A Dependency-Driven Parser for German
Dependency and Constituency Representations

Johan Hall
Vixjo University
Sweden
johan.hall@vxu.se

Abstract

We present a dependency-driven parser that
parses both dependency structures and con-
stituent structures. Constituency representa-
tions are automatically transformed into de-
pendency representations with complex arc la-
bels, which makes it possible to recover the
constituent structure with both constituent la-
bels and grammatical functions. We report a
labeled attachment score close to 90% for de-
pendency versions of the TIGER and TiiBa-
D/Z treebanks. Moreover, the parser is able to
recover both constituent labels and grammat-
ical functions with an F-Score over 75% for
TiiBa-D/Z and over 65% for TIGER.

1 Introduction

Is it really that difficult to parse German? Kiibler et
al. (2006) point out three grammatical features that
could make parsing of German more difficult: finite
verb placement, flexible phrase ordering and discon-
tinuous constituents. Earlier studies by Dubey and
Keller (2003) and Dubey (2005) using the Negra
treebank (Skut et al., 1997) reports that lexicaliza-
tion of PCFGs decrease the parsing accuracy when
parsing Negra’s flat constituent structures. However,
Kiibler et al. (2006) present a comparative study
that suggests that it is not harder to parse German
than for example English. By contrast, Rehbein and
van Genabith (2007) study different parser evalua-
tion metrics by simulating parser errors on two Ger-
man treebanks (with different treebank annotation
schemes) and they claim that the question whether
German is harder to parse than English is still unde-
cided.

47

Joakim Nivre
Vixjo University and
Uppsala University
Sweden
joakim.nivre@vxu.se

This paper does not try to answer the question
above, but presents a new way of parsing constituent
structures that can output the whole structure with
all grammatical functions. The shared task on pars-
ing German was to parse both the constituency ver-
sion and the dependency version of the two Ger-
man treebanks: TIGER (Brants et al., 2002) and
TiiBa-D/Z (Telljohann et al., 2005). We present a
dependency-driven parser that parses both depen-
dency structures and constituent structures using an
extended version of MaltParser 1.0.! The focus of
this paper is how MaltParser parses the constituent
structures with a dependency-based algorithm.

This paper is structured as follows. Section 2
briefly describes the MaltParser system, while sec-
tion 3 continues with presenting the dependency
parsing. Section 4 explains how a transition-based
dependency-driven parser can be turned into a con-
stituency parser. Section 5 presents the experimen-
tal evaluation and discusses the results. Finally sec-
tion 6 concludes.

2 MaltParser

MaltParser is a transition-based parsing system
which was one of the top performing systems on
multilingual dependency parsing in the CoNLL
2006 shared task (Buchholz and Marsi, 2006; Nivre
et al., 2006) and the CoNLL shared task 2007 (Nivre
et al., 2007; Hall et al., 2007). The basic idea of
MaltParser is to derive dependency graphs using a
greedy parsing algorithm that approximates a glob-

"MaltParser is distributed with an open-source license
and can be downloaded free of charge from following page:
http://www.vxu.se/msi/users/jha/maltparser/

Proceedings of the ACL-08: HLT Workshop on Parsing German (PaGe-08), pages 47-54,
Columbus, Ohio, USA, June 2008. (©)2008 Association for Computational Linguistics



ally optimal solution by making a sequence of lo-
cally optimal choices. The system is equipped with
several parsing algorithms, but we have chosen to
only optimize Nivre’s parsing algorithm for both
the dependency track and the constituency track.
Nivre’s algorithm is a deterministic algorithm for
building labeled projective dependency structures in
linear time (Nivre, 2006). There are two essential
parameters that can be varied for this algorithm. The
first is the arc order and we selected the arc-eager or-
der that attaches the right dependents to their head as
soon as possible. The second is the stack initializa-
tion and we chose to use an empty stack initializa-
tion that attaches root dependents with a default root
label after completing the left-to-right pass over the
input.

The algorithm uses two data structures: a stack
to store partially processed tokens and a queue of
remaining input tokens. The arc-eager transition-
system has four parser actions:

1. LEFT-ARC(r): Adds an arc labeled r from the
next input token to the top token of the stack,
the top token is popped from the stack because
it must be complete with respect to left and
right dependents at this point.

2. RIGHT-ARC(r): Adds an arc labeled r from
the top token of the stack to the next input token
and pushes the next input token onto the stack
(because it may have dependents further to the
right).

3. REDUCE: Pops the top token of the stack. This
transition can be performed only if the top to-
ken has been assigned a head and is needed for
popping a node that was pushed in a RIGHT-
ARC(r) transition and which has since found
all its right dependents.

4. SHIFT: Pushes the next input token onto the
stack. This is correct when the next input token
has its head to the right or should be attached
to the root.

MaltParser uses history-based feature models for
predicting the next parser action at nondeterminis-
tic choice points. Previously, MaltParser combined
the prediction of the transition with the prediction of
the arc label r into one complex prediction with one

48

feature model. The experiments presented in this pa-
per use another prediction strategy, which divide the
prediction of the parser action into several predic-
tions. First the transition is predicted; if the transi-
tion is SHIFT or REDUCE the nondeterminism is re-
solved, but if the predicted transition is RIGHT-ARC
or LEFT-ARC the parser continues to predict the arc
label r. This prediction strategy enables the system
to have three different feature models: one for pre-
dicting the transition and two for predicting the arc
label » (RIGHT-ARC and LEFT-ARC). We will see
in section 4 that this change makes it more feasi-
ble to encode the inverse mapping into complex arc
labels for an arbitrary constituent structure without
losing any information.

All symbolic features were converted to nu-
merical features and we use the quadratic kernel
K(zi,7;) = (yalz; 4+ r)? of the LIBSVM pack-
age (Chang and Lin, 2001) for mapping histories to
parser actions and arc labels. All results are based
on the following settings of LIBSVM: v = (0.2 and
r = 0 for the kernel parameters, C' = 0.5 for the
penalty parameter, and € = 1.0 for the termination
criterion. We also split the training instances into
smaller sets according to the fine-grained part-of-
speech of the next input token to train separate one-
versus-one multi-class LIBSVM-classifiers.

3 Dependency Parsing

Parsing sentences with dependency structures like
the one in Figure 1 is straightforward using Malt-
Parser. During training, the parser reconstructs the
correct transition sequence needed to derive the gold
standard dependency graph of a sentence. This in-
volves choosing a label r for each arc, which in
a pure dependency structure is an atomic symbol.
For example, in Figure 1, the arc from hat to Beck-
meyer is labeled SUBJ. This is handled by train-
ing a separate labeling model for RIGHT-ARC and
LEFT-ARC. During parsing, the sentence is pro-
cessed in the same way as during training except that
the parser requests the next transition from the tran-
sition classifier. If the predicted transition is an arc
transition (RIGHT-ARC or LEFT-ARC), it then asks
the corresponding classifier for the arc label r.

One complication when parsing the dependency
version of the two German treebanks is that they



PP

ROOT ALK
P4 ALY
DET SUBJ DET OB -PUNCT-
FOr diese Behauptung hat  Beckmeyer  hisher  keinen  MNachweis — geliefert
1} 1 2 3 4 & £ T a a o
=ROOT:  APPR  PDAT NN VAFIN  NE A0V FIAT Nt VIFP k3
PRER  ART N v N A0V ART N ¥ 3.

Figure 1: The sentence “For this statement has Beckmeyer until now not presented any evidence.” is taken from

dependency version of TiiBa-D/Z treebank.

contain non-projective structures, such as the depen-
dency graph illustrated in Figure 1. Nivre’s pars-
ing algorithm only produces projective dependency
structures, and therefore we used pseudo-projective
parsing for recovering non-projective structures.
The training data are projectivized and information
about these transformations is encoded into the arc
labels to enable deprojectivizition of the parser out-
put (Nivre and Nilsson, 2005).

4 Constituency Parsing

This section explains how a transition-based depen-
dency parser can be used for parsing constituent
structures. The basic idea is to use the common
practice of transforming a constituent structure into
a dependency graph and encode the inverse mapping
with complex arc labels. Note that the goal is not to
create the best dependency representation of a con-
stituent structure. Instead the main objective is to
find a general method to transform constituency to
dependency so that is easy to do the inverse trans-
formation without losing any information. More-
over, another goal is to transform the constituent
structures so that it is feasible for a transition-based
dependency parser to induce a parser model based
on the resulting dependency graphs and during pars-
ing use this parser model to derive constituent struc-
tures with the highest accuracy possible. Hence, the
transformation described below is not designed with
the purpose of deriving a linguistically sound depen-
dency graph from a constituent structure.

Our strategy for turning a dependency parser into
a constituency parser can be summarized with the
following steps:

1. Identify the lexical head of every constituent in

49

the constituent structure.

2. Identify the head of every token in the depen-
dency structure.

3. Build a labeled dependency graph that encodes
the inverse mapping in the arc labels.

4. Induce a parser model based on the labeled de-
pendency graphs.

5. Use the induced parser model to parse new sen-
tences into dependency graphs.

6. Derive the constituent structure by performing
the inverse mapping encoded in the dependency
graph produced in step 5.

4.1 Identify the Heads

The first steps are basically the steps that are used
to convert a constituent structure to a dependency
structure. One way of doing this is to traverse the
constituent structure from the root node and iden-
tify the head-child and the lexical head of all con-
stituent nodes in a recursive depth-first search. Usu-
ally this process is governed by pre-defined head-
finding rules that define the direction of the search
for each distinct constituent label. Moreover, it
is quite common that the head-finding rules define
some kind of priority lists over which part of speech
or grammatical function is the more preferable head-
child.

For our experiment on German we have kept this
search of the head-child and lexical head very sim-
ple. For the TIGER treebank we perform a left-
to-right search to find the leftmost lexical child. If
no lexical child can be found, the head-child of the



constituent will be the leftmost constituent child and
the lexical head will be the lexical child of the head
child recursively. For the TiiBa-D/Z treebank we got
higher accuracy if we varied the direction of search
according to the label of the target constituent.> We
also tried more complex and linguistically motivated
head rules, but unfortunately no improvement in ac-
curacy could be found. We want to stress that the
use of more complex head rules was done late in the
parser optimization process and it would not be a
surprise if more careful experiments resulted in the
opposite conclusion.

Given that all constituents have been assigned a
lexical head it is a straightforward process to iden-
tify the head and the dependents of all input tokens.
The algorithm investigates, for each input token, the
containing constituent’s lexical head, and if the to-
ken is not the lexical head of the constituent it takes
the lexical head as its head in the dependency graph;
otherwise the head will be assigned the lexical head
of a higher constituent in the structure. The root of
the dependency graph will be the lexical head of the
root of the constituent structure.

4.2 Build a Labeled Dependency Graph

The next step builds a labeled dependency represen-
tation that encodes the inverse mapping in the arc
labels of the dependency graph. Each arc label is a
quadruple consisting of four sublabels (dependency
relation, head relations, constituent labels, attach-
ment). The meaning of each sublabel is following:

o The dependency relation is the grammatical
function of the highest constituent of which the
dependent is the lexical head.

e The head relations encode the path of function
labels from the dependent to the highest con-
stituent of which is the lexical head (with path
elements separated by |).

o The constituent labels encode the path of con-
stituent labels from the dependent to the highest
constituent of which is the lexical head (with
path elements separated by |).

21t was beneficial to make a right-to-left search for the fol-
lowing labels: ADJX, ADVX, DM, DP, NX, PX

50

e The attachment is a non-negative integer ¢ that
encodes the attachment level of the highest con-
stituent of which it is the lexical head.

4.3 Encoding Example

Figure 2 illustrates the procedure of encoding the
constituency representation as a dependency graph
with complex arc labels for a German sentence.
The constituent structure is shown above the sen-
tence and below we can see the resulting depen-
dency graph after the transformation. We want to
stress that the resulting dependency graph is not lin-
guistically sound, and the main purpose is to demon-
strate how a constituent structure can be encoded in
a dependency graph that have all information need
for the inverse transformation.

For example, the constituent MF has no lexical
child and therefore the head-child is the leftmost
constituent NX. The lexical head of MF is the token
Beckmeyer because it is the lexical head of NX. For
the same reason the lexical head of the constituent
SIMPX is the token Fiir and this token will be the
head of the token Beckmeyer, because SIMPX dom-
inates MF. In the dependency graph this is illustrated
with an arc from the head Fiir to its dependent Beck-
meyer.

The arc Fiir to Beckmeyer is labeled with a com-
plex label (??, HD|ON, NX|MEF, 2), which consists
of four sublabels. The first sublabel is the grammat-
ical function above MF and because this is missing
a dummy label ?? is used instead. The sublabel
HD|ON encodes a sequence of head relations from
the lexical head Beckmeyer to MF. The constituent
labels are encoded in the same way in the third sub-
label NX|MF. Finally, the fourth sublabel indicates
the attachment level of the constituent MF. In this
case, MF should be attached to the constituent two
levels up in the structure with respect to the head
Fiir3

The two arcs diese to Behauptung and keinen to
Nachweis both have the complex arc label (HD, *, *,
0), because the tokens Behauptung and Nachweis are
attached to a constituent without being a lexical head
of any dominating constituent. Consequently, there
are no sequences of head relations and constituent

31f the fourth sublabel had an attachment level of 1, then the
constituent MF would be attached to the constituent VF instead
of the constituent SIMPX.



VROOT

O
Nz

ﬁrﬁﬁ

sl

g For diese  Behauptung hat Beckmeyer
? APPR  PDAT MM VAFIN ME
1] 1 ) 3 4 5

L]

[HD, 7%, N 0) (HE, 0, 0)
(77, HOHD, WXFINLK, 2)

-

w B
T SR>
[HO ]

hisher  keinen Machweis geliefert
ADY FIAT MH VYRR S
g T ] a 0

HD, ADWK, 1) (HD,*, =, 0)

(O&, 77, MK, 1)

(77, HOON, MXMF, 2)

77, FDI0, ARG, 27

77, TTOBMODITT, PRIVFISIMPE, O)

CWROOT, =, 0)

Figure 2: The sentence “For this statement has Beckmeyer until now not presented any evidence.” is taken from
TiiBa-D/Z treebank and show the encoding of a constituent structure as a dependency graph.

labels to encode, and these are therefore marked *.
The encoding of the virtual root VROOT is treated
in a special way and the label VROOT is regarded as
a dependency relation instead of a constituent label.

If we compare the dependency graphs in Figure 1
and Figure 2, we can see large differences. The more
linguistically motivated dependency graph (LDG) in
Figure 1 has a completely difference structure and
different arc labels compared to the automatically
generated dependency graph (ADG) in Figure 2.
There are several reasons, some of which are listed
here:

e Different conversions strategies: LDG is based
on a conversion that sometimes leads to non-
projective structures for non-local dependen-
cies. For example, in Figure 2, the extracted
PP Fiir diese Behauptung has the grammati-
cal function OAMOD, which indicates that it
is a modifier (MOD) of a direct object (OA)
elsewhere in the structure (in this case keinen
Nachweis). In LDG, this is converted to a non-
projective dependency from Nachweis to Fiir
(with the label PP). No such transformtion is

51

attempted in ADC, which simply attaches Fiir
to the lexical head of the containing constituent.

Different head-finding rules: ADG are derived
without almost no rules at all. Most likely, the
conversion of LDG makes use of several lin-
guistically sound head-finding rules. A striking
difference is the root of the dependency graph,
where LDG has its root at the linguistically mo-
tivated token hat. Whereas ADG has its root at
the end of the sentence, because the leftmost
lexical child of the virtual root VROOT is the
punctuation.

Different arc labels: ADG encodes the con-
stituent structure in the complex arc labels to
be able to recover the constituent structure,
whereas LDG have linguistically motivated de-
pendency relations that are not present in the
constituent structure.

We believe that our simplistic approach can be fur-
ther improved by using ideas from the conversion
process of LDG.



4.4 Inverse Mapping

The last step of our presented strategy is to make the
inverse transformation from a dependency graph to
a constituent structure. This is done by a bottom-
up and top-down process of the dependency graph.
First we iterate over all tokens in the dependency
graph and restore the sequence of constituent nodes
with constituent labels and grammatical functions
for each individual token using the information of
the sublabels head relations and constituent labels.
After this bottom-up process we have the lineage of
constituents for each token where the token is the
lexical head. The top-down process then traverse
the dependency graph recursively from the root with
pre-order depth-first search. For each token, the
highest constituent of the lineage of the token is at-
tached to its head lineage at an attachment level ac-
cording to the sublabel attachment. Finally, the edge
between the dominating constituent and the highest
constituent of the lineage is labeled with a grammat-
ical function according to the sublabel dependency
relation.

4.5 Parsing

For the constituency versions of both TIGER and
TiiBa-D/Z we can recover the constituent structure
without any loss of information, if we transform
from constituency to dependency and back again to
constituency. During parsing we predict the sub-
labels separately with separate feature models for
RIGHT-ARC and LEFT-ARC. Moreover, the parsed
constituent structure can contain discontinuous con-
stituency because of wrong attachment levels of con-
stituents. To overcome this problem, the structure
is post-processed and the discontinuous constituents
are forced down in the structure so that the parser
output can be represented in a nested bracketing for-
mat.

S Experiments

The shared task on parsing German consisted of
parsing either the dependency version or the con-
stituency version of two German treebanks, al-
though we chose to parse both versions. This section
first presents the data sets used. We continue with a
brief overview of how we optimized the four differ-
ent parser models. Finally, the results are discussed.

52

5.1 Data Sets

The prepared training and development data dis-
tributed by the organizers were based on the German
TIGER (Brants et al., 2002) and TiiBa-D/Z (Telljo-
hann et al., 2005) treebanks, one dependency and
one constituency version for each treebank. Both
treebanks contain German newspaper text and the
prepared data sets were of the same size. The devel-
opment set contained 2611 sentences and the train-
ing set contained 20894 sentences. The dependency
and constituency versions contained the same set of
sentences.

The dependency data were formated according
to the CoNLL dependency data format.* The
LEMMA, FEATS, PHEAD and PDEPREL columns
of the CoNLL format were not used at all.

The constituency data have been converted into a
bracketing format similar to the Penn Treebank for-
mat. All trees are dominated by a VROOT node
and all constituents are continuous. The test data
consisted of sentences with gold-standard part-of-
speech tags and also the gold-standard grammatical
functions attached to the part-of-speech tags. Unfor-
tunately, we were not aware of that the grammatical
functions attached to the part-of-speech tags should
be regarded as input to the parser and therefore our
presented results are based on not using the gram-
matical functions attached to the part-of-speech tags
as input to the parser.

We divided the development data into two sets,
one set used for parser optimization (80%) and the
other 20% we saved for final preparation before the
release of the test data. For the final test run we
trained parser models on all the data, both the train-
ing data and the development data.

5.2 Parser optimization

We ran several experiments to optimize the four dif-
ferent parser models. The optimization of the de-
pendency versions was conducted in a way simi-
lar to the parser optimization of MaltParser in the
CoNLL shared tasks (Nivre et al., 2006; Hall et al.,
2007). A new parameter for the extended version

“More information about the CONLL dependency data for-
mat can be found at: http://nextens.uvt.nl/ conll/#dataformat.
Yannick Versley has done work of converting both treebanks to
a dependency annotation that is similar to the Hamburg depen-
dency format.



of MaltParser 1.0 is the prediction strategy, where
we could choose between combining the prediction
of the transition with the prediction of the arc label
into one complex prediction or dividing the predic-
tion of the parser action into two predictions (one
model for predicting the transition and two models
for predicting the arc label depending on the out-
come of the transition-model). It was beneficial to
use the divided predication strategy for all four data
sets. In the next step we performed a feature opti-
mization with both forward and backward selection,
starting from a model extrapolated from many pre-
vious experiments on different languages. Because
we chose to use the divided predication strategy this
step was more complicated compared to using the
combined strategy, because we needed to optimize
three feature models (one transition-model and two
arc-label models, one for RIGHT-ARC and one for
LEFT-ARC).

The optimization of the constituency versions was
even more complex because each parser model con-
tained nine feature models (one transition-model,
two models for each sublabel). Another problem
for the parser optimization was the fact that we tried
out new ideas and for example changed the encod-
ing a couple of times. Due to the time constraints
of the shared task it was not possible to start parser
optimization all over again for every change. We
also performed some late experiments with different
head-finding rules to make the intermediate depen-
dency graphs more linguistically sound, but unfor-
tunately these experiments did not improve the pars-
ing accuracy. We want to emphasize that the time
for developing the extended version of MaltParser
to handle constituency was severely limited, espe-
cially the implementation of head-finding rules, so
it is very likely that head-finding rules can improve
parsing accuracy after more careful testing and ex-
periments.

5.3 Results and Discussion

The results based on the prepared test data for the de-
pendency and constituency tracks are shown in table
1. The label attachment score (LAS) was used by the
organizer for evaluating the dependency versions,
that is, the proportion of tokens that are assigned the
correct head and the correct arc label (punctuation
included). We can see that the dependency results

53

Dependency| Constituency
Treebank LAS| LP| LR| LF
TIGER 90.80|67.06|63.40|65.18
TiiBa-D/Z 88.64|76.44|74.79|75.60

Table 1: The results for the extended version of Malt-
Parser 1.0 in the shared task on parsing German depen-
dency and constituency representations.

are close to 90% for both the treebanks, 90.80 for
TIGER and 88.64 for Tiiba-D/Z, which were the un-
challenged best scores in the shared task. The high-
est score on parsing German in the CoNLL-X shared
task was obtained by the system of McDonald et al.
(2006) with a LAS of 87.34 based on the TIGER
treebank, but we want to stress that these results
are not comparable due to different data sets (and
a different policy regarding the inclusion of punctu-
ation).

The constituency versions were evaluated accord-
ing to the labeled recall (LR), labeled precision
(LP) and labeled F-score (LF). Labeled in this con-
text means that both the constituent label and the
grammatical function should agree with the gold-
standard, but grammatical functions labeling the
edge between a constituent and a token were not in-
cluded in the evaluation. The labeled F-scores are
75.60 for Tiiba-D/Z and 65.18 for TIGER and these
results are the second best results in the shared task
out of three systems. We want to emphasize that the
results may not be strictly comparable because of
different use of the grammatical functions attached
to the parts of speech in the bracketing format. We
did not use these grammatical functions as input,
instead these were assigned by the parser. Our re-
sults are competitive if we compare with Kiibler et
al. (2006), who report 51.41 labeled F-score on the
Negra treebank and 75.33 on the TiiBa-D/Z treebank
using the unlexicalized, markovized PCFG version
of the Stanford parser.

We believe that our results for the constituency
representations can be improved upon by investi-
gating different methods for encoding the inverse
mapping in the complex arc labels and performing
a more careful evaluation of head-finding rules to
derive a more linguistically sound dependency rep-
resentation. Another interesting line of future work
is to try to parse discontinuous constituents by using



a non-projective parsing algorithm like the Coving-
ton algorithm (Covington, 2001) or using pseudo-
projective parsing for discontinuous constituency
parsing (Nivre and Nilsson, 2005).

6 Conclusion

We have shown that a transition-based dependency-
driven parser can be used for parsing German with
both dependency and constituent representations.
We can report state-of-the-art results for parsing the
dependency versions of two German treebanks, and
we have demonstrated, with promising results, how
a dependency parser can parse full constituent struc-
tures by encoding the inverse mapping in complex
arc labels of the dependency graph. We believe that
this method can be improved by using, for example,
head-finding rules.

Acknowledgments

We want to thank the treebank providers for making
the data available for the shared task and the orga-
nizers for their efforts in organizing it. Thanks also
to two reviewers for useful comments.

References

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER Tree-
bank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories Sozopol, pages 1-18.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X Shared Task on Multilingual Dependency Parsing.
In Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X), pages
149-164.

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM:
A Library for Support Vector Machines.

Michael A. Covington. 2001. A Fundamental Algorithm
for Dependency Parsing. In Proceedings of the 39th
Annual ACM Southeast Conference, pages 95—-102.

Amit Dubey and Frank Keller. 2003. Probabilistic Pars-
ing for German using Sister-Head Dependencies. In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 96—
103.

Amit Dubey. 2005. What to do when Lexicaliza-
tion fails: Parsing German with Suffix Analysis and
Smoothing. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 314-321.

54

Johan Hall, Jens Nilsson, Joakim Nivre, Giilsen Eryigit,
Bedta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single Malt or Blended? A Study in Mul-
tilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 933-939.

Sandra Kiibler, Erhard W. Hinrichs, and Wolfgang Maier.
2006. Is it Really that Difficult to Parse German.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2006), pages 111-119.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006.  Multilingual Dependency Analysis with a
Two-Stage Discriminative Parser. In Proceedings of
the Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 216-220.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-Projective
Dependency Parsing. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 99-106.

Joakim Nivre, Johan Hall, Jens Nilsson, Giilsen Eryigit,
and Svetoslav Marinov. 2006. Labeled Pseudo-
Projective Dependency Parsing with Support Vector
Machines. In Proceedings of the Tenth Conference on
Computational Natural Language Learning (CoNLL-
X), pages 221-225.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 Shared Task on Dependency
Parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 915-932.

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer.

Ines Rehbein and Josef van Genabith. 2007. Treebank
Annotation Schemes and Parser Evaluation for Ger-
man. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning (
EMNLP-CoNLL 2007), pages 630-639.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An Annotation Scheme for
Free Word Order Languages. In Proceedings of the
Fifth Conference on Applied Natural Language Pro-
cessing (ANLP), pages 314-321.

Heike Telljohann, Erhard W. Hinrichs, Sandra Kiibler,
and Heike Zinsmeister. 2005. Stylebook for
the Tiibingen Treebank of Written German (TiiBa-
D/Z). Seminar fiir Sprachwissenschaft, Universitit
Tiibingen, Germany.



