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Abstract

This paper presents an active learning-like
framework for reducing the human effort for
making named entity annotations in a corpus.
In this framework, the annotation work is per-
formed as an iterative and interactive process
between the human annotator and a proba-
bilistic named entity tagger. At each itera-
tion, sentences that are most likely to con-
tain named entities of the target category are
selected by the probabilistic tagger and pre-
sented to the annotator. This iterative anno-
tation process is repeated until the estimated
coverage reaches the desired level. Unlike ac-
tive learning approaches, our framework pro-
duces a named entity corpus that is free from
the sampling bias introduced by the active
strategy. We evaluated our framework by
simulating the annotation process using two
named entity corpora and show that our ap-
proach could drastically reduce the number
of sentences to be annotated when applied to
sparse named entities.

I ntroduction

However, the lack of annotated corpora, which are
indispensable for training machine learning models,
makes it difficult to broaden the scope of text mining
applications. In the biomedical domain, for exam-
ple, several annotated corpora such as GENIA (Kim
et al., 2003), PennBiolE (Kulick et al., 2004), and
GENETAG (Tanabe et al., 2005) have been created
and made publicly available, but the named entity
categories annotated in these corpora are tailored to
their specific needs and not always sufficient or suit-
able for text mining tasks that other researchers need
to address.

Active learning is a framework which can be used
for reducing the amount of human effort required to
create a training corpus (Dagan and Engelson, 1995;
Engelson and Dagan, 1996; Thompson et al., 1999;
Shen et al., 2004). In active learning, samples that
need to be annotated by the human annotator are
picked up by a machine learning model in an iter-
ative and interactive manner, considering the infor-
mativeness of the samples. Active learning has been
shown to be effective in several natural language
processing tasks including named entity recognition.

Named entities play a central role in conveying im- The problem with active learning is, however, that

portant domain specific information in text, andthe resulting annotated data is highly dependent on
good named entity recognizers are often requireitie machine learning algorithm and the sampling
in building practical information extraction systemsstrategy employed, because active learning anno-
Previous studies have shown that automatic nameates only asubset of the given corpus. This sam-
entity recognition can be performed with a reasonpling bias is not a serious problem if one is to use the
able level of accuracy by using various machin@nnotated corpus only for their own machine learn-
learning models such as support vector machinasg purpose and with the same machine learning al-
(SVMs) or conditional random fields (CRFs) (Tjonggorithm. However, the existence of bias is not desir-
Kim Sang and De Meulder, 2003; Settles, 2004able if one also wants the corpus to be used by other
Okanohara et al., 2006). applications or researchers. For the same reason, ac-
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tive learning approaches cannot be used to enrich anl. Select the first sentences from the corpus and
existing linguistic corpus with a new named entity annotate the named entities of the target cate-
category. gory.

In this paper, we present a framework that enables
one to make named entity annotations for a given 2.
corpus with a reduced cost. Unlike active learn-
ing approaches, our framework aims to annotdke
named entities of the target category contained in
the corpus. Obviously, if we were to ensure 100%
coverage of annotation, there is no way of reducing
the annotation cost, i.e. the human annotator has to
go through every sentence in the corpus. However,4. Annotate the selected sentences.
we show in this paper that it is possible to reduce , _
the cost by slightly relaxing the requirement for the ©- G0 back to 2 (repeat until the estimated cover-
coverage, and the reduction can be drastic when the 29€ reaches a satisfactory level).
target named entities are sparse.

We should note here that the purpose of this pf_igurg 1: Annotating named entities by dynamic sentence
per is not to claim that our approach is superior t§/€ction.
existing active learning approaches. The goals are
different—while active learning aims at optimizing differences are the criterion of sentence selection
the performance of the resulting machine learningand the fact that our framework uses the estimated
based tagger, our framework aims to help develogoverage as the stopping condition. In active learn-
an unbiased named entity-annotated corpus. ing, sentences are selected according to their infor-

This paper is organized as follows. Section 2 demativeness to the machine learning algorithm. Our
scribes the overall annotation flow in our frameworkapproach, in contrast, selects sentences that are most
Section 3 presents how to select sentences using tieely to contain named entities of the target cate-
output of a probabilistic tagger. Section 4 describegory. Section 3 elaborates on how to select sentences
how to estimate the coverage during the course eising the output of the CRF-based tagger.
annotation. Experimental results using two named The other key in this annotation framework is
entity corpora are presented in section 5. Sectionwehen to stop the annotation work. If we repeat the
describes related work and discussions. Concludimrocess until all sentences are annotated, then obvi-
remarks are given in section 7. ously there is not merit of using this approach. We

show in section 4 that we can quite accurately esti-
2 Annotating Named Entitiesby Dynamic  mate how much of the entities in the corpus are al-
Sentence Selection ready annotated and use this estimated coverage as

_ ~ the stopping condition.
Figure 1 shows the overall flow of our annotation

framework. The framework is an iterative procesg Selecting Sentences using the CRF
between the human annotator and a named entity tagger
tagger based on CRFs. In each iteration, the CRF
tagger is trained using all annotated sentences avafur annotation framework takes advantage of the
able and is applied to the unannotated sentencesability of CRFs to output multiple probabilistic hy-
select sentences that are likely to contain namdeptheses. This section describes how we obtain
entities of the target category. The selected seffamed entity candidates and their probabilities from
tences are then annotated by the human annotafeRFs in order to compute the expected number of
and moved to the pool of annotated sentences.  hamed entities contained in a sentefice

This overall flow of annotation framework is very  iwe could use other machine learing algorithms for this
similar to that of active learning. In fact, the onlypurpose as long as they can produce probabilistic output. Fo

Train a CRF tagger using all annotated sen-
tences.

3. Apply the CRF tagger to the unannotated sen-
tences in the corpus and select the togen-
tences that are most likely to contain target
named entities.

31



3.1 TheCRF tagger Word Unigram Wi, Wi—1, Wit & y;

CRFs (Lafferty et al., 2001) can be used for nameg POS Unigram | pi, pi—1, Pit1 & yi
) " . Prefix, Suffix prefixes ofw; & 1;
entity recognition by representing the spans of suffixes ofw. &
named entities using the “BIO” tagging scheme, in o len 7“:;] 3 Yi
which ‘B’ represents the beginning of a named en N i7ed Word f\l:p - gth 3) Ry
tity, ‘I' the inside, and ‘O’ the outside (See Table 2 ormalize or (w:) Yi
Word Shape S(w;) & y;

for example). This representation converts the tas 20 B Z
of named entity recognition into a sequence tagging_29 2-9ram true Yi-1Yi

task. Table 1: Feature templates used in the CRF tagger.
A linear chain CRF defines a single log-linear

probabilistic distribution over the possible tag se-

quencey for a sentence: 3.2 Computing the expected number of named
entities
1 T K _ _
p(ylx) = expz Z N fi (£, Yo, Y1, Xt To select s_gntences that are most likely to contain
Z(x) =1 k=1 named entities of the target category, we need to

obtain theexpected number of named entities con-
where fi.(t, yi, y1—1,%¢) IS typically a binary func- tained in each sentence. CRFs are well-suited for
tion indicating the presence of featuke )\ is the this task as the output is fully probabilistic.
weight of the feature, and (X) is a normalization  Suppose, for example, that the sentence is “Tran-

function: scription factor GATA-1 and the estrogen receptor”.
o Table 2 shows an example of the 5-best sequences
_ output by the CRF tagger. The sequences are rep-

2(x) = Xy:eXp;k; et Yoo Y1, X1)- resented by the aforementioned “BIO” representa-

tion. For example, the first sequence indicates that

This modeling allows us to define features on statdgere is one named entity “Transcription factor’ in

(“BIO” tags) and edges (pairs of adjacent «B|0”the sequence. By summing up these probabilistic se-
tags) combined with observations (e.g. words an@Ue€nces, we can compute the probabilities for pos-
part-of-speech (POS) tags). sible named entities in a sentence. From the five se-

The weights of the features are determined@uences in Table 2, we obtain the following three
in such a way that they maximize the condinamed entities and their corresponding probabilities.

tional Iog-IikeIi}hoo‘d of the training dafa’ (d) = ‘Transcription factor’ (0.677 + 0.242 = 0.916)
Zg\il log py(y/|x"). ' We use the L-BFGS algo- ‘estrogen receptor’ (0.242 + 0.009 = 0.251)
rithm (Nocgdal, 1980) to compute those pgrameters. “Transcription factor GATA-1’ (0.012 + 0.009 =
Table 1 lists the feature templates used in the CR('f.OZl)

tagger. We used unigrams of words/POS tags, and
prefixes and suffixes of the current word. The cur- The expected number of named entities in this
rent word is also normalized by lowering capital letsentence can then be calculated as 0.916 + 0.251 +
ters and converting all numerals into ‘#, and used.021 = 1.188.
as a feature. We created a word shape feature fromin this example, we used 5-best sequences as an
the current word by converting consecutive capitahpproximation of all possible sequences output by
letters into ‘A, small letters ‘a’, and numerals #. the tagger, which are needed to compute the exact
S _expected number of entities. One possible way to
example, maximum entropy Markov models are a possible al- | . . L

ghieve a good approximation is to use a lakgéor

ternative. We chose the CRF model because it has been pro@ . )
to deliver state-of-the-art performance for named enégog-  V-best sequences, but there is a simpler and more

nition tasks by previous studies. efficient way 2, which directly produces the exact
2In the actual implementation, we used L2 norm penalty for
regularization. 3We thank an anonymous reviewer for pointing this out.
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Probability | Transcription factor GATA-1 and the estrogen receptor
0.677 B [ [¢) O O [¢) ¢]
0.242 B [ o) O O B |
0.035 0 o) o) O O o) o)
0.012 B [ [ O O o} 0
0.009 B [ [ O O B [
Table 2: N-best sequences output by the CRF tagger.
expected number of entities. Recall that named enti- # Entities| Sentences (%)
ties are represented with the “BIO” tags. Since one CoNLL: LOC 7,140| 5,127 (36.5%)
entity always contains one “B” tag, we can compute CoNLL: MISC 3,438 | 2,698 (19.2%)
the number of expected entities by simply summing CoNLL: ORG 6,321 | 4,587 (32.7%)
up the marginal probabilities for the “B” tag on each CoNLL: PER 6,600 4,373 (31.1%)
token in the sentenée GENIA: DNA 2,017 | 5,251 (28.3%)
Once we compute the expected number of enti- GENIA: RNA 225 810 ( 4.4%)
ties for every unannotated sentence in the corpusGENIA: cellline 835| 2,880 (15.5%)
we sort the sentences in descending order of the exGENIA: cell_type 1,104 | 5,212 (28.1%)
pected number of entities and choose thertagen-  GENIA!: protein 5,272 13,040 (70.3%)

tences to be presented to the human annotator. Table 3: Statistics of named entities.

4 Coverage Estimation
5 Experiments
To ensure the quality of the resulting annotated cor-

pus, it is crucial to be able to know the current covWe carried out experiments to see how our method

erage of annotation at each iteration in the annotga"n IMprove thed eﬁlglgncyv\c/)f annlotatlon proce; s q
tion process. To compute the coverage, howeveflc,)r sparseé name entltles_. ceva uate_our m_et_ 0
one needs to know the total number of target namé?}/ simulating the annotation pracess using existing

entities in the corpus. The problem is that it is nopamed entity corpora. In _other words, we use the
known until all sentences are annotated. gold-standard annotations in the corpus as the anno-

tations that would be made by the human annotator

In this paper, we solve this dilemma by usingduring the annotation process

an estimated value for the total number of entities.
Then, the estimated coverage can be computed 83 Corpus

follows: We used two named entity corpora for the exper-
. m iments. One is the training data provided for the
(estimated_coverage) = ————=—— Y B (1) CoNLL-2003 shared task (Tjong Kim Sang and

De Meulder, 2003), which consists of 14,041 sen-
Jences and includes four named entity categories

so far andE; is the expected number of entities in(LOC’ MISC, ORG, and PER,) for the general do-

sentencéd, andU is the set of unannotated sentence@ain' The other is the tra'ining data provided.for
in the corpus. At any iterationn is always known the NLPBA shared task (Kim et al., 2004), which

andF; is obtained from the output of the CRFtaggelconS'StS_ of 18,546 sente:“c_es an(Iijlve nan;ed entity
as explained in the previous section. cqtegones (D,NA' R'_\IA’ cefling, ce t.ype, and pro-
tein) for the biomedical domain. This corpus is cre-
“The marginal probabilities on each token can be compute%ted from the GENIA corpus (Kim et al., 2003) by

by the forward-backward algorithm, which is much more effi-me_rging the original fine-grained named entity cate-
cient than computingv-best sequences for a lardé gories.

wherem is the number of entities actually annotate
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Figure 2: Annotation of LOC in the CoNLL corpus. Figure 4: Annotation of ORG in the CoNLL corpus.
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Figure 3: Annotation of MISC in the CoNLL corpus. Figure 5: Annotation of PER in the CoNLL corpus.

Table 3 shows statistics of the named entities irfhroughout all experiments.
cluded in the corpora. The first column shows the Figures 2 to 5 show the results obtained on the
number of named entities for each category. TheONLL data. The figures show how the coverage
second column shows the number of the sentencé#¥reases as the annotation process proceeds. The
that contain the named entities of each category. Weaxis shows the number of annotated sentences.
can see that some of the named entity categories areEach figure contains three lines. The normal line
very sparse. For example, named entities of “RNArepresents the coverage actually achieved, which is
appear only in 4.4% of the sentences in the corpu§éomputed as follows:
In contrast, named entities of “protein” appear in
more than 70% of the sentences in the corpus. (coverage) =
In the experiments reported in the following sec-

tions, we do not use the “protein” category becausghe dashed line represents the coverage estimated
there is no merit of using our framework when mospy using equation 1. For the purpose of comparison,
sentences are relevant to the target category. the dotted line shows the coverage achieved by the
baseline annotation strategy in which sentences are
52 Results selected sequentially from the beginning to the end
We carried out eight sets of experiments, each af the corpus.
which corresponds to one of those named entity cat- The figures clearly show that our method can
egories shown in Table 3 (excluding the “protein"drastically accelerate the annotation process in com-
category). The number of sentences selected in eaghrrison to the baseline annotation strategy. The im-
iteration (the value of: in Figure 1) was set to 100 provement is most evident in Figure 3, in which

entities_annotated

(2)

total_number _of _entities
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Figure 6: Annotation of DNA in the GENIA corpus.  Figure 8: Annotation of celline in the GENIA corpus.
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Figure 7: Annotation of RNA in the GENIA corpus.  Figure 9: Annotation of celtype in the GENIA corpus.

named entities of the category “MISC” are annoother words, we could roughly halve the annotation
tated. cost by accepting the missing rate of 1.0%.

We should also note that coverage estimation was AS €xpected, the cost reduction was most drastic
surprisingly accurate. In all experiments, the differwhen “RNA’, which is the most sparse named entity
ence between the estimated coverage and the réafegory (see Table 3), was targeted. The cost reduc-
coverage was very small. This means that we cdipn was more than seven-fold. These experimental
safely use the estimated coverage as the stoppif@pults confirm that our annotation framework is par-
condition for the annotation work. ticularly useful when applied to sparse named enti-

Figures 6 to 9 show the experimental results oHES:
the GENIA data. The figures show the same char- Table 4 also shows the timing information on the
acteristics observed in the CONLL data. The acceRXperiments’. One of the potential problems with
eration by our framework was most evident for théhis kind of active learning-like framework is the
“RNA’ category. computation time required to retrain the tagger at

Table 4 shows how much we can save the annot§ach iteration. Since the human annotator has to
tion cost if we stop the annotation process when th&ait while the tagger is being retrained, the compu-
estimated coverage reaches 99%. The first colunfftion time required for retraining the tagger should
shows the coverage actually achieved and the secofigt P& Very long. In our experiments, the worst
column shows the number and ratio of the sentenc&8se (i-6. DNA) required 443 seconds for retrain-
annotated in the corpus. This table shows that, d9 the tagger at the last iteration, but in most cases

average, we can achieve a coverage of 99.0% by an-sye ysed AMD Opteron 2.2GHz servers for the experiments
notating 52.4% of the sentences in the corpus. lind our CRF tagger is implemented in C++.
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Coverage| Sentences Annotated (%) Cumulative Time (second) Last Interval (second)

CoNLL: LOC 99.1% 7,600 (54.1%) 3,362 92
CoNLL: MISC 96.9% 5,400 (38.5%) 1,818 61
CoNLL: ORG 99.7% 8,900 (63.4%) 5,201 104
CoNLL: PER 98.0% 6,200 (44.2%) 2,300 75
GENIA: DNA 99.8% 11,900 (64.2%) 33,464 443
GENIA: RNA 99.2% 2,500 (13.5%) 822 56
GENIA: cellline 99.6% 9,400 (50.7%) 15,870 284
GENIA: cell_type 99.3% 8,600 (46.4%) 13,487 295
Average 99.0% - (52.4%) - R

Table 4: Coverage achieved when the estimated coverageat:88%.

the training time for each iteration was kept undethe same degree of cost reduction.
several minutes. The idea of improving the efficiency of annota-
In this work, we used the BFGS algorithm fortion work by using automatic taggers is certainly not
training the CRF model, but it is probably possible tmew. Tanabe et al. (2005) applied a gene/protein
further reduce the training time by using more recentame tagger to the target sentences and modified
parameter estimation algorithms such as exponenthe results manually. Culotta and McCallum (2005)
ated gradient algorithms (Globerson et al., 2007). proposed to have the human annotator select the
correct annotation from multiple choices produced
6 Discussion and Related Work by a CRF tagger for each sentence. Tomanek et
al. (2007) discuss the reusability of named entity-

Our annotation framework is, by definition, not . .
something that can ensure a coverage of 100%. Tﬁ\gnotated corpora created by an active leaming ap-
roach and show that it is possible to build a cor-

seriousness of a missing rate of, for example, 1% R : : : :
not entirely clear—it depends on the application ang"® that is usefu.I to different machine learning algo-
the purpose of annotation. In general, however, {thms t_o gcgrtam degree. . o

is hard to achieve a coverage of 100% in real an- The limitation of our framework |s't.hat it is use-
notation work even if the human annotator scan@:JI only when the target named entities are sparse

through all sentences, because there is often amgﬁzcause the Upper bound of cost saving is I!mlted
guity in deciding whether a particular named entityloy the proportion of the relevant sentences in the
should be annotated or not. Previous studies repocr?rpus' Our_ framework may therefore not be suit-
that inter-annotator agreement rates with regards ?oble _for a situation whe_r_e one wants to make an-
gene/protein name annotation are f-scores aroufiytations for named entltlies of many cgtegorles sk
90% (Morgan et al., 2004; Vlachos and GasIoerirr’nultaneously (e.g. creating a corpus like GENIA
2006). We believe that the missing rate of 1% can bféom scratch). In contrast, our framework should be

an acceptable level of sacrifice, given the cost redub’—sefm in & situation where one needs to modify or

tion achieved and the unavoidable discrepancy mad:’gmh hamed entity annotations In an existing cor-
by the human annotator. pus, because the target named entities are almost al-

At the same time, we should also note that ouf'dys sparse in .SUCh cases. We .ShOUId also note that
framework could be used in conjunction with eX_named entities in fuII'papers, which recently started
isting methods for semi-supervised learning to iml0 attract much attention, tend to be more sparse than
prove the performance of the CRF tagger, whiclrﬁhose in abstracts.

in turn vyill improve the coverage. It is also POS-7  conclusion

sible to improve the performance of the tagger by

using external dictionaries or using more sophisWe have presented a simple but powerful framework
ticated probabilistic models such as semi-Markovor reducing the human effort for making name en-
CRFs (Sarawagi and Cohen, 2004). These enhandiy annotations in a corpus. The proposed frame-

ments should further improve the coverage, keepingork allows us to annotat@most all named entities
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of annotation. ' ’ .

¢ Colosimo, Alexander S. Yeh, and Jeff B. Colombe.
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