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Abstract

Previous work on German parsing has pro-
vided confusing and conflicting results con-
cerning the difficulty of the task and whether
techniques that are useful for English, such
as lexicalization, are effective for German.
This paper aims to provide some understand-
ing and solid baseline numbers for the task.
We examine the performance of three tech-
niques on three treebanks (Negra, Tiger, and
TüBa-D/Z): (i) Markovization, (ii) lexicaliza-
tion, and (iii) state splitting. We additionally
explore parsing with the inclusion of gram-
matical function information. Explicit gram-
matical functions are important to German
language understanding, but they are numer-
ous, and naı̈vely incorporating them into a
parser which assumes a small phrasal category
inventory causes large performance reductions
due to increasing sparsity.

1 Introduction

Recent papers provide mixed evidence as to whether
techniques that increase statistical parsing perfor-
mance for English also improve German parsing
performance (Dubey and Keller, 2003; Kübler et al.,
2006). We provide a systematic exploration of this
topic to shed light on what techniques might bene-
fit German parsing and show general trends in the
relative performance increases for each technique.
While these results vary across treebanks, due to
differences in annotation schemes as discussed by
Kübler (2005), we also find similarities and provide
explanations for the trend differences based on the
annotation schemes.

We address three parsing techniques:
(i) Markovization, (ii) lexicalization, and (iii) state
splitting (i.e., subcategorization). These techniques
are not independent, and we thus examine how
lexicalization and Markovization interact, since
lexicalization for German has been the most
contentious area in the literature. Many of these
techniques have been investigated in other work
(Schiehlen, 2004; Dubey, 2004; Dubey, 2005),
but, we hope that by consolidating, replicating,
improving, and clarifying previous results we can
contribute to the re-evaluation of German proba-
bilistic parsing after a somewhat confusing start to
initial literature in this area.

One feature of German that differs markedly from
English is substantial free word order. This requires
the marking of grammatical functions on phrases to
indicate their syntactic function in sentences (sub-
ject, object, etc.), whereas for English these func-
tions can be derived from configurations (Chomsky,
1965; de Marneffe et al., 2006). While some simi-
lar functions are present in English treebanks, they
are used more frequently in German treebanks and
many more unique functions and category-function
pairings exist. Because of the relatively free word
ordering in German, the usefulness of parses is sub-
stantially increased by generating them with this in-
formation. We demonstrate the difficulties intro-
duced by naı̈vely concatenating these functions to
categories and how this treatment interacts with the
other parsing techniques. There are several avenues
for improving this situation in future work. The ver-
sions of the treebanks we use here do not include
case information in part-of-speech tags and we do
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Treebank Train Dev ≤ 40 Test ≤ 40
Tiger 20894 2611 2535 2611 2525
TüBa-D/Z 20894 2611 2611 2611 2611
Negra v2 18602 1000 975 1000 968

Table 1: Size in sentences of treebanks used in this paper.
“Tiger” and “TüBa-D/Z” refer to the corpora prepared for
the ACL-08 workshop shared task; the full Tiger corpus
is much larger. Our Negra results are on the test set.

not use any morphological analyzer; this should be
rectified in future work. A new parsing model could
be written to treat separate grammatical functions
for nodes as first class objects, rather than just con-
catenating phrasal categories and functions. Finally,
assignment of grammatical functions could be left
to a separate post-processing phase, which could ex-
ploit not only case information inside noun phrases
but joint information across the subcategorization
frames of predicates.

2 Methodology

We use the Stanford Parser (Klein and Manning,
2003b) for all experiments. An advantage of this
parser for baseline experiments is that it provides
clean, simple implementations of component mod-
els, with many configuration options. We show re-
sults in most instances for evaluations both with and
without grammatical functions and with and without
gold tags. When training and parsing with the inclu-
sion of grammatical functions, we treat each pair-
ing of basic category and grammatical function as
one new category. Rules are learned for each such
category with a separate orthographic form, with
no attempt to learn general rules for nodes with the
same basic category but different functions. Clearly,
more sophisticated methods of handling grammat-
ical functions exist, but our focus is on providing
baseline results that are easily replicable by others.

We focus primarily on the TüBa-D/Z and Tiger
corpora, training on the training sets for the ACL
2008 Workshop on Parsing German shared task and
providing ablation results based on development set
performance. Additionally, we show a limited num-
ber of results on the Negra corpus, using the standard
training/development/test splits, defined in (Dubey
and Keller, 2003). The sizes of these data sets are
shown in table 1.

3 Markovization

Previous work has shown that adding vertical
Markovization ((grand-)parent annotation) and us-
ing horizontal Markovization can greatly improve
English parsing performance (Klein and Manning,
2003a). Several papers have already reported par-
tially corresponding results on German: Schiehlen
(2004) and Dubey (2004) reported gains of several
percent for unlexicalized parsing on Negra; Kübler
et al. (2006) agreed with these results for Negra, but
suggests that they do not hold for TüBa-D/Z. We ex-
tend these results by examining a variety of com-
binations of Markovization parameters for all three
corpora (TüBa-D/Z, Tiger, and Negra) in table 2. No
results presented here do include grammatical func-
tions; we present results on the interaction between
these functions and Markovization in section 4.

For TüBa-D/Z, we see that adding vertical
Markovization provides a substantial performance
gain of about 2% (vertical Markovization = 2) for
all levels of horizontal Markovization; increasing
vertical Markovization improves performance only
slightly further. Decreasing horizontal Markoviza-
tion from the default of infinity for a standard
PCFG also provides marginal gains, and decreases
the number of rules learned by the parser, cre-
ating a more compact grammar. The results of
Markovization on the Tiger and Negra corpora il-
lustrate the problems of a large grammar. While a
modest improvement is found by using parent anno-
tation (vertical Markovization = 2) when horizontal
Markovization is small, increasing either horizontal
or vertical Markovization past this point decreases
performance due to sparsity. Thus, while the gen-
eral results concerning Markovization from English
hold, the size of performance increase is affected ap-
preciably by the annotation strategy.

In table 3, we show a subset of the results of var-
ious Markovization parameters when gold part-of-
speech tags are used, focusing on models that per-
formed well without gold tags and that produce rel-
atively compact grammars. Gold tags provide 2–3%
absolute improvement in F1 over tagging while pars-
ing; slightly greater improvements are seen when the
PCFG model is used individually (3–4% absolute
improvement), and absolute improvement does not
vary greatly between treebanks. These results are
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TüBa-D/Z Tiger Negra
Horiz. Vertical Markov Order Vertical Markov Order Vertical Markov Order
Order 1 2 3 1 2 3 1 2 3
1 86.50 88.60 88.71 76.69 77.40 76.46 76.63 77.20 75.91

(+2.76) (+1.21) (+0.89) (+3.54) (+3.57) (+3.27) (+2.39) (+2.06) (+2.08)
2 86.55 88.61 88.84 75.91 75.30 74.20 76.39 75.39 73.77

(+2.63) (+1.22) (+0.90) (+3.22) (+3.09) (+3.10) (+3.40) (+2.20) (+2.16)
3 86.47 88.56 88.74 75.27 74.08 72.88 75.30 74.22 72.53

(+2.63) (+1.18) (+0.90) (+3.36) (+3.41) (+2.85) (+3.74) (+2.12) (+2.60)
∞ 86.04 88.41 88.67 74.44 73.26 71.96 74.48 73.50 71.84

(+2.17) (+1.07) (+0.91) (+3.10) (+3.02) (+2.51) (+3.31) (+1.97) (+3.02)

Table 2: Factored parsing results for TüBa-D/Z, Tiger, and Negra when tagging is done by the parser. Numbers in
italics show difference between factored parser and PCFG, where improvements over the PCFG are positive.

comparable to Maier (2006), which found 3–6% im-
provement using an unlexicalized PCFG; these ab-
solute improvements hold despite the fact that the
Maier (2006) parser has results with 2–4% absolute
lower F1 than those in this paper.

4 Inclusion of Grammatical Functions

In this section we examine how the addition of gram-
matical functions for training and evaluation affects
performance. As noted previously, we add gram-
matical functions simply by concatenating them to
the dependent phrasal categories and calling each
unique symbol a PCFG nonterminal; this is an ob-
vious way to adapt an existing PCFG parser, but not
a sophisticated model of grammatical functions. We
also present our shared task results (table 6).

4.1 Effects on Evaluation

As shown in table 4, the inclusion of grammati-
cal functions decreases performance by 10–15% for
both treebanks. This is partially due to the increase
in grammar size, creating less supporting evidence
for each rule, and the fact that the parser must now
discriminate amongst more categories. The larger
grammar is particularly problematic for Tiger due to
its flat annotation style. Adding gold tags (table 5)
increases performace by 2–3%, a similar gain to that
for the parsers without grammatical functions. We
also see that lexicalization provides smaller gains
when grammatical functions are included; we dis-
cuss this further in section 5. Finally, especially for
the Tiger corpus, vertical Markovization diminishes

TüBa-D/Z Vertical Markov Order
Horizontal Order 1 2
1 89.66 91.69

(+1.82) (+0.54)
2 89.72 91.71

(+1.56) (+0.43)
∞ 89.34 91.43

(+1.39) (+0.29)
Tiger Vertical Markov Order
Horizontal Order 1 2
1 79.39 79.67

(+2.83) (+2.53)
2 78.60 77.40

(+2.74) (+2.22)
∞ 76.65 75.29

(+2.50) (+1.94)
Negra Vertical Markov Order
Horizontal Order 1 2
1 78.80 79.51

(+2.39) (+1.55)
2 77.92 77.43

(+2.15) (+1.81)
∞ 74.44 73.26

(+3.10) (+3.02)

Table 3: Factored parsing results for TüBa-D/Z, Tiger,
and Negra when gold tags are provided as input to the
parser. Numbers in italics show difference between fac-
tored parser and PCFG, where improvements over the
PCFG are positive.

42



TueBa-D/Z Tiger
Horiz. Vertical Vertical
Order 1 2 1 2
1 75.97 77.21 60.48 58.00

(+2.69) (+1.49) (+2.69) (+2.24)
2 76.96 53.68

(+1.44) (+2.22)
∞ 75.24 76.66 55.36 50.94

(+2.18) (+1.22) (+2.50) (+1.94)

Table 4: Results for TüBa-D/Z and Tiger when gram-
matical functions are included and tagging is done by
the parser. Numbers in italics show difference between
factored parser and PCFG, where improvements over the
PCFG are positive.

TüBa-D/Z Tiger
Horiz. Vertical Vertical
Order 1 2 1 2
1 78.91 80.64 67.72 64.93

(+1.60) (+0.81) (+1.16) (+0.77)
2 80.32 59.60

(+0.69) (+0.67)
∞ 78.38 80.01 60.36 56.77

(+1.33) (+0.59) (+0.89) (+0.18)

Table 5: Results for TüBa-D/Z and Tiger when gram-
matical functions are included and gold tags (including
grammatical functions) are given to the parser.

TüBa-D/Z Tiger
Petrov & Klein 83.97 69.81
Rafferty & Manning 79.24 59.44
Hall 75.37 65.18
Rafferty & Manning -gf 73.36 49.03

Table 6: Shared task results (F1) for TüBa-D/Z and Tiger
when grammatical functions are included and gold tags
are given to the parser. Gold tags include grammatical
functions except in the case of ”Rafferty & Manning -gf”.

performance. Sparsity becomes too great of an is-
sue for increased vertical annotations to be effective:
the grammar grows from 11,170 rules with horizon-
tal Markovization = 1, vertical Markovization = 1
to 39,435 rules with horizontal Markovization = ∞,
vertical Markovization = 2.

TüBa-D/Z Fact. PCFG
Configuration F1 ∆ F1 ∆

H = 1, V = 1 87.63 +1.63 85.32 +1.58
H = 1, V = 2 88.47 −0.13 87.31 −0.08
H = 2, V = 2 88.30 −0.31 87.13 −0.26
H = ∞, V = 1 87.23 +1.17 85.27 +1.40
H = ∞, V = 2 88.18 −0.23 87.09 −0.25

Tiger Fact. PCFG
Configuration F1 ∆ F1 ∆

H = 1, V = 1 72.09 −4.60 69.09 −4.06
H = 1, V = 2 69.25 −8.15 67.24 −6.59
H = 2, V = 2 66.08 −9.22 64.42 −7.79
H = ∞, V = 1 67.58 −9.07 64.85 −6.49
H = ∞, V = 2 63.54 −11.75 62.21 −8.03

Table 7: Effect of adding grammatical functions infor-
mation to the training data only. The difference (∆) is
from a parser with same Markovization parameters but
not trained with grammatical functions.

4.2 Effects on Training Only

While training and testing with grammatical func-
tions significantly reduces our performance, this
does not necessarily mean that we cannot benefit
from grammatical functions. We explored whether
training with grammatical functions could improve
the parser’s test time performance on syntactic cat-
egories (ignoring grammatical functions), hypothe-
sizing that the functions could provide additional in-
formation for disambiguating which rule should be
applied. This test also provides evidence of whether
decreased performance with grammatical functions
is due to sparseness caused by the large grammar
or simply that more categorization needs to be done
when grammatical functions are included.

We found, as shown in table 7, that grammatical
functions provide limited gains for basic categories
but have no extra utility once vertical Markoviza-
tion is added. These results suggest that adding
grammatical functions is not only problematic due to
increased categorization but because of sparseness
(this task has the same categorization demands as
parsing without grammatical functions considered
in section 3). The Stanford Parser was initially de-
signed under the assumption of a small phrasal cat-
egory set, and makes no attempts to smooth gram-
mar rule probabilities (smoothing only probabilities
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of words having a certain tag and probabilities of de-
pendencies). While this approach is in general not
optimal when many category splits are used inside
the parser – smoothing helps, cf. Petrov et al. (2006)
– it becomes untenable as the category set grows
large, multi-faceted, and sparse. This is particularly
evident given the results in table 7 that show the pre-
cipitous decline in F1 on the Tiger corpus, where
the general problems are exacerbated by the flatter
annotation style of Tiger.

5 Lexicalization

In the tables in section 3, we showed the utility
of lexicalization for German parsing when gram-
matical functions are not required. This contrasts
strongly with the results of (Dubey and Keller, 2003;
Dubey, 2004) where no performance increases (in-
deed, performance decreases) are reported from lex-
icalization. Lexicalization shows fairly consistent
2–3% gains on the Negra and Tiger treebanks. As
the number of tags increases, however, such as when
grammatical functions are included, gains from lex-
icalization are limited due to sparseness. While use-
ful category splits lessen the need for lexicaliza-
tion, we think the diminishing gain is primarily due
to problems resulting from the unsmoothed PCFG
model. As the grammar becomes sparser, there are
limited opportunities for the lexical dependencies
to correct the output of the PCFG grammar under
the factored parsing model of Klein and Manning
(2003b). Indeed, as shown in table 8, the grammar
becomes sufficiently sparse that for many sentences
there is no tree on which the PCFG and dependency
grammar can agree, and the parser falls back to sim-
ply returning the best PCFG parse. This falloff, in
addition to overall issues of sparsity, helps explain
the drop in performance with the addition of gram-
matical functions: our possible gain from lexicalized
parsing is decreased by the increasing rate of fail-
ure for the factored parser. Thus, for future German
work to gain from lexicalization, it may be necessary
to explore smoothing the grammar or working with
a diminished tagset without grammatical functions.

Lexicalized parsing focuses on identifying depen-
dencies. As recognized by Collins (2003), identi-
fying dependencies between words allows for bet-
ter evaluation of attachment accuracy, diminishing

Total Parseable
Dataset Sent. w.o. GFs with GFs
TüBa-D/Z 2611 2610 2197
Tiger 2535 2534 1592

Table 8: Number of sentences parseable by the factored
lexicalized parser. If the factored model fails to return
a parse, the parser returns the best PCFG parse, so the
parser maintains 100% coverage.

TüBa-D/Z Tiger
Gold Tags 91.00 90.21
Auto. Tags 86.90 83.39
Gold Tags -gf 89.89 88.97
Auto. Tags -gf 86.89 85.86

Table 9: Performance (F1) on identifying dependencies
in TüBa-D/Z and Tiger. Tags were either provided (“Gold
Tags”) or generated during parsing (“Auto. Tags”); gram-
matical functions were used for the first two results and
omitted for the final two (“-gf”).

spurious effects on labeled bracketing F1 of differ-
ent annotation schemes. In particular, Rehbein and
van Genabith (2007) correctly emphasize how F1
scores are very dependent on the amount of branch-
ing structure in a treebank, and are hence not validly
comparable across annotation styles. We evaluate
performance on identifying unlabeled dependencies
between heads and modifiers, extracting dependen-
cies automatically from the parse trees. Most heads
in the TüBa-D/Z and Tiger treebanks are marked,
and we use marked heads when possible for train-
ing and evaluation. When heads were not marked,
we used heuristic rules to identify the likely head.
Broadly consistent with the results of Rehbein and
van Genabith (2007), Table 9 shows that the dis-
parity in performance between TüBa-D/Z and Tiger
is much smaller when measuring dependency accu-
racy rather than labeled bracketing F1, especially
when using gold tags. These results also reverse the
trend in our other results that adding grammatical
functions greatly reduces F1. While F1 decreases
or remains constant when grammatical functions are
used with automatic tags, probably reflecting a de-
crease in accuracy on tags when using grammatical
functions, they increase F1 given gold tags. These
results suggest both that useful information may be
gained from grammatical functions and that the dif-
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ferences between the annotation schemes of TüBa-
D/Z and Tiger may not cause as large a fundamen-
tal difference in parser performance as suggested in
Kübler et al. (2006).

6 Feature Splits

Another technique shown to improve accuracy in
English parsing is state splits (Klein and Manning,
2003a). We experimented with such splits in an
attempt to show similar utility for German. How-
ever, despite trying a number of splits that leveraged
observations of useful splits for English as well as
information from grammatical functions, we were
unable to find any splits that caused significant im-
provement for German parsing performance. Some-
what more positive results are reported by Schiehlen
(2004) – in particular, his relative clause marking
adds significantly to performance – although many
of the other features he explores also yield little.

7 Errors by Category

In this section, we examine which categories have
the most parsing errors and possible reasons for
these biases. Two types of error patterns are con-
sidered: errors on particularly salient grammatical
functions and overall category errors.

7.1 Grammatical Function Errors

A subset of grammatical functions was recognized
by Kübler et al. (2006) as particularly important for
using parsing results, so we investigated training
and testing with the inclusion of these grammatical
functions but without any others. These functions
were the subject, dative object, and accusative object
functions. We found that the three categories had
distinctively different patterns of errors, although we
unfortunately still do not achieve particularly high
F1 for any of the individual pairings of node label
and grammatical function. Note that this analysis
differs from that of Kübler et al. (2006) due to our
analysis of the accuracy of node labels and gram-
matical functions, rather than only performance on
identifying these three grammatical functions (with-
out regards to the correctness of the original node
label). Overall, dative objects occur much less fre-
quently than either of the other two types, and ac-
cusative objects occur less frequently than subjects.

Consistent with sparsity causing degradations in per-
formance, for both Tiger and TüBa-D/Z, we show
the best performance on subjects, followed by ac-
cusative objects and then dative objects. For all cat-
egories, we find that these functions occur most fre-
quently with noun phrases, and we achieve higher
performance when pairing tthem with a noun phrase
than with any other basic category. While Kübler
et al. (2006) suggests these functions are particu-
larly important for parsing, our low performance on
dative objects (F1 between 0.00 and 0.06) may not
matter a great deal given that dative objects consist
of only 0.42% of development set nodes in TüBa-
D/Z and 0.76% of such nodes in Tiger.

7.2 Overall Errors

One limiting factor for overall parsing accuracy is
roughly defined by the number of local (one-level)
trees in the test set that are present in the training set.
While changes such as Markovization may allow
rules to be learned that do not correspond directly to
such local trees, it is unlikely that many such rules
will be created. Thus, if a local tree in the test set
is not represented in the training set, it is unlikely
we will be able to correctly parse this sentence. The
number of such local trees and the amount of test set
coverage they provide varies widely between TüBa-
D/Z and Tiger. Without grammatical functions, the
training set for TüBa-D/Z contains 4,532 unique lo-
cal trees, whereas the training set for Tiger con-
tains 20,957; both have 20,894 complete trees. Lo-
cal trees from the training set represent 79.6% of
the unique local trees in the development set for
TüBa-D/Z, whereas they represent 61.8% of unique
local trees in Tiger’s development set. This trans-
lates to 99.3% of total local trees in the develop-
ment set represented in the training set for TüBa-
D/Z versus 92.3% for Tiger. With grammatical func-
tions, the number of unique local trees increases for
both TüBa-D/Z and Tiger (10,464 and 32,614 trees
in training, respectively), and total coverage in the
development sets drop to 98.6% (TüBa-D/Z) and
87.7% (Tiger). Part of the reason for this decrease
in coverage with the addition of grammatical func-
tions, and the disparity between corpora, is a large
increase in the number of possible categories for
each node: from 26 to 139 categories for TüBa-D/Z
and from 24 to 192 categories for Tiger.
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