
Proceedings of the ACL-08: HLT Workshop on Mobile Language Processing, pages 21–24,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Mixture Pruning and Roughening for Scalable Acoustic Models

David Huggins-Daines
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
dhuggins@cs.cmu.edu

Alexander I. Rudnicky
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

air@cs.cmu.edu

Abstract

In an automatic speech recognition system us-
ing a tied-mixture acoustic model, the main
cost in CPU time and memory lies not in
the evaluation and storage of Gaussians them-
selves but rather in evaluating the mixture
likelihoods for each state output distribution.
Using a simple entropy-based technique for
pruning the mixture weight distributions, we
can achieve a significant speedup in recogni-
tion for a 5000-word vocabulary with a negli-
gible increase in word error rate. This allows
us to achieve real-time connected-word dicta-
tion on an ARM-based mobile device.

1 Introduction

As transistors shrink and CPUs become faster and
more power-efficient, we find ourselves entering a
new age of intelligent mobile devices. We believe
that not only will these devices provide access to rich
sources of on-line information and entertainment,
but they themselves will find new applications as
personal knowledge management agents. Given the
constraints of the mobile form factor, natural speech
input is crucial to these applications. However, de-
spite the advances in processor technology, mobile
devices are still highly constrained by their memory
and storage subsystems.

2 Semi-Continuous Acoustic Models

Recent research into acoustic model compression
and optimization of acoustic scoring has focused
on “Fully Continuous” acoustic models, where each
Hidden Markov Model state’s output probability dis-
tribution is modeled by a mixture of multivariate

Gaussian densities. This type of model allows large
amounts of training data to be efficiently exploited to
produce detailed models. However, due to the large
number of parameters in these models, approximate
computation techniques (Woszczyna, 1998) are re-
quired in order to achieve real-time recognition even
on workstation-class hardware.

Another historically popular type of acoustic
model is the so-called “Semi-Continuous” or tied-
mixture model, where a single codebook of Gaus-
sians is shared by all HMM states (Huang, 1989).
The parameters of this codebook are updated using
the usual Baum-Welch equations during training, us-
ing sufficient statistics from all states. The mix-
ture weight distributions therefore become the main
source of information used to distinguish between
different speech sounds.

There are several benefits to semi-continuous
models for efficient speech recognition. The most
obvious is the greatly reduced number of Gaussian
densities which need to be computed. With fully
continuous models, we must compute one codebook
of 16 or more Gaussians for each HMM state, of
which there may be several thousand active for any
given frame of speech input. For semi-continuous
models, there is a single codebook with a small num-
ber of Gaussians, typically 256. In addition, since
only a few Gaussians will have non-negligible den-
sities for each frame of speech, and this set of Gaus-
sians tends to change slowly, partial computation of
each density is possible.

Another useful property of semi-continuous mod-
els is that the mixture weights for each state have
the form of a multinomial distribution, and are thus
amenable to various smoothing and adaptation tech-
niques. In particular, Bayesian and quasi-Bayes

21

adaptation (Huo and Chan, 1995) are effective and
computationally efficient.

3 Experimental Setup

All experiments in this paper were performed using
PocketSphinx (Huggins-Daines et al., 2006). The
baseline acoustic model was trained from the com-
bined WSJ0 and WSJ1 “long” training sets (Paul and
Baker, 1992), for a total of 192 hours of speech.
This speech was converted to MFCC features us-
ing a bank of 20 mel-scale filters spaced from 0
to 4000Hz, allowing the model to work with au-
dio sampled at 8kHz, as is typical on mobile de-
vices. We used 5-state Hidden Markov Models
for all phones. Output distributions were modeled
by a codebook of 256 Gaussians, shared between
5000 tied states and 220 context-independent states.
Only the first pass of recognition (static lexicon tree
search) was performed.

Our test platform is the Nokia N800, a hand-
held Internet Tablet. It uses a Texas Instruments
OMAPTM 2420 processor, which combines an
ARM11 RISC core and a C55x DSP core on a single
chip. The RISC core is clocked at 400MHz while the
DSP is clocked at 220MHz. In these experiments,
we used the ARM core for all processing, although
we have also ported the MFCC extraction code to the
DSP. The decoder binaries, models and audio files
were stored on a high-speed SD flash card format-
ted with the ext3 journaling filesystem. Using the
standard bcb05cnp bigram language model, we
obtained a baseline word error rate of 9.46% on the
si_et_05 test set. The baseline performance of
this platform on the test set is 1.40 times real-time,
that is, for every second of speech, 1.40 seconds of
CPU time are required for recognition.

We used the oprofile utility1 on the Nokia
N800 to collect statistical profiling information for
a subset of the test corpus. The results are shown in
Table 1. We can see that three operations occupy the
vast majority of CPU time used in decoding: man-
aging the list of active HMM states, computing the
codebook of Gaussians, and computing mixture den-
sities.

The size of the files in the acoustic model is shown
in Table 2. The amount of CPU time required to

1http://oprofile.sourceforge.net/

Function %CPU
HMM evaluation 22.41

hmm vit eval 5st lr 13.36
hmm vit eval 5st lr mpx 3.71

Mixture Evaluation 21.66
get scores4 8b 14.94

fast logmath add 6.72
Lexicon Tree Search 19.89
last phone transition 5.25
prune nonroot chan 4.15

Active List Management 15.57
hmm sen active 13.75

compute sen active 1.19
Language Model Evaluation 7.80

find bg 2.55
ngram ng score 2.13

Gaussian Evaluation 5.87
eval cb 5.59

eval topn 0.28
Acoustic Feature Extraction 3.60

fe fft real 1.59
fixlog2 0.77

Table 1: CPU profiling, OMAP platform

File Size (bytes)
sendump (mixture weights) 5345920
mdef (triphone mappings) 1693280

means (Gaussians) 52304
variances (Gaussians) 52304

transition_matrices 5344

Table 2: File sizes, WSJ1 acoustic model

calculate densities is related to the size of the mix-
ture weight distribution by the fact that the N800
has a single-level 32Kb data cache, while a typical
desktop processor has two levels of cache totalling
at least 1Mb. We used cachegrind2 to simulate
the memory hierarchy of an OMAP versus an AMD
K8 desktop processor with 64Kb of L1 cache and
512Kb of L2 cache, with results shown in Table 3.

While other work on efficient recognition has fo-
cused on quantization of the Gaussian parameters
(Leppänen and Kiss, 2005), in a semi-continuous
model, the number of these parameters is small

2http://valgrind.org/

22

Function ARM K8
hmm vit eval 5st lr 4.71 3.95

hmm sen active 3.55 3.76
get scores4 8b 2.87 1.92

prune root chan 2.07 2.29
prune nonroot chan 1.99 1.73

eval cb 1.73 1.77
hmm vit eval 5st lr mpx 1.30 0.80

Table 3: Data cache misses (units of 107)

enough that little cost is incurred by storing and cal-
culating them as 32-bit fixed-point numbers. There-
fore, we focus here on ways to reduce the amount of
storage and computation used by the mixture weight
distributions.

4 Mixture Roughening

Our method for speeding up mixture computation is
based on the observation that mixture weight distri-
butions are typically fairly “spiky”, with most of the
probability mass concentrated in a small number of
mixture weights. One can quantify this by calculat-
ing the perplexity of the mixture distributions:

pplx(wi) = exp
N∑

k=0

wik log
1
wik

A histogram of perplexities is shown in Figure
1. The perplexity can be interpreted as the average
number of Gaussians which were used to generate
an observation drawn from a particular distribution.
Therefore, on average, the vast majority of the 256
Gaussians contribute minimally to the likelihood of
the data given a particular mixture model.

When evaluating mixture densities with pruned
models, one can either treat these mixture weights
as having a small but non-negligible value, or set
them to zero3. Note that the mixture weights are
renormalized in both cases, and thus the former is
more or less equivalent to add-one smoothing. The
latter can be thought of as exactly the opposite of
smoothing - “roughening” the distribution. To in-
vestigate this, we set all but the top 16 values in each
mixture weight distribution to zero and ran a num-
ber of trials on a K8-based workstation, varing the

3Meaning a very small number, since they are stored in log
domain.

0 50 100 150 200

Perplexity(w)

0

200

400

600

800

1000

#
 o

f
m

ix
tu

re
 w

e
ig

h
ts mode = 10

Figure 1: Perplexity distribution of mixture weights

3 4 5 6 7 8

-log10(mixw_floor)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rf

o
rm

a
n
ce

 (
x
R

T
)

3 4 5 6 7 8
5

10

15

20

25

30

E
rr

o
r

R
a
te

 (
%

W
E
R

)

xRT (16 mixtures)
xRT (baseline)
WER (16 mixtures)
WER (baseline)

Figure 2: Smoothing vs. Roughening, 16 mixtures

mixture weight floor to produce either a smoothing
or roughening effect. We discovered something ini-
tially surprising: “roughening” the mixture weights
speeds up decoding significantly, while smoothing
them slows it down. A plot of speed and error rate
versus mixture weight floor is shown in Figure 2.

However, there is a simple explanation for this.
At each frame, only the top N Gaussian densities
are actually used to calculate the likelihood of the
data:

p(x|λi) =
∑

k∈topN

wikN(x; ~µik, ~σ
2
ik)

When we remove mixture weights, we increase
the probability that these top N densities will be
matched with pruned-out weights. If we smooth the
weights, we may raise some of these weights above
their maximum-likelihood estimate, thus increasing

23

3 4 5 6 7 8

-log10(mixw_floor)

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rf

o
rm

a
n
ce

 (
x
R

T
)

0.10 xRT, 9.68 %WER

3 4 5 6 7 8
9.0

9.5

10.0

10.5

11.0

11.5

E
rr

o
r

R
a
te

 (
%

W
E
R

)

xRT (64 mixtures)
xRT (96 mixtures)
xRT (baseline)
WER (64 mixtures)
WER (96 mixtures)
WER (baseline)

Figure 3: Speed-accuracy tradeoff with pruned mixtures

the likelihood for models whose top mixture weights
do not overlap with the top N densities. This may
prevent HMM states whose output distributions are
modeled by said models from being pruned by beam
search, therefore slowing down the decoder. By
“roughening” the weights, we decrease the likeli-
hood of the data for these models, and hence make
them more likely to be pruned, speeding up the de-
coder and increasing the error rate. This is a kind
of “soft” GMM selection, where instead of exclud-
ing some models, we simply make some more likely
and others less likely.

As we increase the number of retained mixture
weights, we can achieve an optimal tradeoff between
speed and accuracy, as shown in Figure 3. Addition-
ally, the perplexity calculation suggests a principled
way to vary the number of retained mixture weights
for each model. We propose setting a target number
of mixture weights, then calculating a scaling factor
based on the ratio of this target to the average per-
plexity of all models:

topKi =
target

1
N

∑N
i=0 pplx(wi)

pplx(wi)

One problem is that many models have very low
perplexity, such that we end up retaining only a few
mixture weights. When the mixture weights are
“roughened”, this guarantees that these models will
score poorly, regardless of the data. We compensate
for this by keeping a minimum number of mixture
weights regardless of the perplexity. Using a tar-
get of 96 mixtures, a minimum of 16, and a mixture

weight floor of 10−8, we achieve 9.90% word error
rate in 0.09 times real-time, a 21% speedup with a
2.7% relative increase in error (baseline error rate is
9.64% on the desktop).

Using the same entropy-pruned mixture weights
on the N800, we achieve an error rate of 9.79%, run-
ning in 1.19 times real-time, a 15% speedup with a
3.4% relative increase in error. After applying ab-
solute pruning thresholds of 800 HMMs per frame
and 5 words per frame, we obtained a 10.01% word
error rate in 1.01 times real-time.

5 Conclusion

We have shown that a simple pruning technique al-
lows acoustic models trained for large-vocabulary
continuous speech recognition to be “scaled down”
to run in real-time on a mobile device without major
increases in error. In related work, we are exper-
imenting with bottom-up clustering techniques on
the mixture weights to produce truly scalable acous-
tic models, and subvector clustering to derive semi-
continuous models automatically from well-trained
fully-continuous models.

Acknowledgments

We wish to thank Nokia for donating the N800 tablet
used in these experiments.

References
X. D. Huang. 1989. Semi-continuous Hidden Markov

Models for Speech Recognition. Ph.D. thesis, Univer-
sity of Edinburgh.

D. Huggins-Daines, M. Kumar, A. Chan, A. Black,
M. Ravishankar, and A. Rudnicky. 2006. Pocket-
sphinx: A free, real-time continuous speech recogni-
tion system for hand-held devices. In Proceedings of
ICASSP 2006, Toulouse, France.

Q. Huo and C. Chan. 1995. On-line Bayes adaptation of
SCHMM parameters for speech recognition. In Pro-
ceedings of ICASSP 1995, Detroit, USA.

J. Leppänen and I. Kiss. 2005. Comparison of low foot-
print acoustic modeling techniques for embedded ASR
systems. In Proceedings of Interspeech 2005, Lisbon,
Portugal.

D. Paul and J. Baker. 1992. The design for the Wall
Street Journal based CSR corpus. In Proceedings of
the ACL workshop on Speech and Natural Language.

M. Woszczyna. 1998. Fast Speaker Independent Large
Vocabulary Continuous Speech Recognition. Ph.D.
thesis, University of Karlsruhe.

24

