Even in this isolated example, the answer can be
construed as being UNKNOWN since it is possible,
although unlikely, that she resolves to some other
entity. This type of problem is pervasive in using

distinction is made between those sets used in the development
of the system and those unseen sets used to test and evaluate
the system’s performance.

54



simple passage-query pairs for system regression
testing.

A further issue with testing phenomena linked to
context, such as anaphora resolution, is that they
are usually very complex and can result in signifi-
cant ambiguity. When used on real-world texts, ef-
ficiency can be a serious issue which this type of
more isolated testing does not systematically ex-
plore. As a result of this, the anaphora testsuites
must be more carefully constructed to take advan-
tage of isolated, simpler pairs when possible but
to also contain progressively more complicated ex-
amples that eventually become real-world pairs.

5.4 Summary Conclusions

In complex grammar-based systems, even small
changes may have an unforeseeable impact on sys-
tem performance. Regression testing of the system
and its components becomes crucial for the gram-
mar engineers developing the system.

A key part of regression testing is the testsuites
themselves, which must be designed to accurately
assess coverage and progress and to help to rapidly
identify problems. For broad-coverage grammars,
such as those used in open domain applications like
consumer search and question answering, testsuite
design is particularly important to ensure adequate
coverage of basic linguistic (e.g. syntactic and se-
mantic) phenomena as well as application specific
phenomena (e.g. interpretation of markup, incor-
poration of metadata).

We described a system of passage-query pairs
divided into three types of phenomenon-based test-
suites (sanity, query, basic correct). These allow
for rapid development and specific coverage as-
sessment. In addition, real-world testsuites allow
for overall performance and coverage assessment.
More work is needed to find a systematic way to
provide “stepping stones” in terms of complexity
between phenomenon-based and real-world test-
suites.

These testsuites are used in conjunction with the
more traditional representation-based regression
testsuites used by grammar engineers. These
representation-based testsuites use the same
phenomenon-based approach in order to assess
coverage and pinpoint problems as efficiently as
possible.

References

Bobrow, Daniel G., Bob Cheslow, Cleo Condoravdi,

Lauri Karttunen, Tracy Holloway King, Rowan
Nairn, Valeria de Paiva, Charlotte Price, and An-
nie Zaenen. 2007. PARC’s bridge and ques-
tion answering system. In King, Tracy Holloway
and Emily M. Bender, editors, Grammar Engineer-
ing Across Frameworks, pages 46–66. CSLI Publica-
tions.

Bos, Johan. 2008. Let’s not argue about semantics. In
Proceedings of LREC.

Chatzichrisafis, Nikos, Dick Crouch, Tracy Holloway
King, Rowan Nairn, Manny Rayner, and Mari-
anne Santaholma. 2007. Regression testing
for grammar-based systems. In King, Tracy Hol-
loway and Emily M. Bender, editors, Proceedings
of the Grammar Engineering Across Frameworks
(GEAF07) Workshop, pages 128–143. CSLI Publica-
tions.

Cohen, K. Bretonnel, William A. Baumgartner Jr., and
Lawrence Hunter. 2008. Software testing and the
naturally occurring data assumption in natural lan-
guage processing. In Software Engineering, Testing,
and Quality Assurance for Natural Language Pro-
cessing, pages 23–30. Association for Computational
Linguistics.

Cooper, Robin, Dick Crouch, Jan van Eijck, Chris
Fox, Josef van Genabith, Jan Jaspars, Hans Kamp,
David Milward, Manfred Pinkal, Massimo Poesio,
and Steve Pulman. 1996. Using the framework.
FraCas: A Framework for Computational Semantics
(LRE 62-051).

Crouch, Dick and Tracy Holloway King. 2006. Seman-
tics via f-structure rewriting. In Butt, Miriam and
Tracy Holloway King, editors, LFG06 Proceedings,
pages 145–165. CSLI Publications.

Crouch, Dick and Tracy Holloway King. 2008. Type-
checking in formally non-typed systems. In Software
Engineering, Testing, and Quality Assurance for Nat-
ural Language Processing, pages 3–4. Association
for Computational Linguistics.

Crouch, Dick, Mary Dalrymple, Ron Ka-
plan, Tracy King, John Maxwell, and Paula
Newman. 2008. XLE documentation.
http://www2.parc.com/isl/groups/nltt/xle/doc/.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Esti-
val, Eva Dauphin, Hervé Compagnion, Judith Baur,
Lorna Balkan, and Doug Arnold. 1996. TSNLP —
Test Suites for Natural Language Processing. In Pro-
ceedings of COLING 1996.

Nerbonne, John, Dan Flickinger, and Tom Wasow.
1988. The HP Labs natural language evaluation
tool. In Proceedings of the Workshop on Evaluation
of Natural Language Processing Systems.

55



Oepen, Stephan, Klaus Netter, and Judith Klein. 1998.
TSNLP — Test Suites for Natural Language Process-
ing. In Nerbonne, John, editor, Linguistic Databases,
pages 13–36. CSLI.

Oepen, Stephan, Dan Flickinger, Kristina Toutanova,
and Chris D. Manning. 2002. LinGO Redwoods. a
rich and dynamic treebank for HPSG. In Proceed-
ings of The First Workshop on Treebanks and Lin-
guistic Theories, pages 139–149.

Rosén, Victoria, Koenraad de Smedt, Helge Dyvik, and
Paul Meurer. 2005. TREPIL: Developing methods
and tools for multilevel treebank construction. In
Proceedings of The Fourth Workshop on Treebanks
and Linguistic Theories.

Sekine, Satoshi, Kentaro Inui, Ido Dagan, Bill Dolan,
Danilo Giampiccolo, and Bernardo Magnini, editors.
2007. Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing. Association
for Computational Linguistics, Prague, June.

Voorhees, Ellen and Dawn Tice. 2000a. Building a
question answering test collection. In Proceedings
of SIGIR-2000, pages 200–207.

Voorhees, Ellen and Dawn Tice. 2000b. The TREC-8
question answering track evaluation. In Proceedings
8th Text REtrieval Conference (TREC-8), pages 83–
105.

56


