
ACL-08: HLT

BioNLP 2008
Current Trends

in
Biomedical Natural Language Processing

Proceedings of the Workshop

June 19, 2008
The Ohio State University

Columbus, Ohio, USA



Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

Sponsored by:

c©2008 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-11-4

ii



Current trends in biomedical natural language processing:
the view from computational linguistics

Dina Demner-Fushman, Sophia Ananiadou, K. Bretonnel Cohen,
John Pestian, Jun’ichi Tsujii, and Bonnie Webber

Background

Research in computational linguistics in the biomedical domain traditionally focuses on two major
areas: fundamental advances in language processing; and application of language processing methods
to bridge the gap between basic biomedical research, clinical research, and translation of both types of
research into practice. Several conferences provide opportunities for discussion of these two types of
research in specific sub-domains of Biomedical Natural Language Processing. For example, Intelligent
Systems for Molecular Biology (ISMB) and its associated special interest group and Pacific Symposium
on Biocomputing (PSB) focus on NLP research applied to issues of interest to biologists, whereas
American Medical Informatics Association (AMIA) is concerned with medical informatics issues.

Rather than focusing on a specific area of interest, ACL BioNLP workshop strives to provide a forum
for any important, new, and exciting research in the field of Biomedical Natural Language Processing.
Rather than focusing on a specific theme as we have in previous years, the goal of the workshop this
year was to solicit work of interest to NLP researchers on any topic in the biomedical domain.

Submissions, acceptance, and themes

Asking researchers to share their interests was rewarded by 34 submissions (5 posters and 19 full
papers). Of those, 10 were accepted as full papers and 18 as poster presentations. The combined
expertise of the program committee allowed for providing three thorough reviews for each paper. The
exceptionally high quality manuscripts accepted for presentation cover a wide area of subjects in clinical
and biological areas, as well as methodological issues applicable to both sublanguages.

Named entity recognition (NER) continues to be an active area of research. NER research presented
here involves development of new statistical and hybrid approaches to identification and disambiguation
of gene [1], protein [2], chemical names [3], and clinical entities.

Overwhelmingly, researchers chose statistical or hybrid approaches to the tasks at hand. This is
probably the reason for growing interest in creation of annotated corpora [4], development of methods
for augmenting the existing annotation [5], speeding up the annotation process [5], and reducing its cost;
evaluating the comparability of results obtained applying the same methods to different collections [6],
And increasing compatibility of different annotations [7].

Increasingly sophisticated relation extraction methods [6, 8] are being applied to a broader set of
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relations [9]. Other steps towards deeper understanding of the text include methods for creation of
gene profiles [10], identification of uncertainty [11], discourse connectivity [12], and temporal features
of clinical conditions [13].

The applicability of NLP methods to clinical tasks is explored in the work on identification of language
impairments [14] and seriousness of suicidal attempts [15].

Finally, application of NLP methods to classic information retrieval problems such as automatic
indexing of biomedical literature [16] and the newer information retrieval problem of image
retrieval [17] are explored.
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Abstract

In this paper, we propose a graph kernel
based approach for the automated extraction
of protein-protein interactions (PPI) from sci-
entific literature. In contrast to earlier ap-
proaches to PPI extraction, the introduced all-
dependency-paths kernel has the capability
to consider full, general dependency graphs.
We evaluate the proposed method across five
publicly available PPI corpora providing the
most comprehensive evaluation done for a ma-
chine learning based PPI-extraction system.
Our method is shown to achieve state-of-the-
art performance with respect to comparable
evaluations, achieving 56.4 F-score and 84.8
AUC on the AImed corpus. Further, we iden-
tify several pitfalls that can make evaluations
of PPI-extraction systems incomparable, or
even invalid. These include incorrect cross-
validation strategies and problems related to
comparing F-score results achieved on differ-
ent evaluation resources.

1 Introduction

Automated protein-protein interaction (PPI) extrac-
tion from scientific literature is a task of significant
interest in the BioNLP field. The most commonly
addressed problem has been the extraction of binary
interactions, where the system identifies which pro-
tein pairs in a sentence have a biologically relevant
relationship between them. Proposed solutions in-
clude both hand-crafted rule-based systems and ma-
chine learning approaches (see e.g. (Bunescu et al.,
2005)). A wide range of results have been reported
for the systems, but as we will show, differences in

evaluation resources, metrics and strategies make di-
rect comparison of these numbers problematic. Fur-
ther, the results gained from the BioCreative II eval-
uation, where the best performing system achieved
a 29% F-score (Hunter et al., 2008), suggest that the
problem of extracting binary protein protein interac-
tions is far from solved.

The public availability of large annotated PPI-
corpora such as AImed (Bunescu et al., 2005),
BioInfer (Pyysalo et al., 2007a) and GENIA (Kim
et al., 2008), provides an opportunity for building
PPI extraction systems automatically using machine
learning. A major challenge is how to supply the
learner with the contextual and syntactic informa-
tion needed to distinguish between interactions and
non-interactions. To address the ambiguity and vari-
ability of the natural language expressions used to
state PPI, several recent studies have focused on
the development, adaptation and application of NLP
tools for the biomedical domain. Many high-quality
domain-specific tools are now freely available, in-
cluding full parsers such as that introduced by Char-
niak and Lease (2005). Additionally, a number
of conversions from phrase structure parses to de-
pendency structures that make the relationships be-
tween words more directly accessible have been in-
troduced. These include conversions into represen-
tations such as the Stanford dependency scheme (de
Marneffe et al., 2006) that are explicitly designed for
information extraction purposes. However, special-
ized feature representations and kernels are required
to make learning from such structures possible.

Approaches such as subsequence kernels
(Bunescu and Mooney, 2006), tree kernels (Zelenko
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interaction of P1 and P2

prep_of> conj_and>
prep_of>

P1 is a P2 binding protein

<nn
<nn

<det
<cop

<nsubj

P1 fails to bind P2

<nsubj <aux dobj>
xcomp>

<xsubj

Figure 1: Stanford dependency parses (“collapsed” rep-
resentation) where the shortest path, shown in bold, ex-
cludes important words.

et al., 2003) and shortest path kernels (Bunescu
and Mooney, 2005) have been proposed and suc-
cessfully used for relation extraction. However,
these methods lack the expressive power to consider
representations derived from general, possibly
cyclic, dependency graph structures, such as those
generated by the Stanford tools. The subsequence
kernel approach does not consider parses at all, and
the shortest path approach is limited to representing
only a single path in the full dependency graph,
which excludes relevant words even in many simple
cases (Figure 1). Tree kernels can represent more
complex structures, but are still restricted to tree
representations.

Lately, in the framework of kernel-based machine
learning methods there has been an increased in-
terest in designing kernel functions for graph data.
Building on the work of G̈artner et al. (2003),
graph representations tailored for the task of depen-
dency parse ranking were proposed by Pahikkala et
al. (2006b). Though the proposed representations
are not directly applicable to the task of PPI extrac-
tion, they offer insight in how to learn from depen-
dency graphs. We develop a graph kernel approach
for PPI extraction based on these ideas.

We next define a graph representation suitable for
describing potential interactions and introduce a ker-
nel which makes efficient learning from a general,
unrestricted graph representation possible. Then we
provide a short description of the sparse regular-
ized least squares (sparse RLS) kernel-based ma-
chine learning method we use for PPI-extraction.

Further, we rigorously assess our method on five
publicly available PPI corpora, providing the first
broad cross-corpus evaluation with a machine learn-
ing approach to PPI extraction. Finally, we discuss
the effects that different evaluation strategies, choice
of corpus and applied metrics have on measured per-
formance, and conclude.

2 Method

We next present our graph representation, formalize
the notion of graph kernels, and present our learning
method of choice, the sparse RLS.

2.1 Graph encoding of sentence structure

As in most recent work on machine learning for PPI
extraction, we cast the task as learning a decision
function that determines for each unordered candi-
date pair of protein names occurring together in a
sentence whether the two proteins interact. In the
following, we first define the graph representation
used to represent an interaction candidate pair. We
then proceed to derive the kernel used to measure
the similarities of these graphs.

We assume that the input of our learning method
is a dependency parse of a sentence where a pair of
protein names is marked as the candidate interac-
tion for which an extraction decision must be made.
Based on this, we form a weighted, directed graph
that consists of two unconnected subgraphs. One
represents the dependency structure of the sentence,
and the other the linear order of the words (see Fig-
ure 2).

The first subgraph is built from the dependency
analysis. One vertex and an associated set of labels
is created in the graph for each token and for each
dependency. The vertices that represent tokens have
as labels the text and part-of-speech (POS) of the
token. To ensure generalization of the learned ex-
traction model, the labels of vertices that correspond
to protein names are replaced with PROT1, PROT2
or PROT, where PROT1 and PROT2 are the pair of
interest. The vertices that represent dependencies
are labeled with the type of the dependency. The
edges in the subgraph are defined so that each de-
pendency vertex is connected by an incoming edge
from the vertex representing its governor token, and
by an outgoing edge to the vertex representing its de-

2



Figure 2: Graph representation generated from an example sentence. The candidate interaction pair is marked as
PROT1 and PROT2, the third protein is marked as PROT. The shortest path between the proteins is shown in bold. In
the dependency based subgraph all nodes in a shortest path are specialized using a post-tag (IP). In the linear order
subgraph possible tags are (B)efore, (M)iddle, and (A)fter. For the other two candidate pairs in the sentence, graphs
with the same structure but different weights and labels would be generated.

pendent token. The graph thus represents the entire
sentence structure.

It is widely acknowledged that the words between
the candidate entities or connecting them in a syn-
tactic representation are particularly likely to carry
information regarding their relationship; (Bunescu
and Mooney, 2005) formalize this intuition for de-
pendency graphs as theshortest path hypothesis. We
apply this insight in two ways in the graph repre-
sentation: the labels of the nodes on the shortest
undirected paths connecting PROT1 and PROT2 are
differentiated from the labels outside the paths us-
ing a special tag. Further, the edges are assigned
weights; after limited preliminary experiments, we
chose a simple weighting scheme where all edges
on the shortest paths receive a weight of 0.9 and
other edges receive a weight of 0.3. The represen-
tation thus allows us to emphasize the shortest path
without completely disregarding potentially relevant
words outside of the path.

The second subgraph is built from the linear struc-
ture of the sentence. For each token, a second ver-
tex is created and the labels for the vertices are de-
rived from the texts, POS-tags and named entity tag-
ging as above. The labels of each word are special-
ized to denote whether the word appears before, in-
between, or after the protein pair of interest. Each
word node is connected by an edge to its succeed-
ing word, as determined by sentence order the of the
words. Each edge is given the weight 0.9.

2.2 The all-dependency-paths graph kernel

We next formalize the graph representation and
present the all-dependency-paths kernel. This ker-
nel can be considered as a practical instantiation of
the theoretical graph kernel framework introduced
by Gärtner et al. (2003). LetV be the set of ver-
tices in the graph andL be the set of possible labels
vertices can have. We represent the graph with an
adjacency matrixA ∈ R|V |×|V |, whose rows and
columns are indexed by the vertices, and[A]i,j con-
tains the weight of the edge connectingvi ∈ V and
vj ∈ V if such an edge exists, and zero otherwise.
Further, we represent the labels as a label allocation
matrix L ∈ R|L|×|V | so thatLi,j = 1 if the j-th
vertex has thei-th label andLi,j = 0 otherwise. Be-
cause only a very small fraction of all the possible
labels are ever assigned to any single node, this ma-
trix is extremely sparse.

It is well known that when an adjacency matrix is
multiplied with itself, each element[A2]i,j contains
the summed weight of paths from vertexvi to vertex
vj through one intervening vertex, that is, paths of
length two. Similarly, for any lengthn, the summed
weights fromvi to vj can be determined by calculat-
ing [An]i,j .

Since we are interested not only in paths of one
specific length, it is natural to combine the effect of
paths of different lengths by summing the powers
of the adjacency matrices. We calculate the infinite
sum of the weights of all possible paths connecting
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the vertices using the Neumann Series, defined as

(I −A)−1 = I +A+A2 + ... =
∞∑
k=0

Ak

if |A| < 1 where |A| is the spectral radius ofA
(Meyer, 2000). From this sum we can form a new
adjacency matrix

W = (I −A)−1 − I .

The final adjacency matrix contains the summed
weights of all possible paths connecting the ver-
tices. The identity matrix is subtracted to remove
the paths of length zero, which would correspond to
self-loops.

Next, we present the graph kernel that utilizes the
graph representation defined previously. We define
an instanceG representing a candidate interaction
asG = LWLT, whereL andW are the label al-
location matrix and the final adjacency matrix cor-
responding to the graph representation of the candi-
date interaction.

Following Gärtner et al. (2003) the graph kernel
is defined as

k(G′, G′′) =
|L|∑
i=1

|L|∑
j=1

G′i,jG
′′
i,j ,

whereG′ andG′′ are two instances formed as de-
fined previously. The features can be thought as
combinations of labels from connected pairs of ver-
tices, with a value that represents the strength of
their connection. In practical implementations, the
full G matrices, which consist mostly of zeroes, are
never explicitly formed. Rather, only the non-zero
elements are stored in memory and used when cal-
culating the kernels.

2.3 Scalable learning with Sparse RLS

RLS is a state-of-the-art kernel-based machine
learning method which has been shown to have
comparable performance to support vector machines
(Rifkin et al., 2003). We choose the sparse version
of the algorithm, also known as subset of regressors,
as it allows us to scale up the method to very large
training set sizes. Sparse RLS also has the property
that it is possible to perform cross-validation and
regularization parameter selection so that their time

complexities are negligible compared to the training
complexity. These efficient methods are analogous
to the ones proposed by Pahikkala et al. (2006a) for
the basic RLS regression.

We now briefly present the basic sparse RLS al-
gorithm. Letm denote the training set size and
M = {1, . . . ,m} an index set in which the indices
refer to the examples in the training set. Instead of
allowing functions that can be expressed as a linear
combination over the whole training set, as in the
case of basic RLS regression, we only allow func-
tions of the following restricted type:

f(·) =
∑
i∈B

aik(·, xi), (1)

wherek is the kernel function,xi are training data
points,ai ∈ R are weights, and the set indexing the
basis vectorsB ⊂M is selected in advance. The co-
efficientsai that determine (1) are obtained by min-
imizing

m∑
i=1

(yi −
∑
j∈B

ajk(xi, xj))2 + λ
∑
i,j∈B

aiajk(xi, xj),

where the first term is the squared loss function, the
second term is the regularizer, andλ ∈ R+ is a reg-
ularization parameter. Note that all the training in-
stances are used for determining the coefficient vec-
tor. The minimizer is obtained by solving the corre-
sponding system of linear equations, which can be
performed inO(m|B|2) time.

We set the maximum number of basis vectors to
4000 in all experiments in this study. The subset
is selected randomly when the training set size ex-
ceeds this number. Other methods for the selection
of the basis vectors were considered by Rifkin et
al. (2003), who however reported that the random
selection worked as well as the more sophisticated
approaches.

3 Experimental evaluation

We next describe the evaluation resources and met-
rics used, provide a comprehensive evaluation of our
method across five PPI corpora, and compare our re-
sults to earlier work. Further, we discuss the chal-
lenges inherent in providing a valid method evalua-
tion and propose solutions.
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Statistics Graph Kernel Co-occ.
Corpus #POS. #NEG. P R F σF AUC σAUC P F
AIMed 1000 4834 0.529 0.618 0.564 0.050 0.848 0.0230.178 0.301
BioInfer 1370 8924 0.477 0.599 0.529 0.053 0.849 0.0650.135 0.237
HPRD50 163 270 0.643 0.658 0.634 0.114 0.797 0.0630.389 0.554
IEPA 335 482 0.696 0.827 0.751 0.070 0.851 0.0510.408 0.576
LLL 164 166 0.725 0.872 0.768 0.178 0.834 0.1220.559 0.703

Table 1: Counts of positive and negative examples in the corpora and (P)recision, (R)ecall (F)-score and AUC for the
graph kernel, with standard deviations provided for F and AUC.

3.1 Corpora and evaluation criteria

We evaluate our method using five publicly avail-
able corpora that contain PPI interaction annotation:
AImed (Bunescu et al., 2005), BioInfer (Pyysalo et
al., 2007a), HPRD50 (Fundel et al., 2007), IEPA
(Ding et al., 2002) and LLL (Ńedellec, 2005). All
the corpora were processed to a common format us-
ing transformations1 that we have introduced ear-
lier (Pyysalo et al., 2008). We parse these cor-
pora with the Charniak-Lease parser (Charniak and
Lease, 2005), which has been found to perform best
among a number of parsers tested in recent domain
evaluations (Clegg and Shepherd, 2007; Pyysalo et
al., 2007b). The Charniak-Lease phrase structure
parses are transformed into the collapsed Stanford
dependency scheme using the Stanford tools (de
Marneffe et al., 2006). We cast the PPI extraction
task as binary classification, where protein pairs that
are stated to interact are positive examples and other
co-occuring pairs negative. Thus, from each sen-
tence,

(
n
2

)
examples are generated, wheren is the

number of occurrences of protein names in the sen-
tence. Finally, we form the graph representation de-
scribed earlier for each candidate interaction.

We evaluate the method with 10-fold document-
level cross-validation on all of the corpora. This
guarantees the maximal use of the available data,
and also allows comparison to relevant earlier work.
In particular, on the AImed corpus we apply the ex-
act same 10-fold split that was used by Bunescu et
al. (2006) and Giuliano et al. (2006). Performance
is measured according to the following criteria: in-
teractions are considered untyped, undirected pair-
wise relations between specific protein mentions,
that is, if the same protein name occurs multiple

1Available athttp://mars.cs.utu.fi/PPICorpora .

times in a sentence, the correct interactions must be
extracted for each occurrence. Further, we do not
consider self-interactions as candidates and remove
them from the corpora prior to evaluation.

The majority of PPI extraction system evaluations
use the balanced F-score measure for quantifying the
performance of the systems. This metric is defined
asF = 2pr

p+r , wherep is precision andr recall. Like-
wise, we provide F-score, precision, and recall val-
ues in our evaluation. It should be noted that F-score
is very sensitive to the underlying positive/negative
pair distribution of the corpus — a property whose
impact on evaluation is discussed in detail below. As
an alternative to F-score, we also evaluate the per-
formance of our system using thearea under the re-
ceiver operating characteristics curve(AUC) mea-
sure (Hanley and McNeil, 1982). AUC has the im-
portant property that it is invariant to the class dis-
tribution of the used dataset. Due to this and other
beneficial properties for comparative evaluation, the
usage of AUC for performance evaluation has been
recently advocated in the machine learning commu-
nity (see e.g. (Bradley, 1997)). Formally, AUC can
be defined as

AUC =

∑m+

i=1

∑m−
j=1H(xi − yi)
m+m−

,

wherem+ and m− are the numbers of positive
and negative examples, respectively, andx1,...,xm+

are the outputs of the system for the positive, and
y1,...,ym− for the negative examples, and

H(r) =


1, if r > 0
0.5, if r = 0
0, otherwise.

The measure corresponds to the probability that
given a randomly chosen positive and negative ex-
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ample, the system will be able to correctly disin-
guish which one is which.

3.2 Performance across corpora

The performance of our method on the five corpora
for the various metrics is presented in Table 1. For
reference, we show also the performance of the co-
occurrence (orall-true) baseline, which simply as-
signs each candidate into the interaction class. The
recall of the co-occurrence method is trivially 100%,
and in terms of AUC it has a score of 0.5, the ran-
dom baseline. All the numbers in Table 1 are aver-
ages taken over the ten folds. One should note that
because of the non-linearity of the F-score measure,
the average precision and recall will not produce ex-
actly the average F.

The results hold several interesting findings. First,
we briefly observe that on the AImed corpus, which
has recently been applied in numerous evaluations
(Sætre et al., 2008) and can be seen as an emerging
de factostandard for PPI extraction method evalua-
tion, the method achieves an F-score performance of
56.4%. As we argue in more detail below, this level
of performance is comparable to the state-of-the-art
in machine learning based PPI extraction. For the
other large corpus, BioInfer, F-score performance is
slightly lower.

Second, we observe that the F-score performance
of the method varies strikingly between the differ-
ent corpora, with results on IEPA and LLL approx-
imately 20 percentage units higher than on AImed
and BioInfer, despite the larger size of the latter two.
In our previous work we have observed similar re-
sults with a rule-based extraction method (Pyysalo et
al., 2008). As the first broad cross-corpus evaluation
using a state-of-the-art machine learning method for
PPI extraction, our results support and extend the
key finding that F-score performance results mea-
sured on different corpora cannot, in general, be
meaningfully compared.

The co-occurrence baseline numbers indicate one
reason for the high F-score variance between the
corpora. The F-score metric is not invariant to the
distribution of positive and negative examples: for
example, halving the number of negative test exam-
ples is expected to approximately halve the number
of false positives at a given recall point. Thus, the
greater the fraction of true interactions in a corpus

is, the easier it is to reach high performance in terms
of F-score. This is reflected in co-occurrence re-
sults, which range from 24% to 70% depending on
the class distribution of the corpus.

This is a critical weakness of the F-score metric in
cross-corpus comparisons as, for example, the frac-
tion of true interactions out of all candidates is 50%
on the LLL corpus but only 17% on AImed. By
contrast to the large differences in performance mea-
sured using F-score, we find that for the distribution-
invariant AUC measure the performance for all of
the AImed, BioInfer, IEPA, and LLL corpora falls in
the narrow range of 83-85%. In terms of AUC, per-
formance on the HPRD50 corpus is an outlier, being
approximately three percentage units lower than for
any other corpus. Nevertheless, the results provide a
strong argument in favor of applying the AUC met-
ric instead of, or in addition to, F-score. AUC is also
more stable in terms of variance.

Finally, we note that the similar performance in
terms of AUC for corpora with as widely differing
sizes as LLL and BioInfer indicates that past a rel-
atively modest number of examples, increasing cor-
pus size has a surprisingly small effect on the perfor-
mance of the method. A similar finding can be seen,
for example, in the relatively flat learning curve of
Giuliano et al. (2006). While the issue requires fur-
ther investigation, these results suggest that there
may be more value in investing effort in develop-
ing better learning methods as opposed to larger cor-
pora.

3.3 Performance compared to other methods

We next discuss the performance of our method
compared to other methods introduced in the liter-
ature and the challenges of meaningful comparison,
where we identify three major issues.

First, as indicated by the results above, differ-
ences in the makeup of different corpora render
cross-corpus comparisons in terms of F-score es-
sentially meaningless. As F-score is typically the
only metric for which results are reported in the PPI
extraction literature, we are limited to comparing
against results on single corpora. We consider the
AImed and BioInfer evaluations to be the most rele-
vant ones, as these corpora are sufficiently large for
training and reliably testing machine learning meth-
ods. As the present study is, to the best of our knowl-
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P R F
(Giuliano et al., 2006) 60.9% 57.2% 59.0%
All-dependency-paths graph kernel52.9% 61.8% 56.4%
(Bunescu and Mooney, 2006) 65.0% 46.4% 54.2%
(Sætre et al., 2008) 64.3% 44.1% 52.0%
(Mitsumori et al., 2006) 54.2% 42.6% 47.7%
(Yakushiji et al., 2005) 33.7% 33.1% 33.4%

Table 2: (P)recision, (R)ecall and (F)-score results for methods evaluated on AImed with the correct cross-validation
methodology.

edge, the first to report machine learning method
performance on BioInfer, we will focus on AImed
in the following comparison.

Second, the cross-validation strategy used in eval-
uation has a large impact on measured performance.
In earlier system evaluations, two major strategies
for defining the splits used in cross-validation can
be observed. The approach used by Bunescu and
Mooney (2006), which we consider the correct one,
is to split the data into folds on level of docu-
ments. This guarantees that all pairs generated from
the same document are always either in the train-
ing set or in the test set. Another approach is to
pool all the generated pairs together, and then ran-
domly split them to folds. To illustrate the signifi-
cance of this choice, consider two interaction candi-
dates extracted from the same sentence, e.g. from
a statement of the form “P1 and P2 [. . . ] P3”,
where “[. . . ]” is any statement of interaction or non-
interaction. Due to the near-identity of contexts, a
machine learning method will easily learn to predict
that the label of the pair(P1, P2) should match that
of (P1, P3). However, such “learning” will clearly
not generalize. This approach must thus be consid-
ered invalid, because allowing pairs generated from
same sentences to appear in different folds leads to
an information leak between the training and test
sets. Sætre et al. (2008) observed that adopting the
latter cross-validation strategy on AImed could lead
up to 18 F-score percentage unit overestimation of
performance. For this reason, we will not consider
results listed in the “False 10-fold cross-validation”
table (2b) of Sætre et al. (2008).

With these restrictions in place, we now turn to
comparison with relevant results reported in related
research, summarized in Table 2. We note that
Bunescu and Mooney (2006) only applied evalua-

tion criteria where it is enough to extract only one
occurrence of each mention of an interaction from
each abstract, while the other results shown were
evaluated using the same criteria as applied here.
The former approach can produce higher perfor-
mance: the evaluation of Giuliano et al. (2006) in-
cludes both alternatives, and their method achieves
an F-score of 63.9% under the former criterion,
which they term One Answer per Relation in a
given Document (OARD). Our method outperforms
most studies using similar evaluation methodology,
with the exception being the approach of Giuliano
et al. (2006). This result is somewhat surprising,
as the method proposed by Giuliano does not ap-
ply any form of parsing but relies instead only on
the sequential order of the words. This brings us
to our third point regarding comparability of meth-
ods. As pointed out by Sætre et al. (2008), the
AImed corpus allows remarkably different “inter-
pretations” regarding the number of interacting and
non-interacting pairs. For example, where we have
identified 1000 interacting and 4834 non-interacting
protein pairs in AImed, in the data used by Giuliano
there are eight more interacting and 200 fewer non-
interacting pairs. The corpus can also be prepro-
cessed in a number of ways. In particular we noticed
that whereas protein names are always blinded in our
data, in the data used by Giuliano protein names are
sometimes partly left visible. As Giuliano has gen-
erously made his method implementation available2,
we were able to test the performance of his system
on the data we used in our experiments. This re-
sulted in an F-score of 52.4%.

Finally, there remains an issue of parameter se-
lection. For sparse RLS the values of the regular-

2Available at http://tcc.itc.it/research/
textec/tools-resources/jsre.html .
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ization parameterλ and the decision threshold sep-
arating the positive and negative classes must be
chosen, which can be problematic when no sepa-
rate data for choosing them is available. Choos-
ing from several parameter values the ones that give
best results in testing, or picking the best point
from a precision/recall curve when evaluating in
terms of F-score, will lead to an overoptimistic eval-
uation of performance. This issue has often not
been addressed in earlier evaluations that do cross-
validation on a whole corpus. We choose the pa-
rameters by doing further leave-one-document-out
cross-validation within each round of 10-fold-cross-
validation, on the nine folds that constitute the train-
ing set.

As a conclusion, we observe the results achieved
with the all-dependency-paths kernel to be state-of-
the-art level. However, differences in evaluation
strategies and the large variance exhibited in the re-
sults make it impossible to state which of the sys-
tems considered can be expected in general to per-
form best. We encourage future PPI-system evalua-
tions to report AUC and F-score results over mul-
tiple corpora, following clearly defined evaluation
strategies, to bring further clarity to this issue.

4 Conclusions and future work

In this paper we have proposed a graph kernel
approach to extracting protein-protein interactions,
which captures the information in unrestricted de-
pendency graphs to a format that kernel based learn-
ing algorithms can process. The method combines
syntactic analysis with a representation of the lin-
ear order of the sentence, and considers all possi-
ble paths connecting any two vertices in the result-
ing graph. We demonstrate state-of-the art perfor-
mance for the approach. All software developed in
the course of this study is made publicly available at
http://mars.cs.utu.fi/PPICorpora .

We identify a number of issues which make re-
sults achieved with different evaluation strategies
and resources incomparable, or even incorrect. In
our experimental design we consider the problems
related to differences across corpora, the effects dif-
ferent cross-validation strategies have, and how pa-
rameter selection can be done. Our recommendation
is to provide evaluations over different corpora, to

use document-level cross-validation and to always
selected parameters on the training set.

We draw attention to the behaviour of the F-score
metric over corpora with differing pair distributions.
The higher the relative frequency of interacting pairs
is, the higher the performance can be expected to
be. This is noticed both for the graph kernel method
and for the naive co-occurrence baseline. Indeed,
the strategy of just stating that all pairs interact leads
to as high result as 70% F-score on one of the cor-
pora. We consider AUC as an alternative measure
that does not exhibit such behaviour, as it is invari-
ant to the distribution of pairs. The AUC metric is
much more stable across all the corpora, and never
gives better results than random for approaches such
as the naive co-occurrence.

Though we only consider binary interactions in
this work, the graph representations have the prop-
erty that they could be used to represent more com-
plex structures than pairs. The availability of cor-
pora that annotate complex interactions, such as the
full BioInfer and GENIA, makes training a PPI ex-
traction system for extracting complex interactions
an important avenue of future research. However,
how to avoid the combinatorial explosion following
from considering triplets, quartets etc. remains an
open question. Also, the performance of the cur-
rent approaches may need to be yet improved before
extending them to recognize complex interactions.
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Abstract
The Clinical E-Science Framework (CLEF)
project has built a system to extract clin-
ically significant information from the tex-
tual component of medical records, for clin-
ical research, evidence-based healthcare and
genotype-meets-phenotype informatics. One
part of this system is the identification of rela-
tionships between clinically important entities
in the text. Typical approaches to relationship
extraction in this domain have used full parses,
domain-specific grammars, and large knowl-
edge bases encoding domain knowledge. In
other areas of biomedical NLP, statistical ma-
chine learning approaches are now routinely
applied to relationship extraction. We report
on the novel application of these statistical
techniques to clinical relationships.

We describe a supervised machine learning
system, trained with a corpus of oncology nar-
ratives hand-annotated with clinically impor-
tant relationships. Various shallow features
are extracted from these texts, and used to
train statistical classifiers. We compare the
suitability of these features for clinical re-
lationship extraction, how extraction varies
between inter- and intra-sentential relation-
ships, and examine the amount of training data
needed to learn various relationships.

1 Introduction

The application of Natural Language Processing
(NLP) is widespread in biomedicine. Typically, it
is applied to improve access to the ever-burgeoning
research literature. Increasingly, biomedical re-
searchers need to relate this literature to pheno-
typic data: both to populations, and to individ-
ual clinical subjects. The computer applications

used in biomedical research, including NLP appli-
cations, therefore need to support genotype-meets-
phenotype informatics and the move towards trans-
lational biology. Such support will undoubtedly in-
clude linkage to the information held in individual
medical records: both the structured portion, and the
unstructured textual portion.

The Clinical E-Science Framework (CLEF)
project (Rector et al., 2003) is building a frame-
work for the capture, integration and presentation of
this clinical information, for research and evidence-
based health care. The project’s data resource is a
repository of the full clinical records for over 20000
cancer patients from the Royal Marsden Hospital,
Europe’s largest oncology centre. These records
combine structured information, clinical narratives,
and free text investigation reports. CLEF uses infor-
mation extraction (IE) technology to make informa-
tion from the textual portion of the medical record
available for integration with the structured record,
and thus available for clinical care and research. The
CLEF IE system analyses the textual records to ex-
tract entities, events and the relationships between
them. These relationships give information that is
often not available in the structured record. Why
was a drug given? What were the results of a physi-
cal examination? What problems were not present?
We have previously reported entity extraction in the
CLEF IE system (Roberts et al., 2008b). This paper
examines relationship extraction.

Extraction of relationships from clinical text is
usually carried out as part of a full clinical IE sys-
tem. Several such systems have been described.
They generally use a syntactic parse with domain-
specific grammar rules. The Linguistic String
project (Sager et al., 1994) used a full syntactic and
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clinical sublanguage parse to fill template data struc-
tures corresponding to medical statements. These
were mapped to a database model incorporating
medical facts and the relationships between them.
MedLEE (Friedman et al., 1994), and more recently
BioMedLEE (Lussier et al., 2006) used a semantic
lexicon and grammar of domain-specific semantic
patterns. The patterns encode the possible relation-
ships between entities, allowing both entities and the
relationships between them to be directly matched
in the text. Other systems have incorporated large-
scale domain-specific knowledge bases. MEDSYN-
DIKATE (Hahn et al., 2002) employed a rich dis-
course model of entities and their relationships, built
using a dependency parse of texts and a descrip-
tion logic knowledge base re-engineered from exist-
ing terminologies. MENELAS (Zweigenbaum et al.,
1995) also used a full parse, a conceptual represen-
tation of the text, and a large scale knowledge base.

In other applications of biomedical NLP, a sec-
ond paradigm has become widespread: the appli-
cation of statistical machine learning techniques to
feature-based models of the text. Such approaches
have typically been applied to journal texts. They
have been used both for entity recognition and ex-
traction of various relations, such as protein-protein
interactions (see, for example, Grover et al (2007)).
This follows on from the success of these methods
in general NLP (see for example Zhou et al (2005)).
Statistical machine learning has also been applied to
clinical text, but its use has generally been limited
to entity recognition. The Mayo Clinic text analysis
system (Pakhomov et al., 2005), for example, uses a
combination of dictionary lookup and a Naı̈ve Bayes
classifier to identify entities for information retrieval
applications. To the best of our knowledge, statisti-
cal methods have not been previously applied to ex-
traction of clinical relationships from text.

This paper describes experiments in the statistical
machine learning of relationships from a novel text
type: oncology narratives. The set of relationships
extracted are considered to be of interest for clinical
and research applications down line of IE, such as
querying to support clinical research. We apply Sup-
port Vector Machine (SVM) classifiers to learn these
relationships. The classifiers are trained and eval-
uated using novel data: a gold standard corpus of
clinical text, hand-annotated with semantic entities

and relationships. In order to test the applicability
of this method to the clinical domain, we train clas-
sifiers using a number of comparatively simple text
features, and look at the contribution of these fea-
tures to system performance. Clinically interesting
relationships may span several sentences, and so we
compare classifiers trained for both intra- and inter-
sentential relationships (spanning one or more sen-
tence boundaries). We also examine the influence of
training corpus size on performance, as hand anno-
tation of training data is the major expense in super-
vised machine learning.

2 Relationship Schema

Relationship Argument 1 Argument 2
has target Investigation Locus

Intervention Locus
has finding Investigation Condition

Investigation Result
has indication Drug or device Condition

Intervention Condition
Investigation Condition

has location Condition Locus
negation modifies Negation modifier Condition
laterality modifies Laterality modifier Intervention

Laterality modifier Locus
sub-location modifies Sub-location modifier Locus

Table 1: Relationship types and their argument type con-
straints.

The CLEF application extracts entities, relation-
ships and modifiers from text. By entity, we mean
some real-world thing, event or state referred to in
the text: the drugs that are mentioned, the tests that
were carried out, etc. Modifiers are words that qual-
ify an entity in some way, referring e.g. to the lat-
erality of an anatomical locus, or the negation of a
condition (“no sign of inflammation”). Entities are
connected to each other and to modifiers by rela-
tionships: e.g. linking a drug entity to the condition
entity for which it is indicated, linking an investiga-
tion to its results, or linking a negating phrase to a
condition.

The entities, modifiers, and relationships are de-
scribed by both a formal XML schema, and by a
set of detailed definitions. These were developed by
a group of clinical experts through an iterative pro-
cess, until acceptable agreement was reached. Entity
types are mapped to types from the UMLS seman-
tic network (Lindberg et al., 1993), each CLEF en-
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tity type covering several UMLS types. Relationship
types are those that were felt necessary to capture the
essential clinical dependencies between entities re-
ferred to in patient documents, and to support CLEF
end user applications.

Each relationship type is constrained to exist be-
tween limited pairs of entity types. For example,
the has location relationship can only exist be-
tween a Condition entity and a Locus entity.
Some relationships can exist between multiple type
pairs. The full set of relationships and their argu-
ment type constraints are shown in Table 1. Ex-
amples of each relationship are given in Roberts et
al (2008a).

Some of the relationships considered important
by the clinical experts were not obvious without do-
main knowledge. For example,

He is suffering from nausea and severe
headaches. Dolasteron was prescribed.

Without domain knowledge, it is not clear that there
is a has indication relationship between the
“Dolasteron” Drug or device entity and the
“nausea” Condition entity. As in this example,
many of this type of relationship are intra-sentential.

A single real-world entity may be referred to sev-
eral times in the same text. Each of these co-
referring expressions is a mention of the entity. The
gold standard includes annotation of co-reference
between different textual mentions of the same en-
tity. For the work reported in this paper, however,
co-reference is not considered. Each entity is as-
sumed to have a single mention. Relationships be-
tween entities can be considered, by extension, as
relationships between the single mentions of those
entities. The implications of this are discussed fur-
ther below.

3 Gold Standard Corpus

The schema and definitions were used to hand-
annotate the entities and relationships in 77 oncol-
ogy narratives, to provide a gold standard for sys-
tem training and evaluation. Corpora of this size
are typical in supervised machine learning, and re-
flect the expense of hand annotation. Narratives
were carefully selected and annotated according to
a best practice methodology, as described in Roberts

et al (2008a). Narratives were annotated by two in-
dependent, clinically trained, annotators, and a con-
sensus created by a third. We will refer to this corpus
as C77.

Annotators were asked to first mark the mentions
of entities and modifiers, and then to go through
each of these in turn, deciding if any had relation-
ships with mentions of other entities. Although the
annotators were marking co-reference between men-
tions of the same entity, they were asked to ignore
this with respect to relationship annotation. Both
the annotation tool that they were using and their
annotation guidelines, enforced the creation of rela-
tionships between mentions, and not between enti-
ties. The gold standard is thus analogous to the style
of relationship extraction reported here, in which
we extract relations between single mention entities,
and do not consider co-reference. Annotators were
further told that relationships could span multiple
sentences, and that it was acceptable to use clini-
cal domain knowledge to infer that a relationship
existed between two mentions. Counts of all rela-
tionships annotated in C77 are shown in Table 2,
sub-divided by the number of sentence boundaries
spanned by a relationship.

4 Relationship Extraction

The system we have built uses the GATE NLP
toolkit (Cunningham et al., 2002) 1. The system is
shown in Figure 1, and is described below.

Narratives are first pre-processed using standard
GATE modules. Narratives were tokenised, sen-
tences found with a regular expression-based sen-
tence splitter, part-of-speech (POS) tagged, and
morphological roots found for tokens. Each to-
ken was also labelled with a generalised POS tag,
the first two characters of the full POS tag. This
takes advantage of the Penn Treebank tagset used
by GATE’s POS tagger, in which related POS tags
share the first two characters. For example, all six
verb POS tags start with the letters “VB”.

After pre-processing, mentions of entities within
the text are annotated. In the experiments reported,
we assume perfect entity recognition, as given by
the entities in the human annotated gold standard

1We used a development build of GATE 4.0, downloadable
from http://gate.ac.uk
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Sentence boundaries between arguments
0 1 2 3 4 5 6 7 8 9 >9 Total

has finding 265 46 25 7 5 4 3 2 2 2 0 361
has indication 139 85 35 32 14 11 6 4 5 5 12 348
has location 360 4 1 1 1 1 1 0 0 0 4 373
has target 122 14 4 2 2 4 3 1 0 1 0 153
laterality modifies 128 0 0 0 0 0 0 0 0 0 0 128
negation modifies 100 1 0 0 0 0 0 0 0 0 0 101
sub location modifies 76 0 0 0 0 0 0 0 0 0 0 76

Total 1190 150 65 42 22 20 13 7 7 8 16 1540
Cumulative total 1190 1340 1405 1447 1469 1489 1502 1509 1516 1524 1540

Table 2: Count of relationships in 77 gold standard documents.

described above. Our results are therefore higher
than would be expected in a system with automatic
entity recognition. It is useful and usual to fix en-
tity recognition in this way, to allow tuning specific
to relationship extraction, and to allow the isolation
of relation-specific problems. We accept, however,
that ultimately, relation extraction does depend on
the quality of entity recognition. The relation extrac-
tion described here is used as part of an operational
IE system in which clinical entity recognition is per-
formed by a combination of lexical lookup and su-
pervised machine learning. We have described our
entity extraction system elsewhere (Roberts et al.,
2008b).

4.1 Classification

We treat clinical relationship extraction as a classi-
fication task, training classifiers to assign a relation-
ship type to an entity pair. An entity pair is a pairing
of entities that may or may not be the arguments of
a relation. For a given document, we create all pos-
sible entity pairs within two constraints. First, en-
tities that are paired must be within n sentences of
each other. For all of the work reported here, unless
stated, n ≤ 1 (crossing 0 or 1 sentence boundaries).
Second, we can constrain the entity pairs created
by argument type (Rindflesch and Fiszman, 2003).
For example, there is little point in creating an en-
tity pair between a Drug or device entity and
a Result entity, as no relationships, as specified
by the schema, exist between entities of these types.
Entity pairing is carried out by a GATE component
developed specifically for clinical relationship ex-
traction. In addition to pairing entities according to
the above constraints, this component also assigns
features to each pair that characterise its lexical and

syntactic qualities (described further in Section 4.2).

Entity pairs correspond to classifier training and
test instances. In classifier training, if an entity
pair corresponds to the arguments of a relationship
present in the gold standard, then it is assigned a
class of that relationship type. If it does not corre-
spond to such a relation, then it is assigned the class
null. The classifier builds a model of these entity
pair training instances, from their features. In classi-
fier application, entity pairs are created from unseen
text, under the above constraints. The classifier as-
signs one of our seven relationship types, or null,
to each entity pair.

We use Support Vector machines (SVMs) as train-
able classifiers, as these have proved to be robust and
efficient for a range of NLP tasks, including relation
extraction. We use an SVM implementation devel-
oped within our own group, and provided as part
of the GATE toolkit. This is a variant on the orig-
inal SVM algorithm, SVM with uneven margins, in
which classification may be biased towards positive
training examples. This is particularly suited to NLP
applications, in which positive training examples are
often rare. Full details of the classifier are given in
Li et al (2005). We used the implementation “out of
the box”, with default parameters as determined in
experiments with other data sets.

SVMs are binary classifiers: the multi-class prob-
lem of classifying entity pairs must therefore be
mapped to a number of binary classification prob-
lems. There are several ways in which a multi-
class problem can be recast as binary problems. The
commonest are one-against-one in which one classi-
fier is trained for every possible pair of classes, and
one-against-all in which a classifier is trained for
a binary decision between each class and all other
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classes, including null, combined. We have car-
ried out extensive experiments (not reported here),
with these two strategies, and have found little dif-
ference between them for our data. We have chosen
to use one-against-all, as it needs fewer classifiers
(for an n class problem, it needs n classifiers, as op-
posed to (n−1)!

2 for one-against-one).
The resultant class assignments by multiple bi-

nary classifiers must be post-processed to deal with
ambiguity. In application to unseen text, it is possi-
ble that several classifiers assign different classes to
an entity pair (test instance). To disambiguate these
cases, the output of each one-against-all classifier is
transformed into a probability, and the class with
the highest probability is assigned. Re-casting the
multi-class relation problem as a number of binary
problems, and post-processing to resolve ambigui-
ties, is handled by the GATE Learning API.

Figure 1: The relationship extraction system.

4.2 Features for Classification

The SVM classification model is built from lexical
and syntactic features assigned to tokens and en-
tity pairs prior to classification. We use features
developed in part from those described in Zhou et
al (2005) and Wang et al (2006). These features are
split into 11 sets, as described in Table 3.

The tokN features are POS and surface string
taken from a window of N tokens on each side of
each paired entity’s mention. For N = 6, this
gives 48 features. The rationale behind these sim-
ple features is that there is useful information in the
words surrounding two mentions, that helps deter-

mine any relationship between them. The gentokN
features generalise tokN to use morphological root
and generalised POS. The str features are a set
of 14 surface string features, encoding the full sur-
face strings of both entity mentions, their heads,
their heads combined, the surface strings of the first,
last and other tokens between the mentions, and
of the two tokens immediately before and after the
leftmost and rightmost mentions respectively. The
pos, root, and genpos feature sets are similarly
constructed from the POS tags, roots, and gener-
alised POS tags of the entity mentions and their sur-
rounding tokens. These four feature sets differ from
tokN and gentokN, in that they provide more fine-
grained information about the position of features
relative to the paired entity mentions.

For the event feature set, the main entities
were divided into events (Investigation and
Intervention) and non-events (all others). Fea-
tures record whether the entity pair consists of two
events, two non-events, one of each, and whether
there are any intervening events and non-events.
This feature set gives similar information to atype
(semantic types of arguments) and inter (inter-
vening entities), but at a coarser level of typing.

5 Evaluation

We used a standard ten-fold cross validation
methodology and standard evaluation metrics. Met-
rics are defined in terms of true positive, false pos-
itive and false negative matches between relation-
ships in a system annotated response document and
a gold standard key document. A response relation-
ship is a true positive if a relationship of the same
type, and with the exact same arguments, exists in
the key. Corresponding definitions apply for false
positive and false negative. Counts of these matches
are used to calculate standard metrics of Recall (R),
Precision (P ) and F1 measure.

The metrics do not say how hard relationship ex-
traction is. We therefore provide a comparison with
Inter Annotator Agreement (IAA) scores from the
gold standard. The IAA score gives the agreement
between the two independent double annotators. It
is equivalent to scoring one annotator against the
other using the F1 metric. IAA scores are not di-
rectly comparable here, as relationship annotation is
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Feature set Size Description
tokN 8N Surface string and POS of tokens surrounding the arguments, windowed −N to +N , N = 6 by default
gentokN 8N Root and gerenalised POS of tokens surrounding the argument entities, windowed −N to +N , N = 6 by default
atype 1 Concatenated semantic type of arguments, in arg1-arg2 order
dir 1 Direction: linear text order of the arguments (is arg1 before arg2, or vice versa?)
dist 2 Distance: absolute number of sentence and paragraph boundaries between arguments
str 14 Surface string features based on Zhou et al (2005), see text for full description
pos 14 POS features, as above
root 14 Root features, as above
genpos 14 Generalised POS features, as above
inter 11 Intervening mentions: numbers and types of intervening entity mentions between arguments
event 5 Events: are any of the arguments, or intevening entities, events?

allgen 96 All features in root and generalised POS forms, i.e. gentok6+atype+dir+dist+root+genpos+inter+event
notok 48 All except tokN features, others in string and POS forms, i.e. atype+dir+dist+str+pos+inter+event

Table 3: Feature sets used for learning relationships. The size of a set is the number of features in that set.

a slightly different task for the human annotators.
The relationship extraction system is given entities,
and finds relationships between them. Human an-
notators must find both the entities and the relation-
ships. Therefore, were one human annotator to fail
to find a particular entity, they could never find rela-
tionships with that entity. The raw IAA score does
not take this into account: if an annotator fails to
find an entity, then they will also be penalised for
all relationships with that entity. We therefore give a
Corrected IAA, CIAA, in which annotators are only
compared on those relations for which they have
both found the entities involved. Both forms of IAA
are shown in Table 4. It is clear that it is hard for
annotators to reach agreement on relationships, and
that this is compounded massively by lack of perfect
agreement on entities. Note that the gold standard
used in training and evaluation reflects a further con-
sensus annotation, to correct this poor agreement.

6 Results

6.1 Feature Selection
The first group of experiments reported looks at the
performance of relation extraction with various fea-
ture sets. We followed an additive strategy for fea-
ture selection. Starting with basic features, we added
further features one set at a time. We measured the
performance of the resulting classifier each time we
added a new feature set. Results are shown in Ta-
ble 4. The initial classifier used a tok6+atype
feature set. Addition of both dir and dist fea-
tures give significant improvements in all metrics, of
around 10% F1 overall, in each case. This suggests
that the linear text order of arguments, and whether

relations are intra- or inter-sentential is important to
classification. Addition of the str features also give
good improvement in most metrics, again 10% F1
overall. Addition of part-of-speech information, in
the form of pos features, however, leads to a drop
in some metrics, overall F1 dropping by 1%. Unex-
pectedly, POS seems to provide little extra informa-
tion above that in surface string. Errors in POS tag-
ging cannot be dismissed, and could be the cause of
this. The existence of intervening entities, as coded
in feature set inter, provides a small benefit. The
inclusion of information about events, in the event
feature set, is less clear-cut.

We were interested to see if generalising features
could improve performance, as this had benefited
our previous work in entity extraction. We replaced
all surface string features with their root form, and
POS features with their generalised POS form. This
gave the results shown in column allgen. Results
are not clear cut, in some cases better and in some
worse than the previous best. Overall, there is no
difference in F1. There is a slight increase in over-
all recall, and a corresponding drop in precision —
as might be expected.

Both the tokN, and the str and pos feature sets
provide surface string and POS information about
tokens surrounding and between relationship argu-
ments. The former gives features from a window
around each argument. The latter two give a greater
amount of positional information. Do these two pro-
vide enough information on their own, without the
windowed features? To test this, we removed the
tokN features from the full cumulative feature set,
from column +event. Results are given in column
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Relation Metric tok6+atype +dir +dist +str +pos +inter +event allgen notok IAA CIAA
has finding P 44 49 58 63 62 64 65 63 63

R 39 63 78 80 80 81 81 82 82
F1 39 54 66 70 69 71 72 71 71 46 80

has indication P 37 23 38 42 40 41 42 37 44
R 14 14 46 44 44 47 47 45 47
F1 18 16 39 39 38 41 42 38 41 26 50

has location P 36 36 50 68 71 72 72 73 73
R 28 28 74 79 79 81 81 83 83
F1 30 30 58 72 74 76 75 77 76 55 80

has target P 9 9 32 63 57 60 62 60 59
R 11 11 51 68 67 67 66 68 68
F1 9 9 38 64 60 63 63 63 62 42 63

laterality modifies P 21 38 73 84 83 84 84 86 86
R 9 55 82 89 86 88 88 87 89
F1 12 44 76 85 83 84 84 84 85 73 94

negation modifies P 19 54 85 81 80 79 79 77 81
R 12 82 97 98 93 92 93 93 93
F1 13 63 89 88 85 84 85 83 85 66 93

sub location modifies P 2 2 55 88 86 86 88 88 87
R 1 1 62 94 92 95 95 95 95
F1 1 1 56 90 86 89 91 91 90 49 96

Overall P 33 38 50 63 62 64 65 64 64
R 22 36 70 74 73 75 75 76 76
F1 26 37 58 68 67 69 69 69 70 47 75

Table 4: Variation in performance by feature set. Features sets are abbreviated as in Table 3. For the first seven
columns, features were added cumulatively to each other. The next two columns, allgen and notok, are as de-
scribed in Table 3. The final two columns give inter annotator agreement and corrected inter annotator agreement, for
comparison.

notok. There is no clear change in performance,
some relationships improving, and some worsening.
Overall, there is a 1% improvement in F1.

It appears that the bulk of performance is attained
through entity type and distance features, with some
contribution from positional surface string informa-
tion. Performance is between 1% and 9% lower than
CIAA for the same relationship, with a best overall
F1 of 70%, compared to a CIAA of 75%.

6.2 Sentences Spanned
Table 2 shows that although most relationships are
intra-sentential, 23% are inter-sentential, 10% of all
relationships being between arguments in adjacent
sentences. If we consider a relationship to cross n
sentence boundaries, then the classifiers described in
the previous section were all trained on relationships
crossing n ≤ 1 sentence boundaries, i.e. with argu-
ments in the same or adjacent sentences. What effect
does including more distant relationships have on
performance? We trained classifiers on only intra-
sentential relationships, and on relationships span-
ning up to n sentence boundaries, for n ∈ {1...5}.

We also trained a classifier on relationships with
1 ≤ n ≤ 5, comprising 85% of all inter-sentential
relationships. In each case, the cumulative feature
set +event from Table 4 was used. Results are
shown in Table 5. It is clear from the results that
the feature sets used do not perform well on inter-
sentential relationships. There is a 6% drop in over-
all F1 when including relationships with n = 1 to-
gether with n < 1. Performance continues to drop as
more inter-sentential relationships are included, and
is very poor for just inter-sentential relationships.

A preliminary error analysis suggests that the
more distant relationship arguments are from each
other, the more likely clinical knowledge is required
to extract the relationship. This raises additional dif-
ficulties for extraction, which the simple features de-
scribed here are unable to address.

6.3 Size of Training Corpus
The provision of sufficient training data for super-
vised learning algorithms is a limitation on their use.
We examined the effect of training corpus size on
relationship extraction. The C77 corpus, compris-
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Number of sentence boundaries between arguments
inter- intra- inter- and intra-sentential Corpus size

Relation Metric 1 ≤ n ≤ 5 n < 1 n ≤ 1 n ≤ 2 n ≤ 3 n ≤ 4 n ≤ 5 C25 C50 C77
has finding P 24 68 65 62 60 61 61 66 63 65

R 18 89 81 79 78 78 77 74 74 81
F1 18 76 72 69 67 68 67 67 67 72

has indication P 18 49 42 42 36 32 30 22 25 42
R 17 59 47 42 42 39 38 30 31 47
F1 16 51 42 39 37 34 33 23 25 42

has location P 0 74 72 73 72 72 72 72 71 72
R 0 83 81 81 81 82 82 76 80 81
F1 0 77 75 76 75 76 76 73 74 75

has target P 3 64 62 59 60 59 58 65 49 62
R 1 75 66 64 62 61 61 60 65 66
F1 2 68 63 61 60 60 59 59 54 63

laterality modifies P 0 86 84 86 86 86 87 77 78 84
R 0 89 88 88 88 87 88 69 68 88
F1 0 85 84 85 86 85 86 72 69 84

negation modifies P 0 80 79 79 80 80 80 78 79 79
R 0 94 93 91 93 93 93 80 93 93
F1 0 86 85 84 85 86 85 78 84 85

sub location modifies P 0 89 88 88 89 89 89 64 91 88
R 0 95 95 95 95 95 95 64 85 95
F1 0 91 91 91 91 91 91 64 86 91

Overall P 22 69 65 64 62 61 60 62 63 65
R 17 83 75 73 71 70 70 65 71 75
F1 19 75 69 68 66 65 65 63 66 69

Table 5: Variation in performance, by number of sentence boundaries (n), and by training corpus size.

ing 77 narratives and used in the previous experi-
ments, was subsetted to give corpora of 25 and 50
narratives, which will be referred to as C25 and C50
respectively. We trained two further classifiers on
these new corpora. Again, the cumulative feature
set +event from Table 4 was used. Results are
shown in Table 5. Overall, performance improves as
training corpus size increases (F1 rising from 63%
to 69%). We were struck however, by the fact that
increasing from 50 to 77 documents has little effect
on a few relationships (negation modifies and
has location). It may well be that the amount
of training data required has plateaued for those re-
lationships.

7 Conclusion

We have shown that it is possible to extract clini-
cal relationships from text, using shallow features,
and supervised statistical machine learning. Judg-
ing from poor inter annotator agreement, the task
is hard. Our system achieves a reasonable perfor-
mance, with an overall F1 just 5% below a cor-
rected inter annotator agreement. This performance
is reached largely by using features of the text that

encode entity type, distance between arguments, and
some surface string information. Performance does,
however, vary with the number of sentences spanned
by the relationships. Learning inter-sentential rela-
tionships does not seem amenable to this approach,
and may require the use of domain knowledge.

A major concern when using supervised learning
algorithms is the expense and availability of training
data. We have shown that while this concern is jus-
tified in some cases, larger training corpora may not
improve performance for all relationships.

The technology used has proved scalable. The
full CLEF IE system, including automatic entity
recognition, is able to process a document in sub-
second time on a commodity workstation. We
have used the system to extract 6 million relations
from over half a million patient documents, for use
in downstream CLEF applications (Roberts et al.,
2008a). Our future work on relationship extrac-
tion in CLEF includes integration of a dependency
parse into the feature set, further analysis to deter-
mine what knowledge may be required to learn inter-
sentential relations, and integration of relationship
extraction with a co-reference algorithm.
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Availability All of the software described here
is open source and can be downloaded as part of
GATE, with the exception of the entity pairing com-
ponent, which will be released shortly. We are cur-
rently preparing a UK research ethics committee ap-
plication, requesting permission to release our anno-
tated corpus.
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Abstract

An adaptable relation extraction system for the
biomedical domain is presented. The system
makes use of a large set of contextual and shal-
low syntactic features, which can be automati-
cally optimised for each relation type. The sys-
tem is tested on three different relation types;
protein-protein interactions, tissue expression
relations and fragment to parent protein rela-
tions.

1 Introduction

In biomedical information extraction, research in
named entity recognition (ner) and relation extrac-
tion (re) has tended to focus on the extracting pro-
teins and their interactions, with less thought given
to how to adapt such systems to other entities and
relations of biomedical interest. This is especially
true for re, where there is very little work on rela-
tions other than protein-protein interactions. Nev-
ertheless, in order to create applications of use to
biologists such as curation assistants and improved
information extraction and retrieval systems it will
be necessary to treat a broader range of semantic re-
lations. The recent release of the Genia event corpus
(Kim et al., 2008) will help to drive this research.

The aim of this paper is to address the problem of
how to create an re system, which can be adapted to
different biomedical re problems with a minimum of
manual intervention. Since this paper focuses on re-
lation extraction, it will be assumed that the named
entities are given, in other words the human anno-
tated entities are used in all experiments. The ap-
proach taken to re is to treat it as a supervised
classification problem on relation candidates, using
a large collection of shallow syntactic and contextual
features. Relation candidates are pairs of entities,
picked out using an appropriate candidate generation
strategy. The use of shallow (as opposed to deep)
syntactic features means that the system can rely

on relatively robust linguistic tools such as part-of-
speech taggers and chunkers, rather than more brit-
tle and less widely available tools such as parsers.
The difficulty with feature-based methods is, how-
ever, how to select the best performing feature set,
as simply adding all possible features does not nec-
essarily give the best results (Guyon and Elisseeff,
2003). The approach taken here is to implement a
large feature set and then use a greedy search to
explore the feature set and select the best subset
of features. This method of feature set optimisa-
tion is not new (for example, it was applied by one
team (Ganchev et al., 2007) on the BioCreative II
Gene Mention task ), but in this work a comparison
of search starting points and feature groupings will
be presented.

All re systems require a human-annotated corpus
for testing, and since a supervised machine learning
approach is employed, a corpus is also required for
training the system. The experiments described in
this paper make use of the ITI TXM corpora (Alex
et al., 2008), which include the ppi corpus address-
ing protein-protein interactions, and the te corpus
addressing tissue expression. Both corpora consist of
approximately 200 full-text biomedical research pa-
pers annotated with entities, normalisations of enti-
ties to standard databases, relations, and with en-
riched information added to the relations. Only the
entities and relations will be considered here.

This paper is organised as follows: after reviewing
related work in the following section, the re system
is described in Section 3, including a description of
the corpora, the relation candidate extraction strate-
gies, the features employed, the feature optimisation
methods and the evaluation method. In Section 4
the results of the optimisation experiments are pre-
sented and discussed, with some concluding remarks
in Section 5.
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2 Related Work

Recent interest in the extraction of protein-protein
interactions has been given added impetus by shared
tasks such as the Language Learning in Logic
(Cussens and Nédellec, 2005), and the BioCreative
II Interaction Pairs Subtask (Krallinger et al., 2008).
It should be noted that the latter task, rather than
being concerned with the extraction of specific inter-
action relation mentions, required systems to list the
(curatable) interactions at a document level. Many
teams, however, extracted the interaction mentions
as a first step and then processed these to give the
document level list of curatable interactions.

The extraction of protein-protein interactions has
also been helped by the availability of annotated cor-
pora, such as AIMed (Bunescu et al., 2005), which
consists of around 1000 Medline abstracts annotated
with proteins and their interactions. In common with
the LLL corpus, the AIMed corpus only contains
intra-sentential relations, and is somewhat smaller
than the corpus used in the current work. In addi-
tion to the work by the corpus creators (Bunescu and
Mooney, 2007), other authors have achieved good re-
sults on AIMed by making use of dependency parses
in different ways (Erkan et al., 2007; Katrenko and
Adriaans, 2006). It is not clear, however, how well
these techniques would transfer to other, similar, re

problems, and how much work would be involved in
tuning the systems for a new problem.

Supervised learning based on shallow syntactic fea-
tures has also been applied to the biomedical do-
main, again focusing on protein-protein interactions
(Nielsen, 2006; Giuliano et al., 2006). A system-
atic exploration of a set of such features for protein-
protein interaction extraction was recently provided
by Jiang and Zhai (2007), who also used features de-
rived from the Collins parser. They did not, however,
experiment with the automated optimisation of the
feature sets. In the news domain, the best reported
results on the ACE dataset1 have been achieved by
a composite kernel which depends partially on a full
parse, and partially on a collection of shallow syn-
tactic features (Zhou et al., 2007).

Aside from protein-protein interactions, there has
been little work directed at other types of relations
in the biomedical domain. Recent corpus annota-
tion projects such as Genia (Kim et al., 2008) and
BioInfer (Pyysalo et al., 2007) include multiple types
of relations, however many of the relation types are
represented in fairly small quantities. In earlier work
(Skounakis et al., 2003), the extraction of cell local-
isation relations was studied using an automatically
created corpus.

1http://www.nist.gov/speech/tests/ace/

3 Methods

3.1 Corpora

The ITI TXM corpora contain annotations related
to protein-protein interactions (in the ppi corpus),
and annotations related to tissue expression exper-
iments (in the te corpus). Each corpus consists of
biomedical research articles, selected from PubMed
and PubMedCentral either because they contain ex-
perimentally proven protein-protein interactions (for
the ppi corpus), or because they contain tissue ex-
pression experiments (for the te corpus).

The articles were annotated by a team of quali-
fied biologists. The annotations consisted of entities
(Table 1), normalisations of selected entities to stan-
dard databases, relations (Table 2) and enrichment
of relations with additional information of interest
to curators. For each corpus, the entities marked
were those involved in the relation which formed the
principal focus of that corpus (either ppi or te), and
those which could affect this relation. In the te cor-
pus, te relations were marked when the text stated
that a particular gene or gene product was present or
absent in a particular tissue, whilst ppi relations were
marked whenever a statement (positive or negative)
was made about the interaction of a pair of Proteins,
Mutants, Fragments, Complexes or Fusions. In ad-
dition, both corpora were annotated with frag re-
lations which connect Fragments and Mutants with
their parent Proteins.

Corpus Entities

ppi CellLine, Complex, DrugCompound,
ExperimentalMethod, Fragment, Fusion,
Modification, Mutant, Protein

te Complex, DevelopmentalStage, Disease,
DrugCompound, ExperimentalMethod,
Fragment, Fusion, GOMOP, Gene,
Mutant, Protein, Tissue, mRNAcDNA

Table 1: The entity types in the te and ppi corpora.
Note that GOMOP stands for “Gene or mRNAcDNA
or Protein” and was used when the annotators felt the
author was using the term in an ambiguous way.

In order to monitor annotation quality, and to
measure of the difficulty of the task, some documents
were multiply annotated. The counts of the numbers
of unique documents in each section, together with
the numbers of annotated documents are shown in
Table 3. Note that the multiply annotated docu-
ments were not reconciled, but the multiple copies
were included in the corpus. Each corpus was split
into three sections – train, devtest and test –
with the first two sections being used for system de-
velopment, and the last reserved for final testing.
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Corpus Relation
type

Entity 1 Types Entity 2 Types Count

ppi ppi Protein, Fusion, Mutant, Fragment or
Complex

Protein, Fusion, Mutant, Fragment or
Complex

11,523

frag Protein Mutant or Fragment 16,002
te te Gene, Protein, mRNAcDNA, GOMOP,

Fusion, Mutant, Complex or Fragment
Tissue 12,426

frag Protein Mutant or Fragment 4,735

Table 2: Relation types in each corpus.

Corpus Segment Unique Doc-
uments

Annotated
Documents

ppi train 133 221
devtest 39 58
train 45 57

te train 151 221
devtest 41 48
test 46 59

Table 3: Counts of documents and annotations in each
corpus.

Corpus Relation Intra Inter

ppi ppi 10,607(92.1%) 916(7.9%)
frag 10,176(63.6%) 5,826(36.4%)

te te 10,356(83.3%) 2,070(16.7%)
frag 3,335(70.4%) 1,400(29.6%)

Table 4: Counts of inter and intra-sentential relations.

Annotators were permitted to mark relations
between entities in the same sentence (intra-

sentential), or between entities in different sentences
(inter-sentential). The majority of relations were
intra-sentential, with frag relations showing the
highest proportion of inter-sententials. Table 4 shows
the counts of inter/intra-sentential relations of each
type.

Some examples of each type of relation will now
be presented. The first example is from PubMed
16436664, and is a te relation:

Our recent observations that 〈αvβ5〉1 is up-
regulated in 〈scleroderma fibroblasts〉1 and
that the transient overexpression of αvβ5
increases the human 〈α2(I) collagen〉2 gene
expression in normal 〈fibroblasts〉2 . . .

There are two different te relations in this sentence
fragment, indicated by the numerical subscripts; the
first connects a Tissue and a Complex, and the sec-
ond connects a Tissue with a Gene. Another example
from the same paper shows a frag relation.

Because 〈β5〉1 has a 〈cytoplasmic domain〉1
highly homologous to that of β6-subunit, 42

we made a hypothesis that αvβ5 activates
SLC by the nonproteolytic pathway.

The annotators could also mark negative te and ppi

relations, as shown in the following example of a ppi

relation taken from PubMedCentral 1075921.

It was also previously reported that two
truncated versions of 〈p53〉1,2, consisting
of residues 〈2-45〉1,3 and 〈46-71〉2,4, do not
bind 〈hRPA70〉3,4 (47)

Here the ppi relations connect the two Fragments
(“2-45” and “46-71”) to the Protein “hRPA70”,
whilst frag relations connect the Fragments with
their parent Protein “p53”.

In contrast with the straightforward intra-
sentential relations shown above, the following (from
PubMed 16399077) is an example of an inter-
sentential te relation (only the related entities are
shown).

To test whether SPE can activate Toll sig-
naling, we expressed activated SPE in 〈S2
cells〉1 and in flies, and we then assayed
the expression of the gene for Drosomycin
(Drs), an antifungal peptide known to be
induced by Toll signaling in response to mi-
crobial infection (Lemaitre et al., 1996). In
both cases, 〈Drs〉2 expression was signifi-
cantly induced in the absence of infection,

In this example, the annotator has connected a Tis-
sue on the first sentence, with an mRNAcDNA in
the second.

The multiply annotated documents in the corpus
were used to calculate the inter-annotator agreement
(iaa), by scoring different versions of the annota-
tion of the same document against each other. For
each corresponding pair of annotations, one anno-
tator was selected as the “gold”, and the other an-
notator scored against the first using precision, re-
call and F1 on relations. Only relations where both
annotators agreed on the participating entities were
considered. The scores for each annotated document
pair were then micro-averaged (where each example
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Corpus Type Intra Inter All

ppi ppi 69.7 41.1 67.0
frag 90.5 73.9 84.6
All 78.7 67.3 76.1

te te 72.8 59.4 70.1
frag 89.7 69.0 84.0
All 77.4 62.7 74.1

Table 5: iaa for relation annotation, split by inter- and
intra-sentential

is given equal weight) to produce overall iaa scores
for the corpus, shown in Table 5.

The main observations from Table 5 are that te

and ppi relations are harder to annotate than frag

relations, and that inter-sentential are harder than
intra-sentential. In particular, the iaa for intra-
sentential frag relations is very high, probably be-
cause many of these are very straightforward con-
structions such as “Fragment of Protein”. Inter-
sentential relations are often less clear as they in-
volve linking information between several sentences,
for example using coreferences.

Both corpora were pre-processed before re was
applied. The pre-processing involved tokenisation,
sentence boundary detection, lemmatising. part-of-
speech tagging, head word detection and chunking.
The part-of-speech tagging uses the Curran & Clark
maximum entropy Markov model tagger (Curran and
Clark, 2003) trained on MedPost data (Smith et
al., 2004), whilst the other preprocessing stages are
all rule-based. The tokenisation, sentence bound-
ary detection, head word identification and chunk-
ing components were implemented with the lt-xml2

tools (Grover and Tobin, 2006), and the lemmatisa-
tion used morpha (Minnen et al., 2000).

3.2 The Relation Extraction System

Relation extraction is treated a classification prob-
lem, by generating candidate relations, and classify-
ing them as either true or false. In the optimisa-
tion experiments described in this paper, Zhang Le’s
maximum entropy (maxent) classifier2 was used,
since its performance was very competitive and its
fast training time permitted extensive feature exper-
imentation. The Gaussian prior was set to 0.1, and
the maximum training iterations to 100. In order to
assess the performance of the final system, maxent

was compared with support vector machines (svm)

using the SVM
light toolkit (Joachims, 1999). Since

both the classifiers assign a confidence to each pre-
diction, a varying threshold can be applied to the
output of the classifier to provide a precision-recall

2http://homepages.inf.ed.ac.uk/s0450736/maxent_

toolkit.html

tradeoff.
Candidate relations were generated by consider-

ing entity pairs of the appropriate type, taking into
account the distance between the entities. It was
thought that inter-sentential and intra-sentential re-
lations would require different feature sets and differ-
ent models, so inter- and intra-sentential candidates
were generated separately. For intra-sentential rela-
tions, all entity pairs of the appropriate type (as in
Table 2) in the same sentence were permitted as can-
didates, with the sole exclusion being that any enti-
ties contained in a Fusion entity were not allowed to
participate in candidate te relations. This restric-
tion was in place in the annotation guidelines, so no
such relations were annotated. For intra-sentential
relations in the training data, around 25-30% of the
candidate relations are actual relations.

Generating inter-sentential candidates is more
problematic, as measures must be taken to limit the
number of candidates. Inter-sentential frag candi-
dates are restricted to a distance of no more than 5
sentences, whilst inter-sentential ppi and te candi-
dates are restricted to participants in adjacent sen-
tences. Inter-sentential re is performed after intra-
sentential re, so the candidate generation strategy
has access to the annotated intra-sentential relations
(in training) and the predicted intra-sentential rela-
tions (in testing). For te and ppi, candidates are
only created for those entities not already in a rela-
tion, and for frag candidates are only created if the
Mutant or Fragment is not already in a relation. Fur-
thermore, for frag relations, if there is more than
one Protein instance with the same lexical form in
the 5 sentence window, then a candidate relation is
only created between a given Fragment/Mutant and
the nearest occurrence of this Protein. For inter-
sentential frag relations, around 20% of the candi-
dates are actual relations, however for te and ppi,
only about 1% of the candidate relations are actual
relations.

3.3 Features

Each candidate relation is mapped to a feature rep-
resentation, where the features are binary or real-
valued functions of relations. The majority of the
features are binary, although these are actually spe-
cial cases of real-valued functions, taking values 0 or
1. A feature representation of a relation is normally
written as a sequence of strings, each corresponding
to a different feature, and the presence or absence of
a binary feature indicating whether it is on or off. In
order that the relation extractor could be applied to
different problems and optimised, a large number of
features were implemented, with the intention that
the feature space could be automatically searched to
find the best subset.
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Features are normally grouped into feature tem-

plates and, as is common in the literature, the feature
templates may also be referred to as features. For in-
stance, a feature template may be “the token to the
right of the second entity in the relation”, which then
gives rise to a set of boolean features with the pre-
fix ctxt-w-rf1-. One such feature in this set is the
feature which indicates that the token to the right
of the second entity is “the”, i.e. ctxt-w-rf1-the.
The feature templates are then collected into fea-

ture groups, such as “context features”, which are
really just a convenient way of conceptualising, im-
plementing and managing the features, and do not
necessarily reflect any common behaviour amongst
the features in a group.

The following is a comprehensive list of the feature
implemented in the re system with features listed
by group, and the possible options for each feature
group given. The options are used to turn on or off
feature templates in the group, or change templates,
and may be boolean or numerical. The nature of
the options will be important in the feature explo-
ration experiments since they influence the type of
search operations which may be used to explore the
feature space. The features are virtually all domain
independent, except for perhaps the SignSlashSign
feature which is specific to te. The RelationKey-
wordFeature can easily be ported to a new domain
by generating a list of keywords appropriate for the
given relation.

In the feature group descriptions which follow, the
term “participants” refers to the entities within the
candidate relation. Some of the features make use of
the “vlw backoff”, which for a given token is defined
as the verb stem, backing off to the lemma if that is
not available, backing off to the token itself.

Chunk This group has three optional templates; one
which adds the concatenated sequence of chunk types
between the participants, and two templates which
add the count of chunks between the participants as
binary and numeric features, respectively. So if the
chunk count is, for example 4, the binary feature
would be chunk-bwcount-4 and the numeric feature
would have name chunk-bwcount and value 4.

EntitiesBetween This has templates to indicate the
type and relative position of the entities between the
two participants. For te relations, only Tissue en-
tities are considered, whilst for other relations only
Proteins are considered.

Entity Features derived from the participating enti-
ties are added by the templates in this group, which
has options to turn on the entity’s text, class and
bigrams of these. There is also a feature template
which adds all words in the entities as separate fea-
tures, and one that adds all words in the second en-
tity only, plus options to add features which indicate

when the two entities have the same textual form, or
when one is a substring of the other.

EntityContext The entity context can include to-
kens, part-of-speech tags, chunk tags and vlw back-
offs, each within window sizes determined by numer-
ical options. A further option can switch on a tem-
plate which adds the concatenation of all vlw back-
offs in the context, on either side of each entity, and
there is also an option to convert all tokens and vlw
backoffs to lower case before creating the features.

EntityDistance Options on this group allow the ad-
dition of the token distance and sentence distance
between the entities, as numeric or binary features.
There is also an option to add a coarse three-way
classification of the token distance.

EntityFrequency Counts are made of the number of
occurrences of each entity surface form in the docu-
ment, limited to Tissue entities for te relations, and
Proteins for frag and ppi relations. The only option
for this feature group adds a template which gener-
ates a binary feature indicating the frequency rank
of the participants’ surface forms in the document.

EntityPattern The entity pattern for a given intra-
sentential candidate relation shows how its partic-
ipants lie with respect to the other entities in the
sentence. The pattern is a concatenated sequence
of the entity types in the sentence, with the par-
ticipants in upper case and other entities in lower
case. Only entity types which are valid participants
in the relation in question are included. For example
protein-PROTEIN-TISSUE would indicate a relation
between a Protein and a Tissue, with another Pro-
tein occurring first in the sentence. Options in this
group add the patterm, the total number of entities
in the sentence, and the numbers of entities for each
type.

Frame The frame is the concatenation of the tokens
between the two participants. Two boolean options
on this group specify whether or not to include the
token concatenation, and whether or not to include
the part-of-speech concatenation. A further numeric
option is used to limit the maximum frame length;
when this is set to a non-zero value longer frames are
discarded.

HeadWord All the headwords of the chunks in the
sentences containing and between the participants
are listed and used to construct the features in this
group. Options specify whether to include head
nouns and/or head verbs, and whether to convert
the headwords to lower case or replace them by their
vlw backoffs. A further option allows an additional
marker to be added to each headword feature to in-
dicate whether it is before, between or after the par-
ticipants.

NestedEntity This feature indicates whether the
participants are contained in other entities, or in each

23



other. The first option adds a feature template which
indicates which type of entity containing the two par-
ticipants, if they are both contained. The second op-
tion adds a feature to indicate whether one of the
entities is contained within the other, and the third
adds a feature to indicate whether or not there is any
whitespace between the two entities.

Ngram Three options specify what type of ngrams
to add; whether to add unigrams of the tokens in
the sentences containing the participants, whether to
add bigrams of the same tokens, and whether to add
cross-bigrams, which are bigrams of tokens before
and between the participants, and of tokens between
and after the participants. Additional options spec-
ify whether to convert tokens to vlw backoff or lower
case and whether to replace all sequences of digits
by “0”. Further options can be used to indicate that
only ngrams in between the participants should be
added, that each ngram feature should be marked as
before, between or after, or that all entities should
replaced in the text by their type.

RelationKeyword Relation keywords are terms an-
notated as relation indicators for ppi and te, and
linked to relations. For ppi they are interaction
words, and for te they are expression level words.
Keywords are matched from a list generated during
training and there are feature options to match these
keywords before, between and after the participants,
and to add templates for the existence of a keyword,
the text of the keyword, and whether or not it is a
head word.

RelativeEntityPosition The only option on this
group specifies whether or not to sort the partici-
pant entities, alphabetically by entity type. Binary
features are added indicating whether the first entity
in the candidate relation is the first in the document,
whether it is the second, whether the participants
overlap or whether they coincide.

SignSlashSign This group is only used for te re-
lations and is designed to detected the presence of
indicators like +/+ and −/+ in the sentence(s) con-
taining the relation. Options allow the existence and
type of the one of these expressions to be indicated,
and also its position relative to the participants, and
whether it is adjacent to one of the participants.

3.4 Optimisation

Feature selection methods include wrapper methods
where feature sets are assessed according to their ef-
fectiveness for a given learner, and filter methods
where features are removed using some criterion be-
fore being passed to the learner (Guyon and Elisseeff,
2003). In building the re system, it was found that
filter methods did not work well, probably due to the
large number of interactions between the features, so

a wrapper optimisation method was employed, con-
sisting of greedy search through the space of possible
feature sets.

In the greedy search method, an initial feature set
is selected and a model trained on the train set
and tested on the devtest set. A series of search
operators (see below) are applied to the feature set
to produce a list of proposed new feature sets, one
corresponding to each operator, and the new feature
sets are tested in the same way. If any of these new
feature sets produces better results than the origi-
nal initial set, then the best set replaces the initial
feature set and the process is iterated. The greedy
search terminates when none of the search operators
leads to an improvement. Three types of search oper-
ators are used in the greedy search, defined in terms
of the feature set structure described in Section 3.3:

1. The deletion of a feature group.
2. The increase or decrease of a numerical option

on a feature group (e.g. context size), where the
size of the change is not greater than 2.

3. The flipping of a boolean option on a feature
group.

In theory search operators which add or remove in-
dividual features could be used, but due to the large
number of features the use of such operators is not
practical. In addition, it may have been possible
to achieve more robust results using cross-validation
rather than heldout testing, but that would also re-
sult in a large increase in search time.

3.5 Evaluation

In all re experiments, the annotated entities were
assumed as given so that only re performance was
being assessed. The performance was measured us-
ing precision-recall break-even point (bep), which is
found by adjusting the decision boundary (thresh-
old) of the classifier until the precision and recall are
equal then taking the value of the F1 at this thresh-
old. The bep has the advantage over F1 that its
definition is independent of the choice of threshold,
but it can still be compared easily to the iaa and is
based on the familiar concepts of precision and recall.

4 Results

Performance of the re system on each of the four re-
lation types was optimised using the greedy feature
exploration method described in Section 3.4. Inter
and intra-sentential relations were treated separately,
with intra-sentential relation performance optimised
first. The inter-sentential performance was then as-
sessed using a “pipeline” consisting of the best intra-
sentential relation extractor, and the inter-sentential
system being optimised.

The greedy search experiments for intra-sentential
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relations used two different starting feature sets, an
all set in which all features groups and options were
switched on, and the context sizes in EntityContext

were set to 3, and a base set which used just Ngram

and RelativeEntityPosition features. The models
were trained on train and scored on devtest us-
ing bep. In the calculation of bep, all relations
of the appropriate type were considered, including
inter-sententials. The results of the greedy search on
intra-sentential relations are shown in Table 6.

Corpus Relation
Type

Initial
Features

Initial
bep

Final
bep

ppi ppi base 36.8 52.2
all 51.6 53.4

frag base 49.2 56.0
all 55.9 57.4

te te base 45.9 51.9
all 50.6 53.8

frag base 53.7 62.7
all 60.1 61.2

Table 6: Greedy search feature exploration for intra-
sentential relations. Performance is measured on all re-
lations, testing on devtest.

For all relation types, the greedy search improves
the performance over the base and all feature sets,
usually reaching the highest performance when start-
ing from all. Comparing the results in Table 6
with the iaa figures provided in Table 5 shows that
the system performance is around 75-80% of iaa,
with the lowest relative performances observed for
frag relations. These relations include a higher pro-
portion of inter-sententials, so systems which ignore
inter-sententials suffer a larger loss in performance.

After choosing the best system for intra-sentential
relations, the same greedy optimisation was per-
formed on the inter-sentential relations using virtu-
ally the same initial feature sets. The only differ-
ence in the feature sets is that additional options are
added to the EntityDistance feature to indicate the
sentential distance between the entities. The result
of the greedy search on the inter-sentential relations
is shown in Table 7.

The inter-sentential relation optimisation is only
really successful for the frag relations in the ppi

corpus. For te and ppi inter-sentential relations, the
number of negative examples dwarfs the few posi-
tive examples making it very difficult for the ma-
chine learner. For frag relations in both corpora,
some progress is made on the performance on inter-
sentential relations (detailed breakdown not shown)
but in the te corpus this does not translate to an
overall improvement in bep. This is because the
inter- and intra-sentential probabilities have quite

Corpus Relation
Type

Initial
Features

Initial
bep

Final
bep

ppi ppi base 53.4 53.4
all 53.4 53.4

frag base 59.6 62.2
all 61.7 62.5

te te base 53.9 54.0
all 53.9 54.0

frag base 60.4 62.8
all 62.6 62.7

Table 7: Greedy search feature exploration for inter-
sentential relations. Performance is measured on all re-
lations, testing on devtest.

different ranges for frag relations meaning that the
threshold probabilities would have to be chosen sep-
arately to give the best F1 score.

The greedy search results just presented were
based on a partitioning of the feature sets into groups
which correspond to the way in which the features
were implemented. Since the search operators apply
at group granularity, and are not able to select fea-
tures from within a group, the way in which the fea-
tures are grouped is likely to have a bearing on the
performance of the best system found by the algo-
rithm. The next set of experiments investigates the
effective the feature grouping by conducting greedy
search with groups chosen randomly.

Corpus Relation
Type

Initial
bep

Final bep Ensemble
bep

ppi ppi 51.1 52.9, 52.4, 52.7,
52.8, 52.6

52.5

frag 55.7 56.3, 56.1, 56.1,
56.3, 56.4

56.3

te te 51.4 52.0 , 51.8, 52.5,
51.9, 52.9

52.1

frag 60.1 60.8, 60.5, 60.4,
60.7, 60.5

60.4

Table 8: Greedy search feature exploration with random
feature groupings for intra-sentential relations. The ini-
tial feature set is a slightly modified all in each case, and
the search was run 5 times, testing on devtest. The
ensemble system combines the 5 optimised feature sets
using the geometric mean probability.

Using a variant of the all feature set where the con-
text sizes in EntityContext were set to 5, a greedy
search for the best performing system was imple-
mented by first dividing the feature set randomly
into 50 groups, and at each iteration testing the
performance with each group added and removed
in turn. The search was iterated until no further
improvement in performance was obtained, where
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performance was measured using bep. As for the
previous greedy feature optimisations, the relation
extractor was trained on train and tested on de-

vtest. The results for intra-sentential relations are
shown in Table 8, where the experiment was repeated
several times with different (randomly chosen) par-
titions. After performing the five random knockout
searches of the feature space, an ensemble system
was created for each relation type by training a sys-
tem with each feature set and combining the five by
taking the geometric mean of the probabilities. The
performance of the ensemble system is shown in the
final column of Table 8.

Comparing the results in Table 8 with the corre-
sponding results for intra-sentential relations in Ta-
ble 6, it can be seen that splitting the features into re-
lated groups works better than random groups. The
ensemble does not improve on the individual scores,
probably because the systems in the ensemble are
not diverse enough (Dietterich, 2000)

To see how well the best feature sets generalise to
unseen data, re systems were trained on train and
devtest combined, and tested on test using dif-
ferent feature sets; the baseline sets (base and all),
and the fully optimised set (best). In addition, to
ensure that the greedy feature optimisation was not
biasing the feature set towards the particular learner
employed (i.e. maxent), systems were also trained
and tested using svm. The maxent system had its
Gaussian prior optimised on the devtest set, whilst
svm was found to work best with a linear kernel, and
its cost factor was optimised on devtest. The value
of the decision function was used for thresholding the
svm model in order to calculate the bep. The com-
parison of all systems on test is shown in Table 9.

Corpus
Relation
Type

Learner
Feature Set

base all best

ppi ppi maxent 39.7 48.3 49.1
svm 39.6 49.2 49.9

ppi frag maxent 56.9 68.0 69.4
svm 54.9 68.2 69.5

te te maxent 39.0 47.9 46.8
svm 39.6 49.8 50.1

te frag maxent 60.1 63.4 68.9
svm 59.7 67.7 70.4

Table 9: The performance of the system trained on train

and devtest, and tested on test. Performance is com-
pared across the baseline feature sets (base and all) and
the optimised feature set (best) using each classifier.

The results in Table 9 show that, in general, both
classifiers perform better with the all feature set than
with the base feature set, and best of all with the
best feature set. The svm classifier preserves this

ordering throughout, and actually performs better
than the maxent classifier overall, even though the
features were optimised for maxent. For maxent,
the best model outperforms all in three out of four
cases, with the exception being te.

5 Conclusions

It has been shown that a relation extraction system
based on a supervised classifier and a large collection
of shallow linguistic features can be applied to three
different types of relations in two different biomedical
corpora. Automated feature optimisation produced
small gains in performance which were still apparent
on a blind test set. Even though a wrapper method
was used using a specific classifier (maxent), the
feature set optimisations were still valid for an svm

classifier.
Since the greedy search through feature space is

essentially a beam search with a beam size of one, it
could be extended by using a larger beam-size, run-
ning the feature set comparisons in parallel to reduce
total running time to a manageable size. Ad-hoc ex-
periments have suggested that better results could
be obtained by restarting the feature optimisation
in different positions, indicating that local optima
could be a problem, but a thorough investigation
of the search space nature has been left for future
work. Furthermore, the hyperparameter optimisa-
tion of the classifiers (for example the Gaussian prior
in maxent) could be incorporated into the search.

Whilst the relation extractor was successful on
intra-sentential relations, it is less successful on inter-
sentential relations, perhaps becuase of the lingusitic
complexity of these, and the sparsity of positive ex-
amples. The split into inter- and inter-sentential
examples in the current system seems justified as
they have quite different characteristic, but there
may also be a case for splitting the intra-sententials
further, into intra- and inter-clausals, as suggested
by Maslennikov and Chua (2007), and then treating
inter-clausals and inter-sententials together. Whilst
intra-clausals are more likely to use simple construc-
tions and be amenable to modelling with shallow lin-
guistic features, inter-sententials and inter-clausals
are more likely to use complex linguistic phenomena
such as corefereces.
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Isabelle Guyon and André Elisseeff. 2003. An intro-
duction to variable and feature selection. Journal of
Machine Learning Research, 3(Mar):1157–1182.

Jing Jiang and Chengxiang Zhai. 2007. A systematic
exploration of the feature space for relation extraction.
In Proceedings of NAACL.

Thorsten Joachims. 1999. Making large-scale support
vector machine learning practical. In Advances in Ker-
nel Methods: Support Vector Machines. MIT Press,
Cambridge, MA.

S. Katrenko and P. W. Adriaans. 2006. Learning rela-
tions from biomedical corpora using dependency tree
levels. In Proceedings of Benelearn.

Jin D. Kim, Tomoko Ohta, and Jun’ichi Tsujii. 2008.
Corpus annotation for mining biomedical events from
literature. BMC Bioinformatics, 9(1).

Martin Krallinger, Florian Leitner, Carlos Rodriguez-
Penagos, and Alfonso Valencia. 2008. Overview of
the protein-protein interaction annotation extraction
task of BioCreative II. Genome Biology (in press).

Mstislav Maslennikov and Tat S. Chua. 2007. A multi-
resolution framework for information extraction from
free text. In Proceedings of ACL.

Guido Minnen, John Carroll, and Darren Pearce. 2000.
Robust, applied morphological generation. In Proceed-
ings of INLG.

Leif Arda Nielsen. 2006. Extracting protein-protein in-
teractions using simple contextual features. In Pro-
ceedings of BioNLP.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Bjorne, Jorma Boberg, Jouni Jarvinen, and Tapio
Salakoski. 2007. Bioinfer: A corpus for information
extraction in the biomedical domain. BMC Bioinfor-
matics, 8(1).

Marios Skounakis, Mark Craven, and Soumya Ray. 2003.
Hierarchical hidden markov models for information ex-
traction. In Georg Gottlob, Toby Walsh, Georg Gott-
lob, and Toby Walsh, editors, Proceedings of IJCAI.

L. Smith, T. Rindflesch, and W. J. Wilbur. 2004. Med-
Post: a part-of-speech tagger for biomedical text.
Bioinformatics, 20(14):2320–2321.

Guodong Zhou, Min Zhang, Donghong Ji, and Qiaoming
Zhu. 2007. Tree kernel-based relation extraction with
context-sensitive structured parse tree information. In
Proceedings of EMNLP-CoNLL.

27



BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 28–29,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Mining the Biomedical Literature for Genic Information

Catalina O. Tudor ? K. Vijay-Shanker ? Carl J. Schmidt ◦

Department of Computer and Information Sciences ?

Department of Animal and Food Sciences ◦

University of Delaware, Newark, DE 19716
{tudor,vijay}@cis.udel.edu schmidtc@udel.edu

Abstract

eGIFT (Extracting Gene Information From
Text) is an intelligent system which is in-
tended to aid scientists in surveying litera-
ture relevant to genes of interest. From a
gene specific set of abstracts retrieved from
PubMed, eGIFT determines the most impor-
tant terms associated with the given gene.
Annotators using eGIFT can quickly find ar-
ticles describing gene functions and individ-
uals scientists surveying the results of high-
throughput experiments can quickly extract
information important to their hits.

1 Introduction

Given the huge number of articles from the biomed-
ical domain, it has become very difficult for scien-
tists to quickly search and find the information they
need. Systems to facilitate literature search are being
built. E.g. GoPubMed (Doms and Schroeder, 2005)
clusters abstracts retrieved from PubMed based on
GO and MeSH terms, iHOP (Hoffman and Valen-
cia, 2005) connects biomedical literature based on
genes, EBIMed (Rebholz-Schuhmann et al., 2006)
displays sentences containing GO terms, drugs, and
species.

In contrast to these systems, eGIFT automatically
identifies the most relevant terms associated with a
given gene. We believe that such a retrieval of terms
could itself enable the scientists to form a reason-
able good idea about the gene. For example, some
of the top key phrases associated with Groucho (En-
trez Gene ID 43162) by eGIFT are: transcriptional

corepressor, segmentation, neurogenesis and wd40.
This might immediately inform a user that Grou-
cho is probably a transcriptional corepressor, that
it might be involved in the processes of segmenta-
tion and neurogenesis and that it might contain the
wd40 domain, which allows them to draw further in-
ferences about the gene. To enable the scientists to
get a deeper understanding, eGIFT further allows the
retrieval of all sentences from this gene’s literature
containing the key phrase in question. The sentences
can be displayed in isolation or in the context of the
abstract in which they appear.

2 Ranking Key Terms

(Andrade and Valencia, 1998) automatically ex-
tracted keywords from scientific text by computing
scores for each word in a given protein family, based
on the frequency of the word in the family, the aver-
age frequency of the word and the deviation of word
distribution over all families. (Liu et al., 2004) ex-
tended this method to statistically mine functional
keywords associated with genes.

Our application is somewhat similar in that we
compare the distribution of phrases in the abstracts
about the gene from some background set. We use
statistical methods to identify the situations where
the different frequencies of appearance of a term
in two sets of the literature are statistically interest-
ing. We differ from the above work by choosing a
broader range of background information. Our moti-
vation is to retrieve any type of phrases, thus not lim-
iting ourselves to only functional terms or terms that
might differentiate the selected set of protein fami-
lies. Since we no longer have several sets of litera-
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ture, our approach differs from the above method in
that we cannot base the score on average frequencies
and term deviation in the same way.
Background Set (BSet): In order to capture a wide
range of information about genes in general, we
downloaded from PubMed all the abstracts for the
following boolean query: gene[tiab] OR genes[tiab]
OR protein[tiab] OR proteins[tiab]. Approximately
640,000 non-empty abstracts were found.
Query Set (QSet): We download from PubMed the
abstracts that mention a given gene name and its syn-
onyms. We obtained the latter from BioThesaurus
(Liu et al., 2005).
Key Term Scores: We considered many different
statistical tests to identify significant key phrases,
but eventually settled on the following score:

st = (
dctq

Nq
− dctb

Nb
) ∗ ln

(
Nb

dctb

)
where dctb and dctq are the background and query
document counts of term t, and Nb and Nq are the
total number of documents from the BSet and QSet.

The difference in frequencies (dctq

Nq
− dctb

Nb
) gives

preference to terms that appear more frequently in
the QSet than in the BSet. This way, we would
like to capture terms that are common to the given
gene but not to genes and proteins in general. The
difference itself is not sufficient to eliminate com-
mon words. To address this problem, similar to the
use of IDF in IR, we add a global frequency term
(ln

(
Nb
dctb

)
) to further penalize common terms, such

as protein.
To better understand how the score is computed,

consider the gene Groucho and its key term core-
pressor, which was mentioned in 66% of the QSet
and only in 0.1% of the BSet. The huge difference
in frequencies, together with the low background
frequency, helped the key term corepressor score
4.3617, while most of the terms score below 0.25.
Enhancements to Basic Method: First, we ex-
tended our method to include unigrams, bigrams,
and multi-word terms where previously identified.
We observed that some words are not meaningful
when presented alone. For instance, the words de-
velopment and embryonic taken separately are not
as informative as when put together into embryonic
development, a term which was ranked much higher
than the two words.

Next, we applied morphological grouping on
terms, based on manually developed rules, after ob-
serving variances within the same concept. In writ-
ing, we can say corepressor, co-repressor, or co-
repressors. In order to capture the concept, we com-
puted frequencies on morphological groups and not
on each individual term.

Last, we divided key terms into categories by
using morphological information to separate terms
such as descriptors, and by consulting publicly avail-
able controlled vocabularies (such as NCBI Con-
served Domains, NCBI Taxonomy, MedlinePlus,
DrugBank, and MeSH category A01).

3 Assessment

Our method has been applied on 55 different genes
selected by annotators for a public resource. The
initial feedback has been encouraging. Also pre-
liminary investigations suggest we get far more key-
words associated with some genes in resources such
as GenBank, SwissProt and Gene Ontology than the
system of (Liu et al., 2004). Our next goal is to do a
thorough evaluation of our system.
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Abstract

This paper presents an active learning-like
framework for reducing the human effort for
making named entity annotations in a corpus.
In this framework, the annotation work is per-
formed as an iterative and interactive process
between the human annotator and a proba-
bilistic named entity tagger. At each itera-
tion, sentences that are most likely to con-
tain named entities of the target category are
selected by the probabilistic tagger and pre-
sented to the annotator. This iterative anno-
tation process is repeated until the estimated
coverage reaches the desired level. Unlike ac-
tive learning approaches, our framework pro-
duces a named entity corpus that is free from
the sampling bias introduced by the active
strategy. We evaluated our framework by
simulating the annotation process using two
named entity corpora and show that our ap-
proach could drastically reduce the number
of sentences to be annotated when applied to
sparse named entities.

1 Introduction

Named entities play a central role in conveying im-
portant domain specific information in text, and
good named entity recognizers are often required
in building practical information extraction systems.
Previous studies have shown that automatic named
entity recognition can be performed with a reason-
able level of accuracy by using various machine
learning models such as support vector machines
(SVMs) or conditional random fields (CRFs) (Tjong
Kim Sang and De Meulder, 2003; Settles, 2004;
Okanohara et al., 2006).

However, the lack of annotated corpora, which are
indispensable for training machine learning models,
makes it difficult to broaden the scope of text mining
applications. In the biomedical domain, for exam-
ple, several annotated corpora such as GENIA (Kim
et al., 2003), PennBioIE (Kulick et al., 2004), and
GENETAG (Tanabe et al., 2005) have been created
and made publicly available, but the named entity
categories annotated in these corpora are tailored to
their specific needs and not always sufficient or suit-
able for text mining tasks that other researchers need
to address.

Active learning is a framework which can be used
for reducing the amount of human effort required to
create a training corpus (Dagan and Engelson, 1995;
Engelson and Dagan, 1996; Thompson et al., 1999;
Shen et al., 2004). In active learning, samples that
need to be annotated by the human annotator are
picked up by a machine learning model in an iter-
ative and interactive manner, considering the infor-
mativeness of the samples. Active learning has been
shown to be effective in several natural language
processing tasks including named entity recognition.

The problem with active learning is, however, that
the resulting annotated data is highly dependent on
the machine learning algorithm and the sampling
strategy employed, because active learning anno-
tates only asubset of the given corpus. This sam-
pling bias is not a serious problem if one is to use the
annotated corpus only for their own machine learn-
ing purpose and with the same machine learning al-
gorithm. However, the existence of bias is not desir-
able if one also wants the corpus to be used by other
applications or researchers. For the same reason, ac-
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tive learning approaches cannot be used to enrich an
existing linguistic corpus with a new named entity
category.

In this paper, we present a framework that enables
one to make named entity annotations for a given
corpus with a reduced cost. Unlike active learn-
ing approaches, our framework aims to annotateall
named entities of the target category contained in
the corpus. Obviously, if we were to ensure 100%
coverage of annotation, there is no way of reducing
the annotation cost, i.e. the human annotator has to
go through every sentence in the corpus. However,
we show in this paper that it is possible to reduce
the cost by slightly relaxing the requirement for the
coverage, and the reduction can be drastic when the
target named entities are sparse.

We should note here that the purpose of this pa-
per is not to claim that our approach is superior to
existing active learning approaches. The goals are
different—while active learning aims at optimizing
the performance of the resulting machine learning-
based tagger, our framework aims to help develop
an unbiased named entity-annotated corpus.

This paper is organized as follows. Section 2 de-
scribes the overall annotation flow in our framework.
Section 3 presents how to select sentences using the
output of a probabilistic tagger. Section 4 describes
how to estimate the coverage during the course of
annotation. Experimental results using two named
entity corpora are presented in section 5. Section 6
describes related work and discussions. Concluding
remarks are given in section 7.

2 Annotating Named Entities by Dynamic
Sentence Selection

Figure 1 shows the overall flow of our annotation
framework. The framework is an iterative process
between the human annotator and a named entity
tagger based on CRFs. In each iteration, the CRF
tagger is trained using all annotated sentences avail-
able and is applied to the unannotated sentences to
select sentences that are likely to contain named
entities of the target category. The selected sen-
tences are then annotated by the human annotator
and moved to the pool of annotated sentences.

This overall flow of annotation framework is very
similar to that of active learning. In fact, the only

1. Select the firstn sentences from the corpus and
annotate the named entities of the target cate-
gory.

2. Train a CRF tagger using all annotated sen-
tences.

3. Apply the CRF tagger to the unannotated sen-
tences in the corpus and select the topn sen-
tences that are most likely to contain target
named entities.

4. Annotate the selected sentences.

5. Go back to 2 (repeat until the estimated cover-
age reaches a satisfactory level).

Figure 1: Annotating named entities by dynamic sentence
selection.

differences are the criterion of sentence selection
and the fact that our framework uses the estimated
coverage as the stopping condition. In active learn-
ing, sentences are selected according to their infor-
mativeness to the machine learning algorithm. Our
approach, in contrast, selects sentences that are most
likely to contain named entities of the target cate-
gory. Section 3 elaborates on how to select sentences
using the output of the CRF-based tagger.

The other key in this annotation framework is
when to stop the annotation work. If we repeat the
process until all sentences are annotated, then obvi-
ously there is not merit of using this approach. We
show in section 4 that we can quite accurately esti-
mate how much of the entities in the corpus are al-
ready annotated and use this estimated coverage as
the stopping condition.

3 Selecting Sentences using the CRF
tagger

Our annotation framework takes advantage of the
ability of CRFs to output multiple probabilistic hy-
potheses. This section describes how we obtain
named entity candidates and their probabilities from
CRFs in order to compute the expected number of
named entities contained in a sentence1.

1We could use other machine learning algorithms for this
purpose as long as they can produce probabilistic output. For
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3.1 The CRF tagger

CRFs (Lafferty et al., 2001) can be used for named
entity recognition by representing the spans of
named entities using the “BIO” tagging scheme, in
which ‘B’ represents the beginning of a named en-
tity, ‘I’ the inside, and ‘O’ the outside (See Table 2
for example). This representation converts the task
of named entity recognition into a sequence tagging
task.

A linear chain CRF defines a single log-linear
probabilistic distribution over the possible tag se-
quencesy for a sentencex:

p(y|x) =
1

Z(x)
exp

T∑

t=1

K∑

k=1

λkfk(t, yt, yt−1,xt),

wherefk(t, yt, yt−1,xt) is typically a binary func-
tion indicating the presence of featurek, λk is the
weight of the feature, andZ(X) is a normalization
function:

Z(x) =
∑

y

exp
T∑

t=1

K∑

k=1

λkfk(t, yt, yt−1,xt).

This modeling allows us to define features on states
(“BIO” tags) and edges (pairs of adjacent “BIO”
tags) combined with observations (e.g. words and
part-of-speech (POS) tags).

The weights of the features are determined
in such a way that they maximize the condi-
tional log-likelihood of the training data2 L(θ) =∑N

i=1 log pθ(y
(i)|x(i)). We use the L-BFGS algo-

rithm (Nocedal, 1980) to compute those parameters.
Table 1 lists the feature templates used in the CRF

tagger. We used unigrams of words/POS tags, and
prefixes and suffixes of the current word. The cur-
rent word is also normalized by lowering capital let-
ters and converting all numerals into ‘#’, and used
as a feature. We created a word shape feature from
the current word by converting consecutive capital
letters into ‘A’, small letters ‘a’, and numerals ‘#’.

example, maximum entropy Markov models are a possible al-
ternative. We chose the CRF model because it has been proved
to deliver state-of-the-art performance for named entity recog-
nition tasks by previous studies.

2In the actual implementation, we used L2 norm penalty for
regularization.

Word Unigram wi, wi−1, wi+1 & yi

POS Unigram pi, pi−1, pi+1 & yi

Prefix, Suffix prefixes ofwi & yi

suffixes ofwi & yi

(up to length 3)
Normalized Word N(wi) & yi

Word Shape S(wi) & yi

Tag Bi-gram true & yi−1yi

Table 1: Feature templates used in the CRF tagger.

3.2 Computing the expected number of named
entities

To select sentences that are most likely to contain
named entities of the target category, we need to
obtain theexpected number of named entities con-
tained in each sentence. CRFs are well-suited for
this task as the output is fully probabilistic.

Suppose, for example, that the sentence is “Tran-
scription factor GATA-1 and the estrogen receptor”.
Table 2 shows an example of the 5-best sequences
output by the CRF tagger. The sequences are rep-
resented by the aforementioned “BIO” representa-
tion. For example, the first sequence indicates that
there is one named entity ‘Transcription factor’ in
the sequence. By summing up these probabilistic se-
quences, we can compute the probabilities for pos-
sible named entities in a sentence. From the five se-
quences in Table 2, we obtain the following three
named entities and their corresponding probabilities.

‘Transcription factor’ (0.677 + 0.242 = 0.916)
‘estrogen receptor’ (0.242 + 0.009 = 0.251)
‘Transcription factor GATA-1’ (0.012 + 0.009 =

0.021)

The expected number of named entities in this
sentence can then be calculated as 0.916 + 0.251 +
0.021 = 1.188.

In this example, we used 5-best sequences as an
approximation of all possible sequences output by
the tagger, which are needed to compute the exact
expected number of entities. One possible way to
achieve a good approximation is to use a largeN for
N -best sequences, but there is a simpler and more
efficient way 3, which directly produces the exact

3We thank an anonymous reviewer for pointing this out.
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Probability Transcription factor GATA-1 and the estrogen receptor
0.677 B I O O O O O
0.242 B I O O O B I
0.035 O O O O O O O
0.012 B I I O O O O
0.009 B I I O O B I

: : : : : : : :

Table 2: N-best sequences output by the CRF tagger.

expected number of entities. Recall that named enti-
ties are represented with the “BIO” tags. Since one
entity always contains one “B” tag, we can compute
the number of expected entities by simply summing
up the marginal probabilities for the “B” tag on each
token in the sentence4.

Once we compute the expected number of enti-
ties for every unannotated sentence in the corpus,
we sort the sentences in descending order of the ex-
pected number of entities and choose the topn sen-
tences to be presented to the human annotator.

4 Coverage Estimation

To ensure the quality of the resulting annotated cor-
pus, it is crucial to be able to know the current cov-
erage of annotation at each iteration in the annota-
tion process. To compute the coverage, however,
one needs to know the total number of target named
entities in the corpus. The problem is that it is not
known until all sentences are annotated.

In this paper, we solve this dilemma by using
an estimated value for the total number of entities.
Then, the estimated coverage can be computed as
follows:

(estimated coverage) =
m

m +
∑

i∈U Ei

(1)

wherem is the number of entities actually annotated
so far andEi is the expected number of entities in
sentencei, andU is the set of unannotated sentences
in the corpus. At any iteration,m is always known
andEi is obtained from the output of the CRF tagger
as explained in the previous section.

4The marginal probabilities on each token can be computed
by the forward-backward algorithm, which is much more effi-
cient than computingN -best sequences for a largeN .

# Entities Sentences (%)
CoNLL: LOC 7,140 5,127 (36.5%)
CoNLL: MISC 3,438 2,698 (19.2%)
CoNLL: ORG 6,321 4,587 (32.7%)
CoNLL: PER 6,600 4,373 (31.1%)
GENIA: DNA 2,017 5,251 (28.3%)
GENIA: RNA 225 810 ( 4.4%)
GENIA: cell line 835 2,880 (15.5%)
GENIA: cell type 1,104 5,212 (28.1%)
GENIA: protein 5,272 13,040 (70.3%)

Table 3: Statistics of named entities.

5 Experiments

We carried out experiments to see how our method
can improve the efficiency of annotation process
for sparse named entities. We evaluate our method
by simulating the annotation process using existing
named entity corpora. In other words, we use the
gold-standard annotations in the corpus as the anno-
tations that would be made by the human annotator
during the annotation process.

5.1 Corpus

We used two named entity corpora for the exper-
iments. One is the training data provided for the
CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003), which consists of 14,041 sen-
tences and includes four named entity categories
(LOC, MISC, ORG, and PER) for the general do-
main. The other is the training data provided for
the NLPBA shared task (Kim et al., 2004), which
consists of 18,546 sentences and five named entity
categories (DNA, RNA, cellline, cell type, and pro-
tein) for the biomedical domain. This corpus is cre-
ated from the GENIA corpus (Kim et al., 2003) by
merging the original fine-grained named entity cate-
gories.
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Figure 2: Annotation of LOC in the CoNLL corpus.
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Figure 3: Annotation of MISC in the CoNLL corpus.

Table 3 shows statistics of the named entities in-
cluded in the corpora. The first column shows the
number of named entities for each category. The
second column shows the number of the sentences
that contain the named entities of each category. We
can see that some of the named entity categories are
very sparse. For example, named entities of “RNA”
appear only in 4.4% of the sentences in the corpus.
In contrast, named entities of “protein” appear in
more than 70% of the sentences in the corpus.

In the experiments reported in the following sec-
tions, we do not use the “protein” category because
there is no merit of using our framework when most
sentences are relevant to the target category.

5.2 Results

We carried out eight sets of experiments, each of
which corresponds to one of those named entity cat-
egories shown in Table 3 (excluding the “protein”
category). The number of sentences selected in each
iteration (the value ofn in Figure 1) was set to 100
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Figure 4: Annotation of ORG in the CoNLL corpus.
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Figure 5: Annotation of PER in the CoNLL corpus.

throughout all experiments.
Figures 2 to 5 show the results obtained on the

CoNLL data. The figures show how the coverage
increases as the annotation process proceeds. The
x-axis shows the number of annotated sentences.

Each figure contains three lines. The normal line
represents the coverage actually achieved, which is
computed as follows:

(coverage) =
entities annotated

total number of entities
. (2)

The dashed line represents the coverage estimated
by using equation 1. For the purpose of comparison,
the dotted line shows the coverage achieved by the
baseline annotation strategy in which sentences are
selected sequentially from the beginning to the end
in the corpus.

The figures clearly show that our method can
drastically accelerate the annotation process in com-
parison to the baseline annotation strategy. The im-
provement is most evident in Figure 3, in which
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Figure 6: Annotation of DNA in the GENIA corpus.
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Figure 7: Annotation of RNA in the GENIA corpus.

named entities of the category “MISC” are anno-
tated.

We should also note that coverage estimation was
surprisingly accurate. In all experiments, the differ-
ence between the estimated coverage and the real
coverage was very small. This means that we can
safely use the estimated coverage as the stopping
condition for the annotation work.

Figures 6 to 9 show the experimental results on
the GENIA data. The figures show the same char-
acteristics observed in the CoNLL data. The accel-
eration by our framework was most evident for the
“RNA” category.

Table 4 shows how much we can save the annota-
tion cost if we stop the annotation process when the
estimated coverage reaches 99%. The first column
shows the coverage actually achieved and the second
column shows the number and ratio of the sentences
annotated in the corpus. This table shows that, on
average, we can achieve a coverage of 99.0% by an-
notating 52.4% of the sentences in the corpus. In
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Figure 8: Annotation of cellline in the GENIA corpus.
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Figure 9: Annotation of celltype in the GENIA corpus.

other words, we could roughly halve the annotation
cost by accepting the missing rate of 1.0%.

As expected, the cost reduction was most drastic
when “RNA”, which is the most sparse named entity
category (see Table 3), was targeted. The cost reduc-
tion was more than seven-fold. These experimental
results confirm that our annotation framework is par-
ticularly useful when applied to sparse named enti-
ties.

Table 4 also shows the timing information on the
experiments5. One of the potential problems with
this kind of active learning-like framework is the
computation time required to retrain the tagger at
each iteration. Since the human annotator has to
wait while the tagger is being retrained, the compu-
tation time required for retraining the tagger should
not be very long. In our experiments, the worst
case (i.e. DNA) required 443 seconds for retrain-
ing the tagger at the last iteration, but in most cases

5We used AMD Opteron 2.2GHz servers for the experiments
and our CRF tagger is implemented in C++.
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Coverage Sentences Annotated (%) Cumulative Time (second) Last Interval (second)
CoNLL: LOC 99.1% 7,600 (54.1%) 3,362 92
CoNLL: MISC 96.9% 5,400 (38.5%) 1,818 61
CoNLL: ORG 99.7% 8,900 (63.4%) 5,201 104
CoNLL: PER 98.0% 6,200 (44.2%) 2,300 75
GENIA: DNA 99.8% 11,900 (64.2%) 33,464 443
GENIA: RNA 99.2% 2,500 (13.5%) 822 56
GENIA: cell line 99.6% 9,400 (50.7%) 15,870 284
GENIA: cell type 99.3% 8,600 (46.4%) 13,487 295
Average 99.0% - (52.4%) - -

Table 4: Coverage achieved when the estimated coverage reached 99%.

the training time for each iteration was kept under
several minutes.

In this work, we used the BFGS algorithm for
training the CRF model, but it is probably possible to
further reduce the training time by using more recent
parameter estimation algorithms such as exponenti-
ated gradient algorithms (Globerson et al., 2007).

6 Discussion and Related Work

Our annotation framework is, by definition, not
something that can ensure a coverage of 100%. The
seriousness of a missing rate of, for example, 1% is
not entirely clear—it depends on the application and
the purpose of annotation. In general, however, it
is hard to achieve a coverage of 100% in real an-
notation work even if the human annotator scans
through all sentences, because there is often ambi-
guity in deciding whether a particular named entity
should be annotated or not. Previous studies report
that inter-annotator agreement rates with regards to
gene/protein name annotation are f-scores around
90% (Morgan et al., 2004; Vlachos and Gasperin,
2006). We believe that the missing rate of 1% can be
an acceptable level of sacrifice, given the cost reduc-
tion achieved and the unavoidable discrepancy made
by the human annotator.

At the same time, we should also note that our
framework could be used in conjunction with ex-
isting methods for semi-supervised learning to im-
prove the performance of the CRF tagger, which
in turn will improve the coverage. It is also pos-
sible to improve the performance of the tagger by
using external dictionaries or using more sophis-
ticated probabilistic models such as semi-Markov
CRFs (Sarawagi and Cohen, 2004). These enhance-
ments should further improve the coverage, keeping

the same degree of cost reduction.
The idea of improving the efficiency of annota-

tion work by using automatic taggers is certainly not
new. Tanabe et al. (2005) applied a gene/protein
name tagger to the target sentences and modified
the results manually. Culotta and McCallum (2005)
proposed to have the human annotator select the
correct annotation from multiple choices produced
by a CRF tagger for each sentence. Tomanek et
al. (2007) discuss the reusability of named entity-
annotated corpora created by an active learning ap-
proach and show that it is possible to build a cor-
pus that is useful to different machine learning algo-
rithms to a certain degree.

The limitation of our framework is that it is use-
ful only when the target named entities are sparse
because the upper bound of cost saving is limited
by the proportion of the relevant sentences in the
corpus. Our framework may therefore not be suit-
able for a situation where one wants to make an-
notations for named entities of many categories si-
multaneously (e.g. creating a corpus like GENIA
from scratch). In contrast, our framework should be
useful in a situation where one needs to modify or
enrich named entity annotations in an existing cor-
pus, because the target named entities are almost al-
ways sparse in such cases. We should also note that
named entities in full papers, which recently started
to attract much attention, tend to be more sparse than
those in abstracts.

7 Conclusion

We have presented a simple but powerful framework
for reducing the human effort for making name en-
tity annotations in a corpus. The proposed frame-
work allows us to annotatealmost all named entities
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of the target category in the given corpus without
having to scan through all the sentences. The frame-
work also allows us to know when to stop the anno-
tation process by consulting the estimated coverage
of annotation.

Experimental results demonstrated that the frame-
work can reduce the number of sentences to be anno-
tated almost by half, achieving a coverage of 99.0%.
Our framework was particularly effective when the
target named entities were very sparse.

Unlike active learning, this work enables us to
create a named entity corpus that is free from the
sampling bias introduced by the active learning strat-
egy. This work will therefore be especially useful
when one needs to enrich an existing linguistic cor-
pus (e.g. WSJ, GENIA, or PennBioIE) with named
entity annotations for a new semantic category.
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Abstract 

This article reports on a corpus annotation 
project that has produced a freely available re-
source for research on handling negation and 
uncertainty in biomedical texts (we call this 
corpus the BioScope corpus). The corpus con-
sists of three parts, namely medical free texts, 
biological full papers and biological scientific 
abstracts. The dataset contains annotations at 
the token level for negative and speculative 
keywords and at the sentence level for their 
linguistic scope. The annotation process was 
carried out by two independent linguist anno-
tators and a chief annotator – also responsible 
for setting up the annotation guidelines – who 
resolved cases where the annotators disagreed. 
We will report our statistics on corpus size, 
ambiguity levels and the consistency of anno-
tations. 

1 Introduction 

Detecting uncertain and negative assertions is es-
sential in most Text Mining tasks where in general, 
the aim is to derive factual knowledge from textual 
data. This is especially so for many tasks in the 
biomedical (medical and biological) domain, 
where these language forms are used extensively in 
textual documents and are intended to express im-
pressions, hypothesised explanations of experi-
mental results or negative findings. Take, for 
example, the clinical coding of medical reports, 
where the coding of a negative or uncertain disease 
diagnosis may result in an over-coding financial 
penalty. Another example from the biological do-

main is interaction extraction, where the aim is to 
mine text evidence for biological entities with cer-
tain relations between them. Here, while an uncer-
tain relation or the non-existence of a relation 
might be of some interest for an end-user as well, 
such information must not be confused with real 
textual evidence (reliable information). A general 
conclusion is that for text mining, extracted infor-
mation that is within the scope of some negative / 
speculative (hedge or soft negation) keyword 
should either be discarded or presented separately 
from factual information.  

Even though many successful text processing 
systems (Friedman et al., 1994, Chapman et al. 
2001, Elkin et al. 2005) handle the above-
mentioned phenomena, most of them exploit hand-
crafted rule-based negation/uncertainty detection 
modules. To the best of our knowledge, there are 
no publicly available standard corpora of reason-
able size that are usable for evaluating the auto-
matic detection and scope resolution of these 
language phenomena. The availability of such a 
resource would undoubtedly facilitate the devel-
opment of corpus-based statistical systems for ne-
gation/hedge detection and resolution.  

Our study seeks to fill this gap by presenting the 
BioScope corpus, which consists of medical and 
biological texts annotated for negation, speculation 
and their linguistic scope. This was done to permit 
a comparison between and to facilitate the devel-
opment of systems for negation/hedge detection 
and scope resolution. The corpus described in this 
paper has been made publicly available for re-
search purposes and it is freely downloadable1. 

                                                           
1 www.inf.u-szeged.hu/rgai/bioscope  
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1.1 Related work 

Chapman et al. (2001) created a simple regular 
expression algorithm called NegEx that can detect 
phrases indicating negation and identify medical 
terms falling within the negative scope. With this 
process, a large part of negatives can be identified 
in discharge summaries. 

Mutalik et al. (2001) earlier developed 
Negfinder in order to recognise negated patterns in 
medical texts. Their lexer uses regular expressions 
to identify words indicating negation and then it 
passes them as special tokens to the parser, which 
makes use of the single-token look-ahead strategy. 
Thus, without appealing to the syntactic structure 
of the sentence, Negfinder can reliably identify 
negated concepts in medical narrative when they 
are located near the negation markers. 

Huang and Lowe (2007) implemented a hybrid 
approach to automated negation detection. They 
combined regular expression matching with 
grammatical parsing: negations are classified on 
the basis of syntactic categories and they are 
located in parse trees. Their hybrid approach is 
able to identify negated concepts in radiology 
reports even when they are located at some 
distance from the negative term. 

The Medical Language Extraction and Encoding 
(MedLEE) system was developed as a general 
natural language processor in order to encode 
clinical documents in a structured form (Friedman 
et al., 1994). Negated concepts and certainty 
modifiers are also encoded within the system, thus 
it enables them to make a distinction between 
negated/uncertain concepts and factual information 
which is crucial in information retrieval. 

Elkin et al. (2005) use a list of negation words 
and a list of negation scope-ending words in order 
to identify negated statements and their scope. 

Although a fair amount of literature on 
uncertainty (or hedging) in scientific texts has been 
produced since the 1990s (e.g. Hyland, 1994), 
speculative language from a Natural Language 
Processing perspective has only been studied in the 
past few years. Previous studies (Light et al., 2004) 
showed that the detection of hedging can be solved 
effectively by looking for specific keywords which 
imply speculative content. 

Another possibility is to treat the problem as a 
classification task and train a statistical  model to 
discriminate speculative and non-speculative 

assertions. This approach requires the availability 
of labeled instances to train the models on. 
Medlock and Briscoe (2007) proposed a weakly 
supervised setting for hedge classification in 
scientific texts where the aim is to minimise human 
supervision needed to obtain an adequate amount 
of training data. Their system focuses on locating 
hedge cues in text and thus they do not determine 
the scopes (in other words in a text they define the 
scope to be a whole sentence). 

1.2 Related resources 

Even though the problems of negation (mainly in 
the medical domain) and hedging (mainly in the 
scientific domain) have received much interest in 
the past few years, open access annotated resources 
for training, testing and comparison are rare and 
relatively small in size. Our corpus is the first one 
with an annotation of negative/speculative 
keywords and their scope. The authors are only 
aware of the following related corpora: 
 

• The Hedge classification corpus (Medlock 
and Briscoe, 2007), which has been 
annotated for hedge cues (at the sentence 
level) and consists of five full biological 
research papers (1537 sentences). No scope 
annotation is given in the original corpus. 
We included this publicly available corpus 
in ours, enriching the data with annotation 
for negation cues and linguistic scope for 
both hedging and negation. 

• The Genia Event corpus (Kim et al., 2008), 
which annotates biological events with 
negation and three levels of uncertainty 
(1000 abstracts). 

• The BioInfer corpus (Pyysalo et al., 2007), 
where biological relations are annotated for 
negation (1100 sentences in size).  

In the two latter corpora biological terms 
(relations and events) have been annotated for both 
negation and hedging, but linguistic cues (i.e. 
which keyword modifies the semantics of the 
statement) have not been annotated. We annotated 
keywords and their linguistic scope, which is very 
useful for machine learning or rule-based negation 
and hedge detection systems. 
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2 Annotation guidelines 

This section describes the basic principles on the 
annotation of speculative and negative scopes in 
biomedical texts. Some basic definitions and tech-
nical details are given in Section 2.1, then the gen-
eral guidelines are discussed in Section 2.2 and the 
most typical keywords and their scopes are illus-
trated with examples in Section 2.3. Some special 
cases and exceptions are listed in Section 2.4, then 
the annotation process of the corpus is described 
and discussed in Section 2.5. The complete annota-
tion guidelines document is available from the cor-
pus homepage. 

2.1 Basic issues 

In a text, just sentences with some instance of 
speculative or negative language are considered for 
annotation. The annotation is based on linguistic 
principles, i.e. parts of sentences which do not con-
tain any biomedical term are also annotated if they 
assert the non-existence/uncertainty of something.  

As for speculative annotation, if a sentence is a 
statement, that is, it does not include any specula-
tive element that suggests uncertainty, it is disre-
garded. Questions inherently suggest uncertainty – 
which is why they are asked –, but they will be 
neglected and not annotated unless they contain 
speculative language. 

Sentences containing any kind of negation are 
examined for negative annotation. Negation is un-
derstood as the implication of the non-existence of 
something. However, the presence of a word with 
negative content does not imply that the sentence 
should be annotated as negative, since there are 
sentences that include grammatically negative 
words but have a speculative meaning or are actu-
ally regular assertions (see the examples below). 

In the corpus, instances of speculative and nega-
tive language – that is, keywords and their scope – 
are annotated. Speculative elements are marked by 
angled brackets: <or>, <suggests> etc., while 
negative keywords are marked by square brackets: 
[no], [without] etc. The scope of both negative and 
speculative keywords is denoted by parentheses. 
Also, the speculative or negative cue is always in-
cluded within its scope: 

This result (<suggests> that the valency of Bi in 
the material is smaller than + 3). 

Stable appearance the right kidney ([without] hy-
dronephrosis). 

In the following, the general guidelines for specu-
lative and negative annotation are presented. 

2.2 General guidelines 

During the annotation process, we followed a min-
max strategy for the marking of keywords and their 
scope. When marking the keywords, a minimalist 
strategy was followed: the minimal unit that ex-
pressed hedging or negation was marked as a key-
word. However, there are some cases when hedge 
or negation can be expressed via a phrase rather 
than a single word. Complex keywords are phrases 
that express uncertainty or negation together, but 
they cannot do this on their own (the meaning or 
the semantics of its subcomponents are signifi-
cantly different from the semantics of the whole 
phrase). An instance of a complex keyword can be 
seen in the following sentence: 

Mild bladder wall thickening (<raises the question 
of> cystitis). 

On the other hand, a sequence of words cannot be 
marked as a complex keyword if it is only one of 
those words that express speculative or negative 
content (even without the other word). Thus prepo-
sitions, determiners, adverbs and so on are not an-
notated as parts of the complex keyword if the 
keyword can have a speculative or negative con-
tent on its own: 

The picture most (<likely> reflects airways dis-
ease). 

Complex keywords are not to be confused with the 
sequence of two or more keywords because they 
can express hedge or negation on their own, that is, 
without the other keyword as well. In this case, 
each keyword is annotated separately, as is shown 
in the following example: 

Slightly increased perihilar lung markings (<may> 
(<indicate> early reactive airways disease)). 

2.3 Scope marking 

When marking the scopes of negative and specula-
tive keywords, we extended the scope to the big-
gest syntactic unit possible (in contrast to other 
corpora like the one described in (Mutalik et al., 
2001)). Thus, annotated scopes always have the 
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maximal length – as opposed to the strategy for 
annotating keywords, where we marked the mini-
mal unit possible. Our decision was supported by 
two facts. First, since scopes must contain their 
keywords, it seemed better to include every ele-
ment in between the keyword and the target word 
in order to avoid “empty” scopes, that is, scopes 
without a keyword. In the next example, however 
is not affected by the hedge cue but it should be 
included within the scope, otherwise the keyword 
and its target phrase would be separated: 

(Atelectasis in the right mid zone is, however, 
<possible>). 

Second, the status of modifiers is occasionally 
vague: it is sometimes not clear whether the modi-
fier of the target word belongs to its scope as well. 
The following sentence can describe two different 
situations: 

There is [no] primary impairment of glucocorti-
coid metabolism in the asthmatics. 

First, the glucocorticoid metabolism is impaired in 
the asthmatics but not primarily, that is, the scope 
of no extends to primary. Second, the scope of no 
extends to impairment (and its modifiers and com-
plements as well), thus there is no impairment of 
the glucocorticoid metabolism at all. Another ex-
ample is shown here: 

Mild viral <or> reactive airways disease is de-
tected. 

The syntactic structure of the above sentence is 
ambiguous. First, the airways disease is surely 
mild, but it is not known whether it is viral or reac-
tive; or second, the airways disease is either mild 
and viral or reactive and not mild. Most of the sen-
tences with similar problems cannot be disambigu-
ated on the basis of contextual information, hence 
the proper treatment of such sentences remains 
problematic. However, we chose to mark the wid-
est scope available: in other words, we preferred to 
include every possible element within the scope 
rather than exclude elements that should probably 
be included. 

 The scope of a keyword can be determined on 
the basis of syntax. The scope of verbs, auxiliaries, 
adjectives and adverbs usually extends to the right 
of the keyword. In the case of verbal elements, i.e. 
verbs and auxiliaries, it ends at the end of the 
clause (if the verbal element is within a relative 

clause or a coordinated clause) or the sentence, 
hence all complements and adjuncts are included, 
in accordance with the principle of maximal scope 
size. Take the following examples: 

The presence of urothelial thickening and mild 
dilatation of the left ureter (<suggest> that the 
patient may have continued vesicoureteral reflux). 

These findings that (<may> be from an acute 
pneumonia) include minimal bronchiectasis as 
well. 

These findings (<might> be chronic) and (<may> 
represent reactive airways disease). 

The scope of attributive adjectives generally ex-
tends to the following noun phrase, whereas the 
scope of predicative adjectives includes the whole 
sentence. For example, in the following two state-
ments: 

This is a 3 month old patient who had (<possible> 
pyelonephritis) with elevated fever. 

(The demonstration of hormone receptor proteins 
in cells from malignant effusions is <possible>). 

Sentential adverbs have a scope over the entire 
sentence, while the scope of other adverbs usually 
ends at the end of the clause or sentence. For in-
stance, 

(The chimaeric oncoprotein <probably> affects 
cell survival rather than cell growth). 

Right upper lobe volume loss and (<probably> 
pneumonia). 

The scope of conjunctions extends to all members 
of the coordination. That is, it usually extends to 
the both left and right: 

Symptoms may include (fever, cough <or> itches). 

Complex keywords such as either … or have one 
scope: 

Mild perihilar bronchial wall thickening may rep-
resent (<either> viral infection <or> reactive 
airways disease). 

Prepositions have a scope over the following 
(noun) phrase: 

Mildly hyperinflated lungs ([without] focal opac-
ity). 
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When the subject of the sentence contains the 
negative determiners no or neither, its scope ex-
tends to the entire sentence: 

Surprisingly, however, ([neither] of these proteins 
bound in vitro to EBS1 or EBS2). 

The main exception that changes the original scope 
of the keyword is the passive voice. The subject of 
the passive sentence was originally the object of 
the verb, that is, it should be within its scope. This 
is why the subject must also be marked within the 
scope of the verb or auxiliary. For instance, 

(A small amount of adenopathy <cannot be> com-
pletely <excluded>). 

Another example of scope change is the case of 
raising verbs (seem, appear, be expected, be likely 
etc.). These can have two different syntactic pat-
terns, as the following examples suggest:  

It seems that the treatment is successful. 

The treatment seems to be successful. 

In the first case, the scope of seems starts right 
with the verb. If this was the case in the second 
pattern, the treatment would not be included in the 
scope, but it should be like that shown in the first 
pattern. Hence in the second sentence, the scope 
must be extended to the subject as well: 

It (<seems> that the treatment is successful). 

(The treatment <seems> to be successful). 

Sometimes a negative keyword is present in the 
text apparently without a scope: negative obviously 
expresses negation, but the negated fact – what 
medical problem the radiograph is negative for – is 
not part of the sentence. In such cases, the keyword 
is marked and the scope contains just the keyword: 

([Negative]) chest radiograph. 

In the case of elliptic sentences, the same strategy 
is followed: the keyword is marked and its scope 
includes only the keyword since the verbal phrase, 
that is, the scope of not, is not repeated in the sen-
tence. 

This decrease was seen in patients who responded 
to the therapy as well as in those who did ([not]). 

Generally, punctuation marks or conjunctions 
function as scope boundary markers in the corpus, 
in contrast to the corpus described in (Mutalik et 

al., 2001) where certain lexical items are treated as 
negation-termination tokens. Since in our corpus 
the scope of negation or speculation is mostly ex-
tended to the entire clause in the case of verbal 
elements, it is clear that markers of a sentence or 
clause boundary determine the end of their scope. 

2.4 Special cases 

It seems unequivocal that whenever there is a 
speculative or negative cue in the sentence, the 
sentence expresses hedge or negation. However, 
we have come across several cases where the pres-
ence of a speculative/negative keyword does not 
imply a hedge/negation. That is, some of the cues 
do not denote speculation or negation in all their 
occurrences, in other words, they are ambiguous. 

For instance, the following sentence is a state-
ment and it is the degree of probability that is pre-
cisely determined, but it is not an instance of 
hedging although it contains the cue probable: 

The planar amide groups in which is still digging 
nylon splay around 30 less probable event. 

As for negative cues, sentences including a nega-
tive keyword are not necessarily to be annotated 
for negation. They can, however, have a specula-
tive content as well. The following sentence con-
tains cannot, which is a negative keyword on its 
own, but not in this case: 

(A small amount of adenopathy <cannot be> com-
pletely <excluded>). 

Some other sentences containing a negative key-
word are not to be annotated either for speculation 
or for negation. In the following example, the 
negative keyword is accompanied by an adverb 
and their meaning is neither speculative nor nega-
tive. The sequence of the negative keyword and the 
adverb can be easily substituted by another adverb 
or adjective having the same (or a similar) mean-
ing, which is by no means negative – as shown in 
the example. In this way, the sentence below can 
be viewed as a positive assertion (not a statement 
of the non-existence of something). 

Thus, signaling in NK3.3 cells is not always 
(=sometimes) identical with that in primary NK 
cells. 

As can be seen from the above examples, hedging 
or negation is determined not just by the presence 
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of an apparent cue: it is rather an issue of the key-
word, the context and the syntactic structure of the 
sentence taken together. 

2.5 Annotation process 

Our BioScope corpus was annotated by two inde-
pendent linguists following the guidelines written 
by our linguist expert before the annotation of the 
corpus was initiated. These guidelines were devel-
oped throughout the annotation process as annota-
tors were often confronted with problematic issues. 
The annotators were not allowed to communicate 
with each other as far as the annotation process 
was concerned, but they could turn to the expert 
when needed and regular meetings were also held 
between the annotators and the linguist expert in 
order to discuss recurring and/or frequent problem-
atic issues. When the two annotations for one sub-
corpus were finalised, differences between the two 
were resolved by the linguist expert, yielding the 
gold standard labeling of the subcorpus. 

3 Corpus details 

In this section we will discuss in detail the overall 
characteristics of the corpus we developed, includ-
ing a brief description of the texts that constitute 
the BioScope corpus and some general statistics 
concerning the size of each part, distribution of 
negation/hedge cues, ambiguity levels and finally 
we will present statistics on the final results of the 
annotation work. 

3.1 Corpus texts 

The corpus consists of texts taken from 4 different 
sources and 3 different types in order to ensure that 
it captures the heterogenity of language use in the 
biomedical domain. We decided to add clinical 
free-texts (radiology reports), biological full papers 
and biological paper abstracts (texts from Genia). 

Table 1 summarises the chief characteristics of 
the three subcorpora. The 3rd and 5th rows of the 
table show the ratio of sentences which contain 
negated or uncertain statements. The 4rd and 6th 
rows show the number of negation and hedge cue 
occurrences in the given corpus.  

A major part of the corpus consists of clinical 
free-texts. We chose to add medical texts to the 
corpus in order to facilitate research on nega-
tion/hedge detection in the clinical domain. The 

radiology report corpus that was used for the clini-
cal coding challenge (Pestian et al., 2007) organ-
ised by the Computational Medicine Center in 
Cincinatti, Ohio in 2007 was annotated for nega-
tions and uncertainty along with the scopes of each 
phenomenon. This part contains 1954 documents, 
each having a clinical history and an impression 
part, the latter being denser in negated and specula-
tive parts. 

Another part of the corpus consists of full sci-
entific articles. 5 articles from FlyBase (the same 
data were used by Medlock and Briscoe (2007) for 
evaluating sentence-level hedge classifiers) and 4 
articles from the open access BMC Bioinformatics 
website were downloaded and annotated for nega-
tions, uncertainty and their scopes. Full papers are 
particularly useful for evaluating negation/hedge 
classifiers as different parts of an article display 
different properties in the use of speculative or ne-
gated phrases. Take, for instance, the Conclusions 
section of scientific papers that tends to contain 
significantly more uncertain or negative findings 
than the description of Experimental settings and 
methods. 

Scientific abstracts are the main targets for 
various Text Mining applications like protein-
protein interaction mining due to their public ac-
cessibility (e.g. through PubMed). We therefore 
decided to include quite a lot of texts from the ab-
stracts of scientific papers. This is why we in-
cluded the abstracts of the Genia corpus (Collier et 
al., 1999). This decision was straightforward for 
two reasons. First, the Genia corpus contains syn-
tax tree annotation, which allows a comparison 
between scope annotation and syntactic structure. 
Being syntactic in nature, scopes should align with 
the bracket structure of syntax trees, while scope 
resolution algorithms that exploit treebank data can 
be used as a theoretical upper bound for the 
evaluation of parsers for resolving negative/hedge 
scopes. The other reason was that scope annotation 
can mutually benefit from the rich annotations of 
the Genia corpus, such as term annotation (evalua-
tion) and event annotation (comparison with the 
biologist uncertainty labeling of events). 

The corpus consists of more than 20.000 anno-
tated sentences altogether. We consider this size to 
be sufficiently large to serve as a standard evalua-
tion corpus for negation/hedge detection in the 
biomedical domain. 
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 Clinical Full Paper Abstract 
#Documents 1954 9 1273 
#Sentences 6383 2624 11872 
Negation  
sentences 6.6% 13.76% 13.45% 

#Negation cues 871 404 1757 
Hedge sentences 13.4% 22.29% 17.69% 
#Hedge cues 1137 783 2691 

Table 1: Statistics of the three subcorpora. 

3.2 Agreement analysis 

We measured the consistency level of the annota-
tion using inter-annotator agreement analysis. The 
inter-annotator agreement rate is defined as the 
Fß=1 measure of one annotation, treating the second 
one as the gold standard. We calculated agreement 
rates for all three subcorpora between the two in-
dependent annotators and between the two annota-
tors and the gold standard labeling. The gold 
standard labeling was prepared by the creator of 
the annotation guide, who resolved all cases where 
the two annotators disagreed on a keyword or its 
scope annotation. 

We measured the agreement rate of annotating 
negative and hedge keywords, and the agreement 
rate of annotating the linguistic scope for each 
phenomenon. We distinguished left-scope, right-
scope and full scope agreement that required both 
left and right scope boundaries to match exactly to 
be considered as coinciding annotations. A detailed 
analysis of the consistency levels for the three sub-
corpora and the ambiguity levels for each negative 
and hedge keyword (that is, the ratio of a keyword 
being annotated as a negative/speculative cue and 
the number of all the occurrences of the same 
keyword in the corpus) can be found at the corpus 
homepage. 

 

3.3 BioScope corpus availability 

The corpus is available free of charge for research 
purposes and can be obtained for a modest price 
for business use. For more details, see the Bio-
Scope homepage: 
www.inf.u-szeged.hu/rgai/bioscope. 

4 Conclusions 

In this paper we reported on the construction of a 
corpus annotated for negations, speculations and 

their linguistic scopes. The corpus is accessible for 
academic purposes and is free of charge. Apart 
from the intended goal of serving as a common 
resource for the training, testing and comparison of 
biomedical Natural Language Processing systems, 
the corpus is also a good resource for the linguistic 
analysis of scientific and clinical texts. 

The most obvious conclusions here are that the 
usual language of clinical documents makes it 
much easier to detect negation and uncertainty 
cues than in scientific texts because of the very 
high ratio of the actual cue words (i.e. low ambigu-
ity level), which explains the high accuracy scores 
reported in the literature. In scientific texts – which 
are nowadays becoming a popular target for Text 
Mining (for literature-based knowledge discovery) 
– the detection and scope resolution of negation 
and uncertainty is, on the other hand, a problem of 
great complexity, with the percentage of non-
hedge occurrences being as high as 90% for some 
hedge cue candidates in biological paper abstracts. 
Take for example the keyword or which is labeled 
as a speculative keyword in only 11.32% of the 
cases in scientific abstracts, while it was labeled as 
speculative in 97.86% of the cases in clinical texts. 
Identifying the scope is also more difficult in sci-
entific texts where the average sentence length is 
much longer than in clinical data, and the style of 
the texts is also more literary in the former case. 

In our study we found that hedge detection is a 
more difficult problem than identifying negations 
because the number of possible cue words is higher 
and the ratio of real cues is significantly lower in 
the case of speculation (higher keyword/non-
keyword ambiguity). The annotator-agreement ta-
ble also confirms this opinion: the detection of 
hedging is more complicated than negation even 
for humans. 

Our corpus statistics also prove the importance 
of negation and hedge detection. The ratio of ne-
gated and hedge sentences in the corpus varies in 
the subcorpora, but we can say that over 20% of 
the sentences contains a modifier that radically 
influences the semantic content of the sentence. 

One of the chief construction principles of the 
BioScope corpus was to facilitate the train-
ing/development of automatic negation and hedge 
detection systems. Such systems have to solve two 
sub-problems: they have to identify real cue words 
(note that the probability of any word being a key-
word can be different for various domains) and 
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then they have to determine the linguistic scope of 
actual keywords. 

These automatic hedge and negation detection 
methods can be utilised in a variety of ways in a 
(biomedical) Text Mining system. They can be 
used as a preprocessing tool, i.e. each word in a 
detected scope can be removed from the docu-
ments if we seek to extract true assertions. This can 
significantly reduce the level of noise for process-
ing in such cases where only a document-level la-
beling is provided (like that for the ICD-9 coding 
dataset) and just clear textual evidence for certain 
things should be extracted. On the other hand, 
similar systems can classify previously extracted 
statements according to their certainty or uncer-
tainty, which is generally an important issue in the 
automatic processing of scientific texts. 
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Abstract

We explore a linguistically motivated ap-
proach to the problem of recognizing
speculative language (“hedging”) in bio-
medical research articles. We describe a
method, which draws on prior linguistic
work as well as existing lexical resources
and extends them by introducing syntactic
patterns and a simple weighting scheme to
estimate the speculation level of the sen-
tences. We show that speculative language
can be recognized successfully with such
an approach, discuss some shortcomings of
the method and point out future research
possibilities.

1 Introduction

Science involves making hypotheses, experiment-
ing, and reasoning to reach conclusions, which are
often tentative and provisional. Scientific writing,
particularly in biomedical research articles, reflects
this, as it is rich in speculative statements, also
known as hedges. Most text processing systems
ignore hedging and focus on factual language (as-
sertions). Although assertions, sometimes mere co-
occurrence of terms, are the focus of most infor-
mation extraction and text mining applications,
identifying hedged text is crucial, because hedging
alters, in some cases even reverses, factual state-
ments. For instance, the italicized fragment in ex-
ample (1) below implies a factual statement while
example (2) contains two hedging cues (indicate
and might), which render the factual proposition
speculative:

(1) Each empty cell indicates that the corre-
sponding TPase query was not used at the par-
ticular stage of PSI-BLAST analysis.

(2) These experiments indicated that the roX
genes might function as nuclear entry sites for
the assembly of the MSL proteins on the X
chromosome.

These examples not only illustrate the phe-
nomenon of hedging in the biomedical literature,
they also highlight some of the difficulties in rec-
ognizing hedges. The word indicate plays a differ-
ent role in each example, acting as a hedging cue
only in the second.

In recent years, there has been increasing inter-
est in the speculative aspect of biomedical lan-
guage (Light et al., 2004, Wilbur et al., 2006,
Medlock and Briscoe, 2007). In general, these
studies focus on issues regarding annotating
speculation and approach the problem of recog-
nizing speculation as a text classification problem,
using the well-known “bag of words” method
(Light et al, 2004, Medlock and Briscoe, 2007) or
simple substring matching (Light et al., 2004).
While both approaches perform reasonably well,
they do not take into account the more complex
and strategic ways hedging can occur in biomedi-
cal research articles. In example (3), hedging is
achieved with a combination of referring to ex-
perimental results (We ... show that … indicating)
and the prepositional phrase to our knowledge:

(3) We further show that D-mib is specifically
required for Ser endocytosis and signaling
during wing development indicating for the
first time to our knowledge that endocytosis
regulates Ser signaling.

In this paper, we extend previous work through
linguistically motivated techniques. In particular,
we pay special attention to syntactic structures. We
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address lexical hedges by drawing on a set of lexi-
cal hedging cues and expanding and refining it in a
semi-automatic manner to acquire a hedging dic-
tionary. To capture more complex strategic hedges,
we determine syntactic patterns that commonly act
as hedging indicators by analyzing a publicly
available hedge classification dataset.  Further-
more, recognizing that “not all hedges are created
equal”, we use a weighting scheme, which also
takes into consideration the strengthening or weak-
ening effect of certain syntactic structures on lexi-
cal hedging cues. Our results demonstrate that
linguistic knowledge can be used effectively to
enhance the understanding of speculative language.

2 Related Work

The term hedging was first used in linguistic con-
text by Lakoff (1972). He proposed that natural
language sentences can be true or false to some
extent, contrary to the dominant truth-conditional
semantics paradigm of the era. He was mainly
concerned with how words and phrases, such as
mainly and rather, make sentences fuzzier or less
fuzzy.

Hyland (1998) provides one of the most com-
prehensive accounts of hedging in scientific arti-
cles in the linguistics literature. He views hedges
as polypragmatic devices with an array of purposes
such as weakening the force of statement, ex-
pressing deference to the reader and signaling un-
certainty. He proposes a fuzzy model, in which he
categorizes scientific hedges by their pragmatic
purpose, such as reliability hedges and reader-
oriented hedges. He also identifies the principal
syntactic realization devices for different types of
hedges, including epistemic verbs (verbs indicating
the speaker’s mode of knowing), adverbs and mo-
dal auxiliaries and presents the most frequently
used members of these types based on analysis of a
molecular biology article corpus.

Palmer (1986) identifies epistemic modality,
which expresses the speaker’s degree of commit-
ment to the truth of proposition and is closely
linked to hedging. He identifies three types of
epistemic modality: “speculatives” express uncer-
tainty, “deductives” indicate an inference from ob-
servable evidence, and “assumptives” indicate
inference from what is generally known. He fo-
cuses mainly on the use of modal verbs in ex-
pressing various types of epistemic modality.

In their investigation of event recognition in
news text, Saurí et al. (2006) address event modal-
ity at the lexical and syntactic level by means of
SLINKs (subordination links), some of which
(“modal”, “evidential”) indicate hedges. They use
corpus-induced lexical knowledge from TimeBank
(Pustejovsky et al. (2003)), standard linguistic
predicate classifications, and rely on a finite-state
syntactic module to identify subordinated events
based on the subcategorization properties of the
subordinating event.

DiMarco and Mercer (2004) study the intended
communicative purpose (dispute, confirmation, use
of materials, tools, etc.) of citations in scientific
text and show that hedging is used more frequently
in citation contexts.

In the medical field, Friedman et al. (1994) dis-
cuss uncertainty in radiology reports and their
natural language processing system assigns one of
five levels of certainty to extracted findings.

Light et al. (2004) explore issues with annotat-
ing speculative language in biomedicine and out-
line potential applications. They manually annotate
a corpus of approximately 2,000 sentences from
MEDLINE abstracts. Each sentence is annotated as
being definite, low speculative and highly specula-
tive. They experiment with simple substring
matching and a SVM classifier, which uses single
words as features. They obtain slightly better accu-
racy with simple substring matching suggesting
that more sophisticated linguistic knowledge may
play a significant role in identification of specula-
tive language. It is also worth noting that both
techniques yield better accuracy over full abstracts
than on the last two sentences of abstracts, in
which speculative language is found to be more
prevalent.

Medlock and Briscoe (2007) extend Light et
al.’s (2004) work, taking full-text articles into con-
sideration and applying a weakly supervised
learning model, which also uses single words as
features, to classify sentences as simply specula-
tive or non-speculative. They manually annotate a
test set and employ a probabilistic model for
training set acquisition using suggest and likely as
seed words. They use Light et al.’s substring
matching as the baseline and improve to a re-
call/precision break-even point (BEP) of 0.76, us-
ing a SVM committee-based model from 0.60
recall/precision BEP of the baseline. They note that
their learning models are unsuccessful in identify-
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ing assertive statements of knowledge paucity,
generally marked syntactically rather than lexi-
cally.

Wilbur et al. (2006) suggest that factual infor-
mation mining is not sufficient and present an an-
notation scheme, in which they identify five
qualitative dimensions that characterize scientific
sentences: focus (generic, scientific, methodology),
evidence (E0-E3), certainty (0-3), polarity (posi-
tive, negative) and trend (+,-).  Certainty and evi-
dence dimensions, in particular, are interesting in
terms of hedging. They present this annotation
scheme as the basis for a corpus that will be used
to automatically classify biomedical text.

Discussion of hedging in Hyland (1998) pro-
vides the basic linguistic underpinnings of the
study presented here. Our goals are similar to those
outlined in the work of Light et al. (2004) and
Medlock and Briscoe (2007); however, we propose
that a more linguistically oriented approach not
only could enhance recognizing speculation, but
would also bring us closer to characterizing the
semantics of speculative language. Some of the
work discussed above (in particular, Saurí et al.
(2006) and Wilbur et al. (2006)) will be relevant in
that regard.

3 Methods

To develop an automatic method to identify
speculative sentences, we first compiled a set of
core lexical surface realizations of hedging drawn
from Hyland (1998). Next, we augmented this set
by analyzing a corpus of 521 sentences, 213 of
which are speculative, and also noted certain syn-
tactic structures used for hedging. Furthermore, we
identified lexical cues and syntactic patterns that
strongly suggest non-speculative contexts (“un-
hedgers”). We then expanded and manually refined
the set of lexical hedging and “unhedging” cues
using WordNet (Fellbaum, 1998) and the UMLS
SPECIALIST Lexicon (McCray et al., 1994).
Next, we quantified the strength of the hedging
cues and patterns through corpus analysis. Finally,
to recognize the syntactic patterns, we used the
Stanford Lexicalized Parser (Klein and Manning,
2003) and its dependency parse representation
(deMarneffe et al., 2006). We use weights assigned
to hedging cues to compute an overall hedging
score for each sentence.

To evaluate the effectiveness of our method, we
used basic information retrieval evaluation metrics:
precision, recall, accuracy and F1 score. In addi-
tion, we measure the recall/precision break-even
point (BEP), which indicates the point at which
precision and recall are equal, to provide a com-
parison to results previously reported. As baseline,
we use the substring matching method, described
in Light et al. (2004) in addition to another sub-
string matching method, which uses terms ranked
in top 15 in Medlock and Briscoe (2007). To
measure the statistical significance of differences
between the performances of baseline and our
system, we used the binomial sign test.

4 Data Set

In our experiments, we use the publicly available
hedge classification dataset1, reported in Medlock
and Briscoe (2007). This dataset consists of a
manually annotated test set of 1537 sentences (380
speculative) extracted from six full-text articles on
Drosophila melanogaster (fruit-fly) and a training
set of 13,964 sentences (6423 speculative) auto-
matically induced using a probabilistic acquisition
model. A pool of 300,000 sentences randomly se-
lected from an archive of 5579 full-text articles
forms the basis for training data acquisition and
drives their weakly supervised hedge classification
approach.

While this probabilistic model for training data
acquisition is suitable for the type of weakly su-
pervised learning approach they describe, we find
that it may not be suitable as a fair data sample,
since the speculative instances overemphasize
certain hedging cues used as seed terms (suggest,
likely). On the other hand, the manually annotated
test set is valuable for our purposes. To train our
system, we (the first author) manually annotated a
separate training set of 521 sentences (213 specu-
lative) from the pool, using the annotation guide-
lines provided. Despite being admittedly small, the
training set seems to provide a good sample, as the
distribution of surface realization features (epis-
temic verbs (32%), adverbs (26%), adjectives
(19%), modal verbs (%21)) correspond roughly to
that presented in Hyland (1998).

5 Core Surface Realizations of Hedging

                                                            
1 http://www.benmedlock.co.uk/hedgeclassif.html
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Hyland (1998) provides the most comprehensive
account of surface realizations of hedging in sci-
entific articles, categorizing them into two classes:
lexical and non-lexical features. Lexical features
include modal auxiliaries (may and might being the
strongest indicators), epistemic verbs, adjectives,
adverbs and nouns. Some common examples of
these feature types are given in Table 1.

Feature Type Examples
Modal auxiliaries may, might, could, would,

should
Epistemic judgment
verbs

suggest, indicate, specu-
late, believe, assume

Epistemic evidential
verbs

appear, seem

Epistemic deductive
verbs

conclude, infer, deduce

Epistemic adjectives likely, probable, possible
Epistemic adverbs probably, possibly, per-

haps, generally
Epistemic nouns possibility, suggestion
Table 1. Lexical surface features of hedging

Non-lexical hedges usually include reference
to limiting experimental conditions, reference to a
model or theory or admission to a lack of knowl-
edge. Their surface realizations typically go be-
yond words and even phrases. An example is given
in sentence (4), with hedging cues italicized.

(4) Whereas much attention has focused on eluci-
dating basic mechanisms governing axon de-
velopment, relatively little is known about the
genetic programs required for the establish-
ment of dendrite arborization patterns that are
hallmarks of distinct neuronal types.

While lexical features can arguably be exploited
effectively by machine learning approaches, auto-
matic identification of non-lexical hedges auto-
matically seems to require syntactic and, in some
cases, semantic analysis of the text.

Our first step was to expand on the core lexical
surface realizations identified by Hyland (1998).

6 Expansion of Lexical Hedging Cues

Epistemic verbs, adjectives, adverbs and nouns
provide the bulk of the hedging cues. Although
epistemic features are commonly referred to and
analyzed in the linguistics literature and various

widely used lexicons exist that classify different
part-of-speech (e.g., VerbNet (Kipper Schuler,
2005) for verb classes), we are unaware of any
such comprehensive classification based on epis-
temological status of the words. We explore in-
ducing such a lexicon from the core lexical
examples identified in Hyland (1998) (a total of 63
hedging cues) and expanding it semi-automatically
using two lexicons: WordNet (Fellbaum, 1998)
and UMLS SPECIALIST Lexicon (McCray,
1994).

We first extracted synonyms for each epistemic
term in our list using WordNet synsets. We then
removed those synonyms that did not occur in our
pool of sentences, since they are likely to be very
uncommon words in scientific articles. Expanding
epistemic verbs is somewhat more involved than
expanding other epistemic types, as they tend to
have more synsets, indicating a greater degree of
word sense ambiguity (assume has 9 synsets).
Based on the observation that an epistemic verb
taking a clausal complement marked with that is a
very strong indication of hedging, we only consid-
ered verb senses which subcategorize for a that
complement. Expansion via WordNet resulted in
66 additional lexical features.

Next, we considered the case of nominaliza-
tions. Again, based on corpus analysis, we noted
that nominalizations of epistemic verbs and adjec-
tives are a common and effective means of hedging
in molecular biology articles. The UMLS
SPECIALIST Lexicon provides syntactic informa-
tion, including nominalizations, for biomedical as
well as general English terms. We extracted the
nominalizations of words in our expanded diction-
ary of epistemic verbs and adjectives from UMLS
SPECIALIST Lexicon and discarded those that do
not occur in our pool of sentences, resulting in an
additional 48 terms. Additional 5 lexical hedging
cues (e.g., tend, support) were identified via man-
ual corpus analysis and further expanded using the
methodology described above.

An interesting class of cues are terms expressing
strong certainty (“unhedgers”). Used within the
scope of negation, these terms suggest hedging,
while in the absence of negation they strongly sug-
gest a non-speculative context. Examples of these
include verbs indicating certainty, such as know,
demonstrate, prove and show, and adjectives, such
as clear. These features were also added to the
dictionary and used together with other surface
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cues to recognize speculative sentences. The
hedging dictionary contains a total of 190 features.

7 Quantifying Hedging Strength

It is clear that not all hedging devices are equally
strong and that the choice of hedging device affects
the strength of the speculation. However, deter-
mining the strength of a hedging device is not
trivial. The fuzzy pragmatic model proposed by
Hyland (1998) employs general descriptive terms
such as “strong” and “weak” when discussing par-
ticular cases of hedging and avoids the need for
precise quantification. Light et al. (2004) report
low inter-annotator agreement in distinguishing
low speculative sentences from highly speculative
ones. From a computational perspective, it would
be useful to quantify hedging strength to determine
the confidence of the author in his or her proposi-
tion.

As a first step in accommodating noticeable dif-
ferences in strengths of hedging features, we as-
signed weights (1 to 5, 1 representing the lowest
hedging strength and 5 the highest) to all hedging
features in our dictionary. Core features were as-
signed weights based on the discussion in Hyland
(1998). For instance, he identifies modal auxilia-
ries, may and might, as the prototypical hedging
devices, and they were given weights of 5. On the
other hand, modal auxiliaries commonly used in
non-epistemic contexts (would, could) were as-
signed a lower weight of 3. Though not as strong
as may and might, core epistemic verbs and ad-
verbs are generally good hedging cues and there-
fore were assigned weights of 4. Core epistemic
adjectives and nouns often co-occur with other
syntactic features to act as strong hedging cues and
were assigned weights of 3. Terms added to the
dictionary via expansion were assigned a weight
one less than their seed terms. For instance, the
nominalization supposition has weight 2, since it is
expanded from the verb suppose (weight 3), which
is further expanded from its synonym speculate
(weight 4), a core epistemic verb. The reduction in
weights of certain hedging cues reflects their pe-
ripheral nature in hedging.

Hyland (1998) notes that writers tend to com-
bine hedges (“harmonic combinations”) and sug-
gests the possibility of constructing scales of
certainty and tentativeness from these combina-
tions. In a similar vein, we accumulate the weights

of the hedging features found in a sentence and
assign an overall hedging score to each sentence.

8 The Role of Syntax

Corpus analysis shows that various syntactic de-
vices play a prominent role in hedging, both as
hedging cues and for strengthening or weakening
effects. For instance, while some epistemic verbs
do not act as hedging cues (or may be weak hedg-
ing cues) when used alone, together with a that
complement or an infinitival clause, they are good
indicators of hedging. A good example is appear,
which often occurs in molecular biology articles
with its “come into sight” meaning (5) and be-
comes a good hedging cue when it takes an infini-
tival complement (6):

(5) The linearity of the ommatidial arrangement
was disrupted and numerous gaps appeared
between ommatidia arrow.

(6) In these data a substantial fraction of both si-
lent and replacement DNA mutations appear to
affect fitness.

On the other hand, as discussed above, words
expressing strong certainty (“unhedgers”) are good
indicators of hedging when negated, and strongly
non-speculative otherwise.

We examined the training set and identified the
most salient syntactic patterns that play a role in
hedging. A syntactic pattern, or lack thereof, af-
fects the overall score assigned to a hedging cue; a
strengthening syntactic pattern will increase the
overall score contributed by the cue, while a weak-
ening pattern will decrease it. For instance, in sen-
tence (5) above, the absence of the infinitival
complement will reduce the score contribution of
appear by 1, resulting in a score of 3 instead of 4.
On the other hand, that appear takes an infinitival
clause in example (6) will increase the score con-
tribution of appear by 1. All score contributions of
a sentence add up to its hedging score.

A purely syntactic case is that of whether (if).
Despite being a conjunction, it seems to act as a
hedging cue when it introduces a clausal comple-
ment regardless of existence of any other hedging
cue from the hedging dictionary. The basic syntac-
tic patterns we identified and implemented and
their effect on the overall hedging score are given
in Table 2.
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To obtain the syntactic structures of sentences,
we used the statistical Stanford Lexicalized Parser
(Klein and Manning, 2003), which provides a full
parse tree, in addition to part-of-speech tagging
based on the Penn Treebank tagset. A particularly
useful feature of the Stanford Lexicalized Parser is
typed dependency parses extracted from phrase
structure parses (deMarneffe, et al. (2006)). We
use these typed dependency parses to identify
clausal complements, infinitival clauses and nega-
tion. For instance, the following two dependency
relations indicate a clausal complement marked
with that and identify the second syntactic pattern
in Table 2.

ccomp(<EPISTEMIC VERB>,<VB>)
complm(<VB>,that)

In these relations, ccomp stands for clausal
complement with internal subject and complm
stands for complementizer. VB indicates any verb.

Syntactic Pattern Effect
on Score
+1
+2

<EPISTEMIC VERB> to(inf) VB
<EPISTEMIC VERB> that(comp) VB
Otherwise -1

+2<EPISTEMIC NOUN> followed by
that(comp)
Otherwise -1
not <UNHEDGING VERB> +1
no| not <UNHEDGING NOUN> +2
no| not immediately followed by
<UNHEDGING ADVERB>

+1

no| not immediately followed by
<UNHEDGING ADJECTIVE>

+1

whether| if in a clausal complement
context

3

Table 2. Syntactic patterns and their effect on the over-
all hedging score.

9 Baseline

For our experiments, we used two baselines. First,
we used the substring matching method reported in
Light et al. (2004), which labels sentences con-
taining one of more of the following as specula-
tive: suggest, potential, likely, may, at least, in
part, possibl, further investigation, unlikely, puta-
tive, insights, point toward, promise and propose
(Baseline1). Secondly, we used the top 15 ranked

term features determined using P(spec|xj) in train-
ing and classification models (at smoothing pa-
rameter 

€ 

α=5) reported in Medlock and Briscoe
(2007): suggest, likely, may, might, seems, Taken,
suggests, probably, Together, suggesting, possibly,
suggested, findings, observations, Given. Our sec-
ond baseline uses the substring matching method
with these features (Baseline2).

10 Results

The evaluation results obtained using the baseline
methods are given in Table 3.

Method Precision Recall Accuracy F1

score
Baseline1 0.79 0.40 0.82 0.53
Baseline2 0.95 0.43 0.85 0.60
Table 3. Baseline evaluation results.

The evaluation results obtained from our system
by varying the overall hedging score and using it
as threshold are given in Table 4. It is worth noting
that the highest overall hedging score we obtained
was 16; however, we do not show the results for
every possible threshold here for brevity.

Hedging
Score
Threshold

Precision Recall Accuracy F1

score

1 0.68 0.95 0.88 0.79
2 0.75 0.94 0.91 0.83
3 0.85 0.86 0.93 0.85
4 0.91 0.71 0.91 0.80
5 0.92 0.63 0.89 0.75
6 0.97 0.40 0.85 0.57
7 1 0.19 0.79 0.33
Table 4. Evaluation results from our system.

As seen from Table 3 and Table 4, our results
show improvement over both baseline methods in
terms of accuracy and F1 score. Increasing the
threshold (thereby requiring more or stronger
hedging devices to qualify a sentence as specula-
tive) improves the precision while lowering the
recall. The best accuracy and F1 score are achieved
at threshold t=3. At this threshold, the differences
between the results obtained with our method and
baseline methods are statistically significant at
0.01 level (p < 0.01).
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Method Recall/Precision BEP
Baseline1 0.60
Baseline2 0.76
Our system 0.85
Table 5. Recall / precision break-even point (BEP) re-
sults

With the threshold providing the best accuracy
and F1 score, precision and recall are roughly the
same (0.85), indicating a recall/precision BEP of
approximately 0.85, also an improvement over
0.76 achieved with a weakly supervised classifier
(Medlock and Briscoe, 2007). Recall/precision
BEP scores are given in Table 5.

11 Discussion

Our results confirm that writers of scientific arti-
cles employ basic, predictable hedging strategies to
soften their claims or to indicate uncertainty and
demonstrate that these strategies can be captured
using a combination of lexical and syntactic
means. Furthermore, the results indicate that
hedging cues can be gainfully weighted to provide
a rough measure of tentativeness or uncertainty.
For instance, a sentence with the highest overall
hedging score is given below:

(7) In one study, Liquid facets was proposed to
target Dl to an endocytic recycling compart-
ment suggesting that recycling of Dl may be
required for signaling.

On the other hand, hedging is not strong in the
following sentence, which is assigned an overall
hedging score of 2:

(8) There is no apparent need for cytochrome c
release in C. elegans since CED-4 does not re-
quire it to activate CED-3.

Below, we discuss some of the common error
types we encountered. Our discussion is based on
evaluation at hedging score threshold of 0, where
existence of a hedging cue is sufficient to label a
sentence speculative.

Most of the false negatives produced by the
system are due to syntactic patterns not addressed
by our method. For instance, negation of “unhedg-
ers” was used as a syntactic pattern; the pattern
was able to recognize know as an “unhedger” in
the following sentence, but not the negative quanti-
fier (l i t t le), labeling the sentence as non-
speculative.

(9) Little was known however about the specific
role of the roX RNAs during the formation of
the DCC.

In fact, Hyland (1998) notes “negation in scien-
tific research articles shows a preference for nega-
tive quantifiers (few, little) and lexical negation
(rarely, overlook).” However, we have not en-
countered this pattern while analyzing the training
set and have not addressed it. Nevertheless, our
approach lends itself to incremental development
and adding such a pattern to our rulebase is rela-
tively simple.

Another type of false negative is caused by cer-
tain derivational forms of epistemic words. In the
following example, the adjective suggestive is not
recognized as a hedging trigger, even though its
base form suggest is an epistemic verb.

(10) Phenotypic differences are suggestive of
distinct functions for some of these genes in
regulating dendrite arborization.

It seems that more sophisticated lexicon expan-
sion rules can be employed to handle such cases.
For example, WordNet’s “derivationally related
form” feature may be used as the basis of these
expansion rules.

Regarding false positives, most of them are due
to word sense ambiguity concerning hedging cues.
For instance, the modal auxiliary could  is fre-
quently used as a past tense form of can in scien-
tific articles to express the role of enabling
conditions and external constraints on the occur-
rence of the proposition rather than uncertainty or
tentativeness regarding the proposition.  Currently,
our system is unable to recognize such cases. An
example is given below:

(10) Also we could not find any RAG-like se-
quences in the recently sequenced sea urchin
lancelet hydra and sea anemone genomes,
which encode RAG-like sequences.

The context around the hedging cue seems to
play a role in these cases. First person plural pro-
noun (we) and/or reference to objective enabling
conditions seem to be a common characteristic
among false positive cases of could.

In other cases, such as appear, in the absence of
strengthening syntactic cues (to, that), we lower
the hedging score; however, depending on the
threshold, this may not be sufficient to render the
sentence non-speculative.  Rather than lowering
the score equally for all epistemic verbs, a more
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appropriate approach would be to consider verb
senses separately (e.g., appear should be effec-
tively unhedged without a strengthening cue, while
suggest should only be weakened).

Another type of false positives concern “weak”
hedging cues, such as epistemic deductive verbs
(conclude, estimate) as well as adverbs (essen-
tially, usually) and nominalizations (implication,
assumption).

We have also seen a few instances, which seem
speculative on the surface, but were labeled non-
speculative. An example is given below:

(11) Caspases can also be activated with the aid
of Apaf-1, which in turn appears to be regu-
lated by cytochrome c and dATP.

12 Conclusion and Future Work

In this paper, we present preliminary experiments
we conducted in recognizing speculative sentences.
We draw on previous linguistic work and extend it
via semi-automatic methods of lexical acquisition.
Using a corpus specifically annotated for specula-
tion, we demonstrate that our linguistically ori-
ented approach improves on the previously
reported results.

Our next goal is to extend our work using a
larger, more comprehensive corpus. This will al-
low us to identify other commonly used hedging
strategies and refine and expand the hedging dic-
tionary.  We also aim to refine the weighting
scheme in a more principled way.

While recognizing that a sentence is speculative
is useful in and of itself, it seems more interesting
and clearly much more challenging to identify
speculative sentence fragments and the proposi-
tions that are being hedged. In the future, we will
move in this direction with the goal of character-
izing the semantics of speculative language.
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Abstract

Chemical named entities represent an impor-
tant facet of biomedical text. We have de-
veloped a system to use character-based n-
grams, Maximum Entropy Markov Models
and rescoring to recognise chemical names
and other such entities, and to make confi-
dence estimates for the extracted entities. An
adjustable threshold allows the system to be
tuned to high precision or high recall. At a
threshold set for balanced precision and recall,
we were able to extract named entities at an
F score of 80.7% from chemistry papers and
83.2% from PubMed abstracts. Furthermore,
we were able to achieve 57.6% and 60.3% re-
call at 95% precision, and 58.9% and 49.1%
precision at 90% recall. These results show
that chemical named entities can be extracted
with good performance, and that the proper-
ties of the extraction can be tuned to suit the
demands of the task.

1 Introduction

Systems for the recognition of biomedical named
entities have traditionally worked on a ‘first-best’
approach, where all of the entities recognised have
equal status, and precision and recall are given
roughly equal importance. This does not reflect that
fact that precision is of greater importance for some
applications, and recall is the key for others. Fur-
thermore, knowing the confidence1 with which the

1In this paper, we use “confidence” to refer to a system’s
estimate of the probability that a potential named entity is a cor-
rect named entity.

system has assigned the named entities is likely to
be useful in a range of different applications.

Named entities of relevance to biomedical sci-
ence include not only genes and proteins but also
other chemical substances which can be of inter-
est as drugs, metabolites, nutrients, enzyme cofac-
tors, experimental reagents and in many other roles.
We have recently investigated the issue of chemical
named entities (Corbett et al., 2007), by compiling a
set of manual annotation guidelines, demonstrating
93% interannotator agreement and manually anno-
tating a set of 42 chemistry papers. In this paper we
demonstrate a named entity recogniser that assigns
a confidence score to each named entity, allowing it
to be tuned for high precision or recall.

Our review of the methods of chemical named
entity recognition showed a consistent theme: the
use of character-based n-Grams to identify chemi-
cal names via their constituent substrings (Wilbur et
al., 1999; Vasserman, 2004; Townsend et al., 2005).
This can be a powerful technique, due to systematic
and semisystematic chemical names and additional
conventions in drug names. However this technique
does not cover all aspects of chemical nomenclature.

Much current named entity work uses approaches
which combine the structured prediction abilities
of HMMs and their derivatives with techniques
which enable the use of large, diverse feature sets
such as maximum entropy (also known as logis-
tic regression). Maximum Entropy Markov Mod-
els, (MEMMs) (McCallum et al., 2000) provide a
relatively simple framework for this. MEMMs do
have a theoretical weakness, namely the “label bias”
problem (Lafferty et al., 2001), which has been ad-

54



dressed with the development of Conditional Ran-
dom Fields (CRFs). CRFs are now a mainstay of
the field, being used in a high proportion of entries
in the latest BioCreative evaluation (Krallinger and
Hirschman, 2007). However, despite the label bias
problem, MEMMs still attract interest due to practi-
cal advantages such as shorter training cycles.

The framework of HMMs and their successors of-
fers three modes of operation; first-best, n-best and
confidence-based. In first-best NER, the Viterbi al-
gorithm is used to identify a single sequence of la-
bels for the target sentence. In n-best operation,
the n best sequences for the sentence are identi-
fied, along with their probabilities, for example by
coupling the Viterbi algorithm with A* search. In
confidence-based operation, potential entities (with
a probability above a threshold) are identified di-
rectly, without directly seeking a single optimal la-
belling for the entire sentence. This is done by
examining the probability of the label transitions
within the entity, and the forward and backward
probabilities at the start and end of the entity. This
mode has been termed the Constrained Forward-
Backward algorithm (Culotta and McCallum, 2004).
Where a single unambiguous non-overlapping la-
belling is required, it can be obtained by identify-
ing cases where the entities overlap, and discarding
those with lower probabilities.

Confidence-based extraction has two main advan-
tages. First, it enables the balance between precision
and recall to be controlled by varying the probability
threshold. Second, confidence-based NER avoids
over-commitment in systems where it is used as a
preprocessor, since multiple overlapping options can
be used as input to later components.

The optimum balance between recall and preci-
sion depends on the application of the NER and on
the other components in the system. High precision
is useful in search even when recall is low when
there is a large degree of redundancy in the informa-
tion in the original documents. High precision NER
may also be useful in contexts such as the extraction
of seed terms for clustering algorithms. Balanced
precision/recall is often appropriate for search, al-
though in principle it is desirable to be able to shift
the balance if there are too many/too few results.
Balanced precision/recall is also generally assumed
for use in strictly pipelined systems, when a single

set of consistent NER results is to be passed on to
subsequent processing. Contexts where high recall
is appropriate include those where a search is being
carried out where there is little redundancy (cf Car-
penter 2007) or where the NER system is being used
with other components which can filter the results.

One use of our NER system is within a language
processing architecture (Copestake et al., 2006) that
systematically allows for ambiguity by treating the
input/output of each component as a lattice (repre-
sented in terms of standoff annotation on an orig-
inal XML document). This system exploits rela-
tively deep parsing, which is not fully robust to NER
errors but which can exploit complex syntactic in-
formation to select between candidate NER results.
NER preprocessing is especially important in the
context of chemistry terms which utilise punctuation
characters (e.g., ‘2,4-dinitrotoluene’, ‘2,4- and 2,6-
dinitrotoluene’) since failure to identify these will
lead to tokenisation errors in the parser. Such errors
frequently cause complete parse failure, or highly
inaccurate analyses. In our approach, the NER re-
sults contribute edges to a lattice which can (option-
ally) be treated as tokens by the parser. The NER
results may compete with analyses provided by the
main parser lexicon. In this context, some NER er-
rors are unimportant: e.g., the parser is not sensitive
to all the distinctions between types of named entity.
In other cases, the parser will filter the NER results.
Hence it makes sense to emphasise recall over pre-
cision. We also hypothesise that we will be able to
incorporate the NER confidence scores as features
in the parse ranking model.

Another example of the use of high-recall NER in
an integrated system is shown in the editing work-
flows used by the Royal Society of Chemistry in
their Project Prospect system (Batchelor and Cor-
bett, 2007), where chemical named entity recogni-
tion is used to produce semantically-enriched jour-
nal articles. In this situation, high recall is desirable,
as false positives can be removed in two ways; by
removing entities where a chemical structure cannot
be assigned, and by having them checked by a tech-
nical editor. False negatives are harder to correct.

The use of confidence-based recognition has been
demonstrated with CRFs in the domain of contact
details (Culotta and McCallum, 2004), and using
HMMs in the domain of gene annotation (Carpen-
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ter, 2007). In the latter case, the LingPipe toolkit
was used in the BioCreative 2 evaluation without
significant adaptation. Although only 54% preci-
sion was achieved at 60% recall (the best systems
were achieving precision and recall scores in the
high eighties), the system was capable of 99.99%
recall with 7% precision, and 95% recall with 18%
precision, indicating that very high recall could be
obtained in this difficult domain.

Another potential use of confidence-based NER
is the potential to rescore named entities. In this
approach, the NER system is run, generating a set
of named entities. Information obtained about these
entities throughout the document (or corpus) that
they occur in can then be used in further classi-
fiers. We are not aware of examples of rescoring
being applied to confidence-based NER, but there
are precedents using other modes of operations. For
example, Krishnan and Manning (2006) describe a
system where a first-best CRF is used to analyse a
corpus, the results of which are then used to gener-
ate additional features to use in a second first-best
CRF. Similarly, Yoshida and Tsujii (2007) use an n-
best MEMM to generate multiple analyses for a sen-
tence, and re-rank the analyses based on information
extracted from neighbouring sentences.

Therefore, to explore the potential of these tech-
niques, we have produced a chemical NER system
that uses a MEMM for confidence-based extraction
of named entities, with an emphasis on the use of
character-level n-Grams, and a rescoring system.

2 Corpus

Previously, we have produced a set of annotation
guidelines for chemical named entities, and used
them to annotate a set of 42 chemistry papers (Cor-
bett et al., 2007). Inter-annotator agreement was
tested on 14 of these, and found to be 93%. The an-
notation guidelines specified five classes of named
entity, which are detailed in Table 1. The annotation
was performed on untokenised text.

To test the applicability of the method to a
different corpus, we retrieved 500 PubMed ab-
stracts and titles, and annotated them using the
same methods. The abstracts were acquired us-
ing the query metabolism[Mesh] AND drug
AND hasabstract. This produced a diverse set

of abstracts spanning a wide range of subject ar-
eas, but which contain a higher proportion of rele-
vant terms than PubMed overall. 445 out of 500 ab-
stracts contained at least one named entity, whereas
249 contained at least ten. Notably, the ASE class
was more common in the PubMed corpus than in
the chemistry papers, reflecting the important of en-
zymes to biological and medical topics.

In this study, we have left out the named entity
type CPR, as it is rare (<1%) and causes difficulties
with tokenisation. This entity type covers cases such
as the “1,3-” in “1,3-disubstituted”, and as such re-
quires the “1,3-” to be a separate token or token se-
quence. However, we have found that recognition
of the other four classes is improved if words such
as “1,3-disubstituted” are kept together as single to-
kens. Therefore it makes sense to treat the recogni-
tion of CPR as an essentially separate problem - a
problem that will not be addressed here.

Type Description Example nCh nPM

CM compound citric acid 6865 4494
RN reaction methylation 288 401
CJ adjective pyrazolic 60 87
ASE enzyme demethylase 31 181
CPR prefix 1,3- 53 21

Table 1: Named Entity types. nCh = number in Chem-
istry corpus, nPM = number in PubMed corpus.

3 Methods

Our system is quite complex, and as such we have
made the source code available (see below). The fol-
lowing gives an outline of the system:

3.1 External Resources

Chemical names were extracted from the chem-
ical ontology ChEBI (Degtyarenko et al., 2008),
and a standard English word list was taken from
/usr/share/dict/words on a Linux system2.
A list of chemical element names and symbols was
also compiled. To overcome the shortage of enti-
ties of type ASE, a list of words from enzyme names

2This dictionary was chosen as it contains inflectional forms
of English words. Our system does not perform stemming,
partly because suffixes are often good cues as to whether a word
is chemical or not.
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ending in ‘-ase’ was extracted from the Gene Ontol-
ogy (GO), and hand sorted into words of type ASE,
and words not of type ASE.

3.2 Overview of operation
The text is tokenised before processing; this is
done using the tokeniser described in our previous
work (Corbett et al., 2007), which is adapted to
chemical text.

Our system uses three groups of classifiers to
recognise chemical names. The first classifier—the
‘preclassifier’—uses character-level n-grams to esti-
mate the probabilities of whether tokens are chemi-
cal or not. The output of this classification is com-
bined with information from the suffix of the word,
and is used to provide features for the MEMM.

The second group of classifiers constitute the
MEMM proper. Named entities are represented us-
ing an BIO-encoding, and methods analogous to
other confidence-based taggers (Culotta and McCal-
lum, 2004; Carpenter, 2007) are used to estimate
the conditional probability of tag sequences corre-
sponding to named entities. The result of this is
a list of potential named entities, with start posi-
tions, end positions, types and probabilities, where
all of the probabilities are above a threshold value.
A small set of hand-written filtering rules is used to
remove obvious absurdities, such as named entities
ending in the word “the”, and simple violations of
the annotation guidelines, such as named entities of
type ASE that contain whitespace. These filtering
rules make very little difference at recall values up
to about 80%—however, we have found that they are
useful for improving precision at very high recall.

The third group of classifiers—one per entity
type—implement a rescoring system. After all of
the potential entities from a document have been
generated, a set of features is generated for each en-
tity. These features are derived from the probabili-
ties of other entities that share the same text string
as the entity, from probabilities of potential syn-
onyms found via acronym matching and other pro-
cesses, and most importantly, from the pre-rescoring
probability of the entities themselves. In essence,
the rescoring process performs Bayesian reasoning
by adjusting the raw probabilities from the previ-
ous stage up or down based on nonlocal information
within the document.

3.3 Overview of training

A form of training conceptually similar to cross-
validation is used to train the three layers of clas-
sifiers. To train the overall system, the set of docu-
ments used for training is split into three. Two thirds
are used to train a MEMM, which is then used to
generate training data for the rescorer using the held-
out last third. This process is repeated another two
times, holding out a different third of the training
data each time. Finally, the rescorer is trained using
all of the training data generated by this procedure,
and the final version of the MEMM is generated us-
ing all of the training data. This procedure ensures
that both the MEMM and the rescorer are able to
make use of all of the training data, and also that
the rescorer is trained to work with the output of a
MEMM that has not been trained on the documents
that it is to rescore.

A similar procedure is used when training the
MEMM itself. The available set of documents to use
as training data is divided into half. One half is used
to train the preclassifier and build its associated dic-
tionaries, which are then used to generate features
for the MEMM on the other half of the data. The
roles of each half are then reversed, and the same
process is applied. Finally, the MEMM is trained
using all of the generated features, and a new pre-
classifier is trained using all of the available training
data.

It should be noted that the dictionaries extracted
during the training of the preclassifier are also used
directly in the MEMM.

3.4 The character n-gram based preclassifier

During the training of the preclassifier, sets of to-
kens are extracted from the hand-annotated train-
ing data. A heuristic is used to classify these
into ‘word tokens’—those that match the regex
.*[a-z][a-z].*, and ‘nonword tokens’—those
that do not (this class includes many acronyms and
chemical formulae). The n-gram analysis is only
performed upon ‘word tokens’.

The token sets that are compiled are chemi-
cal word tokens (those that only appear inside
named entities), nonchemical word tokens (those
that do not appear in entities), chemical nonword
tokens, nonchemical nonword tokens and ambigu-
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ous tokens—those that occur both inside and out-
side of named entities. A few other minor sets are
collected to deal with tokens related to such proper
noun-containing entities as ‘Diels–Alder reaction’.

Some of this data is combined with external dic-
tionaries to train the preclassifier, which works us-
ing 4-grams of characters and modified Kneser-Ney
smoothing, as described by Townsend et al. (2005).
The set of ‘chemical word tokens’ is used as a set of
positive examples, along with tokens extracted from
ChEBI, a list of element names and symbols, and
the ASE tokens extracted from the GO. The negative
examples used are the extracted ‘nonchemical word
tokens’, the non-ASE tokens from the GO and to-
kens taken from the English dictionary—except for
those that were listed as positive examples. This gets
around the problem that the English dictionary con-
tains the names of all of the elements and a number
of simple compounds such as ‘ethanol’.

During operation, n-gram analysis is used to cal-
culate a score for each word token, of the form:

ln(P (token|chem)) − ln(P (token|nonchem))

If this score is above zero, the preclassifier clas-
sifies the token as chemical and gives it a tentative
type, based on its suffix. This can be considered to
be a “first draft” of its named entity type. For exam-
ple tokens ending in “-ation” are given the type RN,
whereas those ending in “-ene” are given type CM.

3.5 The MEMM
The MEMM is a first-order MEMM, in that it has a
separate maximum-entropy model for each possible
preceeding tag. No information about the tag se-
quence was included directly in the feature set. We
use the OpenNLP MaxEnt classifier3 for maximum-
entropy classification.

The feature set for the MEMM is divided into
three types of features; type 1 (which apply to the
token itself), type 2 (which can apply to the token it-
self, the previous token and the next token) and type
3 (which can act as type 2 features, and which can
also form bigrams with other type 3 features).

An example type 1 feature would be 4G=ceti,
indicating that the 4-gram ceti had been found
in the token. An example type 2 feature would be

3http://maxent.sourceforge.net/

c-1:w=in, indicating that the previous token was
‘in’. An example bigram constructed from type 3
features would be bg:0:1:ct=CJ w=acid, in-
dicating that the preclassifier had classified the token
as being of type CJ, and having a score above zero,
and that the next token was ‘acid’.

Type 1 features include 1, 2, 3 and 4-grams of
characters found within the token, whether the to-
ken appeared in any of the word lists, and features to
represent the probability and type given by the pre-
classifier for that token. Type 2 features include the
token itself with any terminal letter ‘s’ removed, the
token converted to lowercase (if it matched the regex
.*[a-z][a-z].*), and a three-character suffix
taken from the token. The token itself was usually
used as a type 2 feature, unless it unless it was short
(less than four characters), or had been found to be
an ambiguous token during preclassifier training, in
which case it was type 3. Other type 3 features in-
clude a word shape feature, and tentative type of the
token if the preclassifier had classed it as chemical.

A few other features were used to cover a few spe-
cial cases, and were found to yield a slight improve-
ment during development.

After generating the features, a feature selection
based on log-likelihood ratios is used to remove the
least informative features, with a threshold set to re-
move about half of them. This was found during
development to have only a very small beneficial ef-
fect on the performance of the classifier, but it did
make training faster and produced smaller models.
This largely removed rare features which were only
found on a few non-chemical tokens.

3.6 The rescorer
The rescoring system works by constructing four
maximum entropy classifiers, one for each entity
type. The output of these classifiers is a probabil-
ity of whether or not a potential named entity really
is a correct named entity. The generation of features
is done on a per-document basis.

The key features in the rescorer represent the
probability of the potential entity as estimated by
the MEMM. The raw probability p is converted to
the logit score

l = ln(p) − ln(1 − p)

This mirrors the way probabilities are represented
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within maximum entropy (aka logistic regression)
classifiers. If l is positive, int(min(15.0, l) ∗ 50)
instances 4 of the feature conf+ are generated, and
a corresponding technique is used if l is negative.

Before generating further features, it is necessary
to find entities that are ‘blocked’—entities that over-
lap with other entities of higher confidence. For ex-
ample, consider “ethyl acetate”, which might give
rise to the named entity “ethyl acetate” with 98%
confidence, and also “ethyl” with 1% confidence and
“acetate” with 1% confidence. In this case, “ethyl”
and “acetate” would be blocked by “ethyl acetate”.

Further features are generated by collecting to-
gether all of the unblocked5 potential entities of a
type that share the same string, calculating the max-
imum and average probability, and calculating the
difference between the p and those quantities.

Some acronym and abbreviation handling is also
performed. The system looks for named entities that
are surrounded by brackets. For each of these, a list
of features is generated that is then given to every
other entity of the same string. If there is a potential
entity to the left of the bracketed potential abbre-
viation, then features are generated to represent the
probability of that potential entity, and how well the
string form of that entity matches the potential ab-
breviation. If no potential entity is found to match
with, then features are generated to represent how
well the potential abbreviation matches the tokens
to the left of it. By this method, the rescorer can
gather information about whether a potential abbre-
viation stands for a named entity, something other
than a named entity—or whether it is not an abbre-
viation at all, and use that information to help score
all occurrences of that abbreviation in the document.

4 Evaluation

The systems were evaluated by 3-fold cross-
validation methodology, whereby the data was split
into three equal folds (in the case of the chemistry

4We found that 15.0 was a good threshold by experimenta-
tion on development data: papers annotated during trial runs of
the annotation process.

5Doing this without regards for blocking causes problems.
In a document containing both “ethyl acetate” and “ethyl
group”, it would be detrimental to allow the low confidence
for the “ethyl” in “ethyl acetate” to lower the confidence of the
“ethyl” in “ethyl group”.

papers, each fold consists of one paper per journal.
For the PubMed abstracts, each fold consists of one
third of the total abstracts). For each fold, the system
was trained on the other two folds and then evaluated
on that fold, and the results were pooled.

The direct output from the system is a list of
putative named entities with start positions, end
positions, types and confidence scores. This list
was sorted in order of confidence—most confident
first—and each entity was classified as a true posi-
tive or a false positive according to whether an ex-
act match (start position, end position and type all
matched perfectly) could be found in the annotated
corpus. Also, the number of entities in the annotated
corpus was recorded.

Precision/recall curves were plotted from these
lists by selecting the first n elements, and calculat-
ing precision and recall taking all of the elements in
this sublist as true or false positives, and all the enti-
ties in the corpus that were not in the sublist as false
negatives. The value of n was gradually increased,
recording the scores at each point. The area under
the curve (treating precision as zero at recall values
higher than the highest reported) was used to calcu-
late mean average precision (MAP). Finally, F were
generated by selecting all of the entities with a con-
fidence score of 0.3 or higher.
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Figure 1: Evaluation on chemistry papers.

The results of this evaluation on the corpus of
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chemistry papers is show in Figure 1. The full sys-
tem achieves 57.6% recall at 95% precision, 58.9%
precision at 90% recall, and 78.7% precision and
82.9% recall (F = 80.7%) at a confidence threshold
of 0.3. Also shown are the results of successively
eliminating parts of the system. “No Rescorer” re-
moves the rescorer. In “No Preclassifier”, the pre-
classifier is disabled, and all of the dictionaries ex-
tracted during the training of the preclassifier are
also disabled. Finally, in “No n-Grams”, the 1-, 2-
, 3- and 4-grams used directly by the MEMM are
also disabled, showing the results of using a sys-
tem where no character-level n-grams are used at all.
These modifications apply successively—for exam-
ple, in the “No n-Grams” case the rescorer and pre-
classifier are also disabled. These results validate the
the cascade of classifiers, and underline the impor-
tance of character-level n-grams in chemical NER.

We also show comparisons to an HMM-based
approach, based on LingPipe 3.4.0.6 This is es-
sentially the same system as described by Corbett
et al. (2007), but operating in a confidence-based
mode. The HMMs used make use of character-level
n-Grams, but do not allow the use of the rich fea-
ture set used by the MEMM. The line “Customised
LingPipe HMM” shows the system using the cus-
tom tokenisation and ChEBI-derived dictionary used
in the MEMM system, whereas the “Pure LingPipe
HMM” shows the system used with the default to-
keniser and no external dictionaries. In the region
where precision is roughly equal to recall (mimick-
ing the operation of a first-best system), the fact that
the MEMM-based system outperforms an HMM is
no surprise. However, it is gratifying that a clear
advantage can be seen throughout the whole recall
range studied (0-97%), indicating that the training
processes for the MEMM are not excessively at-
tuned to the first-best decision boundary. This in-
creased accuracy comes at a price in the speed of
development, training and execution.

It is notable that we were not able to achieve ex-
tremes of recall at tolerable levels of precision us-
ing any of the systems, whereas it was possible for
LingPipe to achieve 99.99% recall at 7% precision in
the BioCreative 2006 evaluation. There are a num-
ber of potential reasons for this. The first is that the

6http://alias-i.com/lingpipe/

tokeniser used in all systems apart from the “Pure
LingPipe HMM” system tries in general to make
as few token boundaries as possible; this leads to
some cases where the boundaries of the entities to
be recognised in the test paper occur in the middle
of tokens, thus making those entities unrecognisable
whatever the threshold. However this does not ap-
pear to be the whole problem. Other factors that may
have had an influence include the more generous
method of evaluation at BioCreative 2006, (where
several allowable alternatives were given for diffi-
cult named entities), and the greater quantity and di-
versity (sentences selected from a large number of
different texts, rather than a relatively small number
of whole full papers) of training data. Finally, there
might be some important difference between chem-
ical names and gene names.
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Figure 2: Evaluation on PubMed abstracts.

Figure 2 shows the results of running the sys-
tem on the set of annotated PubMed abstracts. The
full system achieves 60.3% recall at 95% precision,
49.1% precision at 90% recall, and 85.0% preci-
sion and 81.6% recall (F = 83.2%) at a confidence
threshold of 0.3. In PubMed abstracts, it is common
to define ad-hoc abbreviations for chemicals within
an abstract (e.g., the abstract might say ‘dexametha-
sone (DEX)’, and then use ‘DEX’ and not ‘dexam-
ethasone’ throughout the rest of the abstract). The
rescorer provides a good place to resolve these ab-
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breviations, and thus has a much larger effect than
in the case of chemistry papers where these ad hoc
abbreviations are less common. It is also notable
that the maximum recall is lower in this case. One
system—the “Pure LingPipe HMM”, which uses a
different, more aggressive tokeniser from the other
systems—has a clear advantage in terms of maxi-
mum recall, showing that overcautious tokenisation
limits the recall of the other systems.

In some cases the systems studied behave
strangely, having “spikes” of lowered precision at
very low recall, indicating that the systems can occa-
sionally be overconfident, and assign very high con-
fidence scores to incorrect named entities.

Corpus System MAP F

Chemistry Full 87.1% 80.8%
Chemistry No Rescorer 86.8% 81.0%
Chemistry No Preclassifier 82.7% 74.8%
Chemistry No n-Grams 79.2% 72.2%
Chemistry Custom LingPipe 75.9% 74.6%
Chemistry Pure LingPipe 66.9% 63.2%
Chemistry No Overlaps 82.9% 80.8%
PubMed Full 86.1% 83.2%
PubMed No Rescorer 83.3% 79.1%
PubMed No Preclassifier 81.4% 73.4%
PubMed No n-Grams 77.6% 70.6%
PubMed Custom LingPipe 78.6% 75.6%
PubMed Pure LingPipe 71.9% 66.1%

Table 2: F scores (at confidence threshold of 0.3) and
Mean Average Precision (MAP) values for Figs. 1-3.

Neither corpus contains enough data for the re-
sults to reach a plateau—using additional training
data is likely to give improvements in performance.

The “No Overlaps” line in Figure 3 shows the ef-
fect of removing “blocked” named entities (as de-
fined in section 3.6) prior to rescoring. This sim-
ulates a situation where an unambiguous inline an-
notation is required—for example a situation where
a paper is displayed with the named entities being
highlighted. This condition makes little difference
at low to medium recall, but it sets an effective max-
imum recall of 90%. The remaining 10% of cases
presumably consist of situations where the recog-
niser is finding an entity in the right part of the text,
but making boundary or type errors.
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Figure 3: Evaluation on chemistry papers, showing ef-
fects of disallowing overlapping entities.

5 Conclusion

We have demonstrated that MEMMs can be adapted
to recognise chemical named entities, and that the
balance between precision and recall can be tuned
effectively, at least in the range of 0 - 95% recall.
The MEMM system is available as part of the OS-
CAR3 chemical named entity recognition system. 7
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Abstract

When term ambiguity and variability are very
high, dictionary-basedNamed Entity Recogni-
tion (NER) is not an ideal solution even though
large-scale terminological resources are avail-
able. Many researches on statistical NER have
tried to cope with these problems. However,
it is not straightforward how to exploit exist-
ing and additionalNamed Entity (NE) dictio-
naries in statistical NER. Presumably, addi-
tion of NEs to an NE dictionary leads to bet-
ter performance. However, in reality, the re-
training of NER models is required to achieve
this. We have established a novel way to im-
prove the NER performance by addition of
NEs to an NE dictionary without retraining.
We chose protein name recognition as a case
study because it most suffers the problems re-
lated to heavy term variation and ambiguity.
In our approach, first, known NEs are identi-
fied in parallel withPart-of-Speech (POS) tag-
ging based on a general word dictionary and
an NE dictionary. Then, statistical NER is
trained on thetagger outputs with correct NE
labels attached. We evaluated performance of
our NER on the standard JNLPBA-2004 data
set. The F-score on the test set has been im-
proved from 73.14 to 73.78 after adding the
protein names appearing in the training data to
the POS tagger dictionary without any model
retraining. The performance further increased
to 78.72 after enriching the tagging dictionary
with test set protein names. Our approach
has demonstrated high performance in pro-
tein name recognition, which indicates how
to make the most of known NEs in statistical
NER.

1 Introduction

The accumulation of online biomedical informa-
tion has been growing at a rapid pace, mainly at-
tributed to a rapid growth of a wide range of repos-
itories of biomedical data and literature. The auto-
matic construction and update of scientificknowl-
edge bases is a major research topic in Bioinformat-
ics. One way of populating these knowledge bases
is throughnamed entity recognition (NER). Unfortu-
nately, biomedical NER faces many problems, e.g.,
protein names are extremely difficult to recognize
due to ambiguity, complexity and variability. A fur-
ther problem in protein name recognition arises at
the tokenization stage. Some protein names include
punctuation or special symbols, which may cause to-
kenization to lose some word concatenation infor-
mation in the original sentence. For example,IL-2
andIL - 2 fall into the same token sequenceIL
- 2 as usually dash (or hyphen) is designated as a
token delimiter.

Research into NER is centred around three ap-
proaches: dictionary-based, rule-based and machine
learning-based approaches. To overcome the usual
NER pitfalls, we have opted for a hybrid approach
combining dictionary-based and machine learning
approaches, which we calldictionary-based statisti-
cal NER approach. After identifying protein names
in text, we link these to semantic identifiers, such as
UniProt accession numbers. In this paper, we focus
on the evaluation of our dictionary-based statistical
NER.

2 Methods

Our dictionary-based statistical approach consists of
two components: dictionary-based POS/PROTEIN
tagging and statistical sequential labelling. First,
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dictionary-based POS/PROTEIN tagging finds can-
didates for protein names using a dictionary. The
dictionary maps strings to parts of speech (POS),
where the POS tagset is augmented with a tag
NN-PROTEIN. Then, sequential labelling applies
to reduce false positives and false negatives in the
POS/PROTEIN tagging results. Expandability is
supported through allowing a user of the NER tool to
improve NER coverage by adding entries to the dic-
tionary. In our approach, retraining is not required
after dictionary enrichment.

Recently, Conditional Random Fields (CRFs)
have been successfully applied to sequence labelling
problems, such as POS tagging and NER, and have
outperformed other machine learning techniques.
The main idea of CRFs is to estimate a conditional
probability distribution over label sequences, rather
than over local directed label sequences as with Hid-
den Markov Models (Baum and Petrie, 1966) and
Maximum Entropy Markov Models (McCallum et
al., 2000). Parameters of CRFs can be efficiently
estimated through the log-likelihood parameter esti-
mation using the forward-backward algorithm, a dy-
namic programming method.

2.1 Training and test data

Experiments were conducted using the training and
test sets of the JNLPBA-2004 data set(Kim et al.,
2004).

Training data The training data set used in
JNLPBA-2004 is a set of tokenized sentences with
manually annotated term class labels. The sentences
are taken from the Genia corpus (version 3.02) (Kim
et al., 2003), in which 2,000 abstracts were manu-
ally annotated by a biologist, drawing on a set of
POS tags and 36 biomedical term classes. In the
JNLPBA-2004 shared task, performance in extract-
ing five term classes, i.e., protein, DNA, RNA, cell
line, and cell type classes, were evaluated.

Test Data The test data set used in JNLPBA-2004
is a set of tokenized sentences extracted from 404
separately collected MEDLINE abstracts, where the
term class labels were manually assigned, following
the annotation specification of the Genia corpus.

2.2 Overview of dictionary-based statistical
NER

Figure 1 shows the block diagram of dictionary-
based statistical NER. Raw text is analyzed by
a POS/PROTEIN tagger based on a CRF tagging

Figure 1: Block diagram of dictionary-based statistical
NER

Figure 2: Block diagram of training procedure

model and dictionary, and then converted into to-
ken sequences. Strings in the text that match with
protein names in the dictionary will be tagged as
NN-PROTEIN depending on the context around the
protein names. Since it is not realistic to enumer-
ate all protein names in the dictionary, due to their
high variability of form, instead previously unseen
forms are predicted to be protein names by statisti-
cal sequential labelling. Finally, protein names are
identified from the POS/PROTEIN tagged token se-
quences via a CRF labelling model.

Figure 2 shows the block diagram of the train-
ing procedure for both POS/PROTEIN tagging and
sequential labelling. The tagging model is created
using the Genia corpus (version 3.02) and a dic-
tionary. Using the tagging model, MEDLINE ab-
stracts used for the JNLPBA-2004 training data set
are then POS/PROTEIN-tagged. The output token
sequences over these abstracts are then integrated
with the correct protein labels of the JNLPBA-2004
training data. This process results in the preparation
of token sequences with features and correct protein
labels. A CRF labelling model is finally generated
by applying a CRF tool to these decorated token se-
quences.

64



IL/NNP -/- 2/CD

-/-
mediated/VVD

mediated/VVN
activation/NN

IL-2/NN-PROTEIN

IL-2/NN-PROTEIN

-/-

2/CD

mediated/VVN

mediated/VVD

mediate/VVP

mediate/VV

activation/NN

IL/NNP

IL-2-mediated activation ...

POS/PROTEIN tagging

Lexicon

Figure 3: Dictionary based approach

2.2.1 Dictionary-based POS/PROTEIN tagging
The dictionary-based approach is beneficial when

a sentence contains some protein names that con-
flict with general English words. Otherwise, if the
POS tags of sentences are decided without consider-
ing possible occurrences of protein names, POS se-
quences could be disrupted. For example, in “met
proto-oncogene precursor”,met might be falsely
recognized as a verb by a non dictionary-based tag-
ger.

Given a sentence, the dictionary-based approach
extracts protein names as follows. Find all word se-
quences that match the lexical entries, and create a
token graph (i.e.,trellis) according to the word order.
Estimate the score of every path using the weights of
node and edges estimated by training using Condi-
tional Random Fields. Select the best path.

Figure 3 shows an example of our dictionary-
based approach. Suppose that the input is “IL-
2-mediated activation”. A trellis is created based
on the lexical entries in a dictionary. The se-
lection criteria for the best path are determined
by the CRF tagging model trained on the Genia
corpus. In this example,IL-2/NN-PROTEIN
-/- mediated/VVN activation/NN is se-
lected as the best path. Following Kudo et al. (Kudo
et al., 2004), we adapted the core engine of the
CRF-based morphological analyzer, MeCab1, to our
POS/PROTEIN tagging task. MeCab’s dictionary
databases employ double arrays (Aoe, 1989) which
enable efficient lexical look-ups.

The features used were:

• POS

• PROTEIN
1http://sourceforge.net/project/showfiles.php?groupid=177856/

• POS-PROTEIN

• bigram of adjacent POS

• bigram of adjacent PROTEIN

• bigram of adjacent POS-PROTEIN

During the construction of the trellis, white space
is considered as the delimiter unless otherwise stated
within dictionary entries. This means that unknown
tokens are character sequences without spaces.

2.2.2 Dictionary construction

A dictionary-based approach requires the dictio-
nary to cover not only a wide variety of biomedical
terms but also entries with:

• all possible capitalization

• all possible linguistic inflections

We constructed a freely available, wide-coverage
English word dictionary that satisfies these condi-
tions. We did consider the MedPost pos-tagger
package2 which contains a free dictionary that has
downcased English words; however, this dictionary
is not well curated as a dictionary and the number of
entries is limited to only 100,000, including inflec-
tions.

Therefore, we started by constructing an English
word dictionary. Eventually, we created a dictionary
with about 266,000 entries for English words (sys-
tematically covering inflections) and about 1.3 mil-
lion entries for protein names.

We created the general English part of the dictio-
nary from WordNet by semi-automatically adding
POS tags. The POS tag set is a minor modifica-
tion of the Penn Treebank POS tag set3, in that pro-
tein names are given a new POS tag, NN-PROTEIN.
Further details on construction of the dictionary now
follow.

Protein names were extracted from the BioThe-
saurus4. After selecting only those terms
clearly stated as protein names, 1,341,992 pro-
tein names in total were added to the dictionary.

2ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/
3ftp://ftp.cis.upenn.edu/pub/treebank/

doc/tagguide.ps.gz
4http://pir.georgetown.edu/iprolink/

biothesaurus/
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Nouns were extracted from WordNet’s noun list.
Words starting with lower case and upper case
letters were determined as NN and NNP, re-
spectively. Nouns in NNS and NNPS cate-
gories were collected from the results of POS
tagging articles from Plos Biology Journal5

with TreeTagger6.

Verbs were extracted from WordNet’s verb list. We
manually curated VBD, VBN, VBG and VBZ
verbs with irregular inflections based on Word-
Net. Next, VBN, VBD, VBG and VBZ forms
of regular verbs were automatically generated
from the WordNet verb list.

Adjectives were extracted from WordNet’s adjec-
tive list. We manually curated JJ, JJR and JJS
of irregular inflections of adjectives based on
the WordNet irregular adjective list. Base form
(JJ) and regular inflections (JJR, JJS) of adjec-
tives were also created based on the list of ad-
jectives.

Adverbs were extracted from WordNet’s adverb
list. Both the original and capitalised forms
were added as RB.

Pronouns were manually curated. PRP and PRP$
words were added to the dictionary.

Wh-words were manually curated. As a result,
WDT, WP, WP$ and WRB words were added
to the dictionary.

Words for other parts of speech were manually
curated.

2.2.3 Statistical prediction of protein names
Statistical sequential labelling was employed to

improve the coverage of protein name recognition
and to remove false positives resulting from the pre-
vious stage (dictionary-based tagging).

We used the JNLPBA-2004 training data, which
is a set of tokenized word sequences with
IOB2(Tjong Kim Sang and Veenstra, 1999) protein
labels. As shown in Figure 2, POSs of tokens re-
sulting from tagging and tokens of the JNLPBA-
2004 data set are integrated to yield training data for
sequential labelling. During integration, when the
single token of a protein name found after tagging

5http://biology.plosjournals.org/
6http://www.ims.uni-stuttgart.de/projekte/

corplex/TreeTagger/DecisionTreeTagger.html/

corresponds to a sequence of tokens from JNLPBA-
2004, its POS is given as NN-PROTEIN1, NN-
PROTEIN2,..., according to the corresponding token
order in the JNLPBA-2004 sequence.

Following the data format of the JNLPBA-2004
training set, our training and test data use the IOB2
labels, which are “B-protein” for the first token of
the target sequence, “I-protein” for each remaining
token in the target sequence, and “O” for other to-
kens. For example, “Activation of the IL 2 precursor
provides” is analyzed by the POS/PROTEIN tagger
as follows.

Activation NN
of IN
the DT
IL 2 precursor NN-PROTEIN
provides VVZ

The tagger output is given IOB2 labels as follows.

Activation NN O
of IN O
the DT O
IL NN-PROTEIN1 B-protein
2 NN-PROTEIN2 I-protein
precursor NN-PROTEIN3 I-protein
provides VVZ O

We used CRF models to predict the IOB2 la-
bels. The following features were used in our ex-
periments.

• word feature

• orthographic features

– the first letter and the last four letters of
the word form, in which capital letters in
a word are normalized to “A”, lower case
letters are normalized to “a”, and digits are
replaced by “0”,e.g., the word form of IL-
2 is AA-0.

– postfixes, the last two and four letters

• POS feature

• PROTEIN feature

The window size was set to±2 of the current to-
ken.

3 Results and discussion
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Table 1: Experimental Rusults

Tagging R P F
Full 52.91 43.85 47.96

(a) POS/PROTEIN tagging Left 61.48 50.95 55.72
Right 61.38 50.87 55.63

Sequential Labelling R P F
Full 63.23 70.39 66.62

(b) Word feature Left 68.15 75.86 71.80
Right 69.88 77.79 73.63
Full 77.17 67.52 72.02

(c) (b) + orthographic feature Left 82.51 72.20 77.01
Right 84.29 73.75 78.67
Full 76.46 68.41 72.21

(d) (c) + POS feature Left 81.94 73.32 77.39
Right 83.54 74.75 78.90
Full 77.58 69.18 73.14

(e) (d) + PROTEIN feature Left 82.69 73.74 77.96
Right 84.37 75.24 79.54
Full 79.85 68.58 73.78

(f) (e) + after adding protein names in the Left 84.82 72.85 78.38
training set to the dictionary Right 86.60 74.37 80.02

3.1 Protein name recognition performance

Table 1 shows our protein name recognition results,
showing the differential effect of various combina-
tions of strategies. Results are expressed accord-
ing to recall (R), precision (P), and F-measure (F),
which here measure how accurately our various ex-
periments determined the left boundary (Left), the
right boundary (Right), and both boundaries (Full)
of protein names. The baseline for tagging (row
(a)) shows the protein name detection performance
of our dictionary-based tagging using our large pro-
tein name dictionary, where no training for protein
name prediction was involved. The F-score of this
baseline tagging method was 47.96.

The baseline for sequential labelling (row (b))
shows the prediction performance when using only
word features where no orthographic and POS fea-
tures were used. The F-score of the baseline la-
belling method was 66.62. When orthographic fea-
ture was added (row (c)), the F-score increased by
5.40 to 72.02. When the POS feature was added
(row (d)), the F-score increased by 0.19 to 72.21.
Using all features (row (e)), the F-score reached
73.14. Surprisingly, adding protein names appear-
ing in thetraining data to the dictionary further im-
proved the F-score by 0.64 to 73.78, which is the
second best score for protein name recognition us-
ing the JNLPBA-2004 data set.

Table 2: After Dictionary Enrichment
Method R P F
Tagging Full 79.02 61.87 69.40
(+test set Left 82.28 64.42 72.26
protein names) Right 80.96 63.38 71.10
Labelling full 86.13 72.49 78.72
(+test set Left 89.58 75.40 81.88
protein names) Right 90.23 75.95 82.47

Tagging and labelling speeds were measured us-
ing an unloaded Linux server with quad 1.8 GHz
Opteron cores and 16GB memory. The dictionary-
based POS/PROTEIN tagger is very fast even
though the total size of the dictionary is more than
one million. The processing speed for tagging and
sequential labelling of the 4,259 sentences of the test
set data took 0.3 sec and 7.3 sec, respectively, which
means that in total it took 7.6 sec. for recognizing
protein names in the plain text of 4,259 sentences.

3.2 Dictionary enrichment

The advantage of the dictionary-based statistical ap-
proach is that it is versatile, as the user can easily
improve its performance with no retraining. We as-
sume the following situation as the ideal case: sup-
pose that a user needs to analyze a large amount of
text with protein names. The user wants to know
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the maximum performance achievable for identify-
ing protein names with our dictionary-based statis-
tical recognizer which can be achieved by adding
more protein names to the current dictionary. Note
that protein names should be identified in context.
That is, recall of the NER results with the ideal dic-
tionary is not 100%. Some protein names in the ideal
dictionary are dropped during statistical tagging or
labelling.

Table 2 shows the scores after each step of dic-
tionary enrichment. The first block (Tagging) shows
the tagging performance after adding protein names
appearing in thetest set to the dictionary. The sec-
ond block (Labelling) shows the performance of the
sequence labelling of the output of the first step.
Note that tagging and the sequence labelling mod-
els are not retrained using the test set.

3.3 Discussion

It is not possible in reality to train the recognizer
on target data,i.e., the test set, but it would be pos-
sible for users to add discovered protein names to
the dictionary so that they could improve the overall
performance of the recognizer without retraining.

Rule-based and procedural approaches are taken
in (Fukuda et al., 1998; Franzen et al., 2002). Ma-
chine learning-based approaches are taken in (Col-
lier et al., 2000; Lee et al., 2003; Kazama et al.,
2002; Tanabe and Wilbur, 2002; Yamamoto et al.,
2003; Tsuruoka, 2006; Okanohara et al., 2006).
Machine learning algorithms used in these studies
are Naive Bayes, C4.5, Maximum Entropy Models,
Support Vector Machines, and Conditional Random
Fields. Most of these studies applied machine learn-
ing techniques totokenized sentences.

Table 3 shows the scores reported by other sys-
tems. Tsai et al. (Tsai et al., 2006) and Zhou and
Su (Zhou and Su, 2004) combined machine learning
techniques and hand-crafted rules. Tsai et al. (Tsai
et al., 2006) applied CRFs to the JNLPBA-2004
data. After applying pattern-based post-processing,
they achieved the best F-score (75.12) among those
reported so far. Kim and Yoon(Kim and Yoon, 2007)
also applied heuristic post-processing. Zhou and Su
(Zhou and Su, 2004) achieved an F-score of 73.77.

Purely machine learning-based approaches have
been investigated by several researchers. The
GENIA Tagger (Tsuruoka, 2006) is trained on
the JNLPBA-2004 Corpus. Okanohara et al.
(Okanohara et al., 2006) employed semi-Markov
CRFs whose performance was evaluated against the
JNLPBA-2004 data set. Yamamoto et al. (Ya-

mamoto et al., 2003) used SVMs for character-
based protein name recognition and sequential la-
belling. Their protein name extraction performance
was 69%. This paper extends the machine learning
approach with a curated dictionary and CRFs and
achieved high F-score 73.78, which is the top score
among the heuristics-free NER systems. Table 4
shows typical recognition errors found in the recog-
nition results that achieved F-score 73.78. In some
cases, protein name boundaries of the JNLPBA-
2004 data set are not consistent. It is also one of
the reasons for the recognition errors that the data
set contains general protein names, such as domain,
family, and binding site names as well as anaphoric
expressions, which are usually not covered by pro-
tein name repositories. Therefore, our impression on
the performance is that an F-score of 73.78 is suffi-
ciently high.

Furthermore, thanks to the dictionary-based ap-
proach, it has been shown that the upper bound per-
formance using ideal dictionary enrichment, with-
out any retraining of the models, has an F-score of
78.72.

4 Conclusions

This paper has demonstrated how to utilize known
named entities to achieve better performance in sta-
tistical named entity recognition. We took a two-
step approach where sentences are first tokenized
and tagged based on a biomedical dictionary that
consists of general English words and about 1.3 mil-
lion protein names. Then, a statistical sequence
labelling step predicted protein names that are not
listed in the dictionary and, at the same time, re-
duced false negatives in the POS/PROTEIN tagging
results. The significant benefit of this approach is
that a user, not a system developer, can easily en-
hance the performance by augmenting the dictio-
nary. This paper demonstrated that the state-of-
the-art F-score 73.78 on the standard JNLPBA-2004
data set was achieved by our approach. Further-
more, thanks to the dictionary-based NER approach,
the upper bound performance using ideal dictionary
enrichment, without any retraining of the models,
yielded F-score 78.72.
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Table 3: Conventional results for protein name recognition
Authors R P F
Tsai et al.(Tsai et al., 2006) 71.31 79.36 75.12
Our system 79.85 68.58 73.78
Zhou and Su(Zhou and Su, 2004) 69.01 79.24 73.77
Kim and Yoon(Kim and Yoon, 2007) 75.82 71.02 73.34
Okanohara et al.(Okanohara et al., 2006) 77.74 68.92 73.07
Tsuruoka(Tsuruoka, 2006) 81.41 65.82 72.79
Finkel et al.(Finkel et al., 2004) 77.40 68.48 72.67
Settles(Settles, 2004) 76.1 68.2 72.0
Song et al.(Song et al., 2004) 65.50 73.04 69.07
Rössler(R̈ossler, 2004) 72.9 62.0 67.0
Park et al.(Park et al., 2004) 69.71 59.37 64.12
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Abstract

An important task in information extraction
(IE) from biomedical articles is term iden-
tification (TI), which concerns linking en-
tity mentions (e.g., terms denoting proteins)
in text to unambiguous identifiers in stan-
dard databases (e.g., RefSeq). Previous work
on TI has focused on species-specific docu-
ments. However, biomedical documents, es-
pecially full-length articles, often talk about
entities across a number of species, in which
case resolving species ambiguity becomes an
indispensable part of TI. This paper de-
scribes our rule-based and machine-learning
based approaches to species disambiguation
and demonstrates that performance of TI can
be improved by over 20% if the correct species
are known. We also show that using the
species predicted by the automatic species tag-
gers can improve TI by a large margin.

1 Introduction

The exponential growth of the amount of scien-
tific literature in the fields of biomedicine and ge-
nomics has made it increasingly difficult for sci-
entists to keep up with the state of the art. The
TXM project (Alex et al., 2008a), a three-year project
which aims to produce software tools to aid cura-
tion of biomedical papers, targets this problem and
exploits natural language processing (NLP) technol-
ogy in an attempt to automatically extract enriched
protein-protein interactions (EPPI) and tissue expres-
sions (TE) from biomedical text.

A critical task in TXM is term identification (TI),
the task of grounding mentions of biomedical named

entities to identifiers in referent databases. TI can be
seen as an intermediate task that builds on the pre-
vious component in an information extraction (IE)
pipeline, i.e., named entity recognition (NER), and
provides crucial information as input to the more
complex module of relation extraction (RE). The
structure of the IE pipeline resembles a typical cu-
ration process by human biologists. For example,
when curating protein-protein interactions (PPIs), a
curator would first mark up the protein mentions in
text, and then identify the mentions by finding their
unique identifiers from standard protein databases
such as RefSeq,1 and finally curate pairs of IDs as
PPIs.

TI is a matching and disambiguation pro-
cess (Wang and Matthews, 2008), and a primary
source of ambiguity lies in the model organisms of
the terms. In curation tasks, one often needs to deal
with collections of articles that involve entities of a
large variety of species. For example, our collec-
tion of articles from PubMed and PubMed Central
involve over 100 model organisms. Also, it is of-
ten the case that more than one species appear in the
same document, especially when the document is a
full-length article. In our dataset, 74% of the arti-
cles concern more than one organism. In many stan-
dard databases, such as RefSeq and SwissProt, ho-
molog proteins in different species, which often con-
tain nearly identical synonym lists, are assigned dis-
tinct identifiers. This makes biomedical terms even
more polysemous and hence species disambiguation
becomes crucial to TI. For example, querying Ref-
Seq2 with the protein mention plk1 resulted in 98

1http://www.ncbi.nlm.nih.gov/RefSeq/
2The searches were carried out on November 5, 2007.
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hits. By adding a species to the query, e.g. mouse,
one can significantly reduce the number of results to
two.

This paper describes our work on the task of
species disambiguation. We also report the perfor-
mance gain of a TI system from integration of vari-
ous automatic species taggers. The paper is organ-
ised as follows. Section 2 gives a brief overview of
related work. Section 3 presents our methodologies
for species disambiguation. Section 4 describes a
rule-based TI system that we developed in the TXM

project, and the evaluation metrics. This section also
reports the evaluation results of the TI system with
and without help from the species predicted by the
taggers. We finally conclude in Section 5.

2 Related Work

The most relevant work to ours are the Gene Nor-
malisation (GN) tasks (Morgan and Hirschman,
2007; Hirschman et al., 2004) in the BioCreAtIvE I
& II workshops (Hirschman et al., 2007; Hirschman
et al., 2005), which provided forums for exchang-
ing thoughts and methodologies on tackling the task
of TI. The data provided in the GN tasks, however,
were species-specific, which means that the lexicons
and datasets were concerned with single model or-
ganisms and thus species disambiguation was not
required. A few participating systems, however, in-
tegrated a filter to rule out entities with erroneous
species (Hanisch et al., 2005; Fluck et al., 2007),
which were reported to be helpful. Another differ-
ence between our task and the BioCreAtIvE GN ones
is that we carry out TI on entity level while GN on
document level.

It is worth mentioning that the protein-protein in-
teraction task (IPS) in BioCreAtIvE II has taken into
account species ambiguity. The IPS task resembles
the work-flow of manual curation of PPIs in articles
involving multiple species, and to accomplish the
task, one would require a full pipeline of IE systems,
including named entity recognition, term identifica-
tion and relation extraction. The best result for IPS

(Krallinger et al., 2007) was fairly low at 28.85%
F1, which reflects the difficulty of the task. Some
participants of IPS have reported (e.g., Grover et al.,
2007) that resolving species ambiguity was one of
the biggest challenges. Our analysis of the IPS train-
ing data revealed that the interacting proteins in this
corpus belong to over 60 species, and only 56.27%

of them are human.
As noted in previous work (Krauthammer and Ne-

nadic, 2004; Chen et al., 2005; Krallinger et al.,
2007; Wang, 2007), determining the correct species
for the protein mentions is a very important step to-
wards TI. However, as far as we know, there has
been little work in species disambiguation and in to
what extent resolving species ambiguity can help TI.

3 Species Disambiguation

3.1 Data and Ontology
The species tagger was developed on the ITI TXM

corpora (Alex et al., 2008b), which were produced
as part of the TXM project (Alex et al., 2008a). We
created two corpora in slightly different domains,
EPPI and TE. The EPPI corpus consists of 217 full-
text papers selected from PubMed and PubMed Cen-
tral and domain experts annotated all documents for
both protein entities and PPIs, as well as extra (en-
riched) information associated with the PPIs and nor-
malisations of the proteins to publicly available on-
tologies. The TE corpus consists of 230 full-text
papers, in which entities such as proteins, tissues,
genes and mRNAcDNAs were identified, and a new
tissue expression relation was marked up.

We used these corpora to develop a species tag-
ging system. As the biomedical entities in the
data were manually assigned with standard database
identifiers,3 it was straightforward to obtain their
species IDs through the mappings provided by En-
trezGene and RefSeq. In more detail, proteins, pro-
tein complexes, genes and mRNAcDNAs in both EPPI

and TE datasets were assigned with NCBI Taxon-
omy IDs (TaxIDs)4 denoting their species. The
EPPI and TE datasets have different distributions of
species. The entities in the EPPI data belong to
118 species with human being the most frequent
at 51.98%. In the TE data, the entities are across
67 species and mouse was the most frequent at
44.67%.5

To calculate the inter-annotator-agreement, about
40% of the documents were doubly annotated by
different annotators. The averaged F1 scores of

3In our data, genes are tagged with EntrezGene IDs, and
proteins and mRNAcDNAs with RefSeq IDs.

4http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Taxonomy

5These figures were obtained from the training split of the
datasets.
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EPPI devtest TE devtest
P R F1 P R F1

PreWd 81.88 1.87 3.65 91.49 1.63 3.21
PreWd + Spread 63.85 14.17 23.19 77.84 17.97 29.20
PreWd Sent 60.79 5.16 9.52 56.16 7.76 13.64
PreWd Sent + Spread 39.74 50.54 44.49 31.71 46.68 37.76
Prefix 98.98 3.07 5.96 77.93 2.97 5.72
PreWd + Prefix 91.95 4.95 9.40 82.27 4.62 8.75
PreWd + Prefix + Spread 68.46 17.49 27.87 77.77 21.26 33.39

Table 1: Results (%) of the rule-based species tagger.

species annotation on the doubly annotated EPPI and
TE datasets are 86.45% and 95.11%, respectively,
indicating that human annotators have high agree-
ment when assigning species to biomedical entities.

3.2 Detecting Species Words
Words referring to species, such as human, are im-
portant indicators of the species of the nearby enti-
ties. We have developed a rule-based program that
detects species words, which were used to help the
species identification systems described in the fol-
lowing sections.

The species word tagger is a lexical look-up
component which applies to tokenised text and
marks content words such as human, murine and
D. melanogaster with their corresponding species
TaxIDs. In addition, rules written in an lxtransduce
grammar6 are used to identify species prefixes (e.g.,
’h’ for human, ’m’ for mouse). For example, the
term mSos-1 would be assigned with a TaxID for
mouse. Note that a species “word” may contain sev-
eral words, for example, “E. coli”. Please see (Wang
and Grover, 2008) for more details on the species
word tagger.

3.3 Assigning Species to Entities
3.3.1 Rule-based Approach

It is intuitive that a species word that occurs near
an entity (e.g., “mouse p53”) is a strong indicator of
its species. To assess this intuition, we developed a
set of five rules using heuristics and species words
detected by the species word tagger.

• PreWd: If the word preceding an entity is a species
word, assign the species indicated by that word to
the entity.

6See http://www.ltg.ed.ac.uk/software/
ltxml2 for details of the LT-XML 2 tools developed at the
LTG group at Edinburgh University.

• PreWd Sent: If a species word that occurs to the
left of an entity and in the same sentence, assign the
species indicated by that word to the entity.

• Prefix: If an entity has a species-indicating prefix,
e.g., mSos-1, then tag the species to that entity.

• Spread: Spread the species of an entity e to all en-
tities in the same document that have the same sur-
face form with e. This rule must be used in conjunc-
tion with the other rules.

• Majority Vote:7 Count the species words in a docu-
ment and assign as a weight to each species the pro-
portion of all species words in the document that
refer to the species.8 Tag all entities in the docu-
ment the species with the highest weight, defaulting
to human in the case of a tie.

Table 1 shows the results of species tagging when
the above rules were applied. As we can see, the pre-
cision of the systems that rely solely on the previous
species words or prefixes is very good but the recall
is low. The system that looks at the previous species
word in the same sentence does better as measured
by F1. In addition, spreading the species improves
both systems but the overall results are still not sat-
isfactory.

It is slightly counter-intuitive that using a rule
such as ‘PreWd’ did not achieve perfect precision.
Closer inspection revealed that most of the false pos-
itives were due to a few problematic guidelines in
the annotation process. For example,

• “The amounts of human and mouse CD200R ...”,
where ‘CD200R’ was tagged as mouse (10090) by
the system but the gold-standard answer was human
(9606). This was due to the fact that the annotation
tool was not able to assign multiple correct species

7The Majority Vote rule was used by default in the TI system,
which is described in Section 4.1.

8For example, if there are N species words in a document
and Nhuman are associated with human, the human species
weight is calculated as Nhuman

N
.
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BL EPPI TE Combined EPPI Model TE Model Combined Model
Model Model Model +Rules +Rules +Rules

EPPI devtest 60.56 73.03 58.67 72.28 74.24 59.67 73.77
TE devtest 30.22 67.15 69.82 67.20 67.53 70.14 67.47
Overall 48.88 70.77 62.96 70.33 71.66 63.70 71.34

Table 2: Accuracy (%) of the machine-learning based species tagger and the hybrid species tagger as tested on the
EPPI and TE devtest datasets. An ‘Overall’ score is the micro-average of a system’s accuracy on both datasets.

to a single entity.

• “... wheat eIFiso4G ...”, where ‘eIFiso4G’ was
tagged as wheat (4565) but the annotator thought
it was Triticum (4564). In this case, TaxID 4565 is
a species under genus 4564, and arguably is also a
correct answer. Other similar cases include Xeno-
pus vs. Xenopus tropicalis, and Rattus vs. Rattus
norvegicus, etc. This is the main cause for the false
positives as our system always predicts species in-
stead of genus or TaxIDs of any other ranks, which
the annotators occasionally employed.

3.3.2 Machine Learning Approach
We split the EPPI and TE datasets into training

and development test (devtest) sets and developed
a machine-learning (ML) based species tagger. Us-
ing the training splits, we trained a maximum en-
tropy classifier9 using the following set of features,
with respect to each entity occurrence. The param-
eter n was empirically developed using the training
datasets.

• leftContext The n word lemmas to the left of the
entity, without position (n = 200).

• rightContext The n word lemmas to the right of the
entity, without position (n = 200).

• leftSpeciesIDs The n species IDs, located to the left
of the entity and assigned by the species word tag-
ger (n = 5).

• rightSpeciesIDs The n species IDs, located to the
right of the entity and assigned by the species word
tagger (n = 5).

• leftNouns The n nouns to the left of the entity (with
order and n = 2). This feature attempts to cap-
ture cases where a noun preceding an entity indi-
cates species, e.g., mouse protein p53.

• leftAdjs The n adjectives to the left of the entity
(with order and n = 2). This feature intends to
capture cases where an adjective preceding an en-
tity indicates species, e.g., murine protein p53.

9http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html

• leftSpeciesWords The n species word forms, identi-
fied by the species word tagger, located to the left
of the entity (n = 5).

• rightSpeciesWords The n species word forms, iden-
tified by the species word tagger, located to the right
of the entity (n = 5).

• firstLetter The first character of the entity itself.
Sometimes the first letters of entities indicate their
species, e.g., hP53.

• documentSpeciesIDs All species IDs that occur in
the article in question.

• useStopWords If this feature is switched on then fil-
ter out the words that appear in a pre-compiled stop-
word list from the above features. The list consists
of frequent common English words such as prepo-
sitions (e.g., in).

• useStopPattern If this feature is switched on then fil-
ter out the words consisting only of digits and punc-
tuation characters.

The results of the ML species tagger are shown in
Table 2. We measure the performance in accuracy
instead of F1 because the ML based tagger assigns a
species tag to every entity occurrence, and therefore
precision is equal to recall. We tested four models
on the devtest portions of the EPPI and TE corpora:

• BL: a baseline system, which tags the devtest in-
stances using the most frequent species occurring
in the corresponding training dataset. For example,
human is the most frequent species in the EPPI train-
ing data, and therefore all entities in the EPPI devtest
dataset were tagged with human.

• EPPI Model: obtained by training the maxent clas-
sifier on the EPPI training data.

• TE Model: obtained by training the maxent classi-
fier on the TE training data.

• Combined Model: obtained by training the maxent
classifier on a joint dataset consisting of both the
EPPI and TE training corpora.

3.3.3 Hybrid Approach
As we have shown, rules ‘PreWd’ and ‘Prefix’

achieved very good precision but low recall, which
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suggests that when these rules were applicable, it is
highly likely that they would get the correct species.
Based on this observation, we combined the ML ap-
proach and the rule-based approach in such a way
that the rules ‘PreWd’ and ‘Prefix’ were applied on
top of ML and override predictions made by ML. In
other words, the rules act as a post-processor and
correct the decisions made by the ML when very
strong species indicators such as previous species
words or species prefixes are detected. This should
increase precision and at the same time keep recall
relatively intact. The hybrid systems were tested on
the same datasets and the results are shown in the
right 3 columns in Table 2.

We performed significance tests on the results in
Table 2. First, a Friedman test was used to deter-
mine whether the 7 sets of results10 were signifi-
cantly different, and then pairwise Wilcoxon Signed
Rank tests were employed to tell whether any sys-
tem performed significantly better than others. On
both datasets, the 6 machine-learning models signif-
icantly outperformed the baseline (p < 0.01). On
EPPI devtest dataset, the EPPI models (with or with-
out rules) and the Combined Models outperformed
the TE models (p < 0.05), while on TE dataset, the
TE models and the Combined Models outperformed
the EPPI models (p < 0.05). Also, applying the
post filtering rules did not significantly improve the
ML models, although it appears that adding the rules
consistently increase the accuracy by a small mar-
gin.

4 Term Identification

4.1 The TI system

The TI system is composed of a matcher which de-
termines a list of candidate identifiers and a ranker
that assigns a confidence value to each identifier
that is used to rank the candidates in order with the
most likely identifiers occurring first. The matcher is
based largely on the rule-based system described in
(Wang and Matthews, 2008), but has been put into a
more flexible framework that allows for defining and
customising the rules in a configuration file. In ad-
dition, the system has been expanded to perform TI

on additional entity types. The rules for each entity
were developed using the training data and a visuali-

10The Friedman test requires accuracy figures with respect to
each document in the datasets, which are not shown in Table 2.

sation system that compared the synonym list for the
target identifiers with the actual entity mentions and
provided visual feedback on the true positives and
false positives resulting from candidate rules sets.
Examples of some of the rules that can be incorpo-
rated into the system are listed below. A confidence
value is assigned to each of the rules using heuristics
and passed to the ranking system.

1. LowerCase: Convert the entity mention to lower-
case and look up the result in a lower case version
of the entity term database.

2. Norm: Normalise the mention11 and look up the re-
sult in a normalised version of the term database.

3. Prefix: Add and/or remove a set of prefixes from
the entity mention and look up the result in the en-
tity term database. The actual prefixes and whether
to add or remove them are specified in the configu-
ration file.

4. Suffix: Add and/or remove a set of suffixes from the
entity mention and look up the result in the entity
term database. The actual suffixes and whether to
add or remove them are specified in the configura-
tion file.

5. Porter: Compute the Porter stem of the entity men-
tion and looked up the synonym in a Porter stemmed
version of the entity term database.

The ranking system currently works by defining a
set of confidence indicators for each entity, comput-
ing the confidence for each indicator and then multi-
plying each individual confidence together to deter-
mine the overall identifier confidence. The follow-
ing indicators are currently used by the system.

1. Match: The confidence as determined by the
matcher.

2. Species: The confidence that the species of the iden-
tifier is the correct species.

3. Reference Count: Based on the number of liter-
ature references12 associated with each identifier.
The higher the reference count, the higher the con-
fidence.

11Normalising a string involves converting Greek characters
to English (e.g., α→alpha), converting to lowercase, changing
sequential indicators to integer numerals (e.g., i, a, alpha→1,
etc.) and removing all spaces and punctuation. For example,
rab1, rab-1, rabα, rab I are all normalised to rab1.

12The Reference Counts were obtained from EntrezGene and
RefSeq databases.
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4. Primary Name: Based on a determination that the
entity mention is the primary name for the identi-
fier. This is based both on a name provided by the
lexicon and a name derived from the synonym list.

Among these, one of the most critical indicators is
the species confidence. By default, this confidence
is set to the weight assigned to the species by the
Majority Vote tagger (see Section 3.3.1). When the
species of an entity is tagged by an external species
tagger or by human annotators, the default confi-
dence can be overridden. This setting allows us to
integrate automatic species taggers, such as the ones
described in the previous section, for achieving bet-
ter TI performance. For example, suppose we want
to employ the Hybrid species tagger. To compute the
species confidence, first the hybrid tagger is used to
predict the most likely species and the Majority Vote
tagger is run at the same time. If the species of an
identifier matches the species assigned by the hybrid
tagger, the species confidence is set to the weight
generated by the hybrid tagger. Otherwise, the con-
fidence is set to the weight generated by the Majority
Vote tagger.

To assess how much species ambiguity accounts
for the overall ambiguity in biomedical entities, we
estimated the averaged ambiguity rates for the pro-
tein entities in the TXM datasets, without and with
the species information. Suppose there are n unique
protein mentions in a dataset. First, we look up the
RefSeq database by exact match with every unique
protein mention mi, where i ∈ {0..n − 1}, and
for each mi we retrieve two lists of identifiers: Li

and L′
i, where Li consists of all identifiers and L′

i

only contains the identifiers whose model organ-
ism matches the manually tagged species of the pro-
tein mention. The ambiguity rates without and with

species are computed by
Pn−1

i=0 |Li|
n and

Pn−1
i=0 |L′

i|
n , re-

spectively. Table 3 shows the ambiguity rates on the
EPPI and TE datasets.

Protein Cnt ID Cnt Ambiguity
EPPI 6,955 184,633 26.55

EPPI species 6,955 17,357 2.50
TE 8,539 103,016 12.06

TE species 8539 12,705 1.49

Table 3: Ambiguity in protein entities, with and without
species information, in EPPI and TE datasets.

4.2 Experiments on TXM Data
To identify whether species disambiguation can im-
prove performance of TI, we ran the TI system on
the EPPI and TE data. As shown in Tables 4 and 5,
we tested the TI systems with or without help from
a number of species tagging systems, including:

• Baseline: Run TI without species tags.13

• Gold Species: Run TI with manually tagged species.
This is the upper-bound performance.

• Rule: Run TI with species predicted by the rule-
based species tagger.

• ML(human/mouse): Run TI with the species that oc-
curs most frequently in the training datasets (i.e.,
human for EPPI and mouse for TE).

• ML(EPPI): Run TI with species predicted by the ML
tagger trained on the EPPI training dataset.

• ML(EPPI)+Rule: Run TI with species predicted by
the hybrid system using both ML(EPPI) and the
rules.

• ML(TE): Run TI with species predicted by the ML
tagger trained on the TE training dataset.

• ML(TE)+Rule: Run TI with species predicted by the
hybrid system using both ML(TE) and the rules.

• ML(EPPI+TE): Run TI with species predicted by the
ML tagger trained on both EPPI and TE training data.

• ML(EPPI+TE)+Rule: Run TI with species predicted
by the hybrid system using both ML(EPPI+TE) and
the rules.

We score the systems using top n precision, where
n ∈ {1, 5, 10, 15, 20}. The argument for this evalua-
tion scheme is that if a TI system is not good enough
in predicting a single identifier correctly, a ‘bag’ of
IDs with the correct answer included would also be
helpful. The ‘Avg. Rank’ field denotes the averaged
position where the correct answer lies in, and the
lower the value is, the better the TI system performs.
For example, a TI system with an ‘Avg. Rank’ of 1
would be ideal, as it would always return the correct
ID at the top of the list. Note that in the TE data, not
only protein entities, but also genes, mRNAcDNA,
and GOMOPs14 were tagged.

On both datasets, using the gold standard species
much improved accuracy of TI (e.g., 19.2% on EPPI

13Note that the TI system already integrated a basic species
tagging system that uses the Majority Vote rule as described in
Section 3.3.1. Thus this is a fairly high ‘baseline’.

14GOMOP is a tag that denotes an entity being either a gene,
or an mRNAcDNA, or a protein, which was used when the anno-
tator could not determine what type the entity in question was.

76



Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 54.31 73.45 76.44 77.90 78.51 5.82
Gold Species 73.52 79.36 80.75 80.75 80.99 1.62
Rule 54.99 73.72 76.45 77.91 78.52 5.79
ML(human) 65.66 76.36 78.82 79.78 80.03 2.58
ML(EPPI) 65.24 76.82 79.01 79.93 80.29 2.39
ML(EPPI)+Rule 65.88 77.09 79.04 79.94 80.30 2.36
ML(TE) 55.87 75.14 78.69 79.85 80.30 2.86
ML(TE)+Rule 56.54 75.47 78.70 79.86 80.31 2.83
ML(EPPI+TE) 64.55 76.48 78.53 79.83 80.38 2.49
ML(EPPI+TE)+Rule 65.03 76.62 78.55 79.84 80.39 2.46

Table 4: Results of TI on the EPPI dataset. All figures, except ‘Avg. Rank’, are percentages. This evaluation was
carried out on protein entities only.

Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 63.24 76.20 77.30 77.94 78.25 1.72
Gold Species 71.82 78.03 78.34 78.40 78.41 1.29
Rule 63.45 76.21 77.30 77.95 78.25 1.72
ML(mouse) 58.76 75.40 77.25 77.92 78.24 1.90
ML(EPPI) 66.59 76.53 77.23 77.76 78.12 1.68
ML(EPPI)+Rule 66.85 76.54 77.24 77.76 78.12 1.67
ML(TE) 66.12 76.25 77.32 77.81 78.11 1.70
ML(TE)+Rule 66.37 76.25 77.32 77.81 78.11 1.70
ML(EPPI+TE) 65.78 76.14 77.28 77.84 78.12 1.71
ML(EPPI+TE)+Rule 66.03 76.14 77.29 77.84 78.12 1.70

Table 5: Results of TI on the TE dataset. All figures, except ‘Avg. Rank’, are percentages. There are four entity types
in the TE data, i.e., protein, gene, mRNAcDNA and GOMOP. The evaluation was carried out on all entity types.

data). Also, automatically predicted species tags
were proven to be helpful. On the EPPI data, the
ML(EPPI)+Rule outperformed other systems. Note
that the species distribution in the devtest dataset is
strongly biased to human, which explains why the
ML(human) system performed nearly as well. How-
ever, defaulting to human was not guaranteed to suc-
ceed because one would not be able to know the
prior species in a collection of unseen documents.
Indeed, on the TE data, the system ML(mouse),
which uses the most frequent species in the training
data, i.e. mouse, as default, yielded poor results.

4.3 Experiments on BioCreAtIvE Data

To assess the portability of the species tagging ap-
proaches, an “artificial” dataset was created by join-
ing the species-specific datasets from BioCreAtIvE
1 & 2 GN tasks to form a corpus consisting of four
species. In detail, four datasets were taken, three
from BioCreAtIvE 1 task 1B (i.e., fly, mouse and
yeast) and one from BioCreAtIvE 2 task GN (i.e., hu-

man). Assuming genes in each dataset are species-
specific,15 we can train/test ML models for species
disambiguation and apply them to help TI. This task
is more difficult than the original BioCreAtIvE GN

tasks due to the additional ambiguity caused by mul-
tiple model organisms.

We first carried out experiments on species dis-
ambiguation. In addition to the TXM (i.e., the sys-
tem uses ML(EPPI+TE)+Rule model) and the Major-
ity Vote taggers, we trained the species tagger on
a dataset comprising of the devtest sets from the
BioCreAtIvE I & II GN tasks. In more detail, we first
pre-processed the dataset and marked up gene enti-
ties with an NER system (Alex et al., 2007; Grover et
al., 2007).16 The entities were also tagged with the

15This assumption is not strictly true because each dataset
may contain genes of other species, and it would be hard to
assess how true it is as abstracts in the BioCreAtIvE GN datasets
are not normalised to an entity level.

16The NER system was trained on BioCreAtIvE II GM train-
ing and test datasets.
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species as indicated by the source dataset where they
were drawn from, which were used as the ‘Gold’
species. Using the same algorithm and feature set as
described in Section 3.3.2, a BC model was trained.

human fly mouse yeast
Majority Vote 82.35 78.43 71.69 85.12

BC model 70.23 89.24 75.41 87.64
TXM model 93.35 3.27 31.89 3.49

Table 6: Accuracy (%) of the species disambiguation
systems as tested on the BioCreAtIvE I & II test data.
The ‘BC model’ was trained on the BioCreAtIvE de-
vtest data, the ‘TXM model’ was trained on the TXM EPPI
and TE training data, and the ‘Majority Vote’ was the de-
fault species tagging system in the TI system (see Section
3.3.1).

As shown in Table 6, except on human, the TXM

model yielded very disappointing results, whereas
the BC model did well overall. This was because
the TXM model was trained on a dataset where fly
and yeast entities occur rarely with only 2% and 5%
of the training instances belonging to these species,
respectively, which again revealed the influence of
the bias introduced in the training material to the ML

models.

System Precision Recall F1
Gold 70.1 63.3 66.5
Majority Vote 46.7 56.3 51.0
TXM model 37.8 46.5 41.7
BC model 45.8 56.1 50.4

Table 7: Performance of TI with or without the automati-
cally predicted species on the joint BioCreAtIvE GN test
dataset.

Using the species disambiguation models, we car-
ried out TI experiments, using the same procedure
as we did on the TXM data. The results were ob-
tained using the official BioCreAtIvE GN scorers17

and are presented in Table 7. Performance of TI as-
sisted by all three species taggers were much behind
that of TI using the gold-standard species, which
shows species-tagging can potentially enhance TI

performance and there is much room for improving
17We tested the TI system on the four original BioCreAtIvE

GN datasets separately and the averaged performance was about
the median among the participating systems in the workshops.
We did not optimise the TXM TI system on BioCreAtIvE, as our
point here is to measure the TI performance with or without help
from the automatic predicted species.

the species disambiguation systems. On the other
hand, it was disappointing that the ‘Majority Vote’
system, which did not use any external species tag-
ger, achieved the best results, while TI with the ‘BC
model’ tagger yielded slightly worse results and the
TXM model performed poorly.

# Species # of Docs % of Docs
1 96 26.20
2 121 32.79

3+ 153 41.19

Table 8: # of species per document in the TXM data.

One possible reason that the ‘Majority Vote’ tag-
ger yielded reasonably good result on the BioCre-
AtIvE dataset, but unsatisfactory result on the TXM

datasets was due to the difference in document
length in the two corpora: the BioCreAtIvE corpus
is comprised of abstracts and the TXM corpora con-
sist of only full-length articles. In abstracts, authors
are inclined to only talk about the main biomedical
entities described in the paper, whereas in full arti-
cles, they tend to describe a larger number of enti-
ties, possibly in multiple species, for the purposes of
describing related work or comparison. Recall that
the ‘Majority Vote’ rule outputs the species indicated
by the majority of the species words, which would
obviously perform better on abstracts, where more
likely only one species is described, than on full-
length articles. Table 8 shows the number of species
per document in the TXM data, where most docu-
ments (i.e., 74%) involve more than one species, in
which cases the ‘Majority Vote’ would not be able to
take obvious advantage.

5 Conclusions and Future Work

This paper presented a range of solutions to the task
of species disambiguation and evaluated their per-
formance on the ITI TXM corpus, and on a joint
dataset from BioCreAtIvE I & II GN tasks. We
showed that rule-based species tagging systems that
exploit heuristics, such as previous species words or
species prefix, can achieve very high precision but
low recall. ML species taggers, on the other hand,
can achieve good overall performance, under the
condition that the species distributions in training
and test datasets are not too distant. Our best per-
forming species tagger is a hybrid system that first
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uses ML to predict species and then applies certain
rules to correct errors.

We also performed TI experiments with help from
species tags assigned by human annotators, or pre-
dicted by the automatic species taggers. On all
datasets, the gold-standard species tags improved TI

performance by a large margin: 19.21% on the EPPI

devtest set, 8.59% on the TE devtest set, and 23.4%
on the BioCreAtIvE GN test datasets, which clearly
shows that species information is indeed very impor-
tant for TI. On the EPPI and TE datasets, the species
predicted by the best-performing hybrid system im-
proved TI by 11.57% and 3.61%, respectively. On
the combined dataset from BioCreAtIvE GN tasks,
however, it did not work as well as expected.

In the future we plan to work on better ways to
integrate the machine learning approaches and the
rules. In particular, we would like to explore statis-
tical relational learning, which may provide ways to
integrate rules as constraints into machine learning
and may be able to alleviate the bias in the learnt
models.

Acknowledgements

The work was supported by the ITI Life Sciences
Text Mining programme.18

References
B. Alex, B. Haddow, and C. Grover. 2007. Recognising

nested named entities in biomedical text. In Proceed-
ings of BioNLP 2007, Prague, Czech Republic.

B. Alex, C. Grover, B. Haddow, M. Kabadjov, E. Klein,
M. Matthews, S. Roebuck, R. Tobin, and X. Wang.
2008a. Assisted curation: does text mining really
help? In Proceedings of PSB.

B. Alex, C. Grover, B. Haddow, M. Kabadjov, E. Klein,
M. Matthews, S. Roebuck, R. Tobin, and X. Wang.
2008b. The ITI TXM corpus: Tissue expression
and protein-protein interactions. In Proceedings of
the LREC Workshop on Building and Evaluating Re-
sources for Biomedical Text Mining, Morocco.

L. Chen, H. Liu, and C. Friedman. 2005. Gene name am-
biguity of eukaryotic nomenclatures. Bioinformatics,
21(2):248–256.

J. Fluck, H. Mevissen, H. Dach, M. Oster, and
M. Hofmann-Apitius. 2007. ProMiner: Recogni-
tion of human gene and protein names using regularly

18http://www.itilifesciences.com

updated disctionaries. In Proceedings of the Second
BioCreative Challenge Evaluation Workshop.

C. Grover, B. Haddow, E. Klein, M. Matthews, L. A.
Nielsen, R. Tobin, and X. Wang. 2007. Adapting a re-
lation extraction pipeline for the BioCreAtIvE II task.
In Proceedings of the BioCreAtIvE II Workshop 2007,
Madrid.

D. Hanisch, K. Fundel, H-T Mevissen, R Zimmer, and
J Fluck. 2005. ProMiner: Organism-specific pro-
tein name detection using approximate string match-
ing. BMC Bioinformatics, 6(Suppl 1):S14.

L. Hirschman, M. Colosimo, A. Morgan, J. Columbe, and
A. Yeh. 2004. Task 1B: Gene list task BioCreAtIve
workshop. In BioCreative: Critical Assessment for In-
formation Extraction in Biology.

L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia.
2005. Overview of BioCreAtIvE: critical assessment
of information extraction for biology. BMC Bioinfor-
matics, 6(Suppl1):S1.

L. Hirschman, M. Krallinger, and A. Valencia, edi-
tors. 2007. Second BioCreative Challenge Evaluation
Workshop. Fundación CNIO Carlos III, Madrid.

M. Krallinger, F. Leitner, and A. Valencia. 2007. Assess-
ment of the second BioCreative PPI task: Automatic
extraction of protein-protein interactions. In Proceed-
ings of the BioCreAtIvE II Workshop 2007, pages 41–
54, Madrid, Spain.

M. Krauthammer and G. Nenadic. 2004. Term iden-
tification in the biomedical literature. Journal of
Biomedical Informatics (Special Issue on Named En-
tity Recogntion in Biomedicine), 37(6):512–526.

A. A. Morgan and L. Hirschman. 2007. Overview of
BioCreative II gene normalisation. In Proceedings of
the BioCreAtIvE II Workshop, Madrid.

X. Wang and C. Grover. 2008. Learning the species of
biomedical named entities from annotated corpora. In
Proceedings LREC2008, Marrakech, Morocco.

X. Wang and M. Matthews. 2008. Comparing usabil-
ity of matching techniques for normalising biomedical
named entities. In Proceedings of PSB.

X. Wang. 2007. Rule-based protein term identification
with help from automatic species tagging. In Proceed-
ings of CICLING 2007, pages 288–298, Mexico City.

79



BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 80–87,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Knowledge Sources for Word Sense
Disambiguation of Biomedical Text

Mark Stevenson, Yikun Guo
and Robert Gaizauskas

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
Sheffield, S1 4DP
United Kingdom

{inital.surname}@dcs.shef.ac.uk

David Martinez
Department of Computer Science

& Software Engineering
University of Melbourne

Victoria 3010
Australia

davidm@csse.unimelb.edu.au

Abstract

Like text in other domains, biomedical doc-
uments contain a range of terms with more
than one possible meaning. These ambigu-
ities form a significant obstacle to the auto-
matic processing of biomedical texts. Previ-
ous approaches to resolving this problem have
made use of a variety of knowledge sources in-
cluding linguistic information (from the con-
text in which the ambiguous term is used) and
domain-specific resources (such as UMLS). In
this paper we compare a range of knowledge
sources which have been previously used and
introduce a novel one: MeSH terms. The best
performance is obtained using linguistic fea-
tures in combination with MeSH terms. Re-
sults from our system outperform published
results for previously reported systems on a
standard test set (the NLM-WSD corpus).

1 Introduction

The number of documents discussing biomedical
science is growing at an ever increasing rate, making
it difficult to keep track of recent developments. Au-
tomated methods for cataloging, searching and nav-
igating these documents would be of great benefit
to researchers working in this area, as well as hav-
ing potential benefits to medicine and other branches
of science. Lexical ambiguity, the linguistic phe-
nomena where a word or phrase has more than
one potential meaning, makes the automatic pro-
cessing of text difficult. For example, “cold” has
six possible meanings in the Unified Medical Lan-
guage System (UMLS) Metathesaurus (Humphreys

et al., 1998) including “common cold”, “cold sen-
sation” and “Chronic Obstructive Airway Disease
(COLD)”. The NLM Indexing Initiative (Aronson et
al., 2000) attempted to automatically index biomedi-
cal journals with concepts from the UMLS Metathe-
saurus and concluded that lexical ambiguity was the
biggest challenge in the automation of the indexing
process. Weeber et al. (2001) analysed MEDLINE
abstracts and found that 11.7% of phrases were am-
biguous relative to the UMLS Metathesaurus.

Word Sense Disambiguation (WSD) is the pro-
cess of resolving lexical ambiguities. Previous re-
searchers have used a variety of approaches for
WSD of biomedical text. Some of them have taken
techniques proven to be effective for WSD of gen-
eral text and applied them to ambiguities in the
biomedical domain, while others have created sys-
tems using domain-specific biomedical resources.
However, there has been no direct comparison of
which knowledge sources are the most useful or
whether combining a variety of knowledge sources,
a strategy which has been shown to be successful for
WSD in the general domain (Stevenson and Wilks,
2001), improves results.

This paper compares the effectiveness of a vari-
ety of knowledge sources for WSD in the biomed-
ical domain. These include features which have
been commonly used for WSD of general text as
well as information derived from domain-specific
resources. One of these features is MeSH terms,
which we find to be particularly effective when com-
bined with generic features.

The next section provides an overview of various
approaches to WSD in the biomedical domain. Sec-
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tion 3 outlines our approach, paying particular atten-
tion to the range of knowledge sources used by our
system. An evaluation of this system is presented
in Section 4. Section 5 summarises this paper and
provides suggestions for future work.

2 Previous Work

WSD has been actively researched since the 1950s
and is regarded as an important part of the process
of understanding natural language texts.

2.1 The NLM-WSD data set

Research on WSD for general text in the last decade
has been driven by the SemEval evaluation frame-
works1 which provide a set of standard evaluation
materials for a variety of semantic evaluation tasks.
At this point there is no specific collection for the
biomedical domain in SemEval, but a test collection
for WSD in biomedicine was developed by Wee-
ber et al. (2001), and has been used as a benchmark
by many independent groups. The UMLS Metathe-
saurus was used to provide a set of possible mean-
ings for terms in biomedical text. 50 ambiguous
terms which occur frequently in MEDLINE were
chosen for inclusion in the test set. 100 instances
of each term were selected from citations added to
the MEDLINE database in 1998 and manually dis-
ambiguated by 11 annotators. Twelve terms were
flagged as “problematic” due to substantial disagree-
ment between the annotators. There are an average
of 2.64 possible meanings per ambiguous term and
the most ambiguous term, “cold” has five possible
meanings. In addition to the meanings defined in
UMLS, annotators had the option of assigning a spe-
cial tag (“none”) when none of the UMLS meanings
seemed appropriate.

Various researchers have chosen to evaluate their
systems against subsets of this data set. Liu et al.
(2004) excluded the 12 terms identified as problem-
atic by Weeber et al. (2001) in addition to 16 for
which the majority (most frequent) sense accounted
for more than 90% of the instances, leaving 22 terms
against which their system was evaluated. Leroy and
Rindflesch (2005) used a set of 15 terms for which
the majority sense accounted for less than 65% of
the instances. Joshi et al. (2005) evaluated against

1http://www.senseval.org

the set union of those two sets, providing 28 am-
biguous terms. McInnes et al. (2007) used the set
intersection of the two sets (dubbed the “common
subset”) which contained 9 terms. The terms which
form these various subsets are shown in Figure 1.

The 50 terms which form the NLM-WSD data set
represent a range of challenges for WSD systems.
The Most Frequent Sense (MFS) heuristic has be-
come a standard baseline in WSD (McCarthy et al.,
2004) and is simply the accuracy which would be
obtained by assigning the most common meaning of
a term to all of its instances in a corpus. Despite its
simplicity, the MFS heuristic is a hard baseline to
beat, particularly for unsupervised systems, because
it uses hand-tagged data to determine which sense
is the most frequent. Analysis of the NLM-WSD
data set showed that the MFS over all 50 ambigu-
ous terms is 78%. The different subsets have lower
MFS, indicating that the terms they contain are more
difficult to disambiguate. The 22 terms used by (Liu
et al., 2004) have a MFS of 69.9% while the set
used by (Leroy and Rindflesch, 2005) has an MFS
of 55.3%. The union and intersection of these sets
have MFS of 66.9% and 54.9% respectively.

adjustment
blood pressure
evaluation
immunosuppression
radiation
sensitivity

degree
growth
man
mosaic
nutrition

cold
depression
discharge
extraction
fat
implantation

association
condition
culture
determination
energy

failure
fit
fluid
frequency
ganglion

glucose
inhibition 
pressure 
resistance
secretion

single
strains
support
surgery
transient

transport
variation

repair
scale
weight
white

japanese
lead
mole
pathology
reduction
sex
ultrasound

NLM-WSD data set

Liu et. al. (2004) Leroy and Rindflesch (2005)

Figure 1: The NLM-WSD test set and some of its sub-
sets. Note that the test set used by (Joshi et al., 2005)
comprises the set union of the terms used by (Liu et al.,
2004) and (Leroy and Rindflesch, 2005) while the “com-
mon subset” is formed from their intersection.

2.2 WSD of Biomedical Text

A standard approach to WSD is to make use of
supervised machine learning systems which are
trained on examples of ambiguous words in con-
text along with the correct sense for that usage. The
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models created are then applied to new examples of
that word to determine the sense being used.

Approaches which are adapted from WSD of gen-
eral text include Liu et al. (2004). Their technique
uses a supervised learning algorithm with a vari-
ety of features consisting of a range of collocations
of the ambiguous word and all words in the ab-
stract. They compared a variety of supervised ma-
chine learning algorithms and found that a decision
list worked best. Their best system correctly dis-
ambiguated 78% the occurrences of 22 ambiguous
terms in the NLM-WSD data set (see Section 2.1).

Joshi et al. (2005) also use collocations as features
and experimented with five supervised learning al-
gorithms: Support Vector Machines, Naive Bayes,
decision trees, decision lists and boosting. The Sup-
port Vector Machine performed scoring 82.5% on
a set of 28 words (see Section 2.1) and 84.9% on
the 22 terms used by Liu et al. (2004). Performance
of the Naive Bayes classifier was comparable to the
Support Vector Machine, while the other algorithms
were hampered by the large number of features.

Examples of approaches which have made use of
knowledge sources specific to the biomedical do-
main include Leroy and Rindflesch (2005), who re-
lied on information from the UMLS Metathesaurus
assigned by MetaMap (Aronson, 2001). Their sys-
tem used information about whether the ambigu-
ous word is the head word of a phrase identified by
MetaMap, the ambiguous word’s part of speech, se-
mantic relations between the ambiguous words and
surrounding words from UMLS as well as semantic
types of the ambiguous word and surrounding word.
Naive Bayes was used as a learning algorithm. This
approach correctly disambiguated 65.6% of word in-
stances from a set of 15 terms (see Section 2.1).
Humphrey et al. (2006) presented an unsupervised
system that also used semantic types. They con-
structed semantic type vectors for each word from
a large collection of MEDLINE abstracts. This al-
lowed their method to perform disambiguation at a
coarser level, without the need for labeled training
examples. In most cases the semantic types can be
mapped to the UMLS concepts but not for five of the
terms in the NLM-WSD data set. Humphrey et al.
(2006) reported 78.6% accuracy over the remaining
45. However, their approach could not be applied
to all instances of ambiguous terms and, in particu-

lar, is unable to model the “none” tag. Their system
could only assign senses to an average of 54% of the
instances of each ambiguous term.

McInnes et al. (2007) made use of Concept
Unique Identifiers (CUIs) from UMLS which are
also assigned by MetaMap. The information con-
tained in CUIs is more specific than in the semantic
types applied by Leroy and Rindflesch (2005). For
example, there are two CUIs for the term “culture”
in UMLS: “C0010453: Anthropological Culture”
and “C0430400: Laboratory Culture”. The seman-
tic type for the first of these is “Idea or Concept” and
“Laboratory Procedure” for the second. McInnes et
al. (2007) were interested in exploring whether the
more specific information contained in CUIs was
more effective than UMLS semantic types. Their
best result was reported for a system which repre-
sented each sense by all CUIs which occurred at
least twice in the abstract surrounding the ambigu-
ous word. They used a Naive Bayes classifier as the
learning algorithm. McInnes et al. (2007) reported
an accuracy of 74.5% on the set of ambiguous terms
tested by Leroy and Rindflesch (2005) and 80.0% on
the set used by Joshi et al. (2005). They concluded
that CUIs are more useful for WSD than UMLS se-
mantic types but that they are not as robust as fea-
tures which are known to work in general English,
such as unigrams and bigrams.

3 Approach

Our approach is to adapt a state-of-the-art WSD sys-
tem to the biomedical domain by augmenting it with
additional domain-specific and domain-independent
knowledge sources. Our basic system (Agirre and
Martı́nez, 2004) participated in the Senseval-3 chal-
lenge (Mihalcea et al., 2004) with a performance
close to the best system for the English and Basque
lexical sample tasks. The system is based on a su-
pervised learning approach. The features used by
Agirre and Martı́nez (2004) are derived from text
around the ambiguous word and are domain inde-
pendent. We refer to these as linguistic features.
This feature set has been adapted for the disam-
biguation of biomedical text by adding further lin-
guistic features and two different types of domain-
specific features: CUIs (as used by (McInnes et al.,
2007)) and Medical Subject Heading (MeSH) terms.

82



3.1 Features
Our feature set contains a number of parameters
which were set empirically (e.g. threshold for un-
igram frequency in the linguistic features). In addi-
tion, we use the entire abstract as the context of the
ambiguous term for relevant features rather than just
the sentence containing the term. Effects of varying
these parameters are consistent with previous results
(Liu et al., 2004; Joshi et al., 2005; McInnes et al.,
2007) and are not reported in this paper.

Linguistic features: The system uses a wide
range of domain-independent features which are
commonly used for WSD.

• Local collocations: A total of 41 features which
extensively describe the context of the am-
biguous word and fall into two main types:
(1) bigrams and trigrams containing the am-
biguous word constructed from lemmas, word
forms or PoS tags2 and (2) preceding/following
lemma/word-form of the content words (adjec-
tive, adverb, noun and verb) in the same sen-
tence with the target word. For example, con-
sider the sentence below with the target word
adjustment.

“Body surface area adjustments of
initial heparin dosing...”

The features would include the following: left-
content-word-lemma “area adjustment”, right-
function-word-lemma “adjustment of ”, left-
POS “NN NNS”, right-POS “NNS IN”, left-
content-word-form “area adjustments”, right-
function-word-form “adjustment of ”, etc.

• Syntactic Dependencies: These features model
longer-distance dependencies of the ambigu-
ous words than can be represented by the lo-
cal collocations. Five relations are extracted:
object, subject, noun-modifier, preposition and
sibling. These are identified using heuristic pat-
terns and regular expressions applied to PoS tag
sequences around the ambiguous word. In the
above example, “heparin” is noun-modifier fea-
ture of “adjustment”.

2A maximum-entropy-based part of speech tagger was used
(Ratnaparkhi, 1996) without the adaptation to the biomedical
domain.

• Salient bigrams: Salient bigrams within the ab-
stract with high log-likelihood scores, as de-
scribed by Pedersen (2001).

• Unigrams: Lemmas of unigrams which appear
more frequently than a predefined threshold in
the entire corpus, excluding those in a list of
stopwords. We empirically set the threshold
to 1. This feature was not used by Agirre and
Martı́nez (2004), but Joshi et al. (2005) found
them to be useful for this task.

Concept Unique Identifiers (CUIs): We follow
the approach presented by McInnes et al. (2007) to
generate features based on UMLS Concept Unique
Identifiers (CUIs). The MetaMap program (Aron-
son, 2001) identifies all words and terms in a
text which could be mapped onto a UMLS CUI.
MetaMap does not disambiguate the senses of the
concepts, instead it enumerates all the possible com-
binations of the concept names found. For exam-
ple, MetaMap will segment the phrase “Body sur-
face area adjustments of initial heparin dosing ...”
into two chunks: “Body surface area adjustments”
and “of initial heparin dosing”. The first chunk
will be mapped onto four CUIs with the concept
name “Body Surface Area”: “C0005902: Diag-
nostic Procedure” and “C1261466: Organism At-
tribute” and a further pair with the name “Adjust-
ments”: “C0456081: Health Care Activity” and
“C0871291: Individual Adjustment”. The final re-
sults from MetaMap for the first chunk will be eight
combinations of those concept names, e.g. first four
by second two concept names. CUIs which occur
more than three times in the abstract containing the
ambiguous word are included as features.

Medical Subject Headings (MeSH): The fi-
nal feature is also specific to the biomedical do-
main. Medical Subject Headings (MeSH) (Nelson
et al., 2002) is a controlled vocabulary for index-
ing biomedical and health-related information and
documents. MeSH terms are manually assigned to
abstracts by human indexers. The latest version of
MeSH contains over 24,000 terms organised into an
11 level hierarchy.

The terms assigned to the abstract in which
each ambiguous word occurs are used as fea-
tures. For example, the abstract containing our
example phrase has been assigned 16 MeSH
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terms including “M01.060.116.100: Aged”,
“M01.060.116.100.080: Aged, 80 and over”,
“D27.505.954.502.119: Anticoagulants” and
“G09.188.261.560.150: Blood Coagulation”. To
our knowledge MeSH terms have not been pre-
viously used as a feature for WSD of biomedical
documents.

3.2 Learning Algorithms

We compared three machine leaning algorithms
which have previously been shown to be effective
for WSD tasks.

The Vector Space Model is a memory-based
learning algorithm which was used by (Agirre and
Martı́nez, 2004). Each occurrence of an ambiguous
word is represented as a binary vector in which each
position indicates the occurrence/absence of a fea-
ture. A single centroid vector is generated for each
sense during training. These centroids are compared
with the vectors that represent new examples using
the cosine metric to compute similarity. The sense
assigned to a new example is that of the closest cen-
troid.

The Naive Bayes classifier is based on a proba-
bilistic model which assumes conditional indepen-
dence of features given the target classification. It
calculates the posterior probability that an instance
belongs to a particular class given the prior proba-
bilities of the class and the conditional probability
of each feature given the target class.

Support Vector Machines have been widely
used in classification tasks. SVMs map feature vec-
tors onto a high dimensional space and construct a
classifier by searching for the hyperplane that gives
the greatest separation between the classes.

We used our own implementation of the Vector
Space Model and Weka implementations (Witten
and Frank, 2005) of the other two algorithms.

4 Results

This system was applied to the NLM-WSD data set.
Experiments were carried out using each of the three
types of features (linguistic, CUI and MeSH) both
alone and in combination. Ten-fold cross valida-
tion was used, and the figures we report are averaged
across all ten runs.

Results from this experiment are shown in Table

1 which lists the performance using combinations of
learning algorithm and features. The figure shown
for each configuration represents the percentage of
instances of ambiguous terms which are correctly
disambiguated.

These results show that each of the three types
of knowledge (linguistic, CUIs and MeSH) can be
used to create a classifier which achieves a reason-
able level of disambiguation since performance ex-
ceeds the relevant baseline score. This suggests that
each of the knowledge sources can contribute to the
disambiguation of ambiguous terms in biomedical
text.

The best performance is obtained using a combi-
nation of the linguistic and MeSH features, a pattern
observed across all test sets and machine learning
algorithms. Although the increase in performance
gained from using both the linguistic and MeSH
features compared to only the linguistic features is
modest it is statistically significant, as is the differ-
ence between using both linguistic and MeSH fea-
tures compared with using the MeSH features alone
(Wilcoxon Signed Ranks Test, p < 0.01).

Combining MeSH terms with other features gen-
erally improves performance, suggesting that the
information contained in MeSH terms is distinct
from the other knowledge sources. However, the
inclusion of CUIs as features does not always im-
prove performance and, in several cases, causes it to
fall. This is consistent with McInnes et al. (2007)
who concluded that CUIs were a useful informa-
tion source for disambiguation of biomedical text
but that they were not as robust as a linguistic knowl-
edge source (unigrams) which they had used for a
previous system. The most likely reason for this is
that our approach relies on automatically assigned
CUIs, provided by MetaMap, while the MeSH terms
are assigned manually. We do not have access to a
reliable assignment of CUIs to text; if we had WSD
would not be necessary. On the other hand, reli-
ably assigned MeSH terms are readily available in
Medline. The CUIs assigned by MetaMap are noisy
while the MeSH terms are more reliable and prove
to be a more useful knowledge source for WSD.

The Vector Space Model learning algorithm per-
forms significantly better than both Support Vector
Machine and Naive Bayes (Wilcoxon Signed Ranks
Test, p < 0.01). This pattern is observed regardless
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Features
CUI+ Linguistic Linguistic Linguistic+Data sets Linguistic CUI MeSH
MeSH +MeSH +CUI MeSH+CUI

Vector space model
All words 87.2 85.8 81.9 86.9 87.8 87.3 87.6

Joshi subset 82.3 79.6 76.6 81.4 83.3 82.4 82.6
Leroy subset 77.8 74.4 70.4 75.8 79.0 78.0 77.8

Liu subset 84.3 81.3 78.3 83.4 85.1 84.3 84.5
Common subset 79.6 75.1 70.4 76.9 80.8 79.6 79.2

Naive Bayes
All words 86.2 81.2 85.7 81.1 86.4 81.4 81.5

Joshi subset 80.6 73.4 80.1 73.3 80.9 73.7 73.8
Leroy subset 76.4 66.1 74.6 65.9 76.8 66.3 66.3

Liu subset 81.9 75.4 81.7 75.3 82.2 75.5 75.6
Common subset 76.7 66.1 74.7 65.8 77.2 65.9 65.9

Support Vector Machine
All words 85.6 83.5 85.3 84.5 86.1 85.3 85.6

Joshi subset 79.8 76.4 79.5 78.0 80.6 79.1 79.8
Leroy subset 75.1 69.7 72.6 72.0 76.3 74.2 74.9

Liu subset 81.3 78.2 81.0 80.0 82.0 80.6 81.2
Common subset 75.7 69.8 71.6 73.0 76.8 74.7 75.2

Previous Approaches
MFS Liu et. al. Leroy and Joshi et. McInnes et.

baseline (2004) Rindflesch (2005) al. (2005) al. (2007)
All words 78.0 – – – 85.3

Joshi subset 66.9 – – 82.5 80.0
Leroy subset 55.3 – 65.5 77.4 74.5

Liu subset 69.9 78.0 – 84.9 82.0
Common subset 54.9 – 68.8 79.8 75.7

Table 1: Results from WSD system applied to various sections of the NLM-WSD data set using a variety of fea-
tures and machine learning algorithms. Results from baseline and previously published approaches are included for
comparison.

of which set of features are used, and it is consis-
tent of the results in Senseval data from (Agirre and
Martı́nez, 2004).

4.1 Per-Word Analysis

Table 2 shows the results of our best performing sys-
tem (combination of linguistic and MeSH features
using the Vector Space Model learning algorithm).
Comparable results for previous supervised systems
are also reported where available.3 The MFS base-
line for each term is shown in the leftmost column.

The performance of Leroy and Rindflesch’s sys-

3It is not possible to directly compare our results with Liu
et al. (2004) or Humphrey et al. (2006). The first report only
optimal configuration for each term (combination of feature sets
and learning algorithm) while the second do not assign senses
to all of the instances of each ambiguous term (see Section 2).

tem is always lower than the best result for each
word. The systems reported by Joshi et al. (2005)
and McInnes et al. (2007) are better than, or the
same as, all other systems for 14 and 12 words re-
spectively. The system reported here achieves re-
sults equal to or better than previously reported sys-
tems for 33 terms.

There are seven terms for which the performance
of our approach is actually lower than the MFS base-
line (shown in italics) in Table 2. (In fact, the base-
line outperforms all systems for four of these terms.)
The performance of our system is within 1% of the
baseline for five of these terms. The remaining pair,
“blood pressure” and “failure”, are included in the
set of problematic words identified by (Weeber et
al., 2001). Examination of the possible senses show
that they include pairs with similar meanings. For
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MFS Leroy and Joshi et. McInnes et. Reported
baseline Rindflesch (2005) al. (2005) al. (2007) system

adjustment 62 57 71 70 74
association 100 - - 97 100

blood pressure 54 46 53 46 46
cold 86 - 90 89 88

condition 90 - - 89 89
culture 89 - - 94 95
degree 63 68 89 79 95

depression 85 - 86 81 88
determination 79 - - 81 87

discharge 74 - 95 96 95
energy 99 - - 99 98

evaluation 50 57 69 73 81
extraction 82 - 84 86 85

failure 71 - - 73 67
fat 71 - 84 77 84
fit 82 - - 87 88

fluid 100 - - 99 100
frequency 94 - - 94 94
ganglion 93 - - 94 96
glucose 91 - - 90 91
growth 63 62 71 69 68

immunosuppression 59 61 80 75 80
implantation 81 - 94 92 93

inhibition 98 - - 98 98
japanese 73 - 77 76 75

lead 71 - 89 90 94
man 58 80 89 80 90

mole 83 - 95 87 93
mosaic 52 66 87 75 87

nutrition 45 48 52 49 54
pathology 85 - 85 84 85

pressure 96 - - 93 95
radiation 61 72 82 81 84
reduction 89 - 91 92 89

repair 52 81 87 93 88
resistance 97 - - 96 98

scale 65 84 81 83 88
secretion 99 - - 99 99

sensitivity 49 70 88 92 93
sex 80 - 88 87 87

single 99 - - 98 99
strains 92 - - 92 93

support 90 - - 91 89
surgery 98 - - 94 97

transient 99 - - 98 99
transport 93 - - 93 93

ultrasound 84 - 92 85 90
variation 80 - - 91 95

weight 47 68 83 79 81
white 49 62 79 74 76

Table 2: Per-word performance of best reported systems.

example, the two senses which account for 98% of
the instances of “blood pressure”, which refer to the
blood pressure within an organism and the result ob-
tained from measuring this quantity, are very closely
related semantically.

5 Conclusion

This paper has compared a variety of knowledge
sources for WSD of ambiguous biomedical terms
and reported results which exceed the performance
of previously published approaches. We found that
accurate results can be achieved using a combina-
tion of linguistic features commonly used for WSD
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of general text and manually assigned MeSH terms.
While CUIs are a useful source of information for
disambiguation, they do not improve the perfor-
mance of other features when used in combination
with them. Our approach uses manually assigned
MeSH terms while the CUIs are obtained automati-
cally using MetaMap.

The linguistic knowledge sources used in this pa-
per comprise a wide variety of features including
n-grams and syntactic dependencies. We have not
explored the effectiveness of these individually and
this is a topic for further work.

In addition, our approach does not make use of
the fact that MeSH terms are organised into a hierar-
chy. It would be interesting to discover whether this
information could be used to improve WSD perfor-
mance. Others have developed techniques to make
use of hierarchical information in WordNet for WSD
(see Budanitsky and Hirst (2006)) which could be
adapted to MeSH.
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Abstract

This paper describes the use and customiza-
tion of Inductive Logic Programming (ILP) to
infer indexing rules from MEDLINE citations.
Preliminary results suggest this method may
enhance the subheading attachment module of
the Medical Text Indexer, a system for assist-
ing MEDLINE indexers.

1 Introduction

Indexing is a crucial step in any information retrieval
system. In MEDLINE®, a widely used database of the
biomedical literature, the indexing process involves
the selection of Medical Subject Headings (MeSH®)
in order to describe the subject matter of articles.
The need for automatic tools to assist human in-
dexers in this task is growing with the increasing
number of publications in MEDLINE. The Medical
Text Indexer (MTI) (Aronson et al., 2004) has been
available at the U.S. National Library of Medicine
(NLM) since 2002 to provide indexers with MeSH
main heading recommendations (e.g. Aphasia, Pa-
tient Care. . . ) when they create MEDLINE citations.
This paper describes a method to enhance MTI with
the capacity to attach appropriate MeSH subhead-
ings (e.g. metabolism, pharmacology) to these main
headings in order to provide MeSH pair recommen-
dations (e.g. aphasia/metabolism), which are more
specific and therefore a significant asset to NLM in-
dexers.

Subheading attachment can be accomplished us-
ing indexing rules such as:

If a main heading from the "Anatomy"
tree and a "Carboxylic Acids" term are
recommended for indexing, then the pair
"[Carboxylic Acids]/pharmacology" should
also be recommended.

Sets of manual rules developed for a few subhead-
ings show good precision but low recall. The devel-
opment of new rules is a complex, time-consuming
task. We investigate a novel approach adapting In-
ductive Logic Programming (ILP) to the context
of MEDLINE, which requires efficient processing of
large amounts of data.

2 Use of Inductive Logic Programming

ILP is a supervised machine learning technique used
to infer rules that are expressed with logical clauses
(Prolog clauses) based on a set of examples also rep-
resented using Prolog. A comprehensive descrip-
tion of ILP can be found in (Muggleton and Raedt,
1994). We selected this method because it is able to
provide simple representations for relational prob-
lems and produces rules that can be easily inter-
preted. One caveat to the use of ILP is the complex-
ity of rule inference from large sets of positive and
negative examples. Considering each of the 24,000
MeSH main headings independently would not be
computationally feasible. For this reason, based on
work by Buntine (1988) we introduce a new defini-
tion of subsumption that allows us to go through the
set of examples efficiently by exploiting hierarchical
relationships between main headings. This type of
subsumption is in fact suitable for any rule inference
problem involving structured knowledge encoded by
ontologies.
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Subheading Method Nb. rules Precision (%) Recall(%) F-measure(%)
Overall ILP 587 47 32 38

Manual 69 59 10 18
Baseline - 32 11 16

Table 1: Performance on the test corpus using MTI main heading recommendations

3 Experiments

ILP rules were induced using a training corpus of
100,000 citations randomly chosen from MEDLINE

2006. Another corpus of 100,000 MEDLINE 2006 ci-
tations was used for testing. ILP rules were applied
on the test corpus using main headings automatically
retrieved by MTI as triggers. The performance of
ILP was compared to manual rules and a baseline
consisting of randomly formed pairs according to
their distribution in MEDLINE prior to 2006. Overall
results obtained on 4 subheadings are presented in
Table 1.

4 Discussion

Performance. As expected, the use of MTI to pro-
duce main heading recommendations used as trig-
gers for the rules results in comparable precision
but lower recall compared to the theoretical assess-
ment. In spite of this, the performance obtained by
ILP rules is superior to the baseline and shows the
best F-measure. The precision obtained by the man-
ual rules, when they exist, is higher, but they pro-
duce a recall inferior to ILP and even to the baseline
method.

ILP vs. manual rules. A detailed analysis of the
rules obtained shows that not all ILP rules are easily
understood by indexers. This is due to some unex-
pected regularities which do not seem to be relevant
but nonetheless achieved good results on the training
data used to infer rules.

Furthermore, we noticed that while most rules
typically contain a “trigger term” (e.g. Anatomy
in our previous example) and a “target term” (e.g.
Carboxylic Acids above), in some ILP rules the tar-
get term can also serve as the trigger term. Some
changes in the ILP inferring process are foreseen in
order to prevent the production of such rules.

Rule filtering vs. manual review. Preliminary ex-
periments with producing ILP rules suggested that

improvement could be achieved by 1/ filtering out
rules that showed a comparatively low precision on
the training corpus when applied to main headings
retrieved by MTI; and 2/ by having an indexing ex-
pert review the rules to improve their readability. On
most subheadings, filtering had little impact but gen-
erally tended to improve precision while F-measure
stayed the same, which was our goal. The manual
review of the rules seemed to degrade the perfor-
mance obtained with the original ILP.

5 Conclusion and perspectives

We have shown that ILP is an adequate method for
automatically inferring indexing rules for MEDLINE.
Further work will be necessary in order to obtain
rules for all 83 MeSH subheadings. Subsequently,
the combination of ILP rules with other subheading
attachment methods will be assessed. We anticipate
that the rule sets we have obtained will be integrated
into MTI’s subheading attachment module.
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Abstract
This paper presents a novel prediction ap-
proach for protein sub-cellular localization. We
have incorporated text and sequence-based ap-
proaches.

1 Introduction

Natural Language Processing (NLP) has tackled and
solved a lot of prediction problems in Biology. One
practical research issue is Protein Sub-Cellular Lo-
calization (PSL) Prediction. Many previous ap-
proaches have combined information from both texts
and sequences by a machine learning (ML) technique
(Shatkay et al., 2007). All of them have not used tra-
ditional NLP techniques such as parsing. Our aim
is to develop a novel PSL prediction system using
information from texts and sequences. At the same
time, we demonstrated the effectiveness of the tra-
ditional NLP and the sequence-based features in the
viewpoint of the text-based approach.

2 Methodology

A Maximum Entropy-based ML technique has been
used to combine information from both texts and se-

quences. To develop a supervised ML-based predic-
tion system, an annotated corpus is needed to train
the system. However, there is no publicly available
corpus that contains the PSL. Therefore, we have
constructed a corpus using GENIA corpus as an ini-
tial data, because the annotation of Protein and Cel-
lular component in GENIA corpus is already done
by human experts. The new types of annotation con-
tain two tasks. The first annotation is to classify
1,117 cellular components in GENIA corpus into 11
locations, and the second annotation is to catego-
rize a relation between a protein and a location into
positive, negative, and neutral. Biologists selected
11 locations based on Gene Ontology: Cytoplasm,
Cytoskeleton, Endoplasmic reticulum, Extracellular,
Golgi apparatus, Granule, Lysosome, Mitochondria,
Nucleus, Peroxisome, and Plasma membrane. The
number of co-occurrences in GENIA corpus is 864.
1 Three human experts annotated with 79.49% of
inter-annotator agreement. For calculating the inter-
annotator agreement, all annotators annotated 117

1The co-occurrence in the proposed approach is a sentence
that contains at least one pair of protein and cellular component
names.
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# Relevant Performance : F-score (Precision, Recall)
Location relations Baseline Text Sequence Text + Sequence
Nucleus 173 0.282 (0.164, 1.0) 0.764 (0.736, 0.794) 0.725 (0.569, 1.000) 0.778 (0.758, 0.798)

Cytoplasm 94 0.163 (0.089, 1.0) 0.828 (0.804, 0.852) 0.788 (0.657, 0.984) 0.828 (0.804, 0.852)
Plasma membrane 23 0.043 (0.022, 1.0) 0.875 (0.814, 0.946) 0.857 (0.766, 0.973) 0.885 (0.841, 0.932)

Table 1: Performance of protein sub-cellular localization prediction for each location.

co-occurrences. From the texts, we used eight fea-
tures: (1) protein and cellular component names an-
notated by human experts, (2) adjacent one and two
words of names, (3) bag of words, (4) order of names,
(5) distance between names, (6) syntactic category
of names, (7) predicates of names, and (8) part-of-
speech of predicates. To analyze the syntactic struc-
ture, we used the ENJU full parser whose output is
predicate-argument structures of a sentence.

To combine the information from sequences, we
attempted to predict PSL for all proteins in GE-
NIA corpus by two existing sequence-based meth-
ods: WoLF PSORT (Horton et al., 2006) and SOSUI
(Hirokawa et al., 1998). Approximately 14% of pro-
tein names in GENIA corpus obtained results. From
the sequences, we used two features: (1) existence
of the sequence-based results, and (2) the number of
sequence-based results.

3 Experimental results and Conclusion

The proposed approach has integrated text and
sequence-based approaches. To evaluate the system,
we performed 10-fold cross validation using 864 co-
occurrences including positive, negative, and neutral
relations. We measured the precision, recall, and
F-score of the system for all experiments. Among
864 co-occurrences in GENIA corpus, 301 positive
or negative co-occurrences have been considered as
relevant relations, and the remaining 563 neutral re-
lations have been considered as irrelevant relations.

Four approaches have been compared based on
three locations in Table 1. The four approaches are
baseline, text-based approach, sequence-based ap-
proach, and integration of the text and sequence-
based approaches. Baseline experiment used an as-
sumption: there is a relevant relation if a protein and
a cellular component names occur together in a co-
occurrence. The three locations selected when there
are the sequence-based results and the number of rel-
evant relations is more than one. All experiments

showed that the integration of text and sequence-
based approaches is the best, even though the exper-
iments for Cytoplasm showed the best performance
at both the text-based approach and the integration
approach.

A new prediction method has been developed for
protein sub-cellular localization, and it has integrated
text and sequence-based approach using an ML tech-
nique. The traditional NLP techniques contributed
to improve performance of the text-based approach,
and the text and sequence-based approaches recipro-
cally contributed to obtain a improved PSL predic-
tion method. The newly constructed corpus will be
included in the next version of GENIA corpus. There
are weak points in the proposed approach. The cur-
rent evaluation method has been focusing on eval-
uating the text-based approach, and the results of
the sequence-based approach were obtained for only
14% of proteins in GENIA corpus, so these situations
might be the reason that the sequence-based approach
did contribute a little. Thus, we need to evaluate the
proposed approach with a more reasonable method.
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Abstract 

The goal of the Penn Discourse Treebank 
(PDTB) project is to develop a large-scale cor-
pus, annotated with coherence relations marked 
by discourse connectives. Currently, the primary 
application of the PDTB annotation has been to 
news articles. In this study, we tested whether 
the PDTB guidelines can be adapted to a differ-
ent genre. We annotated discourse connectives 
and their arguments in one 4,937-token full-text 
biomedical article. Two linguist annotators 
showed an agreement of 85% after simple con-
ventions were added. For the remaining 15% 
cases, we found that biomedical domain-specific 
knowledge is needed to capture the linguistic 
cues that can be used to resolve inter-annotator 
disagreement. We found that the two annotators 
were able to reach an agreement after discussion. 
Thus our experiments suggest that the PDTB an-
notation can be adapted to new domains by mini-
mally adjusting the guidelines and by adding 
some further domain-specific linguistic cues. 

1 Introduction 

Large scale annotated corpora, e.g., the Penn 
TreeBank (PTB) project (Marcus et al. 1993), 
have played an important role in text-mining. 
The Penn Discourse Treebank (PDTB) 
(http://www.seas.upenn.edu/~pdtb) (Prasad et al. 
2008a) annotates the argument structure, seman-
tics, and attribution of discourse connectives and 
their arguments. The current release of PDTB-

2.0 contains the annotations of 1,808 Wall Street 
Journal articles (~1 million words) from the 
Penn TreeBank (Marcus et al. 1993) II distribu-
tion and a total of 40,600 discourse connective  
tokens (Prasad et al. 2008b). This work exam-
ines whether the PDTB annotation guidelines 
can be adapted to a different genre, the biomedi-
cal literature.  

2 Notation 

A discourse connective can be defined as a 
word or multiword expression that signals a 
discourse relation. Discourse connectives 
can be subordinating conjunctions (e.g., be-
cause, when, although), coordinating con-
junctions (e.g., but, or, nor) and adverbials 
(e.g., however, as a result, for example). A 
discourse connective takes in two argu-
ments, Arg1 and Arg2. Arg2 is the argument 
that appears in the clause that is syntacti-
cally bound to the connective and Arg1 is 
the other argument. In the sentence “John 
failed the exam because he was lazy” the dis-
course connective is underlined, Arg1 ap-
pears in italics and Arg2 appears in bold. 

3 A Pilot Annotation 

Following the PDTB annotation manual (Prasad 
et al. 2008b), we conducted a pilot annotation of 
discourse connectivity in biomedical text. As an 
initial step, we only annotated the three most 
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important components of a discourse relation; 
namely, a discourse connective and its two ar-
guments; we did not annotate attribution. Two 
linguist annotators independently annotated one 
full-text biomedical article (Verpy et al. 1999) 
that we randomly selected. The article is 4,937 
tokens long. When the annotation work was 
completed, we measured the inter-annotator 
agreement, following the PDTB exact match 
criterion (Miltsakaki et al. 2004). According to 
this criterion, a discourse relation is in dis-
agreement if there is disagreement on any text-
span (i.e., the discourse connective or any of its 
two arguments). In addition, we also measured 
the agreement in the components (i.e., discourse 
connectives and the arguments). We discussed 
the annotation results and made suggestions to 
adapt the PDTB guidelines to biomedical text.  

4 Results and Discussion 

The first annotator identified 74 discourse con-
nectives, and the second annotator identified 75, 
68 of which were the same as those identified by 
the first annotator. The combined total number 
of discourse connectives was 81. The overall 
agreement in discourse connective identification 
was 68/81=84%.  
 
Of the 68 discourse connectives that were anno-
tated by both annotators, 31 were an exact 
match, 31 had an exact match for Arg1, and 54 
had an exact match for Arg2. The overall 
agreement for the 68 discourse relations is 
45.6% for exact match, 45.6% for Arg1, and 
79.4% for Arg2. The PDTB also reported a 
higher level of agreement in annotating Arg2 
than in annotating Arg1 (Miltsakaki et al. 2004). 
We manually analyzed the cases with disagree-
ment. We found the disagreements are nearly all 
related to the annotation of citation references, 
supplementary clauses, and other conventions. 
When a few conventions for these cases were 
added, the inter-annotator agreement went up to 
85%. We also found that different interpretation 
of a relation and its arguments by annotators 
plays an important role for the remaining 15% 
inconsistency, and domain-specific knowledge 
is necessary to resolve such cases.   
 

5 New Conventions 

After the completion of the pilot annotation and 
the discussion, we decided to add the following 
conventions to the PDTB annotation guidelines 
to address the characteristics of biomedical text: 

 
i. Citation references are to be annotated as 

a part of an argument because the inclu-
sion will benefit many text-mining tasks 
including identifying the semantic rela-
tions among citations. 

ii. Clausal supplements (e.g., relative or 
parenthetical constructions) that modify  
arguments but are not minimally 
necessary for the interpretation of the 
relation,  are annotated as part of the 
arguments. 

iii. We will annotate a wider variety of 
nominalizations as arguments than 
allowed by the PDTB guidelines. 

 
We anticipate that these changes will both de-
crease the amount of effort required for annota-
tion and increase the reliability of the 
annotation. 
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Abstract 
We present a comparative study between 
two machine learning methods, Conditional 
Random Fields and Support Vector Ma-
chines for clinical named entity recognition. 
We explore their applicability to clinical 
domain. Evaluation against a set of gold 
standard named entities shows that CRFs 
outperform SVMs. The best F-score with 
CRFs is 0.86 and for the SVMs is 0.64 as 
compared to a baseline of 0.60. 

1 Introduction and background 
Named entity recognition (NER) is the discovery 
of named entities (NEs), or textual mentions that 
belong to the same semantic class. In the biomedi-
cal domain NEs are diseases, signs/symptoms, ana-
tomical signs, and drugs. NER performance is high 
as applied to scholarly text and newswire narra-
tives (Leaman et al., 2008). Clinical free-text, on 
the other hand, exhibits characteristics of both in-
formal and formal linguistic styles which, in turn, 
poses challenges for clinical NER. Conditional 
Random Fields (CRFs) (Lafferty et al., 2001) and 
and Support Vector Machines (SVMs) (Cortes and 
Vapnik, 1995) are machine learning techniques 
which can handle multiple features during learn-
ing. CRFs’ main strength lies in their ability to in-
clude various unrelated features, while SVMs’ in 
the inclusion of overlapping features.  Our goal is 
to compare CRFs and SVMs performance for 
clinical NER with focus on disease/disorder NEs. 

2 Dataset and features 
Our dataset is a gold standard corpus of 1557 sin-
gle- and multi-word disorder annotations (Ogren et 
al., 2008). For training and testing the CRF and 
SVM models the IOB (inside-outside-begin) nota-
tion (Leaman, 2008) was applied. In our project, 
we used 1265 gold standard annotations for train-
ing and 292 for testing. The features used for the 

learning process are described as follows. Diction-
ary look-up is a binary value feature that represents 
if the NE is in the dictionary (SNOMED-CT). Bag 
of Words (BOW) is a representation of the context 
by the unique words in it. Part-of-speech tags 
(POS) of BOW is the pos tags of the context 
words. Window size is the number of tokens repre-
senting context surrounding the target word. Ori-
entation(left or right) is the location of the feature 
in regard to the target word. Distance is the prox-
imity of the feature in regard to the target word 
Capitalization has one of the four token-based val-
ues: all upper case, all lower case, mixed_case and 
initial upper case. Number features refer to the 
presence or absence of related numbers. Feature 
sets are in Table 1. 

3 Results and discussion 
Figure 1 shows the CRF results. The F-scores, re-
call and precision for the baseline dictionary look-
up are 0.604, 0.468 and 0.852 respectively. When 
BOW is applied in feature combination 2 results 
improve sharply adding 0.15, 0.17 and 0.08 points 
respectively. The F-score, recall and precision im-
prove even further with the capitalization feature to 
0.858, 0.774 and 0.963 respectively. Figure 2 
shows SVM results. The addition of more features 
to the model did not show an upward trend. The 
best results are with feature combination 1 and 3. 
The F-score reaches 0.643, which although an im-
provement over the baseline greatly underperforms 
CRF results. BOW features seem not discrimina-
tive with SVMs. When the window size increases 
to 5, performance decreases as demonstrated in 
feature combinations 2, 4 and 8. Results with fea-
ture combination 4, in particular, has a pronounced 
downward trend. Its F-score is 0.612, a decrease by 
0.031 compared with Test 1 or Test 3. Its recall 
and precision are 0.487 and 0.822 respectively, a 
decrease by 0.036 and 0.01 respectively. This sup-
ports the results achieved with CRFs where a 
smaller window size yields better performance. 
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No Features 
1 dictionary look-up (baseline) 
2 dictionary look-up+BOW+Orientation+distance (Win-

dow 5) 
3 dictionary look-up + BOW + Orientation + distance 

(Window 3) 
4 dictionary look-up + BOW  + POS + Orientation + 

distance (Window 5) 
5 dictionary look-up + BOW +POS + Orientation + dis-

tance (Window 3) 
6 dictionary look-up + BOW +POS + Orientation + dis-

tance (Window 3) + bullet number 
7 dictionary look-up + BOW + POS + Orientation + 

distance(Window 3) + measurement 
8 dictionary look-up + BOW + POS + Orientation + 

distance  (Window 5) + neighboring number 
9 dictionary look-up + BOW +POS + Orientation + dis-

tance (Window 3) + neighboring number 
10 dictionary look-up + BOW +POS + Orientation + dis-

tance (Window 3)+neighboring number+measurement 
11 dictionary look-up+BOW+POS+Orientation (Window 

3)+neighboring number+bullet number + measurement 
12 dictionary look-up + BOW +POS + Orientation 

+distance (Window 3) + neighboring number + bullet 
number + measurement + capitalization 

Table 1: Feature combinations 
 

 
Figure 1: CRF evaluation results 

 
Figure 2: SVM evaluation results 

 

As the results show, context represented by the 
BOW feature plays an important role indicating the 
importance of the words surrounding NEs. On the 
other hand, POS tag features did not bring much 

improvement, which perhaps hints at a hypothesis 
that grammatical roles are not as important as con-
text in clinical text. Thirdly, a small window size is 
more discriminative. Clinical notes are unstruc-
tured free text with short sentences. If a larger win-
dow size is used, many words will share similar 
features. Fourthly, capitalization is highly dis-
criminative. Fifthly, as a finite state machine de-
rived from HMMs, CRFs can naturally consider 
state-to-state dependences and feature-to-state de-
pendences. On the other hand, SVMs do not con-
sider such dependencies. SVMs separate the data 
into categories via a kernel function. They imple-
ment this by mapping the data points onto an opti-
mal linear separating hyperplane. Finally, SVMs 
do not behave well for large number of feature 
values. For large number of feature values, it 
would be more difficult to find discriminative lines 
to categorize the labels. 

4 Conclusion and future work 
We investigated the use of CRFs and SVMs for 
disorder NER in clinical free-text. Our results 
show that, in general, CRFs outperformed SVMs. 
We demonstrated that well-chosen features along 
with dictionary-based features tend to improve the 
CRF model’s performance but not the SVM’s.  
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Abstract

We hypothesize that machine-learning algo-
rithms (MLA) can classify completer and
simulated suicide notes as well as mental
health professionals (MHP). Five MHPs
classified 66 simulated or completer notes;
MLAs were used for the same task. Results:
MHPs were accurate 71% of the time; using
the sequential minimization optimization
algorithm (SMO) MLAs were accurate 78%
of the time. There was no significant differ-
ence between the MLA and MPH classifiers.
This is an important first step in developing
an evidence based suicide predictor for
emergency department use.

1 Problem

Suicide is the third leading cause of death in
adolescents and a leading cause of death in the
United States1. Those who attempt suicide usually
arrive at the Emergency Department seeking help.
These individuals are at risk for a repeated attempt,
that may lead to a completed suicide2. We know
of no evidence-based risk assessment tool for pre-
dicting repeated suicide attempts. Thus, Emergency
Medicine clinicians are often left to manage suicidal
patients by clinical judgment alone. This research
focuses on the initial stage for constructing such
an evidence based tool, the Psychache3 Index.
Our efforts herein posit that suicide notes are an
artifact of a victim’s thoughts and that the thoughts
between completers and attempters are different.
Using natural language processing we attempt to

distinguish between completer notes and notes that
have been simulated by individuals who match the
profile of the completer. Understanding how to
optimize classification methods between these types
of notes prepares us for future work that can include
clinical and biological factors.

2 Methods

Suicidal patients are classified into three categories:
ideators —those who think about committing sui-
cide, attempters —those who attempt suicide, and
completers —those who complete suicide. This re-
search focuses on the completers and a group of in-
dividuals called simulators. These simulators were
matched to completers by age, gender and socioe-
conomic status and asked to write a suicide note4.
Suicide notes from 33 completers and 33 simulators
were annotated with linguistic characteristics using
a perl-program with the EN:Lingua:Tagger module.
Emotional characteristics were annotated by assign-
ing terms in the note to a suicide-emotion ontology
that was developed from a meta analysis of 2,166
suicide related manuscripts and validated with ex-
pert opinion. This ontology includes such classes
as: affection, anger, depression, and worthlessness.
Each class had multiple concepts, i.e, affection→
love, concern for others, and gratitude. Three MHPs
read each note and tagged emotion-words found in
the notes with the appropriate classes and concepts.
Analysis of variance between structures was con-
ducted to insure that there actually was a difference
that could be detected. Emotional annotations were
used for machine-learning.
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We then tested the hypothesis that MLAs could
distinguish between completer and simulated notes
as well as MHPs. Copies of the notes were given
to five MHPs who classified them as either written
by a completer or an simulator. MLA feature space
was defined by matrix of selected characteristics
from four sources: words, parts of speech, concepts,
and readability indexes. Collinearity was eliminated
by removing highly correlated features. The final
feature space included: specific words (such as
”love”, ”life”, ”no”), specific parts of speech (such
as, personal pronouns, verbs) Kincaid readability
index and emotional concepts (such as anger,
and hopelessness). We then tested the following
algorithms’ ability to distinguish between completer
and simulator notes: decision trees - J48, C4.5,
LMT, DecisionStump, M5P; classification rules -
JRip, M5, OneR, PART; function models - SMO,
logistic builds, multinomial logistic regression,
linear regression; lazy learners and meta learners5.

3 Results

A significant difference was found between the
linguistic and emotional characteristics of the notes.
Linguistic differences (completer/simulated): word
count 120/66 p=0.007, verbs 25/13 p=0.012, nouns
28/12 p=0.0001, and prepositions 20/10 p=0.005.
This difference justified testing the classification
hypothesis. Emotionally, completers gave away
their possessions 20% of the time, simulators, never
did. Mental health experts accurately classified the
notes 71% of the time. The MLAs were accurate
60-79% of the time with SMO giving the highest
results when the word count, part-of-speech, and
readability vectors were included. Performance
weakened when the emotional vector was included,
yet the emotional vector was the primary source of
data for the MHPs.

4 Conclusion

Machine learning methods for classifying suicide
and non-suicide notes are promising. Future efforts
to represent the thoughts of the suicidal patient will
require larger sample sizes, inclusion of attempters
response to open-ended questions, biological and

clinical characteristics.
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1 Introduction

The knowledge about gene clusters and protein in-
teractions is important for biological researchers
to unveil the mechanism of life. However, large
quantity of the knowledge often hides in the liter-
ature, such as journal articles, reports, books and
so on. Many approaches focusing on extracting in-
formation from unstructured text, such as pattern
matching, shallow and deep parsing, have been pro-
posed especially for extracting protein-protein inter-
actions (Zhou and He, 2008).

A semantic parser based on the Hidden Vector
State (HVS) model for extracting protein-protein in-
teractions is presented in (Zhou et al., 2008). The
HVS model is an extension of the basic discrete
Markov model in which context is encoded as a
stack-oriented state vector. Maximum Likelihood
estimation (MLE) is used to derive the parameters
of the HVS model. In this paper, we propose a dis-
criminative approach based on parse error measure
to train the HVS model. To adjust the HVS model to
achieve minimum parse error rate, the generalized
probabilistic descent (GPD) algorithm (Kuo et al.,
2002) is used. Experiments have been conducted on
the GENIA corpus. The results demonstrate mod-
est improvements when the discriminatively trained
HVS model outperforms its MLE trained counter-
part by 2.5% in F-measure on the GENIA corpus.

2 Methodologies

The Hidden Vector State (HVS) model (He and
Young, 2005) is a discrete Hidden Markov Model
(HMM) in which each HMM state represents the

state of a push-down automaton with a finite stack
size.

Normally, MLE is used for generative probabil-
ity model training in which only the correct model
needs to be updated during training. It is be-
lieved that improvement can be achieved by train-
ing the generative model based on a discriminative
optimization criteria (Klein and Manning, 2002) in
which the training procedure is designed to maxi-
mize the conditional probability of the parses given
the sentences in the training corpus. That is, not only
the likelihood for the correct model should be in-
creased but also the likelihood for the incorrect mod-
els should be decreased.

Assuming the most likely semantic parse tree
Ĉ = Cj and there are altogether M semantic parse
hypotheses for a particular sentence W , a parse er-
ror measure (Juang et al., 1993; Chou et al., 1993;
Chen and Soong, 1994) can be defined as

d(W ) = − log P (W, Cj) + log[
1

M − 1

∑

i,i6=j

P (W, Ci)
η
]
1
η (1)

where η is a positive number and is used to se-
lect competing semantic parses. When η = 1,
the competing semantic parse term is the average
of all the competing semantic parse scores. When
η → ∞, the competing semantic parse term be-
comes max

i.i6=j
P (W,Ci) which is the score for the top

competing semantic parse. By varying the value of
η, we can take all the competing semantic parses into
consideration. d(W ) > 0 implies classification er-
ror and d(W ) ≤ 0 implies correct decision.

The sigmoid function can be used to normalize
d(W ) in a smooth zero-one range and the loss func-
tion is thus defined as (Juang et al., 1993):

`(W ) = sigmoid(d(W )) (2)
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where
sigmoid(x) =

1

1 + e−γx
(3)

Here, γ is a constant which controls the slope of the
sigmoid function.

The update formula is given by:

λ
k+1

= λ
k − ε

k∇`(Wi, λ
k
) (4)

where εk is the step size.
Using the definition of `(Wi, λ

k) and after work-
ing out the mathematics, we get the update formu-
lae 5, 6, 7,

(
log P (n|c′)

)∗
= log P (n|c′)− εγ`(di)(1− `(di))


−I(Cj , n, c

′
) +

∑

i,i6=j

I(Ci, n, c
′
)

P (Wi, Ci, λ)η

∑
i,i6=j P (Wi, Ci, λ)η


 (5)

(log P (c[1]|c[2..D]))
∗

= log P (c[1]|c[2..D])− εγ`(di)(1− `(di))

−I(Cj , c[1], c[2..D]) +

∑

i,i6=j

I(Ci, c[1], c[2..D])
P (Wi, Ci, λ)η

∑
i,i6=j P (Wi, Ci, λ)η




(6)

(log P (w|c))∗ = log P (w|c)− εγ`(di)(1− `(di))

−I(Cj , w, c) +

∑

i,i6=j

I(Ci, w, c)
P (Wi, Ci, λ)η

∑
i,i6=j P (Wi, Ci, λ)η


 (7)

where I(Ci, n, c′) denotes the number of times
the operation of popping up n semantic tags at
the current vector state c′ in the Ci parse tree,
I(Ci, c[1], c[2..D]) denotes the number of times the
operation of pushing the semantic tag c[1] at the cur-
rent vector state c[2..D] in the Ci parse tree and
I(Ci, w, c) denotes the number of times of emitting
the word w at the state c in the parse tree Ci.

3 Experimental Setup and Results

GENIA (Kim et al., 2003) is a collection of 2000 re-
search abstracts selected from the search results of
MEDLINE database using keywords (MESH terms)
“human, blood cells and transcription factors”. All
these abstracts were then split into sentences and
those containing more than two protein names and
at least one interaction keyword were kept. Alto-
gether 3533 sentences were left and 2500 sentences
were sampled to build our data set.

The results using MLE and discriminative train-
ing are listed in Table 1. Discriminative training

improves on the MLE by relatively 2.5% where N

Table 1: Performance comparison of MLE versus Dis-
criminative training

Measurement GENIA
MLE Discriminative

Recall 61.78% 64.59%
Precision 61.16% 61.51%
F-measure 61.47% 63.01%

and I are set to 5 and 200 individually. Here N de-
notes the number of semantic parse hypotheses and
I denotes the the number of sentences in the training
data.

References
J.K. Chen and F.K. Soong. 1994. An n-best candidates-

based discriminative training for speech recognition
applications. IEEE Transactions on Speech and Audio
Processing, 2:206 – 216.

W. Chou, C.H. Lee, and B.H. Juang. 1993. Minimum
error rate training based on n-best string models. In
Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on ICASSP ’93, volume 2, pages
652 – 655.

Y. He and S. Young. 2005. Semantic processing using
the hidden vector state model. Computer Speech and
Language, 19(1):85–106.

B.H. Juang, W. Chou, and C.H. Lee. 1993. Statistical
and discriminative methods for speech recognition. In
Rubio, editor, Speech Recognition and Understanding,
NATO ASI Series, Berlin. Springer-Verlag.

JD. Kim, T. Ohta, Y. Tateisi, and J Tsujii. 2003. GE-
NIA corpus–semantically annotated corpus for bio-
textmining. Bioinformatics, 19(Suppl 1):i180–2.

D. Klein and C. D. Manning. 2002. Conditional struc-
ture versus conditional estimation in nlp models. In
Proc. the ACL-02 conference on Empirical methods in
natural language processing, pages 9–16, University
of Pennsylvania, PA.

H.-K.J. Kuo, E. Fosle-Lussier, H. Jiang, and C.H. Lee.
2002. Discriminative training of language models
for speech recognition. In Acoustics, Speech, and
Signal Processing, IEEE International Conference on
ICASSP ’02, volume 1, pages 325 – 328.

Deyu Zhou and Yulan He. 2008. Extracting Interac-
tions between Proteins from the Literature. Journal
of Biomedical Informatics, 41:393–407.

Deyu Zhou, Yulan He, and Chee Keong Kwoh. 2008.
Extracting Protein-Protein Interactions from the Liter-
ature using the Hidden Vector State Model. Interna-
tional Journal of Bioinformatics Research and Appli-
cations, 4(1):64–80.

99



BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 100–101,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

A preliminary approach to recognize generic drug names by combining 

UMLS resources and USAN naming conventions 

 
Isabel Segura-Bedmar Paloma Martínez Doaa Samy 

Computer Sciences Department Computer Sciences Department Linguistic Department 

Carlos III University of Madrid Carlos III University of Madrid Cairo University 

Avd. Universidad, 30, Leganés, 

28911, Madrid, Spain 

Avd. Universidad, 30, Leganés, 

28911, Madrid, Spain 

Egypt 

isegura@inf.uc3m.es pmf@inf.uc3m.es dsamy@cu.edu.eg 

  

 

Abstract 

This paper presents a system
1
 for drug name 

identification and classification in biomedical 

texts.  

1 Introduction 

Numerous studies have tackled gene and protein 

names recognition (Collier et al, 2002), (Tanabe 

and Wilbur, 2002). Nevertheless, drug names have 

not been widely addressed (Rindflesch et al., 

2000). 

Automating the process of new drugs recognition 

and classification is a challenging task. With the 

rapidly changing vocabulary, new drugs are 

introduced while old ones are made obsolete. 

Though the terminological resources are frequently 

updated, they can not follow the accelerated pace 

of the changing terminology. 

Drug receives three distinct names: the chemical
 

name, the generic (or nonproprietary) name, and 

the brand (or trademark) name. The U.S. Adopted 

Name
 

(USAN) Council establishes specific 

nomenclature rules for naming generic drugs. 

These rules rely on the use of affixes that classify 

drugs according to their chemical structure, 

indication or mechanism of action. For example, 

analgesics substances can receive affixes such as  

-adol-, -butazone, -fenine, -eridine and –fentanil. 

In the present work, we focus, particulary, on the 

implementation of a set of 531 affixes approved by 

                                                           
1 This work has been partially supported by the projects: FIT-

350300-2007-75 (Semantic Interoperability in Electronic 

Health Care) and TIN2007-67407-C03-01 (BRAVO: 

Advanced Multimodal and Multilingual Question Answering). 

the USAN Council and published in 2007
2
. The 

affixes allow a specific classification of drugs on 

pharmacological families, which ULMS Semantic 

NetWork is unable to provide. 

2 The System 

The system consists of four main modules: a basic 

text processing module, WordNet look-up module, 

UMLS look-up module and the USAN rules 

module, as shown in Figure 1.  

A corpus of 90 medical abstracts was compiled for 

the experiment. For the basic processing of the 

abstracts, GATE
3
 architecture is used. This text 

processing provides sentence segmentation, 

tokenization and POS tagging. Tokens which 

receive a noun or proper noun POS tag are 

extracted. 

The nouns found on WordNet are discarded and 

those which are not found in WordNet are looked 

up in the UMLS Metathesaurus. If a noun is found 

in UMLS, it is tagged with its corresponding 

semantic types as assigned by UMLS. A subset of 

these nouns is tagged as “drug” if their semantic 

types are “Pharmacological Substance” or 

“Antibiotic”. Finally, nouns which have not been 

found in UMLS are tagged as “unknown”. 

The list of nouns tagged as “drug” is passed to the 

rule module to detect their pharmacological 

families according to the affixes. In addition, the 

rule module processes the list of “unknown” nouns 

which are not found in UMLS to check the 

presence of affixes, and thereby, of possible drugs. 

3 Preliminary results 

                                                           
2 http://www.ama-

assn.org/ama1/pub/upload/mm/365/usan_stem_list.pdf 

Accessed January 2008 
3 http://www.gate.ac.uk/ 

100



A manual evaluation by a domain
4
 expert was 

carried out. The list of nouns not found in 

WordNet contained 1885 initial candidates. This 

initial list is looked up in UMLS and 93.4% of 

them (1761) is linked with some concepts of 

UMLS. The UMLS module recognized 1400 

nouns as pharmacological substances or 

antibiotics. The rest of nouns, 361, are detected by 

UMLS but neither as pharmacological substance 

nor as antibiotics.  

The expert manually evaluated the set of nouns 

detected by UMLS as pharmacological substances 

or antibiotics (1400). Evaluation showed that only 

1100 were valid drugs.  

 
Figure 1 System Architecture 

The list of nouns (124) which have not been found 

in UMLS are processed by the rule module to 

detect new candidate drugs not included in UMLS. 

This module only detects 17 candidate drugs. The 

manual evaluation showed that 7 of them were 

valid drugs and the rest of nouns are biomedical 

concepts not included in UMLS. Some of these 

drugs are Mideplanin, Tomopenem, Elvitegravir, 

and so on. The rest of nouns neither detected by 

the UMLS module nor by the rules module, 106, 

were also validated by the expert in order to 

estimate the overall coverage of our approach. The 

evaluation of these nouns shows that only 7 of 

them are valid drugs, however, the rest of the 

nouns are named entities of the general domain 

(organization, person names or cities) or 

biomedical concepts. Introducing a module of 

generic NER should decrease the noise caused by 

such entities.  

                                                           
4 The authors are grateful to Maria Bedmar Segura, Manager 

of the Drug Information Center, Mostoles University Hospital, 

for her valuable assistance in the evaluation of the system. 

Finally, precision and recall of the overall system 

combining UMLS and rules were calculated. The 

system achieved 78% of precision and 99.3% of 

recall  

3.1 The classification in pharmacological 

families 

Once processed by the rule module, 73.8% of the 

candidate drugs recognised by UMLS were also 

classified in pharmacological families by the 

USAN naming rules. Expert’s evaluation of the 

rule-based classification showed that rules 

achieved 89% precision. Short affixes such as –ol, 

–pin and -ox are responsible of the wrong 

classifications. Thus, additional clues are necessary 

to detect these drug families. 

4 Some Conclusions  

As a preliminary approach, it is a first step towards 

a useful Information Extraction System in the field 

of Pharmacology. Though evaluation reveals that 

rules alone are not feasible enough in detecting 

drugs, but they help to improve the coverage. In 

addition, rules provide a drug classification in 

pharmacological families. Such classification is an 

added value in the development of NLP 

applications within the pharmacological domain.  

For future work, the approach will be extended to 

address additional information about 

pharmacologic classes included in many 

biomedical terminologies integrated in the UMLS 

such as MeSH or SNOMED. 

Future work will also target a wider coverage and a 

bigger set of drug types through including more 

affixes, detecting complex entities (multi-words), 

detecting synonyms, resolving acronyms and 

ambiguities as well as using contextual information 

to disambiguate the correct semantic type of each 

term occurring in the texts.  
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Abstract 

Clinicians write the reports in natural lan-
guage which contains a large amount of in-
formal medical term. Automating conver-
sion of text into clinical terminologies al-
lows reliable retrieval and analysis of the 
clinical notes. We have created an algor-
ithm that maps medical expressions in 
clinical notes into a medical terminology. 
This algorithm indexes medical terms into 
an augmented lexicon. It performs lexical 
searches in text and finds the longest pos-
sible matches in the target terminology, 
SNOMED CT. The mapping system was 
run on a collection of 470,000 clinical 
notes from an Intensive Care Service (ICS). 
The evaluation on a small part of the cor-
pus shows the precision is 70.4%. 

1 Introduction 

A substantial amount of clinical data is locked 
away in a non-standardised form of clinical lan-
guage which if standardised could be usefully 
mined to gain greater understanding of patient care 
and the progression of diseases. Clinical notes on a 
patient's health are written in natural language 
which contains a great deal of formal terminology 
but used in an informal and unorderly manner. 
These medical notes need to be converted to a 
formal terminology to enable accurate retrieval and 
to compile aggregated statistics of the medical care. 
To satisfy these needs, we developed a medical 
concept identifier that is able to identify concepts 
in clinical notes and mapped to medical codes in a 
terminology. The algorithm has been  implemented 

to tag medical concepts in a collection of 470,000 
clinical notes from an Intensive Care Service. A 
total of 9,135,000 instances of about 20,000 medi-
cal concepts were identified. These medical con-
cepts are used to study the medical language used 
by Intensive Care clinical staff, and the identified 
concepts are used to index patient clinical records 
for targeted information retrieval activities.  

2 Related Work 

There has been a large effort spent on automatic 
recognition of medical and biomedical concepts 
and mapping them to medical terminology.  The 
Unified Medical Language System Meta-thesaurus 
(UMLS) is the world's largest medical knowledge 
source and it has been the focus of much research. 
One of the prominent systems to map free text to 
UMLS are MetaMap (Aronson, 2001),  

3 Constructing the Lexicon 

The Augmented Lexicon is a data structure devel-
oped to keep track of the words that appear in the 
concepts of the medical terminology. The Aug-
mented Lexicon is built from the individual words 
in the gloss or the definition of the medical term. 
For example, Myocardial Infarction has the atomic 
words Myocardial and Infarction. Each concept is 
normalised which includes removal of stop words, 
stemming, and spelling variation generation. For 
each word, a list of the concept ids that contain that 
word is stored in the Augmented Lexicon. An ad-
ditional table is stored alongside the augmented 
lexicon, called the “atomic term count” to record 
the number of atomic terms that comprise each 
description.  
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4 Token Matching Algorithm 

The algorithm performs string alignment between 
the source text and a target medical terminology. 
The best matches are determined by scoring algor-
ithms for both perfect matching and partial match-
ing. To find all possible matches, the algorithm 
iteratively performs matches for sub-strings using 
dynamic programming, so that the algorithm 
doesn’t have to generate all combination of sub-
strings for the input sentence. Each previously 
computed substrings matches are stored and in a 
matching matrix so don’t require recalculation. 

 

 
The data stored in each cell is a list of medical 
term ids that are in all the tokens that comprise the 
cell. The score is then calculated using the "atomic 
term count", which stores the number of tokens 
that make up that term. The score is the number of 
tokens in the current cell that have the term id in 
common divided by the number of tokens in the 
full description. 

5 Recognition of Clinical Entities 

Before medical term identification, Clinical enti-
ties such as measurement, demography, quantities 
are recognised and normalised to their classes.  

 
Entity Class Examples 
Blood Pressure 105mm of Hg 
Demography 69 year-old man 
Datetime 20/11 2030 
Quantity 55 mm 

 
Table 1. Clinical Entities and Examples 

6 Evaluation 

The token matching algorithm has been imple-
mented as a module in a terminology server that 
can provide real time text to medical concept en-
coding. The system was installed in the Intensive 
Care Service that provides web interfaces for users 
to submit clinical notes and it computed SNOMED 
CT codes in real-time. The web interface has been 
implemented in several clinical forms templates at 
the RPAH, allowing data to be captured as the doc-
tors fill in these forms. A feedback form has been 
implemented allowing clinicians to submit com-
ments, identify terms that are missed by the system 
and submit corrections to incorrectly labeled terms. 
This was seen as a rare opportunity to collect an 
expert corrected corpus of clinical notes. Unfortu-
nately, there was little adherence to the correction 
part of the program and so we do not yet have suf-
ficient material to be precise about recall values. 

To evaluate the accuracy our systems, we col-
lected a set of bedside clinical notes of patient 
monitoring chart information. 487 documents and 
4,054 medical concepts were tagged with 
SNOMED CT codes and have been evaluated by 
medical experts. There are 2,852 correctly identi-
fied concepts and 1,202 incorrectly identified con-
cepts, results in a precision rate of 70.4%. The re-
call rate hasn’t been fully evaluated. 

7 Conclusions 

In conclusion, we have proposed a system to 
find medical terms in free text clinical notes and 
map them into a medical terminology. We have 
implemented the algorithm as a web-service sys-
tem. The algorithm uses an augmented lexicon to 
index concept descriptors in SNOMED CT, which 
allow a much faster mapping of longest spanning 
concepts in the system than a naïve word searching 
approach, which can then create more effective 
information retrieval and information extraction.  
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1 Introduction 

There is a broad range of BioNLP tasks for which 
active learning (AL) can significantly reduce anno-
tation costs and a specific AL algorithm we have 
developed is particularly effective in reducing an-
notation costs for these tasks. We have previously 
developed an AL algorithm called ClosestInitPA 
that works best with tasks that have the following 
characteristics: redundancy in training material, 
burdensome annotation costs, Support Vector Ma-
chines (SVMs) work well for the task, and imbal-
anced datasets (i.e. when set up as a binary 
classification problem, one class is substantially 
rarer than the other). Many BioNLP tasks have 
these characteristics and thus our AL algorithm is a 
natural approach to apply to BioNLP tasks.   

2 Active Learning Algorithm 

ClosestInitPA uses SVMs as its base learner. This 
fits well with many BioNLP tasks where SVMs 
deliver high performance (Giuliano et al., 2006; 
Lee et al., 2004). ClosestInitPA is based on the 
strategy of selecting the points which are closest to 
the current model’s hyperplane (Tong and Koller, 
2002) for human annotation. ClosestInitPA works 
best in situations with imbalanced data, which is 
often the case for BioNLP tasks. For example, in 
the AIMed dataset annotated with protein-protein 
interactions, the percentage of pairs of proteins in 
the same sentence that are annotated as interacting 
is only 17.6%.  

SVMs (Vapnik, 1998) are learning systems that 
learn linear functions for classification. A state-
ment of the optimization problem solved by soft-
margin SVMs that enables the use of asymmetric 
cost factors is the following: 
Minimize:
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 represents the hyperplane that is 

learned, kx
r

is the feature vector for example k, yk 

in {+1,-1} is the label for example k, 
])[1,0max( bxwy kkk +⋅−= rrξ  is the slack vari-

able for example k, and C+ and C- are user-defined 
cost factors that trade off separating the data with a 
large margin and misclassifying training examples. 

Let PA=C+/C-. PA stands for “positive amplifi-
cation.” We use this term because as the PA is in-
creased, the importance of positive examples is 
amplified. ClosestInitPA is described in Figure 3. 
We have previously shown that setting PA based 
on a small initial set of data outperforms the more 
obvious approach of using the current labeled data 
to estimate PA. 

 

 
Figure 3. ClosestInitPA algorithm. 
 

We have previously developed a stopping crite-
rion called staticPredictions that is based on stop-
ping when we detect that the predictions of our 
models on some unlabeled data have stabilized. All 
of the automatic stopping points in our results are 
determined using staticPredictions.  

Initialization: 
• L = small initial set of labeled data 
• U = large pool of unlabeled data 

 
L

L
PA

in  examples pos #

in  examples neg #=  

Loop until stopping criterion is met: 
1. Train an SVM with parameters C+ 

and C- set such that C+/C- = PA. 
2. batch = select k points from U that 

are closest to the hyperplane learned 
in step 1. 
U = U – batch 
L = L U batch 
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3 Experiments 

Protein-Protein Interaction Extraction: We used 
the AImed corpus, which was previously used for 
training protein interaction extraction systems in 
(Giuliano et al., 2006). We cast RE as a binary 
classification task as in (Giuliano et al., 2006). 

We do 10-fold cross validation and use what is 
referred to in (Giuliano et al., 2006) as the KGC 
kernel with SVMlight (Joachims, 1999) in our ex-
periments. Table 1 reports the results. 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 1012 48.33 54.34 
30% 1516 49.76 54.52 
40% 2022 53.11 56.39 
100% 5060 57.54 57.54 
AutoStopPoint 1562 51.25 55.34 
Table 1. AImed Stopping Point Performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 
Medline Text Classification: We use the Oh-
sumed corpus (Hersh, 1994) and a linear kernel 
with SVMlight with binary features for each word 
that occurs in the training data at least three times. 
Results for the five largest categories for one ver-
sus the rest classification are in Table 2. 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 1260 49.99 61.49 
30% 1880 54.18 62.72 
40% 2500 57.46 63.75 
100% 6260 65.75 65.75 
AutoStopPoint 1204 47.06 60.73 
Table 2. Ohsumed stopping point performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 
GENIA NER: We assume a two-phase model 
(Lee et al., 2004) where boundary identification of 
named entities is performed in the first phase and 
the entities are classified in the second phase. As in 
the semantic classification evaluation of (Lee et al., 
2004), we assume that boundary identification has 
been performed. We use features based on those 
from (Lee et al., 2004), a one versus the rest setup 
and 10-fold cross validation. Tables 3-5 show the 
results for the three most common types in 
GENIA. 

 
F Measure StoppingPoint Average # Labels 

Random AL 
20% 13440 86.78 90.16 
30% 20120 87.81 90.27 
40% 26900 88.55 90.32 

100% 67220 90.28 90.28 
AutoStopPoint 8720 85.41 89.24 
Table 3. Protein stopping points performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 13440 79.85 82.06 
30% 20120 80.40 81.98 
40% 26900 80.85 81.84 
100% 67220 81.68 81.68 
AutoStopPoint 7060 78.35 82.29 
Table 4. DNA stopping points performance. “AutoS-
topPoint” is when the stopping criterion says to stop. 
 

F Measure StoppingPoint Average # Labels 
Random AL 

20% 13440 84.01 86.76 
30% 20120 84.62 86.63 
40% 26900 85.25 86.45 
100% 67220 86.08 86.08 
AutoStopPoint 4200 81.32 86.31 
 Table 5. Cell Type stopping points performance. “Au-
toStopPoint” is when the stopping criterion says to stop. 

4 Conclusions 

ClosestInitPA is well suited to many BioNLP 
tasks. In experiments, the annotation savings are 
practically significant for extracting protein-protein 
interactions, classifying Medline text, and perform-
ing biomedical named entity recognition.  
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Abstract 

We developed a temporal annotation schema 
that provides a structured method to capture 
contextual and temporal features of clinical 
conditions found in clinical reports. In this 
poster we describe the elements of the annota-
tion schema and provide results of an initial 
annotation study on a document set compris-
ing six different types of clinical reports.  

1 Introduction 

Distinguishing between historical and recent con-
ditions is important for most tasks involving re-
trieval of patients or extraction of information from 
textual clinical records. Various approaches can be 
used to determine whether a condition is historical 
or recent. Chapman et al. (2007) developed an al-
gorithm called ConText that uses trigger terms like 
“history” to predict whether a condition is histori-
cal. Studies of ConText show that this approach is 
inadequate for determining whether a condition is 
historical, achieving recall of 67% and precision 
74% on emergency department reports. Temporal 
modeling methods commonly reason about the 
temporality of an event with respect to absolute 
time and other temporally related events (Zhou et 
al., 2006; Chambers et al., 2007). Knowing the 
relative or absolute time the condition occurred can 
be useful in determining whether the condition is 
historical. However, we hypothesize that many 
clinical conditions in clinical reports are not modi-
fied by explicit temporal references. 

To test this hypothesis and explore other types 
of information that may be useful in automatically 
distinguishing historical from recent clinical condi-
tions in dictated clinical records, we developed a 
temporal annotation schema that accounts for ex-
plicit temporal expressions, temporal trigger terms, 

and clinical reporting acts described in reports. 
Three annotators applied the schema to six types of 
reports. We measured inter-annotator agreement 
scores and obtained prevalence and distribution 
figures for the three annotation types. 

2 Methods 

2.1 Dataset 

Our dataset is comprised of 24 clinical reports of 
six types dictated at the University of Pittsburgh 
Medical Center during 2007: discharge summaries, 
surgical pathology, radiology, echocardiograms, 
operative gastrointestinal, and emergency depart-
ment reports. A physician pre-annotated the 518 
clinical conditions in the reports and marked each 
one as recent or historical. 

We developed our annotation schema using one 
of each report type (six reports). Annotators 
(authors HH, DM and WC) annotated the remain-
ing 18 reports as described below.  

2.2 Annotation Schema  

For our temporal annotation study, each pre-
annotated clinical condition was annotated with 
three types of information: temporal expression, 
trigger term, and clinical reporting act. 

The set of temporal expressions (TEs) is taken 
from Zhou et al. (2006) and includes categories 
such as DATE AND TIME for explicit TEs and KEY 
EVENTS for TEs relative to significant clinical 
events. A given clinical condition is annotated with 
the category of the TE it is modified by. For exam-
ple, in the sentence “The stroke occurred on 
1/5/2000”, the condition “stroke” is annotated with 
category DATE AND TIME. There is also a category 
NO TEMPORAL EXPRESSION for annotating condi-
tions that are not linked to a TE. 

Trigger terms (TTs) are explicit signals (words 
and phrases) in text other than TEs that indicate 
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whether a condition is recent or historical (Chap-
man et al., 2007). If a condition co-occurs with a 
TT, it is annotated with TRIGGER: YES. For exam-
ple, “pneumonia” in the sentence “Films indicate 
pneumonia, which is new for this patient” is anno-
tated as TRIGGER: YES because “new” is a TT.  

Error analyses of our previous studies indicate 
that the context in which a condition is mentioned 
in a report is potentially useful for prediction of a 
condition as recent or historical. Clinical reports 
consist of statements that group into segments ac-
cording to the clinical reporting act (CRA) they 
describe, such as noting a past history and consid-
ering a diagnosis. CRAs are tightly correlated with 
report sections; however, sections are not consis-
tent, and different CRAs can occur within a single 
section. We distinguish 16 CRAs. Each clinical 
condition is annotated with one CRA. For exam-
ple, the condition “smoker” in the sentence “She 
was a smoker” is annotated SOCIAL HISTORY.  

2.3 Analysis  

To establish the level of inter-annotator agreement, 
we iteratively annotated groups of six reports (one 
of each type). After each iteration, we refined our 
annotation schema and guidelines. We analyzed 
annotations, overall and by report type, in the fol-
lowing way: 1) calculate inter-annotator kappa 
score, 2) measure prevalence of TT and TE catego-
ries, and 3) observe distribution of CRAs. 

3 Results and Discussion 

As shown in figure 1, average inter-annotator 
scores as measured by Cohen's kappa for TE, TT, 
and CRA (.68, .82 and .72 respectively) reached 
acceptable levels after three iterations and are ex-
pected to rise further with increased annotation 
experience and understanding of the guidelines. 

Table 1 shows the prevalence of TEs and TTs 
across six report types, where prevalence is defined 
as the frequency of TE or TT found in a given re-
port. Use of TEs across report types ranged from 
0% to 52% whereas TTs were found less often at 
0% to 34% by report genre. Table 2 plots the cor-
relation between the CRA assigned to a clinical 
condition and the condition's classification as re-
cent or historical. We found that there is a strong 
correlation for the most commonly occurring clini-
cal reporting acts (PH, PR, and PO). We are there-
fore optimistic that CRAs can serve as an 

informative feature for a statistical recent/historical 
classifier. 

kappa 

0

1

1 2 3i t e r a t i o n

TE
TT
CRA

 
Figure 1. Average Cohen’s kappa agreement for 3 iterations. 
 

 DS E ED GI RAD SP O 
TE 48(52) 0(0) 51(20) 2(10) 1(5) 8(36) 110(21) 
TT 32(34) 0(0) 54(21) 1(5) 0(0) 6(27) 93(17) 

 
Table 1. Prevalence, count (%), of TE and TT across report 
types, overall. DS: discharge summary, E: echocardiogram, 
ED: emergency department, GI: operative gastrointestinal, 
RAD: radiology, SP: surgical pathology and O: overall.  
 

0%

100%

 PH PR
HPI PO All CC SH PF

PMx Dx
PTx

M
dx RP

RMD
CDx

C R A

Recent

Historical

 
Table 2. Historical/recent distribution of CRAs. PH: Past his-
tory, PR, Patient reporting, HPI: History of present illness, 
PO: Physician observing, All: Allergies, CC: Chief complaint, 
SH: Social history, FH: Family history, PF: Past Finding, 
PMx, Past medication, Dx: Diagnosis, PTx: Plan treatment, 
Mdx: Prescribing medication, RP: Referring problem, RMD: 
Refer to MD, CDx: Considering diagnosis. 
 

The finding that many conditions are associated 
with neither a TE nor a TT and study of ConText’s 
limitations with such categories at the scope of the 
sentence suggests that additional features are nec-
essary to discern a condition as recent or historical. 
Whereas temporality in discourse may follow a 
sequential chronology as narrative unfolds, refer-
ences to past instances within clinical text are not 
easily resolved. We are optimistic that CRAs may 
help this issue and will focus our study to evaluate 
whether these three features are sufficient together. 
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Abstract 

This work proposes a case-based classifier to tackle 
the gene/protein mention problem in biomedical lit-
erature. The so called gene mention problem con-
sists of the recognition of gene and protein entities in 
scientific texts. A classification process aiming at 
deciding if a term is a gene mention or not is carried 
out for each word in the text. It is based on the selec-
tion of the best or most similar case in a base of 
known and unknown cases. The approach was 
evaluated on several datasets for different organisms 
and results show the suitability of this approach for 
the gene mention problem. 

1 Introduction 

This paper proposes a new method to the gene 
mention problem by using a case-based reasoning 
approach that performs a binary classification 
(gene mention or not) for each word in a text. In a 
first step cases are stored in two bases (known and 
unknown cases), followed by a search in these 
bases for the case most similar to the problem. The 
classification decision is given by the class of the 
case selected. The system was developed using 
Java and MySQL technologies and is available for 
download as part of the Moara project1.  

2 Proposed method 

The method here proposed identifies gene men-
tions in a text by means of classifying each token 
                                                           
1 http://biocomp.cnb.csic.es/~mlara/moara/index.html 

into two possible classes: gene mention or not. The 
system consists of two main steps: the construction 
of the case bases, and the testing phase, when the 
test dataset is presented to the system to identify 
the possible mentions. The words extracted from 
the training documents were the tokens used to 
construct the two case bases, one for known cases 
and the other for unknown cases, as proposed for 
the part-of-speech tagging problem in (Daelemans, 
Zavrel, Berck, & Gillis, 1996). 

The known cases are the ones used by the sys-
tem to classify those words that are not new, i.e. 
those that have were present in the training dataset. 
The attributes used to represent a known case are 
the word itself, the class of the word (if it is a gene 
mention or not), and the class of the preceding 
word (if it is a gene mention or not). 

The system uses a second case base to decide 
about words that are unknown to the system, i.e. 
those that are not present in the training set. The 
attributes of the unknown cases were the shape of 
the word, the class of the word (if it is a gene men-
tion or not), and the class of the preceding word (if 
it is a gene mention or not). Note that instead of 
saving the word itself, a shape of the word is kept 
in order to allow the system to be able to classify 
unknown words by means of looking for cases 
with similar shape. The shape of the word is given 
by its transformation in a set of symbols according 
to the type of character found.  

In the construction of cases, each word repre-
sents a single case, and in order to account for 
repetitions, the frequency of the case is incre-
mented to indicate the number of times that it ap-
pears in the training dataset. The training 
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documents are read twice, one in the forward (from 
left to right), and one in the backward (from right 
to left) directions, in order to allow a more variety 
of cases.  This is important as the classification of 
a token may be influenced by its preceding and 
following words.  

CBR-Tagger has also been trained with addi-
tional corpora in order to better extract mentions 
from different organisms. These extra corpora are 
the datasets for gene normalization of the BioCrea-
tive task 1B (Hirschman, Colosimo, Morgan, & 
Yeh, 2005) for to yeast, mouse and fly and the 
BioCreative 2 Gene Normalization task (Morgan & 
Hirschman, 2007) for human.  

In the classification procedure, the text is token-
ized and a sliding window is applied first in the 
forward and then in the backward direction. In 
each case, the system keeps track of the class of 
the preceding token (false at the beginning), gets 
the shape of the token and tries to find in the bases 
a case most similar to it. The search procedure is 
divided in two parts, for the known and unknown 
cases. Priority is always given to the known cases 
since it saves the word exactly as they appeared in 
the training documents and the classification may 
be more precise than using the unknown cases.  

A token already classified as positive by the 
forward reading may be used for the backward 
reading as preceding class and might help recog-
nizing mentions composed by many tokens that 
would not have been totally recognized by one of 
the reading procedures only. After the identifica-
tion of the best case for each token, some post-
processing procedures are executed to check 
boundaries (for mentions composed of more than 
one token) as well as abbreviations and corre-
sponding full names. 

3 Results 

The results obtained with the BioCreative 2 gene 
mention task for the CBR-Tagger are shown in 
Table 1 along with the best result of the competi-
tion. Results are showed according to the datasets 
used for the training of the CBR-tagger: BioCrea-
tive 2 Gene Mention task (Wilbur, Smith, & Ta-
nabe, 2007) corpus only (CbrBC2), and the 
combination of it with the BioCreative task 1B 
gene normalization corpus (Hirschman et al., 2005) 
for the yeast (CbrBC2y), mouse (CbrBC2m), fly 
(CbrBC2f) and the three of them (CbrBC2ymf). 

 
Taggers P R FM 
CbrBC2 77.8 75.9 76.9 
CbrBC2y 82.7 52.6 64.7 
CbrBC2m 83.1 47.1 60.1 
CbrBC2f 82.0 65.9 73.0 
CbrBC2ymf 82.5 39.7 53.6 
Best BC2 result 88.5 86.0 87.2 

Table 1: Results for the BC2 gene mention task. 
 

CBR-Tagger has also been applied to the gene 
normalization problem in conjunction with two 
other available taggers: Abner2 and Banner3. Table 
2 summarizes the best mix of taggers configuration 
for each organism. Detailed results may be found 
at the author’s research page4. 

 
Organism Best configuration 
Yeast Abner+CbrBC2 
Mouse Abner+CbrBC2m 
Fly CbrBC2f 
Human Banner+CbrBC2ymf 

Table 2: Best taggers for each organism. 

Acknowledgments 
This work has been partially funded by the Spanish 
grants BIO2007-67150-C03-02, S-Gen-0166/2006, 
TIN2005-5619. APM acknowledges the support of 
the Spanish Ramón y Cajal program. The authors 
acknowledge support from Integromics, S.L. 

References  
Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. 

(1996). MBT: A Memory-Based Part of Speech Tag-
ger-Generator. Paper presented at the Fourth Work-
shop on Very Large Corpora, Copenhagen, Denmark. 

Hirschman, L., Colosimo, M., Morgan, A., & Yeh, A. 
(2005). Overview of BioCreAtIvE task 1B: normal-
ized gene lists. BMC Bioinformatics, 6 Suppl 1, S11. 

Morgan, A., & Hirschman, L. (2007). Overview of Bio-
Creative II Gene Normalization. Paper presented at 
the Second BioCreative Challenge Evaluation Work-
shop, Madrid-Spain. 

Wilbur, J., Smith, L., & Tanabe, L. (2007). BioCreative 
2. Gene Mention Task. Paper presented at the Second 
BioCreative Challenge Evaluation Workshop, Madrid, 
Spain. 

                                                           
2 http://pages.cs.wisc.edu/~bsettles/abner/ 
3 http://banner.sourceforge.net/ 
4 http://biocomp.cnb.csic.es/~mlara/mention.html 

109



BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 110–111,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Textual Information for Predicting Functional Properties of the Genes 

 
Oana Frunza and Diana Inkpen 

School of Information Technology and Engineering 

University of Ottawa Ottawa, ON, Canada, K1N 6N5 
{ofrunza,diana}@site.uottawa.ca 

 

1 Overview 

This paper is focused on determining which pro-

teins affect the activity of Aryl Hydrocarbon Re-

ceptor (AHR) system when learning a model that 

can accurately predict its activity when single 

genes are knocked out. Experiments with results 

are presented when models are trained on a single 

source of information: abstracts from Medline 

(http://medline.cos.com/) that talk about the genes in-

volved in the experiments. The results suggest that 

AdaBoost classifier with a binary bag-of-words 

representation obtains significantly better results. 

2 Task Description and Data Sets 

The task that we address is a biology-specific task 

considered a competition track for KDDCup2002 
(http://www.biostat.wisc.edu/~craven/kddcup/winners.html).  

   The organizers of the KDD Cup competition 

provided data obtained from experiments per-

formed on a set of yeast strains in which each 

strain contains a single gene that is knocked out (a 

gene sequence in which a single gene is inopera-

tive). Each experiment had associated a discretized 

value of the activity of the AHR system when a 

single gene was knocked out. 3 possible classes 

describe the systems’ response. The "nc" label in-

dicates that the activity of the hidden system was 

not significantly different than the baseline (the 

wild-type yeast); the "control" label indicates that 

the activity was significantly different than the 

baseline for the given instance, and that the activity 

of another hidden system (the control) was also 

significantly changed compared to its baseline; the 

"change" label shows that the activity of the hid-

den system was significantly changed, but the ac-

tivity of the control system was not significantly 

changed. 

   The organizers of the KDD Cup evaluate the task 

as a two-class problem with focus on the positive 

class. The first definition is called the “narrow” 

definition of the positive class and it is specific to 

the knocked-out genes that had an AHR-specific 

effect. In this case the positive class is defined by 

the experiments in which the label of the system is 

“change” and the negative examples are the ex-

periments that consist of those genes with either 

the "nc" or the "control" label. The second defini-

tion consists of those genes labeled with either the 

"change" or the "control" label. The negative class 

consists of those genes labeled with the "nc" label. 

The second partitioning corresponds to the 

“broad” characterization of the positive class 

genes that affect the hidden system.  

   The area under the Receiver Operating Charac-

teristic (ROC) - AUC curve is chosen as an evalua-

tion measure. The global score for the task will be 

the summed AUC values for both the “narrow” and 

the “broad” partition of the data. 

   The sources of information provided by the or-

ganizers of the task contain: hierarchical informa-

tion about the function and localization of the 

genes; relational information describing the pro-

tein-protein interactions; and textual information in 

abstracts from Medline that talk about the genes. 

Some characteristics of the data need to be taken 

into consideration in order to make suitable deci-

sions for choosing the trainable system/classifier, 

the representation of the data, etc. Missing infor-

mation is a characteristic of the data set. Not all 

genes had the location and function annotation, the 

protein-protein interaction information, or abstracts 

associated with the gene name. Besides the missing 

information, the high class imbalance is another 

fact that needs to be taken into account.  

   From the data that was released for the KDD 

competition we run experiments only with the 

genes that had associated abstracts. Table 1 pre-

sents a summary of the data sets used in our ex-

periments after considering only the genes that had 

abstracts associated with them. The majority of the 

genes had one abstract, while others had as many 

as 22 abstracts.   
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Table 1. Summary of the data for our experiments with 

the two definitions of the positive class. In brackets are 

the original sizes of the data sets. 

Narrow Broad Data 

set Pos Neg Pos Neg 

Training 24 

(37) 

1,435 

(2,980) 

51 

(83) 

1,408 

(2,934) 

Test 11 

(19) 

715 

(1,469) 

30 

(43) 

696 

(1,445) 

3 Related Work  

Previous research on the task was done by the 

teams that participated in the KDD Cup 2002. The 

textual information available in the task was con-

sidered as an auxiliary source of information and 

not the primary one, as in this article.  

   The winners of the task, Kowalczyk and Raskutti 

(2002) used the textual information as additional 

features to the ones extracted from other available 

information for the genes. They used a “bag-of-

words” representation, removed stop words and 

words with low frequency. They used Support 

Vector machine (SVM) as a classifier.  

   Krogel et. al. (2002) used the textual information  

with an information extraction system in order to 

extract missing information (function, localization, 

protein class) for the genes in the released data set.  

   Vogel and Axelrod (2002) used the Medline ab-

stracts to extract predictive keywords, and added 

them to their global system. 

   Our study investigates and suggests a textual rep-

resentation and a trainable model suitable for this 

task and similar tasks in the biomedical domain. 

4 Method  

The method that we propose to solve the biology 

task is using Machine Learning (ML) classifiers 

suitable for a text classification task and various 

feature representations that are known to work well 

for data sets with high class imbalance. The task 

becomes a two-class classification: “Positive” ver-

sus “Negative”, with a “narrow” and “broad” 

definition for the positive class. As classification 

algorithms we used: Complement Naive Bayes 

(CNB), AdaBoost, and SVM all from the Weka 

toolkit (http://www.cs.waikato.ac.nz/ml/weka/). Similar to 

the evaluation done for the KDD Cup, we consider 

the sum of the 2 AUC measures for the definitions 

of the positive class as an evaluation score. The 

random classifier with an AUC measure of 0.5 is 

considered as a baseline.  

As a representation technique we used binary 

and frequency values for features that are: words 

extracted from the abstracts (bag-of-words (BOW) 

representation), UMLS concepts and UMLS 

phrases identified using the MetaMap system 

(http://mmtx.nlm.nih.gov/), and UMLS relations ex-

tracted from the UMLS metathesaurus. We also 

ran experiments with feature selection techniques.  

   Table 2 presents our best results using AdaBoost 

classifier for BOW, UMLS concepts, and UMLS 

relations representation techniques. “B” stands for 

binary and “Freq” stands for frequency counts. 

 

Table 2. Sum of the AUC results for the two classes 

without feature selection.  

Represen- 

tation 

AdaBoost 

(AUC) 

Narrow 

AdaBoost 

(AUC) 

Broad 

Sumed 

AUC 

BOW_B 0.613 0.598 1.211 

BOW_Freq 0.592 0.557 1.149 

UMLS_B 0.571 0.607 1.178 

UMLS_Freq 0.5 0.606 1.106 

UMLS_Rel_B 0.505 0.547 1.052 

UMLS_Rel_Freq 0.5 0.5 1 

5 Discussion and Conclusion 

Looking at the obtained results, a general conclu-

sion can be made: textual information is useful for 

biology-specific tasks. Not only that it can improve 

the results but can also be considered a stand-alone 

source of knowledge in this domain. Without any 

additional knowledge, our result of 1.21 AUC sum 

is comparable with the sum of 1.23 AUC obtained 

by the winners of the KDD competition.  
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1 Introduction

Since scientific journals are still the most important
means of documenting biological findings, biomed-
ical articles are the best source of information we
have on protein-protein interactions. The mining of
this information will provide us with specific knowl-
edge of the presence and types of interactions, and
the circumstances in which they occur.

There are various linguistic constructions that can
describe a protein-protein interaction, but in this pa-
per we will focus on subject-verb-object construc-
tions. If a certain protein is mentioned in the sub-
ject of a sentence, and another protein in the ob-
ject, we assume in this paper that some interaction is
described between those proteins. The verb phrase
that links the subject and object together plays an
important role in this. However, there are a great
many different verbs in the English language that
can be used in a description of a protein-protein in-
teraction. Since it is practically impossible to manu-
ally determine the specific biomedical meanings for
all of these verbs, we try to determine these mean-
ings automatically. We define two classes of protein-
protein interactions,causalandnon-causal, and us-
ing a Naive Bayesian Classifier, we predict for a
given verb in which class it belongs. This process
is a first step in automatically creating a useful net-
work of interacting proteins out of information from
biomedical journals.

2 Preprocessing

The protein-protein interactions we are interested in
are described in the subject, the object and the in-

terlinking verb phrase of a sentence. To determine
which parts of the sentence make up this construc-
tion, we need to preprocess the sentence. For this,
we use the Genia Chunker1 to break the sentence
into different chunks (in particular we are interested
in noun phrases and verb phrases). We combine
this information with the result of the Stanford De-
pendency Parser2 to determine how these different
chunks (phrases) are connected to each other.

3 Classification

The subject-verb-object construction can be
schematically represented as follows:

[(state of) protein] [verb] [(state of) protein]

We make a distinction between two classes of
verbs. One class describes a strictcausal relation
and the other covers all other types of meanings
(non-causal). Table 1 shows some example verbs
for the two classes.

Class Examples
causal activate, inhibit, cause
non-causal interact, require, bind

Table 1: Two classes of verbs.

Since we leave out the information of the states
of the proteins in this work, the first class covers
positive, negative and neutral causal relations. The
second class includes not just verbs that describe a
correlation (interact), but also verbs such asrequire

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
2http://nlp.stanford.edu/downloads/lex-parser.shtml
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andbind that describe a biologically important rela-
tionship, but not specifically a causal one.

We use a Naive Bayesian Classifier to estimate
the probabilityP (ci|V ) that a given verb belongs to
a certain class. In the retrieved subject-verb-object
constructions, such a verbV will occur a number
of times, each time in combination with a specific
ordered pair of proteinsppj , one in the subject and
one in the object. Each pairppj independently con-
tributes to the estimation ofP (ci|V ).

V = {pp1, pp2, ..., ppn} (1)

P (ci|V ) =
P (ci) ·

∏n
j=1 P (ppj |ci)

P (pp1, pp2, ..., ppn)
(2)

4 Experimental results

To test our approach, we retrieved a set of subject-
verb-object relations from PubMed. We choose to
test our approach on yeast proteins rather than e.g.
human proteins to avoid Named Entity Recognition
problems.

To get rid of any excess information, the verb
phrases are normalized. We assume the last verb
in the phrase to be the relevant verb and check the
direction of the relation (active or passive form of
that verb). Finally, the verb is stemmed. For those
verbs that are in the passive form, the order of the
protein pairs around it was reversed, and, for simpli-
fication, verb phrases that describe a negation were
removed. More than one protein can occur in the
subject and/or object, so we count each possible pair
as an occurrence around the particular verb.

We used the 6 verbs as shown in Table 1 as a start-
ing set to test the classifier. They represent the dif-
ferent types within each class, and of these it is clear
they belong in that specific class. By using Word-
Net3 we can augment this set. Table 1 shows the
results of the different tests, using different param-
eter settings in WordNet to augment the training set
(‘l1’ means recursive level 1, ‘s2’ means WordNet
senses 1 to 2, ‘sa’ means all WordNet senses are
taken). It contains the number of verbs classified in
the leave-one-out cross validation (V), the number
of verbs that were correctly classified (C), the preci-
sion (P = C

V ) and the probabilityQ that a random

3http://wordnet.princeton.edu/

V C P Q
no WN 6 3 0.50 0.66
l1/s1 13 7 0.54 0.50
l1/s2 18 13 0.72 0.05
l1/sa 19 14 0.74 0.03
l2/s1 19 12 0.63 0.18
l2/s2 27 21 0.78 2.96E-3
l2/sa 55 32 0.58 0.14
l3/s1 26 20 0.77 4.68E-3
l3/s2 42 35 0.83 7.55E-6
l3/sa 73 43 0.59 0.08

Table 2: Results for different settings.

classifier would perform as good or better than this
classifier, given by Equation 3

Q =
V∑

i=C

(
V

i

)
pi · (1− p)V−i (3)

5 Conclusions and future work

Given an appropriate set of known verbs, we can
predict the meanings of unknown verbs with reason-
able confidence. This automatic prediction is very
useful, since it is infeasible to manually determine
the meanings of all possible verbs. We used two
classes of verbs, making the distinction between re-
lations that describe proteinsaffectingother proteins
(causal relation) and any other relation (non-causal
relation). Verbs likerequire andbind describe bi-
ologically distinct interactions however, and prefer-
ably should be put into classes separate from gen-
eral correlations. We chose to use a two-way dis-
tinction as a first step however, which was still bio-
logically relevant. In order to create a more detailed
network of interacting proteins, one can take these
other types into account as well.

Furthermore, it would be useful to separate the
causal relationship into positive and negative rela-
tions. This specific distinction however is not just
described in the connecting verb, but also in possi-
ble state descriptions in the noun phrases. Further
research is necessary to extract these descriptions
from the text. Finally, it would be useful to look
at different syntactical constructions, other than just
subject and object.
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1 Introduction

Through advanced technologies in clinical care
and research, especially the rapid progress in imag-
ing technologies, more and more medical imaging 
data and patient text data is generated by hospitals, 
pharmaceutical companies, and medical research. 
For enabling advanced access to clinical imaging 
and text data, it is relevant to know what kind of 
knowledge the clinician wants to know or the que-
ries that clinicians are interested in. Through inten-
sive interviews and discussions with radiologists 
and clinicians, we have learned that medical imag-
ing data is analyzed - and hence queried – from 
three different perspectives, i.e. the anatomic per-
spective addressing the involved body parts, the
radiology-specific spatial perspective describing 
the relationships of located anatomical regions to 
other anatomical parts, and the disease perspective
distinguishing between normal and abnormal im-
aging features. Our aim is to establish query pat-
terns reflecting those three perspectives that would 
typically be used by clinicians and radiologists to 
find patient-specific sets of relevant images. 

The context of our work is in the Theseus-
MEDICO1 project on cross-modal image and in-
formation retrieval in the medical domain. The 
focus of the work reported here is on setting up 
Wikipedia-based corpora of human anatomy and 
radiology and on obtaining a statistical profile of 
concepts from three semantic knowledge resources
with these corpora: the Foundational Model of 
Anatomy (FMA), the radiology lexicon RadLex, 
and a subset of the international classification of 
disease codes ICD-9 CM. Using this information,
we intend to extract relations that are likely to oc-
cur between statistically relevant terms and the 
concepts they express. 

The final goal of our work is to derive potential 
query patterns from the extracted set of relations 
that can be used in the MEDICO semantic-based 

1 http://theseus-programm.de/scenarios/en/medico

image retrieval application. For example when re-
staging head and neck lymphoma, clinicians and 
radiologists look for information and images that 
report on essential radiological patterns as “an 
enlargement in the dimension of the lymph node in 
the neck”. Therefore, within our approach, we aim 
at establishing hypotheses about possible user que-
ries, i.e. the query patterns that reflect the three 
perspectives discussed above. Accordingly, an ex-
ample query pattern might look like this:

[ANATOMICAL
STRUCTURE]

located_in [ANATOMICAL
STRUCTURE]

AND
[[RADIOLOGY]
IMAGE]Modality]

is_about [ANATOMICAL
STRUCTURE]

AND
[[RADIOLOGY
IMAGE]Modality]

shows_
symptom

[DISEASE 
SYMPTOM]

Once an initial set of similar patterns has been es-
tablished in this way, they will be evaluated by
clinicians for their validity and relevance.

2 Corpora

A central aspect of the query pattern mining task is 
the statistical analysis of the FMA and RadLex
terms in relevant text collections. In this way rele-
vance scores can be assigned to terms that allow to 
investigate the most likely expressed (and hence 
queried) relations between them. For this purpose 
we need access to a representative corpus of texts 
that at the same time reflects the joint view of 
anatomy, spatial aspects of radiology and disease 
that we are targeting. Patient records would be our 
first choice, but due to strict anonymization re-
quirements these are difficult to obtain. We there-
fore constructed a corpus based on the Wikipedia
Categories Anatomy and Radiology. We then ran 
all text sections of each corpus through a part-of-
speech tagger (Brants, 2000) to extract all nouns in 
the corpus and to compute a relevance score (chi-
square) for each by comparing anatomy and radi-
ology frequencies with those in the British Na-
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tional Corpus. A next step will be to parse and an-
notate sentences with predicate-structure informa-
tion, which may then be used for relation 
extraction along the lines of (Schutz and Buitelaar, 
2005).

3 FMA Terms

The statistically most relevant FMA terms were
identified on the basis of chi-square scores com-
puted for nouns in each corpus. Single word terms 
in the FMA and occurring in the corpus correspond 
directly to the noun that the term is build up of
(e.g. the noun ‘ear’ corresponds to the FMA term 
ear). In this case, the statistical relevance of the 
term is the chi-square score of the corresponding 
noun. In the case of multi-word terms occurring in 
the corpus, the statistical relevance is computed on 
the basis of the chi-square score for each constitut-
ing noun and/or adjective in the term, summed and 
normalized over the length of the term. Thus, the 
relevance value for lymph node is the summation 
of chi-square scores for ‘lymph’ and ‘node’ di-
vided by 2. In order to take frequency in account, 
we further multiplied the summed relevance value 
by the frequency of the term. This assures that only 
frequently occurring terms are judged as relevant.

FMA Term Freq. Score POS
lateral 464 338724,00 JJ
anterior 452 314721,00 JJ
artery 237 281961,00 NN
anterior spinal artery 2 219894,33 JJ JJ NN
lateral thoracic artery 2 217815,33 JJ JJ NN

Table 1: top FMA terms in anatomy corpus

FMA Term Freq. Score POS
artery 65 6724,00 NN
coronary artery 17 5284,00 JJ NN
small bowel 11 4651,79 JJ NN
renal artery 3 4286,50 JJ NN
pulmonary artery 1 3974,50 JJ NN

Table 2: top FMA terms in radiology corpus

4 RADLEX Terms 

Analogously, RadLex was used to identify the 
most relevant radiology terms. The most relevant 
RadLex terms are shown below. As with the FMA, 
the most relevant RadLex terms in the anatomy 
corpus are centered on “artery”. In contrast, in the 
radiology corpus the RadLex relevance scores in-
deed point to a radiology profile: 

RadLex Term Freq. Score POS
lateral 464 338724,00 JJ
anterior 452 314721,00 JJ
artery 237 281961,00 NN
anterior spinal artery 2 219894,33 JJ JJ NN
lateral thoracic artery 2 217815,33 JJ JJ NN

Table 3: top RadLex terms in anatomy corpus

RadLex Term Freq. Score POS
x-ray 253 81901,64 NN
imaging modality 6 58682,00 NN NN
volume imaging 1 57855,09 NN NN
molecular imaging 4 57850,00 JJ NN
mr imaging 9 57850,00 JJ NN

Table 4: topRadLex terms in radiology cor pus

5 Conclusions and Future Work

Using ICD-9 lymphoma terminology, we will 
derive a Pubmed-based corpus on lymphoma to 
analyse the context of the statistically top most 
relevant terms from the FMA and RadLex termi-
nologies. In this way we will be able to identify 
relationships and eventually query patterns across 
the three dimensions of anatomy, radiology and 
lymphoma research. 
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1 Introduction

Children diagnosed with Specific Language Impair-
ment (SLI) experience a delay in acquisition of cer-
tain language skills, with no evidence of hearing im-
pediments, or other cognitive, behavioral, or overt
neurological problems (Leonard, 1991; Paradis et
al., 2005/6). Standardized tests, such as the Test for
Early Grammatical Impairment, have shown to have
great predictive value for assessing English speaking
monolingual children. Diagnosing bilingual chil-
dren with SLI is far more complicated due to the
following factors: lack of standardized tests, lack of
bilingual clinicians, and more importantly, the lack
of a deep understanding of bilingualism and its im-
plications on language disorders. In addition, bilin-
gual children often exhibit code-switching patterns
that will make the assessment task even more chal-
lenging. In this paper, we present preliminary re-
sults from using language models to help discrim-
inating bilingual children with SLI from Typically-
Developing (TD) bilingual children.

2 Our Approach

We believe that statistical inference can assist in
the problem of accurately discriminating language
patterns indicative of SLI. In this work, we use
Language Models (LMs) for this task since they are
a powerful statistical measure of language usage
and have been successfully used to solve a variety
of NLP problems, such as text classification, speech
recognition, hand-writing recognition, augmenta-
tive communication for the disabled, and spelling
error detection (Manning and Schütze, 1999).
LMs estimate the probability of a word sequence
W = 〈w1, ...wk〉 as follows (using the chain rule):

p(W ) =
∏

k

i=1 p(wi|w1, . . . , wi−1)
which can be approximated using an N-gram as:

p(W ) ≈
∏

k

i=1 p(wi|wi−N+1, wi−N+2, ..., wi−1)

Since in our problem we are interested in differ-
entiating syntactic patterns, we will train the LMs
on Part-of-Speech (POS) patterns instead of words.
Using a 3-gram we have:

p(T ) =
∏

k

i=1 p(ti|ti−2, ti−1)

whereT = 〈t1, t2, ..., tk〉 is the sequence of POS
tags assigned to the sequence of wordsW .

The intuition is that the language patterning of an
SLI child will differ from those of TD children at
two different levels: one is at the syntactic level,
and the second one is at the interaction between
both languages in patterns such as code-switching.
Given that the tagset for each language is differ-
ent, by using the POS tags we will incorporate into
the model the syntactic structure together with the
switch points across languages.

We train two LMs with the POS sequences:MT ,
with data from the TD children andMI , with data
from the SLI bilingual children. Once both LMs are
trained, then we can use them to make predictions
over new speech samples of bilingual children. To
determine whether an unobserved speech sample is
likely to belong to a child suffering from SLI, we
will measure the perplexity of the two LMs over the
POS patterns of this new speech sample. We make
the final decision using a threshold:

d(s) =

{

SLI if (PPT (s) − PPI(s)) > 0
TD otherwise
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wherePPT (s) is the perplexity of the modelMT

over the samples, andPPI(s) is the perplexity of
the modelMI over the same samples. In other
words, if the perplexity of the LM trained on syn-
tactic patterns of children with SLI is smaller than
that of the LM trained on POS patterns of TD chil-
dren, then we will predict that the sample belongs to
a child with SLI.

In a related work, (Roark et al., 2007) explored
the use of cross entropy of LMs trained on POS tags
as a measure of syntactic complexity. Their results
were inconsistent across language tasks, which may
be due to the meaning attached to cross entropy in
this setting. Unlikely patterns are a deviation from
what is expected; they are not necessarily complex
or syntactically rich.

3 Preliminary Results

We empirically evaluated our approach using tran-
scripts that were made available by a speech pathol-
ogist in our team. The TD samples were comprised
of 5 males and 4 females between 48 and 72 months
old. The children were identified as being bilingual
by their parents, and according to parental report,
these children live in homes where Spanish is spo-
ken an average of 46.3% of the time. Language
samples of SLI bilinguals were collected from chil-
dren being served in the Speech and Hearing Clinic
at UTEP. The samples are from two females aged
53 and 111 months. The clients were diagnosed
with language impairment after diagnostic evalua-
tions which were conducted in Spanish. The tran-
scriptions were POS tagged with the bilingual tagger
developed by (Solorio et al., 2008).
Table 1 shows the preliminary results using cross
validation. With the decision threshold outlined
above, out of the 9 TD children, the models were
able to discriminate 7 as TD; from the 2 SLI chil-
dren both were correctly identified as SLI. Although
the results presented above are not conclusive due to
the very small size corpora at hand, they look very
promising. Stronger conclusions can be drawn once
we collect more data.

4 Final Remarks

This paper presents very promising preliminary re-
sults on the use of LMs for discriminating patterns

Table 1: Perplexity and final output of the LMs for the
discrimination of SLI and TD.
Sample PPT (s) PPI(s) d(s)

TD1 14.73 23.12 TD
TD2 11.37 16.17 TD
TD3 18.35 36.58 TD
TD4 30.23 22.27 SLI
TD5 9.42 15.50 TD
TD6 17.37 36.75 TD
TD7 20.32 33.19 TD
TD8 16.40 24.47 TD
TD9 24.35 23.71 SLI
SLI1 20.21 19.10 SLI
SLI2 19.70 12.43 SLI
average TD 18.06 25.75 TD
average SLI 19.95 15.76 SLI

indicative of SLI in Spanish-English bilingual chil-
dren. As more data becomes available, we expect
to gather stronger evidence supporting our method.
Our current efforts involve collecting more samples,
as well as evaluating the accuracy of LMs on mono-
lingual children with and without SLI.

Acknowledgements

Thanks to Bess Sirmon Fjordbak for her contribution to
the project and the three anonymous reviewers for their
useful comments.

References

L. B. Leonard. 1991. Specific language impairment as
a clinical category.Language, Speech, and Hearing
Services in Schools, 22:66–68.

C. D. Manning and H. Schütze. 1999.Foundations of
Statistical Natural Language Processing. The MIT
Press.

J. Paradis, M. Crago, and F. Genesee. 2005/6. Domain-
general versus domain-specific accounts of specific
language impairment: Evidence from bilingual chil-
drens acquisition of object pronouns.Language Ac-
quisition, 13:33–62.

B. Roark, M. Mitchell, and K. Hollingshead. 2007. Syn-
tactic complexity measures for detecting mild cogni-
tive impairment. InBioNLP 2007: Biological, trans-
lational, and clinical language processing, pages 1–8,
Prague, June. ACL.

T. Solorio, Y. Liu, and B. Medina. 2008. Part-of-speech
tagging English-Spanish code-switched text.Submit-
ted to Natural Language Engineering.

117



BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 118–119,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Raising the Compatibility of Heterogeneous Annotations:
A Case Study on Protein Mention Recognition

Yue Wang∗ Kazuhiro Yoshida∗ Jin-Dong Kim∗ Rune Sætre∗ Jun’ichi Tsujii∗†‡
∗Department of Computer Science, University of Tokyo

†School of Informatics, University of Manchester
‡National Center for Text Mining

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 JAPAN
{wangyue, kyoshida, jdkim, rune.saetre, tsujii}@is.s.u-tokyo.ac.jp

Abstract

While there are several corpora which claim
to have annotations for protein references,
the heterogeneity between the annotations is
recognized as an obstacle to develop expen-
sive resources in a synergistic way. Here we
present a series of experimental results which
show the differences of protein mention an-
notations made to two corpora, GENIA and
AImed.

1 Introduction

There are several well-known corpora with protein
mention annotations. It is a natural request to bene-
fit from the existing annotations, but the heterogene-
ity of the annotations remains an obstacle. The het-
erogeneity is caused by different definitions of “pro-
tein”, annotation conventions, and so on.

It is clear that by raising the compatibility of an-
notations, we can reduce the performance degrada-
tion caused by the heterogeneity of annotations.

In this work, we design several experiments to
observe the effect of removing or relaxing the het-
erogeneity between the annotations in two corpora.
The experimental results show that if we understand
where the difference is, we can raise the compati-
bility of the heterogeneous annotations by removing
the difference.

2 Corpora and protein mention recognizer

We used two corpora: the GENIA corpus (Kim
et al., 2003), and the AImed corpus (Bunescu and
Mooney, 2006). There are 2,000 MEDLINE ab-
stracts and 93,293 entities in the GENIA corpus.

Figure 1: The learning curve according to the F-score

The annotation is dependent on a small taxonomy
of 36 classes. The AImed corpus consists of 225
MEDLINE abstracts, and there are 4,084 protein ref-
erences.

Our protein mention recognizer is a Maximum
Entropy Markov Model (MEMM) n-best tagger.

3 The effect of the inconsistency

We did two experiments in order to characterize the
following two assumptions. First, we can improve
the performance by increasing the size of the train-
ing data set. Secondly, the system performance will
drop when more inconsistent annotations are intro-
duced into the training data set.

In these two experiments, for the training, we
used the AImed corpus and the AImed corpus plus
the GENIA protein annotations, respectively. We
conducted the evaluation on the AImed corpus.

The learning curve drawn from the results of the
two mentioned experiments is shown in Figure 1.
We can see that the learning curve is still increasing
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Subcategory Recall Precision F-score
Family or group 12.94 3.86 5.94
Domain or region 15.74 0.57 1.11
Molecule 48.80 34.43 40.37
Substructure 0.00 0.00 0.00
Subunit 65.36 3.38 6.43
Complex 13.43 0.98 1.83
ETC 14.29 0.03 0.07

Table 1: The experimental results on seven subclasses.

when we used up all the training portions from the
AImed corpus. Even though the rate of the improve-
ment is slow, we would expect a further improve-
ment if we could add more training data in a large
scale, e.g. the GENIA corpus is 10 times bigger than
the AImed corpus. But when we added the protein
annotations in the GENIA corpus to the training data
set, we witnessed a drastic degradation in the perfor-
mance. We assume that the degradation is caused by
the heterogeneity of the protein annotations in these
two corpora, and we further assume that if the het-
erogeneity could be eliminated, the learning curve
would go back to an increasing state.

4 Raising the compatibility

Although both corpora include protein mention an-
notations, the target task is different. GENIA con-
cerns all the protein-mentioning terms, while AImed
focuses only on the references of individual pro-
teins. In the GENIA corpus, besides the 36 classes,
some subclasses are also included. In the case with
the protein class, there are seven subclasses: fam-
ily or group, domain or region, molecule, substruc-
ture, subunit, complex, etc. Further, in the AImed
corpus, protein/gene families are not tagged, only
protein molecules are tagged.

We conducted an experiment to verify what we
found from the documentation of the two corpora.
We trained our tagger using the AImed corpus, and
evaluated it on the GENIA corpus. Each time, we
assumed only the annotation of one protein subclass
in the GENIA corpus as the “gold” annotation. Table
1 shows the experimental results.

The experimental results clearly supported the
documented scope of the protein annotation in GE-
NIA and AImed: The protein mention recognizer

AImed + Subcategory Criterion F-score
Molecule+Subunit Exact 64.72

Left 69.48
Right 67.64

Molecule+Subunit+Complex Exact 63.76
Left 72.77
Right 67.60

Table 2: The experimental results on three subclasses.

trained with AImed best recognized the GENIA an-
notation instances of Protein molecules among all
subclasses, and the performance of recognizing Pro-
tein family or group instances was very poor.

We therefore have a hypothesis: if we unite
the GENIA annotations of Protein molecule, Pro-
tein subunit, and Protein complex with the AImed
corpus, and we use this united corpus to train our
tagger, we can improve the performance of our tag-
ger on the AImed corpus. Table 2 shows our exper-
imental results based on this hypothesis. It can be
seen from the result that, if we assume that the up-
per bound of the F-score of this approach is near to
83.23%, we reduced the incompatibility of the two
corpora by 30%. The reduction was obtained by un-
derstanding the difference of the protein annotations
made to the corpora.

5 Conclusion

We implemented several experiments in order to re-
move the negative influence of the disagreements
between two corpora. Our objective is to raise the
compatibility of heterogeneous annotations. Some
simple experiments partly revealed where the het-
erogeneity between the protein mention annotations
in GENIA and AImed is. More qualitative and quan-
titative analysis will be done to identify the remain-
ing heterogeneity.
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Abstract 
Biomedical information extraction tasks are of-
ten more complex and contain uncertainty at 
each step during problem solving processes. We 
present an adaptive information extraction 
framework and demonstrate how to explore un-
certainty using feedback integration. 

1 Adaptive Information Extraction 
Biomedical information extraction (IE) tasks are 
often more complex and contain uncertainty at each 
step during problem solving processes.  

When in the first place the desired information is 
not easy to define and to annotate (even by humans), 
iterative IE cycles are to be expected. There might 
be gaps between the domain knowledge representa-
tion and computer processing ability. Domain 
knowledge might be hard to represent in a clear 
format easy for computers to process. Computer sci-
entists may need time to understand the inherent 
characteristics of domain problems so as to find ef-
fective approaches to solve them. All these issues 
mandate a more expressive IE process.  

In these situations, the traditional, straightfor-
ward, and one-pass problem-solving procedure, con-
sisting of definition-learning-testing, is no longer 
adequate for the solution.  

 
Figure 1. Adaptive information extraction. 

For more complex tasks requiring iterative cycles, 
an adaptive and extended IE framework has not yet 
been fully defined although variants have been ex-

plored. We describe an adaptive IE framework to 
characterize the activities involved in complex IE 
tasks. Figure 1 depicts the adaptive information ex-
traction framework.  

This procedure emphasizes one important adap-
tive step between the learning and application 
phases. If the IE result is not adequate, some adapta-
tions are required:  

Our study focuses on extracting tract-tracing ex-
periments (Swanson, 2004) from neuroscience arti-
cles. The goal of tract-tracing experiment is to chart 
the interconnectivity of the brain by injecting tracer 
chemicals into a region of the brain and then identi-
fying corresponding labeled regions where the tracer 
is transported to (Burns et al., 2007). Our work is 
performed in the context of NeuroScholar1, a project 
that aims to develop a Knowledge Base Manage-
ment System to benefit neuroscience research.  

We show how this new framework evolves to 
meet the demands of the more complex scenario of 
biomedical text mining. 
2 Feedback Integration 
This task requires finding the knowledge describing 
one or more experiments within an article as well as 
identifying desired fields within individual sen-
tences. Significant complexity arises from the pres-
ence of a variable number of records (experiments) 
in a single research article --- anywhere from one to 
many. 

 
Table 1. An example tract-tracing experiment. 
Table 1 provides an example of a tract-tracing ex-

periment. In this experiment, when the tracer was 
injected into the injection location “the contralateral 
AVCN”, “no labeled cells” was found in the label-
ing location “the DCN”. 

For sentence level fields labeling, the perform-
ance of F1 score is around 0.79 (Feng et al., 2008). 
                                                           
1 http://www.neuroscholar.org/ 
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We here show how the adaptive information extrac-
tion framework is applied to labeling individual sen-
tences. Please see Feng et al. (2007) for the details 
of segmenting data records. 

2.1 Choosing Learning Approach via F1 

A natural way to label sentences is to obtain (by 
hand or learning) patterns characterizing each field 
(Feng et al., 2006; Ravichandran and Hovy, 2002). 
We tried to annotate field values for the biomedical 
data, but we found few intuitive clues that rich sur-
face text patterns could be learned with this corpus.  

This insight, Feedback F1, caused us to give up 
the idea of learning surface text patterns as usual, 
and switch to the Conditional Random Fields (CRF) 
(Lafferty et al., 2001) for labeling sentences instead. 
In contrast to fixed-order patterns, the CRF model 
provides a compact way to integrate different types 
of features for sequential labeling problems and can 
reach state-of-the-art level performance. 

2.2 Determining Knowledge Schema via F2 

In the first place, it is not clear what granularity of 
knowledge/information can be extracted from text 
and whether the knowledge representation is suitable 
for computer processing. We tried a series of ap-
proaches, using different levels of granularity and 
description, in order to obtain formulation suitable 
for IE. Figure 2 represents the evolution of the 
knowledge schema in our repeated activities.  

 
Figure 2. Knowledge schema evolution. 

 
Figure 3. System performance at stage 1 and 2. 

We initially started with the schema in the left-
most column but our pilot study showed that some 
fields, for example, “label_type”, had too many 
variations in text description, making it very hard for 
CRF to learn clues about it. We then switched to the 
second schema but ended up seeing that the field 
“injectionSpread” needed more domain knowledge 
and was therefore not able to be learned by the sys-
tems. The last column is the final schema after those 

pilot studies. Figure 3 shows system performance 
(overall and the worst field) corresponding to the 
first and the second representation schemas. 

2.3 Exploring Features via F3 

To train CRF sentence labeling systems, it is vital to 
decide what features to use and how to prepare those 
features. Through the cycle of Feedback F3, we ex-
plored five categories of features and their combina-
tions to determine the best features for optimal 
system performance. Table 2 shows system per-
formance with different feature combinations.  

System Features Prec. Recall F_Score 
Baseline 0.4067 0.1761 0.2458 
Lexicon 0.5998 0.3734 0.4602 
Lexicon                   
+ Surface Words 

0.7663 0.7302 0.7478 

Lexicon                   
+ Surface Words     
+ Context Window 

0.7717 0.7279 0.7491 

Lexicon + Surface 
Words + Context 
Window + Window 
Words 

0.8076 0.7451 0.7751 

Lexicon + Surface 
Words + Context 
Window + Window 
Words + Depend-
ency Features  

0.7991 0.7828 0.7909 

Table 2. Precision, Recall, and F_Score for labeling. 
Please see Feng et al. (2008) for the details of the 

sentence level extraction and feature preparation,  
3 Conclusions 
In this paper, we have shown an adaptive informa-
tion extraction framework for complex biomedical 
tasks. Using the iterative development cycle, we 
have been able to explore uncertainty at different 
levels using feedback integration.  
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