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Abstract

Like text in other domains, biomedical doc-
uments contain a range of terms with more
than one possible meaning. These ambigu-
ities form a significant obstacle to the auto-
matic processing of biomedical texts. Previ-
ous approaches to resolving this problem have
made use of a variety of knowledge sources in-
cluding linguistic information (from the con-
text in which the ambiguous term is used) and
domain-specific resources (such as UMLS). In
this paper we compare a range of knowledge
sources which have been previously used and
introduce a novel one: MeSH terms. The best
performance is obtained using linguistic fea-
tures in combination with MeSH terms. Re-
sults from our system outperform published
results for previously reported systems on a
standard test set (the NLM-WSD corpus).

1 Introduction

The number of documents discussing biomedical
science is growing at an ever increasing rate, making
it difficult to keep track of recent developments. Au-
tomated methods for cataloging, searching and nav-
igating these documents would be of great benefit
to researchers working in this area, as well as hav-
ing potential benefits to medicine and other branches
of science. Lexical ambiguity, the linguistic phe-
nomena where a word or phrase has more than
one potential meaning, makes the automatic pro-
cessing of text difficult. For example, “cold” has
six possible meanings in the Unified Medical Lan-
guage System (UMLS) Metathesaurus (Humphreys

et al., 1998) including “common cold”, “cold sen-
sation” and “Chronic Obstructive Airway Disease
(COLD)”. The NLM Indexing Initiative (Aronson et
al., 2000) attempted to automatically index biomedi-
cal journals with concepts from the UMLS Metathe-
saurus and concluded that lexical ambiguity was the
biggest challenge in the automation of the indexing
process. Weeber et al. (2001) analysed MEDLINE
abstracts and found that 11.7% of phrases were am-
biguous relative to the UMLS Metathesaurus.

Word Sense Disambiguation (WSD) is the pro-
cess of resolving lexical ambiguities. Previous re-
searchers have used a variety of approaches for
WSD of biomedical text. Some of them have taken
techniques proven to be effective for WSD of gen-
eral text and applied them to ambiguities in the
biomedical domain, while others have created sys-
tems using domain-specific biomedical resources.
However, there has been no direct comparison of
which knowledge sources are the most useful or
whether combining a variety of knowledge sources,
a strategy which has been shown to be successful for
WSD in the general domain (Stevenson and Wilks,
2001), improves results.

This paper compares the effectiveness of a vari-
ety of knowledge sources for WSD in the biomed-
ical domain. These include features which have
been commonly used for WSD of general text as
well as information derived from domain-specific
resources. One of these features is MeSH terms,
which we find to be particularly effective when com-
bined with generic features.

The next section provides an overview of various
approaches to WSD in the biomedical domain. Sec-
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tion 3 outlines our approach, paying particular atten-
tion to the range of knowledge sources used by our
system. An evaluation of this system is presented
in Section 4. Section 5 summarises this paper and
provides suggestions for future work.

2 Previous Work

WSD has been actively researched since the 1950s
and is regarded as an important part of the process
of understanding natural language texts.

2.1 The NLM-WSD data set

Research on WSD for general text in the last decade
has been driven by the SemEval evaluation frame-
works1 which provide a set of standard evaluation
materials for a variety of semantic evaluation tasks.
At this point there is no specific collection for the
biomedical domain in SemEval, but a test collection
for WSD in biomedicine was developed by Wee-
ber et al. (2001), and has been used as a benchmark
by many independent groups. The UMLS Metathe-
saurus was used to provide a set of possible mean-
ings for terms in biomedical text. 50 ambiguous
terms which occur frequently in MEDLINE were
chosen for inclusion in the test set. 100 instances
of each term were selected from citations added to
the MEDLINE database in 1998 and manually dis-
ambiguated by 11 annotators. Twelve terms were
flagged as “problematic” due to substantial disagree-
ment between the annotators. There are an average
of 2.64 possible meanings per ambiguous term and
the most ambiguous term, “cold” has five possible
meanings. In addition to the meanings defined in
UMLS, annotators had the option of assigning a spe-
cial tag (“none”) when none of the UMLS meanings
seemed appropriate.

Various researchers have chosen to evaluate their
systems against subsets of this data set. Liu et al.
(2004) excluded the 12 terms identified as problem-
atic by Weeber et al. (2001) in addition to 16 for
which the majority (most frequent) sense accounted
for more than 90% of the instances, leaving 22 terms
against which their system was evaluated. Leroy and
Rindflesch (2005) used a set of 15 terms for which
the majority sense accounted for less than 65% of
the instances. Joshi et al. (2005) evaluated against

1http://www.senseval.org

the set union of those two sets, providing 28 am-
biguous terms. McInnes et al. (2007) used the set
intersection of the two sets (dubbed the “common
subset”) which contained 9 terms. The terms which
form these various subsets are shown in Figure 1.

The 50 terms which form the NLM-WSD data set
represent a range of challenges for WSD systems.
The Most Frequent Sense (MFS) heuristic has be-
come a standard baseline in WSD (McCarthy et al.,
2004) and is simply the accuracy which would be
obtained by assigning the most common meaning of
a term to all of its instances in a corpus. Despite its
simplicity, the MFS heuristic is a hard baseline to
beat, particularly for unsupervised systems, because
it uses hand-tagged data to determine which sense
is the most frequent. Analysis of the NLM-WSD
data set showed that the MFS over all 50 ambigu-
ous terms is 78%. The different subsets have lower
MFS, indicating that the terms they contain are more
difficult to disambiguate. The 22 terms used by (Liu
et al., 2004) have a MFS of 69.9% while the set
used by (Leroy and Rindflesch, 2005) has an MFS
of 55.3%. The union and intersection of these sets
have MFS of 66.9% and 54.9% respectively.
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Figure 1: The NLM-WSD test set and some of its sub-
sets. Note that the test set used by (Joshi et al., 2005)
comprises the set union of the terms used by (Liu et al.,
2004) and (Leroy and Rindflesch, 2005) while the “com-
mon subset” is formed from their intersection.

2.2 WSD of Biomedical Text

A standard approach to WSD is to make use of
supervised machine learning systems which are
trained on examples of ambiguous words in con-
text along with the correct sense for that usage. The

81



models created are then applied to new examples of
that word to determine the sense being used.

Approaches which are adapted from WSD of gen-
eral text include Liu et al. (2004). Their technique
uses a supervised learning algorithm with a vari-
ety of features consisting of a range of collocations
of the ambiguous word and all words in the ab-
stract. They compared a variety of supervised ma-
chine learning algorithms and found that a decision
list worked best. Their best system correctly dis-
ambiguated 78% the occurrences of 22 ambiguous
terms in the NLM-WSD data set (see Section 2.1).

Joshi et al. (2005) also use collocations as features
and experimented with five supervised learning al-
gorithms: Support Vector Machines, Naive Bayes,
decision trees, decision lists and boosting. The Sup-
port Vector Machine performed scoring 82.5% on
a set of 28 words (see Section 2.1) and 84.9% on
the 22 terms used by Liu et al. (2004). Performance
of the Naive Bayes classifier was comparable to the
Support Vector Machine, while the other algorithms
were hampered by the large number of features.

Examples of approaches which have made use of
knowledge sources specific to the biomedical do-
main include Leroy and Rindflesch (2005), who re-
lied on information from the UMLS Metathesaurus
assigned by MetaMap (Aronson, 2001). Their sys-
tem used information about whether the ambigu-
ous word is the head word of a phrase identified by
MetaMap, the ambiguous word’s part of speech, se-
mantic relations between the ambiguous words and
surrounding words from UMLS as well as semantic
types of the ambiguous word and surrounding word.
Naive Bayes was used as a learning algorithm. This
approach correctly disambiguated 65.6% of word in-
stances from a set of 15 terms (see Section 2.1).
Humphrey et al. (2006) presented an unsupervised
system that also used semantic types. They con-
structed semantic type vectors for each word from
a large collection of MEDLINE abstracts. This al-
lowed their method to perform disambiguation at a
coarser level, without the need for labeled training
examples. In most cases the semantic types can be
mapped to the UMLS concepts but not for five of the
terms in the NLM-WSD data set. Humphrey et al.
(2006) reported 78.6% accuracy over the remaining
45. However, their approach could not be applied
to all instances of ambiguous terms and, in particu-

lar, is unable to model the “none” tag. Their system
could only assign senses to an average of 54% of the
instances of each ambiguous term.

McInnes et al. (2007) made use of Concept
Unique Identifiers (CUIs) from UMLS which are
also assigned by MetaMap. The information con-
tained in CUIs is more specific than in the semantic
types applied by Leroy and Rindflesch (2005). For
example, there are two CUIs for the term “culture”
in UMLS: “C0010453: Anthropological Culture”
and “C0430400: Laboratory Culture”. The seman-
tic type for the first of these is “Idea or Concept” and
“Laboratory Procedure” for the second. McInnes et
al. (2007) were interested in exploring whether the
more specific information contained in CUIs was
more effective than UMLS semantic types. Their
best result was reported for a system which repre-
sented each sense by all CUIs which occurred at
least twice in the abstract surrounding the ambigu-
ous word. They used a Naive Bayes classifier as the
learning algorithm. McInnes et al. (2007) reported
an accuracy of 74.5% on the set of ambiguous terms
tested by Leroy and Rindflesch (2005) and 80.0% on
the set used by Joshi et al. (2005). They concluded
that CUIs are more useful for WSD than UMLS se-
mantic types but that they are not as robust as fea-
tures which are known to work in general English,
such as unigrams and bigrams.

3 Approach

Our approach is to adapt a state-of-the-art WSD sys-
tem to the biomedical domain by augmenting it with
additional domain-specific and domain-independent
knowledge sources. Our basic system (Agirre and
Martı́nez, 2004) participated in the Senseval-3 chal-
lenge (Mihalcea et al., 2004) with a performance
close to the best system for the English and Basque
lexical sample tasks. The system is based on a su-
pervised learning approach. The features used by
Agirre and Martı́nez (2004) are derived from text
around the ambiguous word and are domain inde-
pendent. We refer to these as linguistic features.
This feature set has been adapted for the disam-
biguation of biomedical text by adding further lin-
guistic features and two different types of domain-
specific features: CUIs (as used by (McInnes et al.,
2007)) and Medical Subject Heading (MeSH) terms.
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3.1 Features
Our feature set contains a number of parameters
which were set empirically (e.g. threshold for un-
igram frequency in the linguistic features). In addi-
tion, we use the entire abstract as the context of the
ambiguous term for relevant features rather than just
the sentence containing the term. Effects of varying
these parameters are consistent with previous results
(Liu et al., 2004; Joshi et al., 2005; McInnes et al.,
2007) and are not reported in this paper.

Linguistic features: The system uses a wide
range of domain-independent features which are
commonly used for WSD.

• Local collocations: A total of 41 features which
extensively describe the context of the am-
biguous word and fall into two main types:
(1) bigrams and trigrams containing the am-
biguous word constructed from lemmas, word
forms or PoS tags2 and (2) preceding/following
lemma/word-form of the content words (adjec-
tive, adverb, noun and verb) in the same sen-
tence with the target word. For example, con-
sider the sentence below with the target word
adjustment.

“Body surface area adjustments of
initial heparin dosing...”

The features would include the following: left-
content-word-lemma “area adjustment”, right-
function-word-lemma “adjustment of ”, left-
POS “NN NNS”, right-POS “NNS IN”, left-
content-word-form “area adjustments”, right-
function-word-form “adjustment of ”, etc.

• Syntactic Dependencies: These features model
longer-distance dependencies of the ambigu-
ous words than can be represented by the lo-
cal collocations. Five relations are extracted:
object, subject, noun-modifier, preposition and
sibling. These are identified using heuristic pat-
terns and regular expressions applied to PoS tag
sequences around the ambiguous word. In the
above example, “heparin” is noun-modifier fea-
ture of “adjustment”.

2A maximum-entropy-based part of speech tagger was used
(Ratnaparkhi, 1996) without the adaptation to the biomedical
domain.

• Salient bigrams: Salient bigrams within the ab-
stract with high log-likelihood scores, as de-
scribed by Pedersen (2001).

• Unigrams: Lemmas of unigrams which appear
more frequently than a predefined threshold in
the entire corpus, excluding those in a list of
stopwords. We empirically set the threshold
to 1. This feature was not used by Agirre and
Martı́nez (2004), but Joshi et al. (2005) found
them to be useful for this task.

Concept Unique Identifiers (CUIs): We follow
the approach presented by McInnes et al. (2007) to
generate features based on UMLS Concept Unique
Identifiers (CUIs). The MetaMap program (Aron-
son, 2001) identifies all words and terms in a
text which could be mapped onto a UMLS CUI.
MetaMap does not disambiguate the senses of the
concepts, instead it enumerates all the possible com-
binations of the concept names found. For exam-
ple, MetaMap will segment the phrase “Body sur-
face area adjustments of initial heparin dosing ...”
into two chunks: “Body surface area adjustments”
and “of initial heparin dosing”. The first chunk
will be mapped onto four CUIs with the concept
name “Body Surface Area”: “C0005902: Diag-
nostic Procedure” and “C1261466: Organism At-
tribute” and a further pair with the name “Adjust-
ments”: “C0456081: Health Care Activity” and
“C0871291: Individual Adjustment”. The final re-
sults from MetaMap for the first chunk will be eight
combinations of those concept names, e.g. first four
by second two concept names. CUIs which occur
more than three times in the abstract containing the
ambiguous word are included as features.

Medical Subject Headings (MeSH): The fi-
nal feature is also specific to the biomedical do-
main. Medical Subject Headings (MeSH) (Nelson
et al., 2002) is a controlled vocabulary for index-
ing biomedical and health-related information and
documents. MeSH terms are manually assigned to
abstracts by human indexers. The latest version of
MeSH contains over 24,000 terms organised into an
11 level hierarchy.

The terms assigned to the abstract in which
each ambiguous word occurs are used as fea-
tures. For example, the abstract containing our
example phrase has been assigned 16 MeSH
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terms including “M01.060.116.100: Aged”,
“M01.060.116.100.080: Aged, 80 and over”,
“D27.505.954.502.119: Anticoagulants” and
“G09.188.261.560.150: Blood Coagulation”. To
our knowledge MeSH terms have not been pre-
viously used as a feature for WSD of biomedical
documents.

3.2 Learning Algorithms

We compared three machine leaning algorithms
which have previously been shown to be effective
for WSD tasks.

The Vector Space Model is a memory-based
learning algorithm which was used by (Agirre and
Martı́nez, 2004). Each occurrence of an ambiguous
word is represented as a binary vector in which each
position indicates the occurrence/absence of a fea-
ture. A single centroid vector is generated for each
sense during training. These centroids are compared
with the vectors that represent new examples using
the cosine metric to compute similarity. The sense
assigned to a new example is that of the closest cen-
troid.

The Naive Bayes classifier is based on a proba-
bilistic model which assumes conditional indepen-
dence of features given the target classification. It
calculates the posterior probability that an instance
belongs to a particular class given the prior proba-
bilities of the class and the conditional probability
of each feature given the target class.

Support Vector Machines have been widely
used in classification tasks. SVMs map feature vec-
tors onto a high dimensional space and construct a
classifier by searching for the hyperplane that gives
the greatest separation between the classes.

We used our own implementation of the Vector
Space Model and Weka implementations (Witten
and Frank, 2005) of the other two algorithms.

4 Results

This system was applied to the NLM-WSD data set.
Experiments were carried out using each of the three
types of features (linguistic, CUI and MeSH) both
alone and in combination. Ten-fold cross valida-
tion was used, and the figures we report are averaged
across all ten runs.

Results from this experiment are shown in Table

1 which lists the performance using combinations of
learning algorithm and features. The figure shown
for each configuration represents the percentage of
instances of ambiguous terms which are correctly
disambiguated.

These results show that each of the three types
of knowledge (linguistic, CUIs and MeSH) can be
used to create a classifier which achieves a reason-
able level of disambiguation since performance ex-
ceeds the relevant baseline score. This suggests that
each of the knowledge sources can contribute to the
disambiguation of ambiguous terms in biomedical
text.

The best performance is obtained using a combi-
nation of the linguistic and MeSH features, a pattern
observed across all test sets and machine learning
algorithms. Although the increase in performance
gained from using both the linguistic and MeSH
features compared to only the linguistic features is
modest it is statistically significant, as is the differ-
ence between using both linguistic and MeSH fea-
tures compared with using the MeSH features alone
(Wilcoxon Signed Ranks Test, p < 0.01).

Combining MeSH terms with other features gen-
erally improves performance, suggesting that the
information contained in MeSH terms is distinct
from the other knowledge sources. However, the
inclusion of CUIs as features does not always im-
prove performance and, in several cases, causes it to
fall. This is consistent with McInnes et al. (2007)
who concluded that CUIs were a useful informa-
tion source for disambiguation of biomedical text
but that they were not as robust as a linguistic knowl-
edge source (unigrams) which they had used for a
previous system. The most likely reason for this is
that our approach relies on automatically assigned
CUIs, provided by MetaMap, while the MeSH terms
are assigned manually. We do not have access to a
reliable assignment of CUIs to text; if we had WSD
would not be necessary. On the other hand, reli-
ably assigned MeSH terms are readily available in
Medline. The CUIs assigned by MetaMap are noisy
while the MeSH terms are more reliable and prove
to be a more useful knowledge source for WSD.

The Vector Space Model learning algorithm per-
forms significantly better than both Support Vector
Machine and Naive Bayes (Wilcoxon Signed Ranks
Test, p < 0.01). This pattern is observed regardless
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Features
CUI+ Linguistic Linguistic Linguistic+Data sets Linguistic CUI MeSH
MeSH +MeSH +CUI MeSH+CUI

Vector space model
All words 87.2 85.8 81.9 86.9 87.8 87.3 87.6

Joshi subset 82.3 79.6 76.6 81.4 83.3 82.4 82.6
Leroy subset 77.8 74.4 70.4 75.8 79.0 78.0 77.8

Liu subset 84.3 81.3 78.3 83.4 85.1 84.3 84.5
Common subset 79.6 75.1 70.4 76.9 80.8 79.6 79.2

Naive Bayes
All words 86.2 81.2 85.7 81.1 86.4 81.4 81.5

Joshi subset 80.6 73.4 80.1 73.3 80.9 73.7 73.8
Leroy subset 76.4 66.1 74.6 65.9 76.8 66.3 66.3

Liu subset 81.9 75.4 81.7 75.3 82.2 75.5 75.6
Common subset 76.7 66.1 74.7 65.8 77.2 65.9 65.9

Support Vector Machine
All words 85.6 83.5 85.3 84.5 86.1 85.3 85.6

Joshi subset 79.8 76.4 79.5 78.0 80.6 79.1 79.8
Leroy subset 75.1 69.7 72.6 72.0 76.3 74.2 74.9

Liu subset 81.3 78.2 81.0 80.0 82.0 80.6 81.2
Common subset 75.7 69.8 71.6 73.0 76.8 74.7 75.2

Previous Approaches
MFS Liu et. al. Leroy and Joshi et. McInnes et.

baseline (2004) Rindflesch (2005) al. (2005) al. (2007)
All words 78.0 – – – 85.3

Joshi subset 66.9 – – 82.5 80.0
Leroy subset 55.3 – 65.5 77.4 74.5

Liu subset 69.9 78.0 – 84.9 82.0
Common subset 54.9 – 68.8 79.8 75.7

Table 1: Results from WSD system applied to various sections of the NLM-WSD data set using a variety of fea-
tures and machine learning algorithms. Results from baseline and previously published approaches are included for
comparison.

of which set of features are used, and it is consis-
tent of the results in Senseval data from (Agirre and
Martı́nez, 2004).

4.1 Per-Word Analysis

Table 2 shows the results of our best performing sys-
tem (combination of linguistic and MeSH features
using the Vector Space Model learning algorithm).
Comparable results for previous supervised systems
are also reported where available.3 The MFS base-
line for each term is shown in the leftmost column.

The performance of Leroy and Rindflesch’s sys-

3It is not possible to directly compare our results with Liu
et al. (2004) or Humphrey et al. (2006). The first report only
optimal configuration for each term (combination of feature sets
and learning algorithm) while the second do not assign senses
to all of the instances of each ambiguous term (see Section 2).

tem is always lower than the best result for each
word. The systems reported by Joshi et al. (2005)
and McInnes et al. (2007) are better than, or the
same as, all other systems for 14 and 12 words re-
spectively. The system reported here achieves re-
sults equal to or better than previously reported sys-
tems for 33 terms.

There are seven terms for which the performance
of our approach is actually lower than the MFS base-
line (shown in italics) in Table 2. (In fact, the base-
line outperforms all systems for four of these terms.)
The performance of our system is within 1% of the
baseline for five of these terms. The remaining pair,
“blood pressure” and “failure”, are included in the
set of problematic words identified by (Weeber et
al., 2001). Examination of the possible senses show
that they include pairs with similar meanings. For
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MFS Leroy and Joshi et. McInnes et. Reported
baseline Rindflesch (2005) al. (2005) al. (2007) system

adjustment 62 57 71 70 74
association 100 - - 97 100

blood pressure 54 46 53 46 46
cold 86 - 90 89 88

condition 90 - - 89 89
culture 89 - - 94 95
degree 63 68 89 79 95

depression 85 - 86 81 88
determination 79 - - 81 87

discharge 74 - 95 96 95
energy 99 - - 99 98

evaluation 50 57 69 73 81
extraction 82 - 84 86 85

failure 71 - - 73 67
fat 71 - 84 77 84
fit 82 - - 87 88

fluid 100 - - 99 100
frequency 94 - - 94 94
ganglion 93 - - 94 96
glucose 91 - - 90 91
growth 63 62 71 69 68

immunosuppression 59 61 80 75 80
implantation 81 - 94 92 93

inhibition 98 - - 98 98
japanese 73 - 77 76 75

lead 71 - 89 90 94
man 58 80 89 80 90

mole 83 - 95 87 93
mosaic 52 66 87 75 87

nutrition 45 48 52 49 54
pathology 85 - 85 84 85

pressure 96 - - 93 95
radiation 61 72 82 81 84
reduction 89 - 91 92 89

repair 52 81 87 93 88
resistance 97 - - 96 98

scale 65 84 81 83 88
secretion 99 - - 99 99

sensitivity 49 70 88 92 93
sex 80 - 88 87 87

single 99 - - 98 99
strains 92 - - 92 93

support 90 - - 91 89
surgery 98 - - 94 97

transient 99 - - 98 99
transport 93 - - 93 93

ultrasound 84 - 92 85 90
variation 80 - - 91 95

weight 47 68 83 79 81
white 49 62 79 74 76

Table 2: Per-word performance of best reported systems.

example, the two senses which account for 98% of
the instances of “blood pressure”, which refer to the
blood pressure within an organism and the result ob-
tained from measuring this quantity, are very closely
related semantically.

5 Conclusion

This paper has compared a variety of knowledge
sources for WSD of ambiguous biomedical terms
and reported results which exceed the performance
of previously published approaches. We found that
accurate results can be achieved using a combina-
tion of linguistic features commonly used for WSD
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of general text and manually assigned MeSH terms.
While CUIs are a useful source of information for
disambiguation, they do not improve the perfor-
mance of other features when used in combination
with them. Our approach uses manually assigned
MeSH terms while the CUIs are obtained automati-
cally using MetaMap.

The linguistic knowledge sources used in this pa-
per comprise a wide variety of features including
n-grams and syntactic dependencies. We have not
explored the effectiveness of these individually and
this is a topic for further work.

In addition, our approach does not make use of
the fact that MeSH terms are organised into a hierar-
chy. It would be interesting to discover whether this
information could be used to improve WSD perfor-
mance. Others have developed techniques to make
use of hierarchical information in WordNet for WSD
(see Budanitsky and Hirst (2006)) which could be
adapted to MeSH.

References

E. Agirre and D. Martı́nez. 2004. The Basque Coun-
try University system: English and Basque tasks. In
Rada Mihalcea and Phil Edmonds, editors, Senseval-
3: Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages 44–
48, Barcelona, Spain, July.

A. Aronson, O. Bodenreider, H. Chang, S. Humphrey,
J. Mork, S. Nelson, T. Rindflesch, and W. Wilbur.
2000. The NLM Indexing Initiative. In Proceedings
of the AMIA Symposium.

A. Aronson. 2001. Effective mapping of biomedical text
to the UMLS Metathesaurus: the MetaMap program.
In Proceedings of the American Medical Informatics
Association (AMIA), pages 17–21.

A. Budanitsky and G. Hirst. 2006. Evaluating WordNet-
based measures of semantic distance. Computational
Linguistics, 32(1):13–47.

S. Humphrey, W. Rogers, H. Kilicoglu, D. Demner-
Fushman, and T. Rindflesch. 2006. Word Sense Dis-
ambiguation by selecting the best semantic type based
on Journal Descriptor Indexing: Preliminary experi-
ment. Journal of the American Society for Information
Science and Technology, 57(5):96–113.

L. Humphreys, D. Lindberg, H. Schoolman, and G. Bar-
nett. 1998. The Unified Medical Language System:
An Informatics Research Collaboration. Journal of the
American Medical Informatics Association, 1(5):1–11.

M. Joshi, T. Pedersen, and R. Maclin. 2005. A Compara-
tive Study of Support Vector Machines Applied to the
Word Sense Disambiguation Problem for the Medical
Domain. In Proceedings of the Second Indian Confer-
ence on Artificial Intelligence (IICAI-05), pages 3449–
3468, Pune, India.

G. Leroy and T. Rindflesch. 2005. Effects of Information
and Machine Learning algorithms on Word Sense Dis-
ambiguation with small datasets. International Jour-
nal of Medical Informatics, 74(7-8):573–585.

H. Liu, V. Teller, and C. Friedman. 2004. A Multi-aspect
Comparison Study of Supervised Word Sense Disam-
biguation. Journal of the American Medical Informat-
ics Association, 11(4):320–331.

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. 2004.
Finding predominant senses in untagged text. In Pro-
ceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Lingusitics (ACL-2004), pages
280–287, Barcelona, Spain.

B. McInnes, T. Pedersen, and J. Carlis. 2007. Using
UMLS Concept Unique Identifiers (CUIs) for Word
Sense Disambiguation in the Biomedical Domain. In
Proceedings of the Annual Symposium of the Ameri-
can Medical Informatics Association, pages 533–537,
Chicago, IL.

R. Mihalcea, T. Chklovski, and A. Kilgarriff. 2004. The
Senseval-3 English lexical sample task. In Proceed-
ings of Senseval-3: The Third International Workshop
on the Evaluation of Systems for the Semantic Analysis
of Text, Barcelona, Spain.

S. Nelson, T. Powell, and B. Humphreys. 2002. The
Unified Medical Language System (UMLS) Project.
In Allen Kent and Carolyn M. Hall, editors, Ency-
clopedia of Library and Information Science. Marcel
Dekker, Inc.

T. Pedersen. 2001. A Decision Tree of Bigrams is an
Accurate Predictor of Word Sense. In Proceedings
of the Second Meeting of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL-01), pages 79–86, Pittsburgh, PA., June.

A. Ratnaparkhi. 1996. A Maximum Entropy Model for
Part-of-Speech Tagging. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 133–142.

M. Stevenson and Y. Wilks. 2001. The Interaction of
Knowledge Sources in Word Sense Disambiguation.
Computational Linguistics, 27(3):321–350.

M. Weeber, J. Mork, and A. Aronson. 2001. Developing
a Test Collection for Biomedical Word Sense Disam-
biguation. In Proceedings of AMAI Symposium, pages
746–50, Washington, DC.

I. Witten and E. Frank. 2005. Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann, San Francisco.

87


