
Practical Grammar-Based NLG from Examples

David DeVault and David Traum and Ron Artstein

USC Institute for Creative Technologies

13274 Fiji Way

Marina del Rey, CA 90292

{devault,traum,artstein}@ict.usc.edu

Abstract

We present a technique that opens up

grammar-based generation to a wider range

of practical applications by dramatically re-

ducing the development costs and linguis-

tic expertise that are required. Our method

infers the grammatical resources needed for

generation from a set of declarative exam-

ples that link surface expressions directly to

the application’s available semantic represen-

tations. The same examples further serve to

optimize a run-time search strategy that gener-

ates the best output that can be found within an

application-specific time frame. Our method

offers substantially lower development costs

than hand-crafted grammars for application-

specific NLG, while maintaining high output

quality and diversity.

1 Introduction

This paper presents a new example-based genera-

tion technique designed to reduce the development

costs and linguistic expertise needed to integrate a

grammar-based generation component into an ex-

isting application. We believe this approach will

broaden the class of applications in which grammar-

based generation may feasibly be deployed.

In principle, grammar-based generation offers

significant advantages for many applications, when

compared with simpler template-based or canned

text output solutions, by providing productive cov-

erage and greater output variety. However, realiz-

ing these advantages can require significant devel-

opment costs (Busemann and Horacek, 1998).

One possible strategy is to exploit a wide-

coverage realizer that aims for applicability in mul-

tiple application domains (White et al., 2007; Cahill

and van Genabith, 2006; Zhong and Stent, 2005;

Langkilde-Geary, 2002; Langkilde and Knight,

1998; Elhadad, 1991). These realizers provide

a sound wide-coverage grammar (or robust wide-

coverage language model) for free, but demand a

specific input format that is otherwise foreign to

an existing application. Unfortunately, the devel-

opment burden of implementing the translation be-

tween the system’s available semantic representa-

tions and the required input format can be quite sub-

stantial (Busemann and Horacek, 1998). Indeed, im-

plementing the translation might require as much ef-

fort as would be required to build a simple custom

generator; cf. (Callaway, 2003). Thus, there cur-

rently are many applications where using a wide-

coverage generator remains impractical.

Another strategy is for system builders to hand

craft an application-specific grammar for genera-

tion. This approach can be initially attractive to

system builders because it allows syntactic cover-

age and semantic modeling to be tailored directly

to application needs. However, writing grammati-

cal rules by hand ultimately requires a painstaking,

time-consuming effort by a developer who has de-

tailed linguistic knowledge as well as detailed appli-

cation knowledge. Further, the resulting coverage is

inevitably limited to the set of linguistic construc-

tions that have been selected for careful modeling.

A third strategy is to use an example-based ap-

proach (Wong and Mooney, 2007; Stone, 2003;

Varges and Mellish, 2001) in which the connection

77

between available application semantic representa-

tions and desired output utterances is specified by

example. Example-based approaches aim to allow

system builders to specify a productive generation

capacity while leaving the representations and rea-

soning that underlie that productive capacity mostly

implicit in a set of training examples. This method-

ology insulates system builders from the detailed ex-

pertise and technical infrastructure needed to imple-

ment the productive capacity directly, and has made

example-based approaches attractive not only in text

generation but also in related areas such as concate-

native speech synthesis and motion capture based

animation; see, e.g., (Stone et al., 2004).

The technique we present in this paper is a new

example-based approach to specifying application-

specific text generation. As in other hand-crafted

and example-based approaches, our technique al-

lows syntactic coverage and semantic modeling to

follow the needs and available semantic representa-

tions in an application. One contribution of our tech-

nique is to relieve the generation content author of

the burden of manual syntactic modeling by lever-

aging an off-the-shelf parser; defects in the syntax

provided by the parser are effectively overcome us-

ing a machine learning technique. Additionally, our

technique organizes the authoring task in a way that

relieves the generation author of carefully modeling

the connections between particular syntactic con-

structions and available semantic representations.

Together, we argue, these features dramatically

reduce the linguistic expertise and other develop-

ment costs that are required to integrate a grammar-

based generation component into an existing system.

In a case study application, we show that our ap-

proach allows an application developer who lacks

detailed linguistic knowledge to extend grammatical

coverage at an expense of less than one minute per

additional lexical entry.

2 Case Study: Doctor Perez

Our approach has been tested as a replacement for

the generation component of interactive virtual hu-

mans used for social training purposes (Swartout et

al., 2006). Virtual humans are embodied conversa-

tional agents that play the role of people in simula-

tions or games. The case study we present in this

paper is the generation of output utterances for a

particular virtual human, Doctor Perez, who is de-

signed to teach negotiation skills in a multi-modal,

multi-party, non-team dialogue setting (Traum et al.,

2008). The human trainee who talks to the doctor

plays the role of a U.S. Army captain named Cap-

tain Kirk. The design goals for Doctor Perez create

a number of requirements for a practical NLG com-

ponent. We briefly summarize these requirements

here; see (DeVault et al., 2008) for more details.

Doctor Perez has a relatively rich internal mental

state including beliefs, goals, plans, and emotions.

He uses an attribute-value matrix (AVM) semantic

representation to describe an utterance as a set of

core speech acts and other dialogue acts. Speech

acts generally have semantic contents that describe

propositions and questions about states and actions

in the domain. To facilitate interprocess communi-

cation, and statistical processing, this AVM structure

is linearized into a “frame” of key values in which

each non-recursive terminal value is paired with a

path from the root to the final attribute. Figure 1

shows a typical frame. See (Traum, 2003) for addi-

tional details and examples of this representation.

While only hundreds of frames currently arise in

actual dialogues, the number of potential frames is

orders of magnitude larger, and it is difficult to pre-

dict in advance which frames might occur. The ut-

terances that realize these frames need to take a va-

riety of syntactic forms, including simple declar-

ative sentences, various modal constructions relat-

ing to hypothetical actions or plans, yes/no and wh-

questions, and abbreviated dialogue forms such as

elliptical clarification and repair requests, ground-

ing, and turn-taking utterances. Highly fluent out-

put is not a necessity for this character, since Doc-

tor Perez is designed to simulate a non-native En-

glish speaker. However, in order to support com-

pelling real-time conversational interaction and ef-

fective training, the generation module must be able

to identify an utterance for Doctor Perez to use

within approximately 200ms on modern hardware.

Finally, the development team for Doctor Perez’s

language capabilities includes approximately 10

programmers, testers, linguists, and computational

linguists. Wherever possible, it is better if any de-

veloper can improve any aspect of Doctor Perez’s

language processing; e.g., if a programmer discov-

78

ers a bug or disfluency in the NLG output, it is better

if she can fix it directly rather than requiring a (com-

putational) linguist to do so.

3 Technical Approach

Our approach builds on recently developed tech-

niques in statistical parsing, lexicalized syntax mod-

eling, generation with lexicalized grammars, and

search optimization to automatically construct all

the resources needed for a high-quality run-time

generation component. In particular, we leverage the

increasing availability of off-the-shelf parsers such

as (Charniak, 2001; Charniak, 2005) to automati-

cally (or semi-automatically) assign syntactic anal-

yses to a set of suggested output sentences. We

then draw on lexicalization techniques for statistical

language models (Magerman, 1995; Collins, 1999;

Chiang, 2000; Chiang, 2003) to induce a probabilis-

tic, lexicalized tree-adjoining grammar that supports

the derivation of all the suggested output sentences,

and many others besides.

The final step is to use the training examples to

learn an effective search policy so that our run-time

generation component can find good output sen-

tences in a reasonable time frame. In particular, we

use variants of existing search optimization (Daumé

and Marcu, 2005) and ranking algorithms (Collins

and Koo, 2005) to train our run-time component to

find good outputs within a specified time window;

see also (Stent et al., 2004; Walker et al., 2001). The

result is a run-time component that treats generation

as an anytime search problem, and is thus suitable

for applications in which a time/performance trade-

off is necessary (such as real-time dialogue).

3.1 Specification of Training Examples

Each training example in our approach speci-

fies a target output utterance (string), its syn-

tax, and a set of links between substrings within

the utterance and system semantic representa-

tions. Formally, a training example takes the form

(u, syntax(u), semantics(u)). We will illustrate

this format using the training example in Figure 1. In

this example, the generation content author suggests

the output utterance u = we don’t have medical
supplies here captain. Each utterance u is accom-

panied by syntax(u), a syntactic analysis in Penn

Treebank format (Marcus et al., 1994). In the fig-

ure, we show two alternative syntactic analyses that

might be specified: one is the uncorrected output of

the Charniak parser on this sentence, and the other

a hand-corrected version of that parse; we evaluate

the utility of this hand correction in Section 4.

To represent the meaning of utterances, our ap-

proach assumes that the system provides some set

M = {m1, ..., mj} of semantic representations.

The meaning of any individual utterance is then

identified with some subset of M . For Doctor Perez,

M comprises the 232 distinct key-value pairs that

appear in the system’s various generation frames. In

this example, the utterance’s meaning is captured by

the 8 key-value pairs indicated in the figure.

Our approach requires the generation content

author to link these 8 key-value pairs to con-

tiguous surface expressions within the utterance.

The technique is flexible about which surface ex-

pressions are chosen (e.g. they need not corre-

spond to constituent boundaries); however, they do

need to be compatible with the way the syntactic

analysis tokenizes the utterance, as follows. Let

t(u) = 〈t1, ..., tn〉 be the terminals in the syn-

tactic analysis, in left-to-right order. Formally,

semantics(u) = {(s1, M1), ..., (sk, Mk)}, where

t(u) = s1@ · · ·@sk (with @ denoting concatena-

tion), and where Mi ⊆ M for all i ∈ 1..k. In this

example, the surface expression we don’t, which to-

kenizes as 〈we, do, n′t〉, is connected to key-values

that indicate a negative polarity assertion.

This training example format has two features that

are crucial to our approach. First, the semantics of

an utterance is specified independently of its syntax.

This greatly reduces the amount of linguistic exper-

tise a generation content author needs to have. It

also allows making changes to the underlying syn-

tax without having to re-author the semantic links.

Second, the assignment of semantic representa-

tions to surface expressions must span the entire ut-

terance. No words or expressions can be viewed as

“meaningless”. This is essential because, otherwise,

the semantically motivated search algorithm used in

generation has no basis on which to include those

particular expressions when it constructs its output

utterance. Many systems, including Doctor Perez,

lack some of the internal representations that would

be necessary to specify semantics down to the lex-

79

Utterance we don’t have medical supplies here captain

Syntax

cat: SA

cat: S

cat: NP

pos: PRP

we

cat: VP

pos: AUX

do

pos: RB

n’t

cat: VP

pos: AUX

have

cat: NP

pos: JJ

medical

pos: NNS

supplies

cat: ADVP

pos: RB

here

cat: NP

pos: NN

captain

cat: SA

cat: S

cat: S

cat: NP

pos: PRP

we

cat: VP

pos: AUX

do

pos: RB

n’t

cat: VP

pos: AUX

have

cat: NP

pos: JJ

medical

pos: NNS

supplies

cat: VP

cat: ADVP

pos: RB

here

pos: VBP

captain

(corrected Charniak parse) or (uncorrected Charniak parse)

Semantics

we do n’t

{

have

medical supplies . .

here

captain







semantic frame

speech-act.action = assert

speech-act.content.polarity = negative

speech-act.content.attribute = resourceAttribute

speech-act.content.value = medical-supplies

speech-act.content.object-id = market

addressee = captain-kirk

dialogue-act.addressee = captain-kirk

speech-act.addressee = captain-kirk

Figure 1: A generation training example for Doctor Perez. If uncorrected syntax is used, the generation content author

only writes the utterance and the links to the semantic frame.

ical level. An important feature of our approach is

that it allows an arbitrary semantic granularity to be

employed, by mapping the representations available

in the system to appropriate multi-word chunks.

3.2 Automatic Grammar Induction

We adopt essentially the probabilistic tree-adjoining

grammar (PTAG) formalism and grammar induc-

tion technique of (Chiang, 2003). Our approach

makes three modifications, however. First, while

Chiang’s model includes both full adjunction and

sister adjunction operations, our grammar has only

sister adjunction (left and right), exactly as in the

TAGLET grammar formalism of (Stone, 2002). Sec-

ond, to support lexicalization at an arbitrary gran-

ularity, we allow Chiang’s tree templates to be as-

sociated with more than one lexical anchor. Third,

to unify syntactic and semantic reasoning in search,

we augment lexical anchors with semantic informa-

tion. Formally, wherever Chiang’s model has a lex-

ical anchor w, ours has a pair (〈w1, ..., wn〉, M
′),

where M ′ ⊆ M is connected to lexical anchors

〈w1, ..., wn〉 by the generation content author, as in

Figure 1. The result is that the derivation probabili-

ties the grammar assigns depend not only on the im-

plicated syntactic structures and lexical anchors but

also on the senses of those lexical anchors in appli-

cation terms.

We induce our grammar from training exam-

ples such as Figure 1 using heuristics to assign

derivations to the examples, exactly as in (Chiang,

2003). The process proceeds in two stages. In

the first stage, a collection of rules is used to au-

tomatically “decorate” the training syntax with a

number of features. These include deciding the

lexical anchor(s) for each non-terminal constituent

and assigning complement/adjunct status for non-

terminals which are not on their parent’s lexical-

ization path; see (Magerman, 1995; Chiang, 2003;

Collins, 1999). In addition, we deterministically add

features to improve several grammatical aspects, in-

cluding (1) enforcing verb inflectional agreement in

derived trees, (2) enforcing consistency in the finite-

ness of VP and S complements, and (3) restricting

subject/direct object/indirect object complements to

play the same grammatical role in derived trees.

In the second stage, the complements and ad-

juncts in the decorated trees are incrementally re-

80

syntax:

cat: SA

fin: other, cat: S

cat: NP, apr: VBP,

apn: other

pos: PRP

we

fin: yes, cat: VP

apn: other, pos: VBP

do

pos: RB

n’t

fin: yes, cat: VP,

gra: obj1

fin: yes, cat: VP,

gra: obj1

pos: VBP

have

cat: NP, gra: obj1

operations: initial tree comp

semantics: speech-act.action = assert

speech-act.content.polarity = negative

speech-act.content.attribute = resourceAttribute

syntax:

cat: NP, apr: VBP,

gra: obj1, apn: other

pos: JJ

medical

pos: NNS

supplies

cat: ADVP, gra: adj

pos: RB

here

cat: NP, apr: VBZ,

gra: adj, apn: 3ps

pos: NN

captain

operations: comp left/right adjunction left/right adjunction

semantics: speech-act.content.value =

medical-supplies

speech-act.content.object-id =

market

addressee = captain-kirk

dialogue-act.addressee = captain-kirk

speech-act.addressee = captain-kirk

Figure 2: The linguistic resources inferred from the training example in Figure 1.

moved, yielding the reusable linguistic resources in

the grammar, as illustrated in Figure 2, as well as

the maximum likelihood estimates needed to com-

pute operation probabilities.

Our approach uses this induced grammar to treat

generation as a search problem: given a desired se-

mantic representation M ′ ⊆ M , use the grammar

to incrementally construct an output utterance u that

expresses M ′. We treat generation as anytime search

by accruing multiple goal states up until a specified

timeout (for Doctor Perez: 200ms) and returning a

list of alternative outputs ranked by their derivation

probabilities.

3.3 Optimizing the Search Strategy

The search space created by a grammar induced in

this way is too large to be searched exhaustively in

most applications. The solution we have developed

is a beam search strategy that uses weighted features

to rank alternative grammatical expansions at each

step. In particular, the beam size and structure is op-

timized so that, with high probability, the beam can

be searched exhaustively before the timeout.1 The

second step of automated processing, then, is a train-

ing problem of finding weighted features such that

1For Doctor Perez, we use a wider beam for initial trees,

since the Doctor’s semantic representation is particularly im-

poverished at the level of main verbs. At search depths > 1, we

use beam size 1 (i.e. greedy search).

for every training problem, nodes that lead to good

generation output are ranked highly enough by those

features to make it into the beam.

We use domain-independent rules to automati-

cally define a set of features that could be heuris-

tically useful for a given induced grammar. These

include features for various syntactic structures and

operations, numbers of undesired and desired mean-

ings of different types added by an expansion,

derivation probabilities, etc. (For Doctor Perez,

this yields about 600 features.) Our training algo-

rithm is based on the search optimization algorithm

of (Daumé and Marcu, 2005), which updates fea-

ture weights when mistakes are made during search

on training examples. For the weight update step,

we use the boosting approach of (Collins and Koo,

2005), which performs feature selection and iden-

tifies weight values that improve the ranking of al-

ternative derivation steps when mistakes are made

during search. We discuss the resulting success rate

and quality in the next section.

4 Cost/Benefit Analysis

The motivation that underlies our technical approach

is to reduce the development costs and linguistic ex-

pertise needed to develop a grammar-based genera-

tion component for an existing system. In this sec-

tion, we assess the progress we have made by ana-

81

lyzing the use of our approach for Doctor Perez.

Method. We began with a sample of 220 in-

stances of frames that Doctor Perez’s dialogue man-

ager had requested of the generation component in

previous dialogues with users. Each frame was as-

sociated with a hand-authored target output utter-

ance. We then constructed two alternative training

examples, in the format specified in Section 3.1, for

each frame. One example had uncorrected output

of the Charniak parser for the syntax, and another

had hand-corrected parser output (see Figure 1). The

connections between surface expressions and frame

key-value pairs were identical in both uncorrected

and corrected training sets.

We then built two generators using the two sets

of training examples. We used 90% of the data for

training and held out 10% for testing. The genera-

tors sometimes failed to find a successful utterance

within the 200ms timeout. For example, the success

rate of the version of our generator trained on uncor-

rected syntax was 96.0% for training examples and

81.8% for test examples.

Quality of generated output. To assess output

quality, 5 system developers rated each of 494 utter-

ances, in relation to the specific frame for which it

was produced, on a single 1 (“very bad”) to 5 (“very

good”) scale. The 494 utterances included all of the

hand-authored (suggested) utterances in the training

examples. They also included all the top-ranked ut-

terances that were successfully generated by the two

generators. We asked our judges to make an over-

all assessment of output quality, incorporating both

accuracy and fluency, for the Doctor Perez charac-

ter. Judges were blind to the conditions under which

utterances were produced. We discuss additional de-

tails of this rating task in (DeVault et al., 2008).

The judges achieved a reliability of α = 0.708
(Krippendorff, 1980); this value shows that agree-

ment is well above chance, and allows for tentative

conclusions. We ran a small number of planned

comparisons on these ratings. Surprisingly, we

found no significant difference between generated

output trained on corrected and uncorrected syntax

(t(29) = 0.056, p > 0.9 on test items, t(498) =
−1.1, p > 0.2 on all items).2 However, we did

2The distribution of ratings across utterances is not normal;

to validate our results we accompanied each t-test by a non-

parametric Wilcoxon rank sum test, and significance always fell

Hand-authored (N = 1099)

Generated:

Training input (N = 949)

Test input (N = 90)

Rating

F
re

q
u
en

cy
(%

)

0

10

20

30

40

50

60

1 2 3 4 5

Figure 3: Observed rating frequencies for hand-authored

vs. generated utterances (uncorrected syntax).

find that hand-authored utterances (mean rating 4.4)

are significantly better (t(388) = 5.9, p < 0.001)

than generated utterances (mean rating 3.8 for un-

corrected syntax). These ratings are depicted in Fig-

ure 3. While the figure suggests a slight reduction in

quality for generated output for test frames vs. train-

ing frames, we did not find a significant difference

between the two (t(19) = 1.4228, p > 0.15).

Variety of generated output. In general our any-

time algorithm delivers a ranked list of alternative

outputs. While in this initial study our judges rated

only the highest ranked output generated for each

frame, we observed that many of the lower ranked

outputs are of relatively high quality. For example,

Figure 4 shows a variety of alternative outputs that

were generated for two of Doctor Perez’s training

examples. Many of these outputs are not present as

hand-authored utterances (for any frame); this illus-

trates the potential of our approach to provide a va-

riety of alternative outputs or paraphrases, which in

some applications may be useful even for meanings

for which an example utterance is hand-authored.

Figure 5 shows the overall distribution in the number

of outputs returned for Doctor Perez.

Development costs. The development costs in-

cluded implementation of the approach and specifi-

cation of Doctor Perez’s training set. Implementa-

in the same general range.

82

Rank Time (ms) Novel?

1 16 no the clinic is up to standard captain

2 94 no the clinic is acceptable captain (hand-authored for this input)

3 78 yes the clinic should be in acceptable condition captain

4 16 yes the clinic downtown is currently acceptable captain

5 78 yes the clinic should agree in an acceptable condition captain

1 94 no there are no medical supplies downtown captain

2 172 no we don’t have medical supplies downtown captain

3 125 yes well captain i do not think downtown there are medical supplies

4 16 yes i do not think there are medical supplies downtown captain

Figure 4: All the utterances generated (uncorrected syntax) for two examples. Rank is determined by derivation

probability. Outputs marked as novel are different from any suggested output for any training example.

Number of successful outputs

F
re

q
u
en

cy
(%

)

0

10

20

30

0 1 2 3 4 5 6 7 8 9

Figure 5: Variety of outputs for each input.

tion required an effort of approximately six person

months. The developer who carried out the imple-

mentation initially had no familiarity with the Doc-

tor Perez domain, so part of this time was spent un-

derstanding Doctor Perez and his available seman-

tic representations. The bulk of the development

time was spent implementing the grammar induction

and training processes. Grammar induction included

implementing the probabilistic grammar model and

writing about 40 rules that are used to extract gram-

matical entries from the training examples. Of these

40 rules, only 3 are specific to Doctor Perez.3 The

remainder are broadly applicable to syntactic anal-

yses in Penn Treebank format, and thus we expect

they would transfer to applications of our approach

in other domains. Similarly, the training algorithms

are entirely domain neutral and could be expected to

transfer well to additional domains.

Specification of Doctor Perez’s training data took

3These 3 rules compensate for frequent errors in Charniak

parser output for the words captain, elder, and imam, which are

often used to signal the addressee of Doctor Perez’s utterances.

about 6 hours, or about 1.6 minutes per training ex-

ample. This time included hand correction of syn-

tactic analyses generated by the Charniak parser and

definition of semantic links between surface expres-

sions and frame key-value pairs. Since we found

that hand-correcting syntax does not improve out-

put quality, this 1.6 minutes/example figure over-

estimates the authoring time required by our ap-

proach. The remaining work lies in defining the se-

mantic links. For Doctor Perez, approximately half

of the semantic links were automatically assigned

with simple ad hoc scripts.4 The semantic linking

process might be further sped up through a stream-

lined authoring interface offering additional automa-

tion, or even using a machine learning approach to

suggest appropriate links.

Linguistic expertise required. Since we found

that hand-correcting syntax does not improve output

quality, a developer who wishes to exploit our ap-

proach may use the Charniak parser to supply the

syntactic model for the domain. Thus, while one

developer with linguistic expertise is required to im-

plement the approach, anybody on the application

team can contribute by hand authoring additional ut-

terances and defining semantic links. The benefit of

this authoring effort is the ability to generate high

quality output for many novel semantic inputs.

Cost/benefit. The grammar induced from the 198

training examples (with uncorrected syntax) con-

tains 426 lexical entries of the type depicted in Fig-

ure 2. These 426 lexical entries were produced auto-

matically from about 6 hours worth of authoring ef-

4Time to compose these scripts is included in the 1.6 min-

utes/example.

83

fort together with domain-neutral algorithms. This

translates to a rate of grammar expansion of less

than 1 minute per lexical entry, on average, for this

small application-specific grammar. This constitutes

a dramatic improvement over our previous experi-

ence hand-crafting grammars. It would be challeng-

ing for an expert to specify a lexical entry such as

those in Figure 2 in under one minute (and probably

impossible for someone lacking detailed linguistic

knowledge). In our experience, however, the bulk

of development lies in additional time spent con-

sidering and investigating possible interactions be-

tween lexical entries in generation. Our technique

helps with both problems: the grammar induction

streamlines the specification of lexical entries, and

the training removes the need for a developer to

manually trace through the various complex inter-

actions between lexical entries during generation.

5 Limitations

Currently, we do not support semantic links from

non-contiguous expressions, which means a desired

output like “we rely heavily on medical supplies”

would be difficult to annotate if rely...on corresponds

to a single semantic representation. This is not an in-

trinsic limitation to our general approach, but rather

a simplification in our initial implementation.

As discussed in Section 3.2, our grammar induc-

tion process adds syntactic features related to verb

inflection, finiteness, and grammatical role to the in-

ferred lexical entries. Such features improve the flu-

ency and accuracy of output derived with the gram-

mar. While we believe such features can always be

assigned using domain-independent rules, develop-

ing these rules requires linguistic expertise, and it

is likely that additional rules and features (not yet

implemented) would improve coverage of linguistic

phenomena such as control verbs, various kinds of

coordination, and relative clauses, inter alia.

A more entrenched limitation of our approach

is its assumption that the generator does not need

context as a separate input. This means, for ex-

ample, that our approach cannot generate referring

expressions (by selecting disambiguating semantic

properties); rather, all semantic properties must be

pre-selected and included in the generation request.

Generation of anaphoric expressions is also limited,

since contextual ambiguities are not considered.

6 Related Work

To our knowledge, this is the first implemented

generation technique that does all three of the fol-

lowing: directly interfaces to existing application

semantic representations, infers a phrase structure

grammar from examples, and does not require hand-

authored syntax as input. (Varges and Mellish,

2001) also aims to reduce the authoring burden of

domain-specific generation; however, they seem to

use a special purpose semantic annotation rather

than pre-existing application semantics, and their

task is defined in terms of the Penn Treebank, so

hand-authored syntax is used as input. (Wong and

Mooney, 2007) also interfaces to existing applica-

tion semantics, and does not require hand-authored

syntax as input. Their technique infers a syn-

chronous grammar in which the hierarchical linguis-

tic analysis is isomorphic to the hierarchy in the ap-

plication semantics, and differs from phrase struc-

ture. It would be interesting to compare their out-

put quality with ours; their automated alignment of

words to semantics might also provide a way to fur-

ther reduce the authoring burden of our approach.

7 Conclusion and Future Work

We have presented a new example-based approach

to specifying text generation for an existing appli-

cation. We have used a cost/benefit analysis to ar-

gue that our approach offers productive coverage

and high-quality output with less linguistic expertise

and lower development costs than building a hand-

crafted grammar. In future work, we will evaluate

our approach in additional application settings, and

study the performance of our approach as the size

and scope of the training set grows.

Acknowledgments

Thanks to our anonymous reviewers, Arno Hartholt,

Susan Robinson, Thomas Russ, Chung-chieh Shan,

and Matthew Stone. This work was sponsored by the

U.S. Army Research, Development, and Engineer-

ing Command (RDECOM), and the content does not

necessarily reflect the position or the policy of the

Government, and no official endorsement should be

inferred.

84

References

S. Busemann and H. Horacek. 1998. A flexible shallow

approach to text generation. In Proceedings of INLG,

pages 238–247.

Aoife Cahill and Josef van Genabith. 2006. Robust

PCFG-based generation using automatically acquired

LFG approximations. In ACL, pages 1033–1040.

C. B. Callaway. 2003. Evaluating coverage for large

symbolic NLG grammars. Proceedings of IJCAI.

E. Charniak. 2001. Immediate-head parsing for lan-

guage models. In ACL, pages 124–131, Morristown,

NJ, USA. Association for Computational Linguistics.

E. Charniak. 2005. ftp://ftp.cs.brown.edu/pub/nlparser/

parser05Aug16.tar.gz.

D. Chiang. 2000. Statistical parsing with an

automatically-extracted tree adjoining grammar. In

ACL ’00: Proceedings of the 38th Annual Meeting

on Association for Computational Linguistics, pages

456–463, Morristown, NJ, USA. Association for Com-

putational Linguistics.

D. Chiang. 2003. Statistical parsing with an automat-

ically extracted tree adjoining grammar. In R. Bod,

R. Scha, and K. Sima’an, editors, Data Oriented Pars-

ing, pages 299–316. CSLI Publications, Stanford.

M. Collins and T. Koo. 2005. Discriminative reranking

for natural language parsing. Computational Linguis-

tics, 31(1):25–70.

M. Collins. 1999. Head-Driven Statistical Models for

Natural Language Parsing. Ph.D. dissertation, Uni-

versity of Pennsylvania.

H. Daumé and D. Marcu. 2005. Learning as search

optimization: approximate large margin methods for

structured prediction. In ICML ’05: Proceedings of

the 22nd international conference on Machine learn-

ing, pages 169–176, New York, NY, USA. ACM.

David DeVault, David Traum, and Ron Artstein. 2008.

Making grammar-based generation easier to deploy in

dialogue systems. In Ninth SIGdial Workshop on Dis-

course and Dialogue (SIGdial).

M. Elhadad. 1991. FUF: the universal unifier user man-

ual version 5.0. Technical Report CUCS-038-91.

K. Krippendorff, 1980. Content Analysis: An Introduc-

tion to Its Methodology, chapter 12, pages 129–154.

Sage, Beverly Hills, CA.

I. Langkilde and K. Knight. 1998. Generation

that exploits corpus-based statistical knowledge. In

COLING-ACL, pages 704–710.

I. Langkilde-Geary. 2002. An empirical verification of

coverage and correctness for a general-purpose sen-

tence generator.

D. M. Magerman. 1995. Statistical decision-tree mod-

els for parsing. In Proceedings of the 33rd annual

meeting on Association for Computational Linguistics,

pages 276–283, Morristown, NJ, USA. Association for

Computational Linguistics.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.

1994. Building a large annotated corpus of en-

glish: The penn treebank. Computational Linguistics,

19(2):313–330.

A. Stent, R. Prasad, and M. Walker. 2004. Trainable sen-

tence planning for complex information presentation

in spoken dialog systems. In ACL.

Matthew Stone, Doug DeCarlo, Insuk Oh, Christian Ro-

driguez, Adrian Stere, Alyssa Lees, and Chris Bregler.

2004. Speaking with hands: creating animated con-

versational characters from recordings of human per-

formance. ACM Trans. Graph., 23(3):506–513.

M. Stone. 2002. Lexicalized grammar 101. In ACL

Workshop on Tools and Methodologies for Teaching

Natural Language Processing.

Matthew Stone. 2003. Specifying generation of referring

expressions by example. In AAAI Spring Symposium

on Natural Language Generation in Spoken and Writ-

ten Dialogue, pages 133–140.

W. Swartout, J. Gratch, R. W. Hill, E. Hovy, S. Marsella,

J. Rickel, and D. Traum. 2006. Toward virtual hu-

mans. AI Mag., 27(2):96–108.

D. R. Traum, W. Swartout, J. Gratch, and S. Marsella.

2008. A virtual human dialogue model for non-team

interaction. In L. Dybkjaer and W. Minker, editors,

Recent Trends in Discourse and Dialogue. Springer.

D. Traum. 2003. Semantics and pragmatics of questions

and answers for dialogue agents. In proceedings of the

International Workshop on Computational Semantics,

pages 380–394, January.

Sebastian Varges and Chris Mellish. 2001. Instance-

based natural language generation. In NAACL, pages

1–8.

M. Walker, O. Rambow, and M. Rogati. 2001. Spot:

A trainable sentence planner. In Proceedings of the

North American Meeting of the Association for Com-

putational Linguistics.

M. White, R. Rajkumar, and S. Martin. 2007. To-

wards broad coverage surface realization with CCG.

In Proc. of the Workshop on Using Corpora for NLG:

Language Generation and Machine Translation (UC-

NLG+MT).

Yuk Wah Wong and Raymond Mooney. 2007. Genera-

tion by inverting a semantic parser that uses statistical

machine translation. In Proceedings of NAACL-HLT,

pages 172–179.

H. Zhong and A. Stent. 2005. Building surface realiz-

ers automatically from corpora using general-purpose

tools. In Proc. Corpus Linguistics ’05 Workshop on

Using Corpora for Natural Language Generation.

85

