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Abstract 

We report on research on matching 
names in different scripts across languag-
es. We explore two trainable approaches 
based on comparing pronunciations. The 
first, a cross-lingual approach, uses an 
automatic name-matching program that 
exploits rules based on phonological 
comparisons of the two languages carried 
out by humans. The second, monolingual 
approach, relies only on automatic com-
parison of the phonological representa-
tions of each pair. Alignments produced 
by each approach are fed to a machine 
learning algorithm. Results show that the 
monolingual approach results in ma-
chine-learning based comparison of per-
son-names in English and Chinese at an 
accuracy of over 97.0 F-measure. 

1 Introduction 

The problem of matching pairs of names which 
may have different spellings or segmentation 
arises in a variety of common settings, including 
integration or linking database records, mapping 
from text to structured data (e.g., phonebooks, 
gazetteers, and biological databases), and text to 
text comparison (for information retrieval, 
clustering, summarization, coreference, etc.).  
For named entity recognition, a name from a 
gazetteer or dictionary may be matched against 
text input; even within monolingual applications, 
the forms of these names might differ. In multi-
document summarization, a name may have 
different forms across different sources. Systems 
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that address this problem must be able to handle 
variant spellings, as well as abbreviations, 
missing or additional name parts, and different 
orderings of name parts.  

In multilingual settings, where the names 
being compared can occur in different scripts in 
different languages, the problem becomes 
relevant to additional practical applications, 
including both multilingual information retrieval 
and machine translation. Here special challenges 
are posed by the fact that there usually aren’t 
one-to-one correspondences between sounds 
across languages. Thus the name Stewart, 
pronounced   / s t u w ə r t / in IPA, can be 
mapped to Mandarin “斯图尔特 ”, which is 
Pinyin “si tu er te”, pronounced /s i tʰ u a ɻ tʰ e/, 
and the name Elizabeth / I l I z ə b ɛ θ/ can map 
to “伊丽莎白”, which is Pinyin “yi li sha bai”, 
pronounced /I l I ʂ ɑ p aI/. Further, in a given 
writing system, there may not be a one-to-one 
correspondence between orthography and sound, 
a well-known case in point being English. In 
addition, there may be a variety of variant forms, 
including dialectical variants, (e.g., Bourguiba 
can map to Abu Ruqayba), orthographic 
conventions (e.g., Anglophone Wasim can map 
to Francophone Ouassime), and differences in 
name segmentation (Abd Al Rahman can map to 
Abdurrahman).  Given the high degree of 
variation and noise in the data, approaches based 
on machine learning are needed. 

The considerable differences in possible 
spellings of a name also call for approaches 
which can compare names based on 
pronunciation. Recent work has developed 
pronunciation-based models for name 
comparison, e.g., (Sproat, Tao and Zhai 2006) 
(Tao et al. 2006). This paper explores trainable 
pronunciation-based models further.  
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Table 1: Matching “Ashburton” and “阿什伯顿” 
Consider the problem of matching Chinese 

script names against their English (Pinyin) Ro-
manizations. Chinese script has nearly 50,000 
characters in all, with around 5,000 characters in 
use by the well-educated. However, there are 
only about 1,600 Pinyin syllables when tones are 
counted, and as few as 400 when they aren’t. 
This results in multiple Chinese script represen-
tations for a given Roman form name and many 
Chinese characters that map to the same Pinyin 
forms. In addition, one can find multiple Roman 
forms for many names in Chinese script, and 
multiple Pinyin representations for a Chinese 
script representation.  

In developing a multilingual approach that can 
match names from any pair of languages, we 
compare an approach that relies strictly on mo-
nolingual knowledge for each language, specifi-
cally, grapheme-to-phoneme rules for each lan-
guage, with a method that relies on cross-lingual 
rules which in effect map between graphemic 
and/or phonemic representations for the specific 
pair of languages.  

The monolingual approach requires finding 
data on the phonemic representations of a name 
in a given language, which (as we describe in 
Section 4) may be harder than finding more 
graphemic representations. But once the 
phonemic representation is found for names in a 
given language, then as one adds more languages 
to a system, no more work needs to be done in 
that given language. In contrast, with the cross-
lingual approach, whenever a new language is 
added, one needs to  go over all the existing 
languages already in the system and compare 
each of them with the new language to develop 
cross-lingual rules for each such language pair. 
The engineering of such rules requires bilingual 
expertise, and knowledge of differences between 
language pairs. The cross-lingual approach is 
thus more expensive to develop, especially for 
applications which require coverage of a large 
number of languages. 

Our paper investigates whether we can address 
the name-matching problem without requiring 
such a knowledge-rich approach, by carrying out 
a comparison of the performance of the two 

approaches. We present results of large-scale 
machine-learning for matching personal names 
in Chinese and English, along with some 
preliminary results for English and Urdu. 

2 Basic Approaches 

2.1 Cross-Lingual Approach 

Our cross-lingual approach (called MLEV) is 
based on (Freeman et al. 2006), who used a 
modified Levenshtein string edit-distance 
algorithm to match Arabic script person names 
against their corresponding English versions. The 
Levenshtein edit-distance algorithm counts the 
minimum number of insertions, deletions or 
substitutions required to make a pair of strings  
match. Freeman et al. (2006) used (1) insights 
about phonological differences between the two  
languages to create rules for equivalence classes 
of characters that are treated as identical in the 
computation of edit-distance and (2) the use of 
normalization rules applied to the English and 
transliterated Arabic names based on mappings 
between characters in the respective writing 
systems. For example, characters corresponding 
to low diphthongs in English are normalized as 
“w”, the transliteration for the Arabic 
 character, while high diphthongs are mapped”و“
to “y”, the transliteration for the Arabic “ي” 
character.   

Table 1 shows the representation and 
comparison of a Roman-Chinese name pair 
(shown in the title) obtained from the Linguistic 
Data Consortium’s LDC Chinese-English name 
pairs corpus (LDC 2005T34). This corpus 
provides name part pairs, the first element in 
English (Roman characters) and the second in 
Chinese characters, created by the LDC from 
Xinhua Newswire's proper name and who's who 
databases. The name part can be a first, middle 
or last name. We compare the English form of 
the name with a Pinyin Romanization of the 
Chinese. (Since the Chinese is being compared 
with English, which is toneless, the tone part of 
Pinyin is being ignored throughout this paper.) 
For this study, the Levenshtein edit-distance 
score (where a perfect match scores zero) is 

 Roman Chinese (Pinyin) Alignment Score 
LEV ashburton ashenbodu |   a   s   h   b   u   r   t   o   n   | 

|   a   s   h   e   n   b  o  d    u   | 
0.67 

MLEV ashburton ashenbodu |  a   s   h   -   -   b   u   r    t   o   n  | 
|  a   s   h   e   n   b   o   -   d   u   -  | 

0.72 

MALINE asVburton aseCnpotu |   a   sV  -   b   <   u   r   t   o   |   n 
|   a   s   eC  n   p   o   -   t   u   |   - 

0.48 
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normalized to a similarity score as in (Freeman et 
al. 2006), where the score ranges from 0 to 1, 
with 1 being a perfect match. This edit-distance 
score is shown in the LEV row. 

The MLEV row, under the Chinese Name 
column, shows an “Englishized” normalization 
of the Pinyin for Ashburton. Certain characters or 
character sequences in Pinyin are pronounced 
differently than in English. We therefore apply 
certain transforms to the Pinyin; for example, the 
following substitutions are applied at the start of 
a Pinyin syllable, which makes it easier for an 
English speaker to see how to pronounce it and 
renders the Pinyin more similar to English 
orthography: “u:” (umlaut “u”) => “u”, “zh” => 
“j”, “c” => “ts”, and “q” => “ch” (so the Pinyin 
“Qian” is more or less pronounced as if it were 
spelled as “Chian”, etc.). The MLEV algorithm 
uses equivalence classes that allow “o” and “u” 
to match, which results in a higher score than the 
generic score using the LEV method.  

2.2 Monolingual Approach 

Instead of relying on rules that require extensive 
knowledge of differences between a language 
pair2, the monolingual approach first builds pho-
nemic representations for each name, and then 
aligns them. Earlier research by (Kondrak 2000) 
used dynamic programming to align strings of 
phonemes, representing the phonemes as vectors 
of phonological features, which are associated 
with scores to produce similarity values. His 
program ALINE includes a “skip” function in the 
alignment operations that can be exploited for 
handling epenthetic segments, and in addition to 
1:1 alignments, it also handles 1:2 and 2:1 
alignments. In this research, we made extensive 
modifications to ALINE to add the phonological 
features for languages like Chinese and Arabic 
and to normalize the similarity scores, producing 
a system called MALINE. 

In Table 1, the MALINE row3 shows that the 
English name has a palato-alveolar modification 
                                                 

                                                                         

2As (Freeman et al., 2006) point out, these insights are 
not easy to come by: “These rules are based on first 
author Dr. Andrew Freeman’s experience with read-
ing and translating Arabic language texts for more 
than 16 years” (Freeman et al., 2006, p. 474). 
3For the MALINE row in Table 1, the ALINE docu-
mentation explains the notation as follows: “every 
phonetic symbol is represented by a single lowercase 
letter followed by zero or more uppercase letters. The 
initial lowercase letter is the base letter most similar 
to the sound represented by the phonetic symbol. The 
remaining uppercase letters stand for the feature mod-

on the “s” (expressed as “sV”), so that we get the 
sound corresponding to “sh”; the Pinyin name 
inserts a centered “e” vowel, and devoices the 
bilabial plosive /b/ to /p/. There are actually 
sixteen different Chinese ‘pinyinizations’ of 
Ashburton, according to our data prepared from 
the LDC corpus.  

3 Experimental Setup 

3.1 Machine Learning Framework 

Neither of the two basic approaches described so 
far use machine learning. Our machine learning 
framework is based on learning from alignments 
produced by either approach. To view the learn-
ing problem as one amenable to a statistical clas-
sifier, we need to generate labeled feature vectors 
so that each feature vector includes an additional 
class feature that can have the value ‘true’ or 
‘false.’ Given a set of such labeled feature vec-
tors as training data, the classifier builds a model 
which is then used to classify unlabeled feature 
vectors with the right labels. 

A given set of attested name pairs constitutes a 
set of positive examples. To create negative 
pairs, we have found that randomly selecting 
elements that haven’t been paired will create 
negative examples in which the pairs of elements 
being compared are so different that they can be 
trivially separated from the positive examples. 
The experiments reported here used the MLEV 
score as a threshold to select negatives, so that 
examples below the threshold are excluded. As 
the threshold is raised, the negative examples 
should become harder to discriminate from 
positives (with the harder problems mirroring 
some of the “confusable name” characteristics of 
the real-world name-matching problems this 
technology is aimed at). Positive examples below 
the threshold are also eliminated. Other criteria, 
including a MALINE score, could be used, but 
the MLEV scores seemed adequate for these 
preliminary experiments.  

Raising the threshold reduces the number of 
negative examples. It is highly desirable to 
balance the number of positive and negative 
examples in training, to avoid the learning being 

 
ifiers which alter the sound defined by the base letter. 
By default, the output contains the alignments togeth-
er with the overall similarity scores. The aligned sub-
sequences are delimited by '|' signs. The '<' sign signi-
fies that the previous phonetic segment has been 
aligned with two segments in the other sequence, a 
case of compression/expansion. The '-' sign denotes a 
“skip”, a case of insertion/deletion.”  
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biased by a skewed distribution. However, when 
one starts with a balanced distribution of positive 
and negatives, and then excludes a number of 
negative examples below the threshold, a 
corresponding number of positive examples must 
also be removed to preserve the balance. Thus, 
raising the threshold reduces the size of the 
training data. Machine learning algorithms, 
however, can benefit from more training data.  
Therefore, in the experiments below, thresholds 
which provided woefully inadequate training set 
sizes were eliminated.  

One can think of both the machine learning 
method and the basic name comparison methods 
(MLEV and MALINE) as taking each pair of 
names with a known label and returning a 
system-assigned class for that pair. Precision, 
Recall, and F-Measure can be defined in an 
identical manner for both machine learning and 
basic name comparison methods. In such a 
scheme, a threshold on the similarity score is 
used to determine whether the basic comparison 
match is a positive match or not. Learning the 
best threshold for a dataset can be determined by 
searching over different values for the threshold.  

In short, the methodology employed for this 
study involves two types of thresholds: the 
MLEV threshold used to identify negative 
examples and the threshold that is applied to the 
basic comparison methods, MLEV and 
MALINE, to identify matches. To avoid 
confusion, the term negative threshold refers to 
the former, while the term positive threshold is 
used for the latter. 

The basic comparison methods were used as 
baselines in this research. To be able to provide a 
fair basic comparison score at each negative 
threshold, we “trained” each basic comparison 
matcher at twenty different positive thresholds 
on the same training set used by the learner.  For 
each negative threshold, we picked the positive 
threshold that gave the best performance on the 
training data, and used that to score the matcher 
on the same test data as used by the learner.  

3.2 Feature Extraction 

Consider the MLEV alignment in Table 1. It can 
be seen that the first three characters are matched 
identically across both strings; after that, we get 
an “e” inserted, an “n” inserted, a “b” matched 
identically, a “u” matched to an “o”, a “r” de-
leted, a “t” matched to a “d”, an “o” matched to a 
“u”, and an “n” deleted. The match unigrams are 
thus “a:a”, “s:s”, “h:h”, “-:e”, “-:n”, “b:b”, “u:o”, 
“r:-“, “t:d”, “o:u”, and “n:-”. Match bigrams 

were generated by considering any insertion, de-
letion, and (non-identical) substitution unigram, 
and noting the unigram, if any, to its left, pre-
pending that left unigram to it (delimited by a 
comma). Thus, the match bigrams in the above 
example include “h:h,-:e”, “-:e,-:n”, “b:b,u:o”, 
“u:o,r:-“, “r:-,t:d”, “t:d,o:u”, “o:u,n:-”.  

These match unigram and match bigram 
features are generated from just a single MLEV 
match. The composite feature set is the union of 
the complete match unigram and bigram feature 
sets. Given the composite feature set, each match 
pair is turned into a feature vector consisting of 
the following features: string1, string2, the match 
score according to each of the basic comparison 
matchers (MLEV and MALINE), and the 
Boolean value of each feature in the composite 
feature set. 

3.3 Data Set 

Our data is a (roughly 470,000 pair) subset of the 
Chinese-English personal name pairs in LDC 
2005T34. About 150,000 of the pairs had more 
than 1 way to pronounce the English and/or Chi-
nese. For these, to keep the size of the experi-
ments manageable from the point of view of 
training the learners, one pronunciation was ran-
domly chosen as the one to use. (Even with this 
restriction, a minimum negative threshold results 
in over half a million examples). Chinese charac-
ters were mapped into Hanyu Pinyin representa-
tions, which are used for MLEV alignment and 
string comparisons.   Since the input to MALINE 
uses a phonemic representation that encodes 
phonemic features in one or more letters, both 
Pinyin and English forms were mapped into the 
MALINE notation.   

There are a number of slightly varying ways to 
map Pinyin into an international pronunciation 
system like IPA. For example, (Wikipedia 2006) 
and (Salafra 2006) have mappings that differ 
from each other and also each of these two 
sources have changed its mapping over time. We 
used a version of Salafra from 2006 (but we 
ignored the ejectives). For English, the CMU 
pronouncing dictionary (CMU 2008) provided 
phonemic representations that were then mapped 
into the MALINE notation. The dictionary had 
entries for 12% of our data set. For the names not 
in the CMU dictionary, a simple grapheme to 
phoneme script provided an approximate 
phonemic form. We did not use a monolingual 
mapping of Chinese characters (Mandarin 
pronunciation) into IPA because we did not find 
any. 
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Note that we could insist that all pairs in our 
dataset be distinct, requiring that there be exactly 
one match for each Roman name and exactly one 
match for each Pinyin name. This in our view is 
unrealistic, since large corpora will be skewed 
towards names which tend to occur frequently 
(e.g., international figures in news) and occur 
with multiple translations.  We included attested 
match pairs in our test corpora, regardless of the 
number of matches that were associated with a 
member of the pair. 

4 Results 

A variety of machine learning algorithms were 
tested. Results are reported, unless otherwise in-
dicated, using SVM Lite, a Support Vector Ma-
chine (SVM4) classifier5 that scales well to large 
data sets.  

Testing with SVM Lite was done with a 90/10 
train-test split. Further testing was carried out 
with the weka SMO SVM classifier, which used 
built-in cross-validation. Although the latter clas-
sifier didn’t scale to the larger data sets we used, 
it did show that cross-validation didn’t change 
the basic results for the data sets it was tried on.  
4.1 Machine Learning with Different Fea-

ture Sets 

Figure 1:  F-measure with Different Fea-
ture Sets 

Figure 1 shows the F-measure of learning for 
monolingual features (M, based on MALINE), 
cross-lingual features (X, based on MLEV), and 
a combined feature set (C) of both types of fea-
tures6 at different negative thresholds (shown on 
the horizontal axis). Baselines are shown with 
the suffix B, e.g., the basic MALINE without 
learning is MB. When using both monolingual 
and cross-lingual features (C), the baseline (CB) 
                                                 

                                                

4We used a linear kernel function in our SVM expe-
riments; using polynomial or radial basis kernels did 
not improve performance. 
5 From svmlight.joachims.org. 
6In Figure 1, the X curve is more or less under the C 
curve. 

is set to a system response of “true” only when 
both the MALINE and MLEV baseline systems 
by themselves respond “true”. Table 2 shows the 
number of examples at each negative threshold 
and the Precision and Recall for these methods, 
along with baselines using the basic methods 
shown in square brackets. 

The results show that the learning method (i) 
outperforms the baselines (basic methods), and 
(ii) the gap between learning and basic compari-
son widens as the problem becomes harder (i.e., 
as the threshold is raised). 

For separate monolingual and cross-lingual 
learning, the increase in accuracy of the learning 
over the baseline (non-learning) results7 was sta-
tistically significant at all negative thresholds 
except 0.6 and 0.7. For learning with combined 
monolingual and cross-lingual features (C), the 
increase over the baseline (non-learning) com-
bined results was statistically significant at all 
negative thresholds except for 0.7. 

In comparing the mono-lingual and cross-
lingual learning approaches, however, the only 
statistically significant differences were that the 
cross-lingual features were more accurate than 
the monolingual features at the 0 to 0.4 negative 
thresholds. This suggests that (iii) the mono-
lingual learning approach is as viable as the 
cross-lingual one as the problem of confusable 
names becomes harder.  

However, using the combined learning ap-
proach (C) is better than using either one. Learn-
ing accuracy with both monolingual and cross-
lingual features is statistically significantly better 
than learning with monolingual features at the 
0.0 to 0.4 negative thresholds, and better than 
learning with cross-lingual features at the 0.0 to 
0.2, and 0.4 negative thresholds. 

 
7Statistical significance between F-measures is not 
directly computable since the overall F-measure is not 
an average of the F-measures of the data samples. 
Instead, we checked the statistical significance of the 
increase in accuracy (accuracy is not shown for rea-
sons of space) due to learning over the baseline. The 
statistical significance test was done by assuming that 
the accuracy scores were binomials that were approx-
imately Gaussian. When the Gaussian approximation 
assumption failed (due to the binomial being too 
skewed), a looser, more general bound was used 
(Chebyshev’s inequality, which applies to all proba-
bility distributions). All statistically significant differ-
ences are at the 1% level (2-sided). 
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4.2 Feature Set Analyses 

The unigram features reflect common correspon-
dences between Chinese and English pronuncia-
tion.  For example, (Sproat, Tao and Zhai 2006) 
note that Chinese /l/ is often associated with Eng-
lish /r/, and the feature l:r is among the most fre-
quent unigram mappings in both the MLEV and 
MALINE alignments. At a frequency of 103,361, 
it is the most frequent unigram feature in the 
MLEV mappings, and it is the third most fre-
quent unigram feature in the MALINE align-
ments (56,780). 

Systematic correspondences among plosives 
are also captured in the MALINE unigram map-
pings.  The unaspirated voiceless Chinese plo-
sives /p,t,k/ contrast with aspirated plosives 

/pʰ,tʰ,kʰ/, whereas the English voiceless plosives 
(which are aspirated in predictable environments) 
contrast with voiced plosives /b,d,g/.  As a result, 
English /b,d,g/ phonemes are usually translite-
rated using Chinese characters that are pro-
nounced /p,t,k/, while English /p,t,k/ phonemes 
usually correspond to Chinese /pʰ,tʰ,kʰ/. The ex-
amples of Stewart and Elizabeth in Section 1 
illustrate the correspondence of English /t/ and 
Chinese / tʰ/ and of English /b/ with Chinese /p/ 
respectively. All six of the unigram features that  
result from these correspondences occur among 
the 20 most frequent in the MALINE alignments, 
ranging in frequency from 23,602 to 53,535. 

 
 

Neg-
ative 
Thre-
shold 

Exam-
ples 

Monolingual  (M) Cross-Lingual (X) Combined (C) 

  P R P R P R 
0 538,621 94.69 

[90.6] 
95.73 

[91.0] 
96.5 

[90.0] 
97.15 

[93.4] 
97.13 

[90.8] 
97.65 

[91.0] 
0.1 307,066 95.28 

[87.1] 
96.23 

[83.4] 
98.06 

[89.2] 
98.25 

[89.9] 
98.4 

[87.6] 
98.64 

[84.1] 
0.2 282,214 95.82 

[86.2] 
96.63 

[84.4] 
97.91 

[88.4] 
98.41 

[90.3] 
98.26 

[86.7] 
98.82 

[84.7] 
0.3 183,188 95.79 

[80.6] 
96.92 

[85.3] 
98.18 

[86.3] 
98.8 

[90.7] 
98.24 

[80.6] 
99.27 

[84.8] 
0.4 72,176 96.31 

[77.1] 
98.69 

[82.3] 
97.89 

[91.8] 
99.61 

[86.2] 
98.91 

[77.1] 
99.64 

[80.9] 
0.5 17,914 94.62 

[64.6] 
98.63 

[84.3] 
99.44 

[89.4] 
100.0 

[91.9] 
99.46 

[63.8] 
99.89 

[84.7] 
0.6 2,954 94.94 

[66.1] 
100 

[77.0] 
98.0 

[85.2] 
98.66 

[92.8] 
99.37 

[61.3] 
100.0 

[73.1] 
0.7 362 95.24 

[52.8] 
100 

[100.0] 
94.74 

[78.9] 
100.0 

[78.9] 
100.0 

[47.2] 
94.74 

[100.0] 
Table 2:  Precision and Recall with Different Feature Sets 

(Baseline scores in square brackets) 
 

4.3 Comparison with other Learners 

To compare with other machine learning tools, 
we used the WEKA toolkit (from 
www.weka.net.nz). Table 3 shows the compar-
isons on the MLEV data for a fixed size at one 
threshold. Except for SVM Light, the results 
are based on 10-fold cross validation.  The 
other classifiers appear to perform relatively 
worse at that setting for the MLEV data, but 
the differences in accuracy are not statistically 
significant even at the 5% level. A large con-
tributor to the lack of significance is the small 
test set size of 66 pairs (10% of 660 examples) 
used in the SVM Light test. 

4.4 Other Language Pairs 

Some earlier experiments for Arabic-Roman 
comparisons were carried out using a Condi-
tional Random Field learner (CRF), using the 
Carafe toolkit (from source-
forge.net/projects/carafe). The method com-
putes its own Levenshtein edit-distance scores, 
and learns edit-distance costs from that. The 
scores obtained, on average, had only a .6 cor-
relation with the basic comparison Levenshtein 
scores. However, these experiments did not 
return accuracy results, as ground-truth data 
was not specified for this task. 
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Several preliminary machine learning expe-
riments were also carried out on Urdu-Roman 
comparisons. The data used were Urdu data 
extracted from a parallel corpus recently pro-
duced by the LDC (LCTL_Urdu.20060408).  
The results are shown in Table 4. Here a .55 
MALINE score and a .85 MLEV score were 
used for selecting positive examples by basic 
comparison, and negative examples were se-
lected at random. Here the MALINE method 
(row 1) using the weka SMO SVM made use 
of a threshold based on a MALINE score. In 
these earlier experiments, machine learning 
does not really improve the system perfor-
mance (F-measure decreases with learning on 
one test and only increases by 0.1% on the 
other test). However, since these earlier expe-
riments did not benefit from the use of differ-
ent negative thresholds, there was no control 
over problem difficulty.  

5 Related Work 

While there is a substantial literature employ-
ing learning techniques for record linkage 
based on the theory developed by Fellegi and 
Sunter (1969), researchers have only recently 
developed applications that focus on name 
strings and that employ methods which do not 
require features to be independent (Cohen and 
Richman 2002). Ristad and Yianilos (1997) 
have developed a generative model for learn-
ing string-edit distance that learns the cost of 
different edit operations during string align-
ment. Bilenko and Mooney (2003) extend Ris-
tad’s approach to include gap penalties (where 
the gaps are contiguous sequences of mis-
matched characters) and compare this genera-

tive approach with a vector similarity approach 
that doesn’t carry out alignment. McCallum et 
al. (2005) use Conditional Random Fields 
(CRFs) to learn edit costs, arguing in favor of 
discriminative training approaches and against 
generative approaches, based in part on the 
fact that the latter approaches “cannot benefit 
from negative evidence from pairs of strings 
that (while partially overlapping) should be 
considered dissimilar”. Such CRFs model the 
conditional probability of a label sequence (an 
alignment of two strings) given a sequence of 
observations (the strings).  

A related thread of research is work on au-
tomatic transliteration, where training sets are 
typically used to compute probabilities for 
mappings in weighted finite state transducers 
(Al-Onaizan and Knight 2002; Gao et al. 2004) 
or source-channel models (Knight and Graehl 
1997; Li et al. 2004). (Sproat et al. 2006) have 
compared names from comparable and con-
temporaneous English and Chinese texts, scor-
ing matches by training a learning algorithm to 
compare the phonemic representations of the 
names in the pair, in addition to taking into 
account the frequency distribution of the pair 
over time.  (Tao et al. 2006) obtain similar re-
sults using frequency and a similarity score 
based on a phonetic cost matrix 

The above approaches have all developed 
special-purpose machine-learning architectures 
to address the matching of string sequences. 
They take pairs of strings that haven’t been 
aligned, and learn costs or mappings from 
them, and once trained, search for the best 
match given the learned representation  

 
Positive  
Threshold

Examples Method P R F Accuracy 

.65 660 SVM Light 90.62 87.88 89.22 89.39   

.65 660 WEKA SMO 80.6 83.3 81.92 81.66 

.65 660 AdaBoost M1 84.9 78.5 81.57 82.27 

Table 3: Comparison of Different Classifiers 
 

Method Positive 
Threshold 

Examples P R F 

WEKA SMO .55 (MALINE) 206 (MALINE) 84.8 [81.5] 86.4 [93.3] 85.6 [87.0] 
WEKA SMO .85 (MLEV) 584 (MLEV) 89.9 [93.2] 94.7 [91.2] 92.3 [92.2] 

Table 4: Urdu-Roman Name Matching Results with Random Negatives 
(Baseline scores in square brackets) 
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Our approach, by contrast, takes pairs of 
strings along with an alignment, and using fea-
tures derived from the alignments, trains a learn-
er to derive the best match given the features. 
This offers the advantage of modularity, in that 
any type of alignment model can be combined 
with SVMs or other classifiers (we have pre-
ferred SVMs since they offer discriminative 
training). Our approach allows leveraging of any 
existing alignments, which can lead to starting 
the learning from a higher baseline and less train-
ing data to get to the same level of performance. 
Since the learner itself doesn’t compute the 
alignments, the disadvantage of our approach is 
the need to engineer features that communicate 
important aspects of the alignment to the learner.  

In addition, our approach, as with McCallum 
et al. (2005), allows one to take advantage of 
both positive and negative training examples, 
rather than positive ones alone. Our data genera-
tion strategy has the advantage of generating 
negative examples so as to vary the difficulty of 
the problem, allowing for more fine-grained per-
formance measures. Metrics based on such a 
control are likely to be useful in understanding 
how well a name-matching system will work in 
particular applications, especially those involving 
confusable names. 

6 Conclusion 

The work presented here has established a 
framework for application of machine learning 
techniques to multilingual name matching.  The 
results show that machine learning dramatically 
outperforms basic comparison methods, with F-
measures as high as 97.0 on the most difficult 
problems. This approach is being embedded in a 
larger system that matches full names using a 
vetted database of full-name matches for evalua-
tion.  

So far, we have confined ourselves to minimal 
feature engineering. Future work will investigate 
a more abstract set of phonemic features. We 
also hope to leverage ongoing work on harvest-
ing name pairs from web resources, in addition 
applying them to less commonly taught languag-
es, as and when appropriate resources for them 
become available. 
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