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Abstract

We describe experiments on learning latent
variable grammars for various German tree-
banks, using a language-agnostic statistical
approach. In our method, a minimal ini-
tial grammar is hierarchically refined using an
adaptive split-and-merge EM procedure, giv-
ing compact, accurate grammars. The learn-
ing procedure directly maximizes the likeli-
hood of the training treebank, without the use
of any language specific or linguistically con-
strained features. Nonetheless, the resulting
grammars encode many linguistically inter-
pretable patterns and give the best published

and Manning, 2003) to full lexicalization and intri-
cate smoothing (Collins, 1999; Charniak, 2000).

We view treebank parsing as the search for an
optimally refined grammar consistent with a coarse
training treebank. As a result, we begin with the
provided evaluation symbols (such as NP, VP, etc.)
but split them based on the statistical patterns in
the training trees. A manual approach might take
the symbol NP and subdivide it into one subsymbol
NP"S for subjects and another subsymbol NP"VP
for objects. However, rather than devising linguis-
tically motivated features or splits, we take a fully
automated approach, in which each symbol is split

into unconstrained subsymbols. For example, NP
would be split into NP-1 through NP-8. We use
the Expectation-Maximization (EM) to then fit our
split model to the observed trees; therein the vari-
ous subsymbols will specialize in ways which may

Probabilistic context-free grammars (PCFGs) undef may not correspond to our linguistic intuitions.
lie most high-performance parsers in one way or anthis approach is relatively language independent,
other (Collins, 1999; Charniak, 2000; Charniak an®€ecause the hidden subsymbols are induced auto-
Johnson, 2005). However, as demonstrated in ch4dnatically from the training trees based solely on data
niak (1996) and Klein and Manning (2003), a pcEdikelihood, though of course it is most applicable to
which simply takes the empirical rules and probabilstrongly configurational languages.

ities off of a treebank does not perform well. This In our experiments, we find that we can learn
naive grammar is a poor one because its contextompact grammars that give the highest parsing ac-
freedom assumptions are too strong in some waysiracies in the 2008 Parsing German shared task.
(e.g. it assumes that subject and object NPs shabrur F1-scores of 69.8/84.0 (TIGER/TueBa-D/Z) are
the same distribution) and too weak in others (e.gnore than four points higher than those of the
it assumes that long rewrites do not decompose ingecond best systems. Additionally, we investigate
smaller steps). Therefore, a variety of techniquethe patterns that are learned and show that the la-
have been developed to both enrich and generalitent variable approach recovers linguistically inter-
the naive grammar, ranging from simple tree anngretable phenomena. In our analysis, we pay partic-
tation and symbol splitting (Johnson, 1998; Kleinular attention to similarities and differences between

parsing accuracies on three German treebanks.
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FRAG ROOT grammars, allocating subsymbols adaptively where

RB NP : FRAGw they are most effective. Beginning with the base-

Not DT NN . FRAGw -~ line grammar, we repeatedly split and re-train the
this  year RBx NPz . grammar. In each iteration, we initialize EM with

(@) Not DT-z NN-r the results of the previous round’s grammar, splitting

this  year every previous symbol in two and adding a small

(b) amount of randomness (1%) to break the symme-

_ o o try between the various subsymbols. Note that we
Figure 1. (a) The original tree. (b) The binarized tregypit 4| nonterminal symbols, including the part-of-
with latent variables. speech categories. While creating more latent an-

notations can increase accuracy, it can also lead to

grammars learned from the two treebanks. overfitting via oversplitting. Adding subsymbols di-
vides grammar statistics into many bins, resulting in
a tighter fit to the training data. At the same time,
In latent variable parsing (Matsuzaki et al., 2005each bin has less support and therefore gives a less
Prescher, 2005; Petrov et al., 2006), we learrpbust estimate of the grammar probabilities. At
rule probabilities on latent annotations that, whesome point, the fit no longer generalizes, leading to
marginalized out, maximize the likelihood of theoverfitting.
unannotated training trees. We use an automatic ap-
proach in which basic nonterminal symbols are al- To prevent oversplitting, we could measure the
ternately split and merged to maximize the likeli-utility of splitting each latent annotation individu-
hood of the training treebank. ally and then split the best ones first. However, not

In this section we briefly review the main ideasonly is this impractical, requiring an entire training
in latent variable parsing. This work has been prephase for each new split, but it assumes the contri-
viously published and we therefore provide onlybutions of multiple splits are independent. In fact,
a short overview. For a more detailed exposiextra subsymbols may need to be added to several
tion of the learning algorithm the reader is re-nonterminals before they can cooperate to pass in-
ferred to Petrov et al. (2006). The correspondformation along the parse tree. This point is cru-
ing inference procedure is described in detail igial to the success of our method: because all splits
Petrov and Klein (2007). The parser, codeare fit simultaneously, local splits can chain together
and trained models are available for download &b propagate information non-locally. We therefore

2 Latent VariableParsing

http://nl p.cs. berkel ey. edu. address oversplitting in the opposite direction; after
) training all splits, we measure for each one the loss
21 Learning in likelihood incurred by removing it. If this loss

Starting with a simple X-bar grammar, we use thés small, the new annotation does not carry enough
Expectation-Maximization (EM) algorithm to learn useful information and can be removed. Another ad-
a new grammar whose nonterminals are subsymbolantage of evaluating post-hoc merges is that, unlike
of the original evaluation nonterminals. The X-batthe likelihood gain from splitting, the likelihood loss
grammar is created by binarizing the treebank treefpm merging can be efficiently approximated.
for each local tree rooted at an evaluation nonter-
minal X, we introduce a cascade of new nodes la- To summarize, splitting provides an increasingly
beledX so that each node has at most two childrertight fit to the training data, while merging improves
see Figure 1. This initialization is the absolute minigeneralization and controls grammar size. In order
mum starting grammar that distinguishes the evaluae further overcome data fragmentation and overfit-
tion nonterminals (and maintains separate grammatiag, we also smooth our parameters along the split
for each of them). hierarchy. Smoothing allows us to add a larger num-
In Petrov et al. (2006) we show that a hierarchicaber of annotations, each specializing in only a frac-
split-and-merge strategy learns compact but accuraien of the data, without overfitting our training set.
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2.2 Inference < 40 words all
, _ | Parser LP LR | LP LR
At inference time, we want to use the learned gram- ENGLISH

mar to efficiently and accurately compute a parse "Charniak etal. (2005) [ 90.1 90.1] 89.5 89.6
tree for a give sentence. Petrov and Klein (2007) 90.7 90.5 | 90.2 89.9
For efficiency, we employ a hierarchical coarse- ENGLISH (reranked)

to-fine inference scheme (Charniak et al., 1998;| Charniak etal. (2005) [ 924 916 [91.8 91.0
Charniak and Johnson, 2005; Petrov and Klein, GERMAN (NEGRA)

2007) which vastly improves inference time with no | Dubey (2005) F, 76.3 -

loss in test set accuracy. Our method considers the Petrov and Klein (2007) 80.8 80.7 | 80.1 80.1
splitting history of the final grammar, projecting it CHINESE
onto its increasingly refined prior stages. For each| Chiang etal. (2002) |81.1 78.8{78.0 75.2
such projection of the refined grammar, we estimate| Petrov and Klein (2007) 86.9 85.7 | 84.8 81.9
the projection’s parameters from the source PCF@ypie 1. Our split-and-merge latent variable approach

itself (rather than the original treebank), using techproduces the best published parsing performance on
nigues for infinite tree distributions and iterated fix-many languages.

point equations. We then rapidly pre-parse with each

refinement stage in sequence, such that any itelm q q dificati Specifically. th
X:[4, 5] with sufficiently low posterior probability '2"guage dependent modifications. Specifically, the

triggers the pruning of its further refined variants ipame mode_l hyperparameters (rr_1ergmg per_centage
all subsequent finer parses. and smoothing factor) were used in all experiments.

. Table 1 summarizes the results: automatically in-
Our refined grammars; are over symbols of the ducing latent structure is a technique that generalizes
form X -k whereX is an evaluation symbol (such as d g 9

NP) and is some indicator of a subsymbol, WhichweII across language boundaries and results in state

mav encode something linauistic like a parent ann of the art performance for Chinese and German. On
y ging P c)English, the parser is outperformed by the reranked

tation contex_t, but which s f(_)rma!ly j_ust_an Integer'output of Charniak and Johnson (2005), but it out-
G therefore induces derivation distribution over . . L
performs their underlying lexicalized parser.

trees labeled with split symbols. This distribution
in turn induces garse distribution over (projected) 3 E . t
trees with unsplit evaluation symbols. We have Xperiments

several choices of how to select a tree given thesge conducted experiments on the two treebanks
posterior distributions over trees. Since Compu“n%rovided for the 2008 Parsing German shared task.
the most likely parse tree is NP-complete (Sima'argi treebanks are annotated collections of Ger-
1992), we settle for an approximation that allows ug, 4 newspaper text, covering from similar top-
to (partia_llly) sum out the latent a_mnotation_. In I_DetroYCS_ They are annotated with part-of-speech (POS)
and Klein (2007) we relate this approximation t0,45 morphological information, phrase structure,
Goodman (1996)'s labeled brackets algorithm apsng grammatical functions. TueBa-D/Z addition-
plied to rules and to Matsuzaki et al. (2005)'s sengy yses topological fields to describe fundamental
tence specific variational approximation. This progyoq order restrictions in German clauses. However,
cedure is substantially superior to simply erasing thge treebanks differ significantly in their annotation
latent annotations from the the Viterbi derivation. ¢-hemes: while TIGER relies on crossing branches
to describe long distance relationships, TueBa-D/Z
uses planar tree structures with designated labels
23 Results that encode long distance relationships. Addition-
In Petrov and Klein (2007) we trained models forally, the annotation in TIGER is relatively flat on the
English, Chinese and German using the standafhrasal level, while TueBa-D/Z annotates more in-
corpora and setups. We applied our latent variabkernal phrase structure.
model directly to each of the treebanks, without any We used the standard splits into training and de-
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90 — ‘ : : : : TIGER TueBa-D/Z

F1 [ EX | F1 | EX

0 T Auto Tags|| 71.12| 28.91]| 83.18| 18.46
- Gold Tags|| 71.74| 34.04 | 85.10| 20.98

80

Table 2: Parsing accuracies (F1-score and exact match)
. with gold POS tags and automatic POS tags. Many parse
70| | errors are due to incorrect tagging.

75

F1

65 - 1 ) .
TIGER —— edness, we varied the binarization scheme, but, con-

‘ ‘ ‘  TueBa-D/z - sistent with our experience in other languages, no-
0 roo2 34 5 ticed little difference between right and left bina-
Split & Merge terations rization. We also experimented with starting from
Figure 2: Parsing accuracy improves when the amount & More constrained baseline by adding parent and
latent annotation is increased. sibling annotation. Adding initial structural annota-
tion results in a higher baseline performance. How-

o .. ever, since it fragments the grammar, adding latent
velopment set, containing roughly 16,000 training, notation has a smaller effect, eventually resulting

trees and 1,600 development trees, respectively. Af] poorer performance compared to starting from a

parsing figures in this section are on the developsy, 1o x_Bar grammar. Essentially, the initial gram-
ment set, evaluating on constituents and grammali i either mis- or oversplit to some degree,
ical functions using gold part-of-speech tags, un-

less noted otherwise. Note that even when we ag2 Part-of-speech tagging

sume goldevaluation part-of-speech tags, we still vy
assign probabilities to the different subsymbols O¥Vhen gold parts-of-speech are not assumed, many

. . . . parse errors can be traced back to part-of-speech
the provided evaluation tag. The parsing accuraci . . . ) :
. . . - 0S) tagging errors. Itis therefore interesting to in-
in the final results section are the official results o

the 2008 Parsing German shared task. vestlgatle the influence of tagging errors on the over-
all parsing accuracy. For the shared task, we could

assume gold POS tags: during inference we only al-
lowed (and scored) the different subsymbols of the
As described in Section 2.1, we start with a minicorrect tags. However, this assumption cannot be
mal X-Bar grammar and learn increasingly refinednade in a more realistic scenario, where we want to
grammars in a hierarchical split-and-merge fashiomparse text from an unknown source. Table 2 com-
We conjoined the constituency categories with theipares the parsing performance with gold POS tags
grammatical functions, creating initial categoriesand with automatic tagging. While POS tagging er-
like NP-PD and NP-OA which were further split rors have little influence on the TIGER treebank,
automatically. Figure 2 shows how held-out accutagging errors on TueBa-D/Z cause an substantial
racy improves when we add latent annotation. Ourumber of subsequent parse errors.
baseline grammars have low F1-scores (63.3/72.8, _
TIGER/TueBa-D/Z), but performance increases a33 TWO0passparsing
the complexity of latent annotation increases. Afteln the previous experiments, we conflated the
four split-and-merge iterations, performance levelghrasal categories and grammatical functions into
off. Interestingly, the gap in performance betweesingle initial grammar symbol. An alternative is
the two treebanks increases from 9.5 to 13.4 Flo first determine the categorical constituency struc-
points. It appears that the latent variable approadalire and then to assign grammatical functions to the
is better suited for capturing the rich structure of thehosen constituents in a separate, second pass. To
TueBa-D/Z treebank. achieve this, we trained latent variable grammars
As languages vary in their phrase-internal header base constituency parsing by stripping off the
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3.1 Latent Annotation
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grammatical functions. After four rounds of splitcases, the nominal category (NE) has been split
and merge training, these grammars achieve veigto subcategories for first and last names, abbrevi-
good constituency accuracies of 85.1/94.1 F1-scostions and places. The cardinal numbers (CARD)
(TIGER/TueBa-D/z). For the second pass, we ediave been split into subcategories for years, spelled
timated (but did not split) X-Bar style grammarsout numbers, and other numbers. There are of-
on the grammatical functions only. Fixing the conten subcategories distinguishing sentence initial and
stituency structure from the first pass, we used thosentence medial placement (KOND, PDAT, ART,
to add grammatical functions. Unfortunately, thisAPPR, etc.), as well as subcategories capturing case
approach proved to be inferior to the unified, onelistinctions (PDAT, ART, etc.).
pass approach, giving Fl-scores of only 50.0/69.4 A quantitative way of analyzing the complexity of
(TIGER/TueBa-D/z). Presumably, the degradationvhat is learned is to compare the number of subcat-
can be attributed to the fact that grammatical funcegories that our split-and-merge procedure has allo-
tions model long-distance relations between the corated to each category. Table 5 shows the automat-
stituents, which can only be captured poorly by aically determined number of subcategories for each
unsplit, highly local X-bar style grammar. POS tag. While many categories have been split into
. comparably many of subcategories, the POS tags in
34 Final Results the TIGER treebank have in general been refined
The final results of the shared task evaluation an@ore heavily. This increased refinement can be ex-
shown in Table 3. These results were produced pained by our merging criterion. We compute the
a latent variable grammar that was trained for fouloss in likelihood that would be incurred from re-
split-and-merge iterations, starting from an X-Bamoving a split, and we merge back the least useful
grammar over conjoined categorical/grammaticadplits. In this process, lexical and phrasal splits com-
symbols, with a left-branching binarization. Ourpete with each other. In TueBa-D/Z the phrasal cat-
automatic latent variable approach serves better fegories have richer internal structure and therefore
German disambiguation than the competing aget split more heavily. As a consequence, the lexi-
proaches, despite its being very language agnosticcal categories are often relatively less refined at any
. given stage than in TIGER. Having different merg-
4 Analysis ing thresholds for the lexical and phrasal categories
In this section, we examine the learned grammargould eliminate this difference and we might expect
discussing what is learned. Because the grammadhe difference in lexical refinement to become less
ical functions significantly increase the number opronounced. Of course, because of the different un-
base categories and make the grammars more difflerlying statistics in the two treebanks, we do not
cult to examine, we show examples from grammarexpect the number of subcategories to become ex-
that were trained for categorical constituency pargctly equal in any case.
ing by initially stripping off all grammatical function

annotations. 4.2 Phrasal splits

_ _ Analyzing the phrasal splits is much more difficult,
41 Lexica Splits as the splits can model internal as well as exter-
Since both treebanks use the same part-of-speeahl context (as well as combinations thereof) and,
categories, it is easy to compare the learned PQ® general, several splits must be considered jointly
subcategories. To better understand what is beirmgfore their patterning can be described. Further-
learned, we selected two grammars after two splinore, the two treebanks use different annotation
and merge iterations and examined the word distandards and different constituent categories. Over-
tributions of the subcategories of various symbolsll, the phrasal categories of the TueBa-D/Z tree-
The three most likely words for a number of POSank have been more heavily refined, in order to bet-
tags are shown in Table 4. Interestingly, the sulter capture the rich internal structures. In both tree-
categories learned from the different treebanks ekanks, the most heavily split categories are the noun,
hibit very similar patterns. For example, in bothverb and prepositional phrase categories (NP/NX,
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TIGER TueBa-D/z
LP LR F1 LP LR F1
Berkeley Parser| 69.23 70.41 69.81 83.91 84.04 | 83.97
Vaxjo Parser 67.06 | 63.40 | 65.18 || 76.20 | 74.56 | 75.37
Stanford Parser| 58.52 | 57.63 | 58.07 79.26 | 79.22 | 79.24

Table 3: Final test set results of the 2008 Parsing Germaedghask (labeled precision, labeled recall and F1-score)

on both treebanks (including grammatical functions andgigold part-of-speech tags).

NE NE
Kohl Klaus SPD Deutschland Milosevic Peter K. Berlin
Rabin Helmut  USA dpa Muller  Wolfgang W. taz
Lafontaine  Peter Cbu Bonn Clinton Klaus de Kosovo
CARD CARD
1996 Zwei 000 Zwei 1998 Zwei 500 zZwei
1994 drei 100 3 1999 drei 100 20
1991 vier 20 2 2000 funf 20 18
KOND KOND
und und sondern und und und sondern und
Doch oder aber oder Aber oder weder Denn
Aber aber bis sowie Doch aber sowohl oder
PDAT PDAT
Diese dieser diesem - Dieser diese diesem dieser
Dieser dieses diese - Diese dieser dieser diese
Dieses diese dieser - Dieses dieses diesen dieses
ART ART
Die der der die Die die die der
Der des den der die Die der die
Das Die die den Der das den den
APPR APPR
In als in von In bis in von
\Von nach von in Mit \on auf in
Nach vor mit for Nach Bis mit fur
PDS PDS
Das dessen das - dem dessen das Das
Dies deren dies - das die Das das
Diese die diese - jene denen dies diese

Table 4: The three most likely words for several part-ofexpie(sub-)categories. The left column corresponds to the
TIGER treebank the right column to the TueBa-D/Z treebanmkil8r subcategories are learned for both treebanks.
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POS Ti  Tue POS Ti Tue POS Ti Tue POS Ti Tue
ADJA |32 17 PIAT 8 7 VVIZU 3 2 VAIMP 1 1
NN 32 32 VAFIN 8 3 VAINF 3 3 VMPP 1 2
NE 31 32 KON 8 8 PTKNEG | 3 1 PPOSS 1 1
ADV 30 15 | 7 11 FM 3 8 PRELAT | 1 1
ADJD |30 19 PROAV 7 - PWS 2 2 NNE 1 -
VVFIN [ 29 5 APPRART| 6 5 PWAV 2 5 APPO 1 1
VVPP |29 4 $ 6 2 XY 2 2 PTKA 1 2
APPR |25 24 PDS 5 5 TRUNC | 2 4 PTKANT | 1 2
VVINF | 18 7 PPOSAT | 4 4 KOUI 2 1 PWAT 1 2
CARD | 18 16 $. 4 5 PTKVZ 2 1 PRF 1 1
ART 10 7 PDAT 4 5 VAPP 2 2 PTKZU 1 1
PIS 9 14 KOUS 4 3 KOKOM | 2 5 APZR 1 1
PPER | 9 2 VMFIN 4 1 PROP - 2 VMINF 1 1
PIDAT | - 9 PRELS 3 1 VVIMP 1 1 ITJ 1 2

Table 5: Automatically determined number of subcategddethe part-of-speech tags. The left column corresponds
to the TIGER treebank the right column to the TueBa-D/Z teag Many categories are split in the same number of
subcategories, but overall the TIGER categories have besa heavily refined.
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