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Abstract 
Biomedical information extraction tasks are of-
ten more complex and contain uncertainty at 
each step during problem solving processes. We 
present an adaptive information extraction 
framework and demonstrate how to explore un-
certainty using feedback integration. 

1 Adaptive Information Extraction 
Biomedical information extraction (IE) tasks are 
often more complex and contain uncertainty at each 
step during problem solving processes.  

When in the first place the desired information is 
not easy to define and to annotate (even by humans), 
iterative IE cycles are to be expected. There might 
be gaps between the domain knowledge representa-
tion and computer processing ability. Domain 
knowledge might be hard to represent in a clear 
format easy for computers to process. Computer sci-
entists may need time to understand the inherent 
characteristics of domain problems so as to find ef-
fective approaches to solve them. All these issues 
mandate a more expressive IE process.  

In these situations, the traditional, straightfor-
ward, and one-pass problem-solving procedure, con-
sisting of definition-learning-testing, is no longer 
adequate for the solution.  

 
Figure 1. Adaptive information extraction. 

For more complex tasks requiring iterative cycles, 
an adaptive and extended IE framework has not yet 
been fully defined although variants have been ex-

plored. We describe an adaptive IE framework to 
characterize the activities involved in complex IE 
tasks. Figure 1 depicts the adaptive information ex-
traction framework.  

This procedure emphasizes one important adap-
tive step between the learning and application 
phases. If the IE result is not adequate, some adapta-
tions are required:  

Our study focuses on extracting tract-tracing ex-
periments (Swanson, 2004) from neuroscience arti-
cles. The goal of tract-tracing experiment is to chart 
the interconnectivity of the brain by injecting tracer 
chemicals into a region of the brain and then identi-
fying corresponding labeled regions where the tracer 
is transported to (Burns et al., 2007). Our work is 
performed in the context of NeuroScholar1, a project 
that aims to develop a Knowledge Base Manage-
ment System to benefit neuroscience research.  

We show how this new framework evolves to 
meet the demands of the more complex scenario of 
biomedical text mining. 
2 Feedback Integration 
This task requires finding the knowledge describing 
one or more experiments within an article as well as 
identifying desired fields within individual sen-
tences. Significant complexity arises from the pres-
ence of a variable number of records (experiments) 
in a single research article --- anywhere from one to 
many. 

 
Table 1. An example tract-tracing experiment. 
Table 1 provides an example of a tract-tracing ex-

periment. In this experiment, when the tracer was 
injected into the injection location “the contralateral 
AVCN”, “no labeled cells” was found in the label-
ing location “the DCN”. 

For sentence level fields labeling, the perform-
ance of F1 score is around 0.79 (Feng et al., 2008). 
                                                           
1 http://www.neuroscholar.org/ 
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We here show how the adaptive information extrac-
tion framework is applied to labeling individual sen-
tences. Please see Feng et al. (2007) for the details 
of segmenting data records. 

2.1 Choosing Learning Approach via F1 

A natural way to label sentences is to obtain (by 
hand or learning) patterns characterizing each field 
(Feng et al., 2006; Ravichandran and Hovy, 2002). 
We tried to annotate field values for the biomedical 
data, but we found few intuitive clues that rich sur-
face text patterns could be learned with this corpus.  

This insight, Feedback F1, caused us to give up 
the idea of learning surface text patterns as usual, 
and switch to the Conditional Random Fields (CRF) 
(Lafferty et al., 2001) for labeling sentences instead. 
In contrast to fixed-order patterns, the CRF model 
provides a compact way to integrate different types 
of features for sequential labeling problems and can 
reach state-of-the-art level performance. 

2.2 Determining Knowledge Schema via F2 

In the first place, it is not clear what granularity of 
knowledge/information can be extracted from text 
and whether the knowledge representation is suitable 
for computer processing. We tried a series of ap-
proaches, using different levels of granularity and 
description, in order to obtain formulation suitable 
for IE. Figure 2 represents the evolution of the 
knowledge schema in our repeated activities.  

 
Figure 2. Knowledge schema evolution. 

 
Figure 3. System performance at stage 1 and 2. 

We initially started with the schema in the left-
most column but our pilot study showed that some 
fields, for example, “label_type”, had too many 
variations in text description, making it very hard for 
CRF to learn clues about it. We then switched to the 
second schema but ended up seeing that the field 
“injectionSpread” needed more domain knowledge 
and was therefore not able to be learned by the sys-
tems. The last column is the final schema after those 

pilot studies. Figure 3 shows system performance 
(overall and the worst field) corresponding to the 
first and the second representation schemas. 

2.3 Exploring Features via F3 

To train CRF sentence labeling systems, it is vital to 
decide what features to use and how to prepare those 
features. Through the cycle of Feedback F3, we ex-
plored five categories of features and their combina-
tions to determine the best features for optimal 
system performance. Table 2 shows system per-
formance with different feature combinations.  

System Features Prec. Recall F_Score 
Baseline 0.4067 0.1761 0.2458 
Lexicon 0.5998 0.3734 0.4602 
Lexicon                   
+ Surface Words 

0.7663 0.7302 0.7478 

Lexicon                   
+ Surface Words     
+ Context Window 

0.7717 0.7279 0.7491 

Lexicon + Surface 
Words + Context 
Window + Window 
Words 

0.8076 0.7451 0.7751 

Lexicon + Surface 
Words + Context 
Window + Window 
Words + Depend-
ency Features  

0.7991 0.7828 0.7909 

Table 2. Precision, Recall, and F_Score for labeling. 
Please see Feng et al. (2008) for the details of the 

sentence level extraction and feature preparation,  
3 Conclusions 
In this paper, we have shown an adaptive informa-
tion extraction framework for complex biomedical 
tasks. Using the iterative development cycle, we 
have been able to explore uncertainty at different 
levels using feedback integration.  
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