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Abstract eown, 2007). Testing the grammaticality of the out-
put with a language model is justified when work-

. . : ing with a language with rigid word order like En-
sentence compression which relies on a de- ] .
pendency tree representation and shortens sen- glish, and. all but one approach mentioned have
tences by removing subtrees. An automatic been applied to English data. However, compress-
evaluation shows that our method obtains re-  iNg sentences in languages with less rigid word or-
sult comparable or superior to the state of the ~ der needs a deeper analysis to test grammaticality.
art. We demonstrate that the choice of the  And even for languages with rigid word order the
parser affects the performance of the system.  trigram model ignores the structure of the sentence
We also apply the method to German and re- 44 therefore may significantly distort the meaning
port the results of an evaluation with humans. of the source sentence. Approaches going beyond
the word level either require a comprehensive lexi-
1 Introduction con (Jing, 2001), or manually devised rules (Gagnon

Within the field of text-to-text generation, the sen& Da Sylva, 2005; Clarke & Lapata, 2008) to de-

tence compression task can be defined as follom}s?rmme p_rluglable r(]:onstltut(re]ntrs]. A:jlexu;fr:;s Inot al-
given a sentenc#, consisting of wordsuv, ws...wy, ways available, whereas the hand-craited rules may

what is a subset of the words &, such that it not cover all cases and are too general to be univer-

is grammatical and preserves essential informatio?ﬁa”y applicable (e.g°Ps can be pruned
from S? There are many applications which would In this paper we present a novel unsupervised ap-
benefit from a robust compression system, such asoach to sentence compression which is motivated
subtitle generation, compression for mobile devicelsy the belief that the grammaticality of the output
with a limited screen size, or news digests. Givegan be better ensured by compressing trees. In par-
that to date most text and speech summarizatidicular, given a dependency tree, we want to prune
systems are extractive, sentence compression tecubtrees which are neither obligatory syntactic argu-
niques are a common way to deal with redundanayents, nor contribute important information to the
in their output. content of the sentence. A tree pruning approach
In recent years, a number of approaches to sedees not generate new dependencies and is unlikely
tence compression have been developed (Jing, 20@d; produce a compression with a totally different
Knight & Marcu, 2002; Gagnon & Da Sylva, 2005; meaning. Our approach is unsupervised and adapt-
Turner & Charniak, 2005; Clarke & Lapata, 2008,able to other languages, the main requirement be-
inter alia). Many explicitly rely on a language ing that there are a dependency parser and a corpus
model, usually a trigram model, to produce gramavailable for the languages. We test our approach
matical output (Knight & Marcu, 2002; Hori & Fu- on English and German data sets and obtain results
rui, 2004; Turner & Charniak, 2005; Galley & McK- comparable or superior to the state of the art.

We present a novel unsupervised method for
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2 Related Work 3 Dependency Based Compression

Many existing compression systems use a noisp_urmethod compresses sentences in that it removes
channel approach and rely on a language modgfPendency edges from the dependency tree of a
to test the grammaticality of the output (Knight &Sentence. The aim is to preserve dependencies
Marcu, 2002; Turner & Charniak, 2005; Galley & Which are either required for the output to be gram-

McKeown, 2007). Other ways to ensure grammatical or have an important word as the dependent.

maticality and to decide whether a constituent id "€ algorithm proceeds in three steps: tree transfor-
obligatory or may be pruned are to utilize a subMation (S_ectlo_n 3._1), tree compression (Section 3.2)
categorization lexicon (Jing, 2001), or to define &nd tree linearization (Section 3.3).

set of generally prunable constituents. Gagnon & 1 Tree Transformation

Da Sylva (2005) prune dependency trees by remov-

ing prepositional complements of the verb, subordiS€fore @ dependency tree is compressed, i.e. be-

nate clauses and noun appositions. Apparently, thi&"® some of the dependencies are removed, the tree
does not guarantee grammaticality in all cases. 1t modified. We will demonstrate the effect of the
may also eliminate important information from thetransformations with the sentence below:

tree. (1) He said that he lived in Paris and Berlin
Most approaches are supervised and require train-

ing data to learn which words or constituents car he first transformationRooT) inserts an explicit
be dropped from a sentence (Riezler et al., 200890tnode (Fig. 1(a)). The result of the second trans-
McDonald, 2006). However, it is difficult to obtain formation ¢ERB) is that every inflected verb in the
training data. Still, there are few unsupervised mettiree gets an edge originating from the rootnode (Fig.
ods. For example, Hori & Furui (2004) introducel(b)). All edges outgoing from the rootnode bear the
a scoring function which relies on such informa= label. Apart from that we remove auxiliary edges
tion sources as word significance score and languaggd memorize such grammatical properties as voice,
model. A compression of a given length whichtense or negation for verbs.
maximizes the scoring function is then found with The purpose of the remaining transformations is
dynamic programming. Clarke & Lapata (2008)to make relations between open-class words more
present another unsupervised approach. They fd¥plicit. We want to decide on pruning an edge
mulate the task as an optimization problem and sohigdging from two considerations: (i) how important
it with integer linear programming. Two scores confor the head this argument is; (i) how informative
tribute to their objective function — a trigram lan-the dependent word is. As an example, consider a
guage model score and a word significance scorgource sentence given in (2). Here, we want to de-
Additionally, the grammaticality of the output is en-cide whether one prepositional phrase (or both) can
sured by a handful of linguistic constraints, statind’e Pruned without making the resulting sentence un-
e.g. which arguments should be preserved. grammatical.

In this paper we suggest an alternative_to the pop(z) After some time, he moved to London.
ular language model basis for compression systems
— a method which compresses dependency trees dhdould not be very helpful to check whether an ar-
not strings of words. We will argue that our formu-gument attached with the labpp is obligatory for
lation has the following advantages: firstly, the apthe verbmove. Looking at a particular preposition
proach is unsupervised, the only requirement bein@fter vs. to) would be more enlightening. This
that there is a sufficiently large corpus and a depemotivates theeREP transformation which removes
dency parser available. Secondly, it requires neith@repositional nodes and places them as labels on the
a subcategorization lexicon nor hand-crafted rules edge from their head to the respective noun (Fig.
decide which arguments are obligatory. Thirdly, itL(c)). We also decompose a chain of conjoined ele-
finds a globally optimal compression by taking synments €oNJ) and attach each of them to the head of
tax and word importance into account. the first element in the chain with the label the first
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Figure 1: The dependency structureH# said that he lived in Paris and Berlafter the transformations

element attaches to its head with (Fig. 1(d)). Thiprobability of dependencies (B%)) and the impor-
way we can retain any of the conjoined elementtance of dependent words((#)) contribute:

in the compression and do not have to preserve the
whole sequence of them if we are interested in only
one. This last transformation is not applied to verbs.

F(X)=> b, P(h) - I(w) 2)

Intuitively, the conditional probabilities prevent us

We formulate the compression task as an optimizzgtom rle:moving oll)ligatorg/’ depeanenr::_iers] frorr]n the
tion problem which we solve using integer lineat €& FOr examplep(su jlwork) is higher than
programming. Given a transformed dependenc (with|work), and therefore the subject will be
tree (a graph if new edges have been added), we a%_eserved whereas the prepositional label and thus
cide which dependency edges to remove. For eaé e whole PP can be pr_u_ned. This way we do
directed dependency edge from héad wordw we not have to create an additional constraint for every

thus introduce a binary variabiél wherel stands obligatory argument (e.g. subject or direct object).
for the edge’s label: w Neither do we require a subcategorization lexicon to

look up which arguments are obligatory for a cer-
tain verb. Verb arguments are preserved because the
. {1 if the dependency is preservec{l) dependency edges, with which they are attached to

3.2 Tree Compression

Thw = 0 otherwise the head, get high scores. Table 1 presents the prob-
abilities of a number of labels given that the head
The goal is to find a subtree which gets the highes study. Table 2 presents the probabilities for their
score of the objective function (2) to which both theGerman counterparts.
" 4n our im Note that if we would not apply therReptrans-
formation we would not be able to distinguish be-

YIn our implementation we use Kolve (Http://
sour cef orge. net/ proj ects/ I psol ve).
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subj | dobj | in | at | after| with | to « is a function of the length of the source sentence

0.16| 0.13] 0.05] 0.04] 0.01| 0.01| 0.01 in open-class words. The function is not linear since

the degree of compression increases with the length
Table 1. Probabilities osubj, d(irect)obj, in, at, after, of the sentence. The compression rate of human-
with, togiven the verlstudy generated sentences is about 70% (Clarke & Lapata,
2008Y. To approximate this value, we set the pro-
portion of deleted words to be 20% for short sen-
tences (5-9 non-stop words), this value increases up
to 50% for long sentences (30+ words).

The constraints of the second type ensure the syn-
tactic validity of the output tree and explicitly state
which edges should be preserved. These constraints
tween different prepositions and could only calcucan be general as well as conditional. The former
late P(pp|studieren) which would not be very in- ensure that an edge is preserved if its source node
formative. The probabilities for English are loweris retained in the output. Conditional syntactic con-
than those for German because we calculate the cograints state that an edge has to be preserved if (and
ditional prObabiIitieS given word lemma. In EninSh,0n|y |f) a certain other edge is preserved_ We have
the part of speech information cannot be inducegnly one syntactic constraint which states that a sub-
from the lemma and thus the set of possible labelsrdinate conjunction (sc) should be preserved if and
of a node is on average larger thanin German.  only if the clause it belongs to functions as a sub-

There are many ways in which word importancegrdinate clause (sub) in the output. If it is taken as
I(w) can be defined. Here, we use the formula introhe main clause, the conjunction should be dropped.

duced by Clarke & Lapata (2008) which is a modifi4n terms of edges, this can be formulated as follows
cation of the significance score of Hori et al. (2003)(7);

subj | obja| in | an | nach| mit | zu
0.88] 0.74] 0.44] 0.42| 0.09 | 0.02| 0.01

Table 2: Probabilities ofubj, obja(ccusative), in, at, af-
ter, with, togiven the vertstudieren

l F

Fi wyw Thw

w; is the topic word (either noun or verhj; is the ~ Due to the constraint (4), the compressed subtree
frequency Ofwi in the documentﬂ is the frequency is alwayS rooted in the node added as a result of the
of w; in the corpus, anﬂ’A is the sum of frequencies first transformation. A CompreSSion of a sentence to

of all topic words in the corpusl. is the number of an embedded clause is not possible unless one pre-
clause nodes above and NV is the maximum level Serves the structure above the embedded clause. Of-

of embedding of the sentenaebelongs to. ten, however, main clauses are less important than an

The objective function is subject to constraints ofMbedded clause. For example, given the sentence
two kinds. The constraints of the first kind are stucHe said they have to be held in Beiritits the em-
tural and ensure that the preserved dependencies bedded clause which is informative and to which the
sult in a tree. (4) ensures that each word has of@urce sentence should be compressed. The purpose
head at most. (5) ensures connectivity in the tre®f the VERB modification is to amend exactly this
(6) restricts the size of the resulting treectavords.  Problem. Having an edge from the rootnode to ev-

ery inflected verb allows us to compress the source
vwe W,y ah, <1 (4) sentence to any clause.

ol 3.3 Tree Linearization

1 A very simple but reasonable linearization technique
Vw e W, Z fﬂlh,w T Zx'lw,u >0 (5 s to present the words of a compressed sentence in
hit w,l the order they are found in the source sentence. This

method has been applied before and this is how we

D The <a 6)

2Higher rates correspond to longer compressions.
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linearize the trees obtained for the English data. Ur(48 vs. 15 of RASP) which is not overly large (com-
fortunately, this method cannot be directly applied tpared with the 106 grammatical relations of the Link
German because of the constraints on word order farser). This is important for our system which
this language. One of the rules of German grammaelies on syntactic information when making prun-
states that in the main clause the inflected part of theg decisions. A comparison between the Stanford
verb occupies the second position, the first positioparser and two dependency parsers, MiniPar and
being occupied by exactly one constituent. Therd-ink Parser, showed a decent performance of the for-
fore, if the sentence initial position in a source senmer (de Marneffe et al., 2006). Itis also of interest to
tence is occupied by a constituent which got prunesee to what extent the choice of the parser influences
off as a result of compression, the verb becomdse results.

the first element of the sentence which results in an Apart from the corpora listed above, we use the
undesirable output. There are linearization methFipster corpus to calculate conditional probabilities
ods developed for German which find an optimabf syntactic labels given head lemmas as well as
word order for a sentence (Ringger et al., 2004yord significance scores. The significance score
Filippova & Strube, 2007). We use our recenis calculated from the total number of 128 mil-
method to linearize compressed trees. lion nouns and verbs. Conditional probabilities are
calculated from a much smaller portion of Tipster
(about 6 million tokens). The latter number is com-

We apply our method to sentences from two corpor%arable to the size of the data set we use to com-

in English and German. These are presented beloRYte the probabilities for German. There, we use

a corpus of about 4,000 articles from the German

English Compression Corpus: The English data Wikipedia to calculate conditional probabilities and
we use is a document-based compression cotignificance scores. The corpus is parsed with the
pus from the British National Corpus andhighly accurate CDG parser (Foth & Menzel, 2006)
American News Text Corpus which consists ofnd has the same dependency format @BarD/Z
82 news stori€s We parsed the corpus with (Versley, 2005).

RASP (Briscoe et al., 2006) and with the Stan- Although all corpora are annotated with depen-
ford PCFG parser (Klein & Manning, 2003). dency relations, there are considerable differences
The output of the former is a set of dependencpetween the annotation of the English and German
relations whereas the latter provides an optioHata sets. The phrase to dependency structure con-
for converting the output into dependency forversion done by the Stanford parser makes the se-
mat (de Marneffe et al., 2006) which we use. Mantic head of the constituent its syntactic head. For
example, in the sentendte is rightit is the adjec-

TuBa-D/Z: The German corpus we use is a coltive right which is the root of the tree. Unlike that,
lection of 1,000 newspaper articles (Telljohanrsentences from the German corpora always have a
et al., 2003j. Sentence boundaries, morpholverb as the root. To unify the formats, we write a set
ogy, dependency structure and anaphoric rel@f rules to make the verb the root of the tree in all
tions are manually annotated in this corpus. cases.

4 Corpora and Annotation

RASP has been used by Clarke & Lapata (2008] Evyaluation
whose state of the art results we compare with ours.
We use not only RASP but also the Stanford parséie evaluate the results automatically as well as with
for several reasons. Apart from being accurate, tHeuman subjects. To assess the performance of the
latter has an elaborated set of dependency relationethod on the English data, we calculate the F-

—— _ measure on grammatical relations. Following Rie-
The corpus is available frontt p://homepages.

i nf ed. ac. uk/ s0460084/ dat a. zler et al. (2003), we calculate average precision and
“The corpus is available fromhttp://wwmv. sfs. recall asthe amount of grammatical relations shared
uni - t uebi ngen. de/ en_t uebadz. sht i . between the output of our system and the gold stan-
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dard variant divided over the total number of rela- | grammar _ importance
tions in the output and in the human-generated com- LM+SiG+CONSTR 3.76 3.53
pression respectively. According to Clarke & Lapata DEP-BASED (DE) 3.62 3.21
(2006), this measure reliably correlates with human

judgements. The results of our evaluation as well as ~ Table 4: Average results for the German data
the state of the art results reported by Clarke & Lap-

ata (2008) (LM+3$c+CONSTR), whose systemuses g  Discussion

language model scoring (LM), word significance i i
score (36), and linguistic constraints (@ISTR), The results on the English data are comparable with

are presented in Table 3. The F-measure report@f SUPENor to the state of the art. These were ob-
by Clarke & Lapata (2008) is calculated with RAsP@Ined with a single linguistic constraint (7) and
which their system builds upon. For our system Wgwthout any elaborated resources which makes our
present the results obtained on the data parsed withStém adaptable to other languages. This suggests

RASP as well as with the Stanford parser (SP) IHﬁat tree compression is a better basis for sentence
both cases the F-measure is found with RASP in Op_ompression systems than language model-oriented

der to allow for a fair comparison between the thre/0rd deletion. _ _
systems. We recalculate the compression rate for the!" 0rder o explain why the choice of parser sig-
gold standard ignoring punctuation. On the Wholé"nflcantly influences the_ performance of the method,
corpus the compression rate turns out to be slightly€ calculate the precisioft defined as the number

higher than that reported by Clarke & Lapata (20089 dependencies shared by a human-generated com-
(70.3%). pression (dep) and the source sentence (dpli-

vided over the total number of dependencies found
in the compression:

\ F-measure compr.rate
LM+Si1G+CONSTR 40.5 72.0%

_ |dep. N deps|

P (8
DEP-BASED (RASP)|  40.7 49.6% |dep.|
DEP-BASED (SP) 49.3 69.3% The intuition is that if a parser does not reach high
GoLD - 72.1% precision on gold standard sentences, i.e. if it does

not assign similar dependency structures to a source
Table 3: Average results on the English corpus ~ sentence and its compression, then it is hopeless
to expect it to produce good compression with our

As there are no human-generated COmIOressioﬁgpendency-based method. However, the precision

i [
for German data, we evaluate the performance of e o> not have to be as high as 100% because of,

method in terms oframmaticalityandimportance e.g., changes within a chain of conjoined elements

by means of an experiment with native speakers. B IaE[Jpgsmontsr.] The precision of the tW.O parsers:[ Cgl.-
the experiment, humans are presented with a sour%%a ed over the compression corpus 1S presented in

sentence and its compression which they are ask Sb'e 5

to evaluate on two five-point scales. Higher grades \ RASP Stanford parser
are given to better sentences. Importance represents precision‘ 79.6% 84.3%

the amount of relevant information from the source

sentence retained in the compression. Since our Table 5: Precision of the parsers

method does not generate punctuation, the judges

are asked to ignore errors due to missing commashe precision of the Stanford parser is about 5%
Five participants took part in the experiment andhigher than that of RASP. In our opinion, this partly
each rated the total of 25 sentences originating fromxplains why the use of the Stanford parser increases
a randomly chosen newspaper article. Their ratinghe F-measure by 9 points. Another possible reason
as well as the ratings reported by Clarke & Lapatéor this improvement is that the Stanford parser iden-
(2008) on English corpus are presented in Table 4 tifies three times more dependency relations than
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