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1 Introduction 

There is a broad range of BioNLP tasks for which 
active learning (AL) can significantly reduce anno-
tation costs and a specific AL algorithm we have 
developed is particularly effective in reducing an-
notation costs for these tasks. We have previously 
developed an AL algorithm called ClosestInitPA 
that works best with tasks that have the following 
characteristics: redundancy in training material, 
burdensome annotation costs, Support Vector Ma-
chines (SVMs) work well for the task, and imbal-
anced datasets (i.e. when set up as a binary 
classification problem, one class is substantially 
rarer than the other). Many BioNLP tasks have 
these characteristics and thus our AL algorithm is a 
natural approach to apply to BioNLP tasks.   

2 Active Learning Algorithm 

ClosestInitPA uses SVMs as its base learner. This 
fits well with many BioNLP tasks where SVMs 
deliver high performance (Giuliano et al., 2006; 
Lee et al., 2004). ClosestInitPA is based on the 
strategy of selecting the points which are closest to 
the current model’s hyperplane (Tong and Koller, 
2002) for human annotation. ClosestInitPA works 
best in situations with imbalanced data, which is 
often the case for BioNLP tasks. For example, in 
the AIMed dataset annotated with protein-protein 
interactions, the percentage of pairs of proteins in 
the same sentence that are annotated as interacting 
is only 17.6%.  

SVMs (Vapnik, 1998) are learning systems that 
learn linear functions for classification. A state-
ment of the optimization problem solved by soft-
margin SVMs that enables the use of asymmetric 
cost factors is the following: 
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learned, kx
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is the feature vector for example k, yk 

in {+1,-1} is the label for example k, 
])[1,0max( bxwy kkk +⋅−= rrξ  is the slack vari-

able for example k, and C+ and C- are user-defined 
cost factors that trade off separating the data with a 
large margin and misclassifying training examples. 

Let PA=C+/C-. PA stands for “positive amplifi-
cation.” We use this term because as the PA is in-
creased, the importance of positive examples is 
amplified. ClosestInitPA is described in Figure 3. 
We have previously shown that setting PA based 
on a small initial set of data outperforms the more 
obvious approach of using the current labeled data 
to estimate PA. 

 

 
Figure 3. ClosestInitPA algorithm. 
 

We have previously developed a stopping crite-
rion called staticPredictions that is based on stop-
ping when we detect that the predictions of our 
models on some unlabeled data have stabilized. All 
of the automatic stopping points in our results are 
determined using staticPredictions.  

Initialization: 
• L = small initial set of labeled data 
• U = large pool of unlabeled data 

 
L

L
PA

in  examples pos #

in  examples neg #=  

Loop until stopping criterion is met: 
1. Train an SVM with parameters C+ 

and C- set such that C+/C- = PA. 
2. batch = select k points from U that 

are closest to the hyperplane learned 
in step 1. 
U = U – batch 
L = L U batch 
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3 Experiments 

Protein-Protein Interaction Extraction: We used 
the AImed corpus, which was previously used for 
training protein interaction extraction systems in 
(Giuliano et al., 2006). We cast RE as a binary 
classification task as in (Giuliano et al., 2006). 

We do 10-fold cross validation and use what is 
referred to in (Giuliano et al., 2006) as the KGC 
kernel with SVMlight (Joachims, 1999) in our ex-
periments. Table 1 reports the results. 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 1012 48.33 54.34 
30% 1516 49.76 54.52 
40% 2022 53.11 56.39 
100% 5060 57.54 57.54 
AutoStopPoint 1562 51.25 55.34 
Table 1. AImed Stopping Point Performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 
Medline Text Classification: We use the Oh-
sumed corpus (Hersh, 1994) and a linear kernel 
with SVMlight with binary features for each word 
that occurs in the training data at least three times. 
Results for the five largest categories for one ver-
sus the rest classification are in Table 2. 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 1260 49.99 61.49 
30% 1880 54.18 62.72 
40% 2500 57.46 63.75 
100% 6260 65.75 65.75 
AutoStopPoint 1204 47.06 60.73 
Table 2. Ohsumed stopping point performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 
GENIA NER: We assume a two-phase model 
(Lee et al., 2004) where boundary identification of 
named entities is performed in the first phase and 
the entities are classified in the second phase. As in 
the semantic classification evaluation of (Lee et al., 
2004), we assume that boundary identification has 
been performed. We use features based on those 
from (Lee et al., 2004), a one versus the rest setup 
and 10-fold cross validation. Tables 3-5 show the 
results for the three most common types in 
GENIA. 

 
F Measure StoppingPoint Average # Labels 

Random AL 
20% 13440 86.78 90.16 
30% 20120 87.81 90.27 
40% 26900 88.55 90.32 

100% 67220 90.28 90.28 
AutoStopPoint 8720 85.41 89.24 
Table 3. Protein stopping points performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 13440 79.85 82.06 
30% 20120 80.40 81.98 
40% 26900 80.85 81.84 
100% 67220 81.68 81.68 
AutoStopPoint 7060 78.35 82.29 
Table 4. DNA stopping points performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 13440 84.01 86.76 
30% 20120 84.62 86.63 
40% 26900 85.25 86.45 
100% 67220 86.08 86.08 
AutoStopPoint 4200 81.32 86.31 
 Table 5. Cell Type stopping points performance. “Au-
toStopPoint” is when the stopping criterion says to stop. 

4 Conclusions 

ClosestInitPA is well suited to many BioNLP 
tasks. In experiments, the annotation savings are 
practically significant for extracting protein-protein 
interactions, classifying Medline text, and perform-
ing biomedical named entity recognition.  
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