zymake: a computational workflow system for machine learning and
natural language processing

Eric Breck
Department of Computer Science
Cornell University
Ithaca, NY 14853
USA
ebreck@cs.cornell.edu

Abstract

Experiments in natural language processing
and machine learning typically involve run-
ning a complicated network of programs to
create, process, and evaluate data. Re-
searchers often write one or more UNIX shell
scripts to “glue” together these various pieces,
but such scripts are suboptimal for several rea-
sons. Without significant additional work, a
script does not handle recovering from fail-
ures, it requires keeping track of complicated
filenames, and it does not support running pro-
cesses in parallel. In this paper, we present
zymake as a solution to all these problems.
zymake scripts look like shell scripts, but
have semantics similar to makefiles. Using
zymake improves repeatability and scalabil-
ity of running experiments, and provides a
clean, simple interface for assembling compo-
nents. A zymake script also serves as doc-
umentation for the complete workflow. We
present a zymake script for a published set
of NLP experiments, and demonstrate that it
is superior to alternative solutions, including
shell scripts and makefiles, while being far
simpler to use than scientific grid computing
systems.

1 Introduction

Running experiments in natural language process-
ing and machine learning typically involves a com-
plicated network of programs. One program might
extract data from a raw corpus, others might pre-
process it with various linguistic tools, before finally
the main program being tested is run. Further pro-
grams must evaluate the output, and produce graphs

5

and tables for inclusion in papers and presentations.
All of these steps can be run by hand, but a more typ-
ical approach is to automate them using tools such
as UNIX shell scripts. We argue that any approach
should satisfy a number of basic criteria.

Reproducibility At some future time, the original
researcher or other researchers ought to be able to
re-run the set of experiments and produce identical
results!. Such reproducibility is a cornerstone of sci-
entific research, and ought in principle to be easier
in our discipline than in a field requiring physical
measurements such as physics or chemistry.

Simplicity We want to create a system that we and
other researchers will find easy to use. A system
which requires significant overhead before any ex-
periment can be run can limit a researcher’s ability
to quickly and easily try out new ideas.

A realistic life-cycle of experiments A typical ex-
periment evolves in structure as it goes along - the
researcher may choose partway through to add new
datasets, new ranges of parameters, or new sets of
models to test. Moreover, a computational exper-
iment rarely works correctly the first time. Com-
ponents break for various reasons, a tool may not
perform as expected, and so forth. A usable tool
must be simple to use in the face of such repeated
re-execution.

Software engineering Whether writing shell
scripts, makefiles, or Java, one is writing code,
and software engineering concerns apply. One
key principle is modularity, that different parts of

"'User input presents difficulties which we will not discuss.

Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 5-13,
Columbus, Ohio, USA, June 2008. (©2008 Association for Computational Linguistics

training regime classes
two-way distinction | A vs B+O
two-way distinction | B vs A+O
three-way distinction | A vs B vs O
baseline comparison | A+B vs O

Table 1: Training regimes

a program should be cleanly separated. Another
is generality, creating solutions that are re-usable
in different specific cases. A usable tool must
encourage good software engineering.

Inherent support for the combinatorial nature of
our experiments Experiments in natural language
processing and machine learning typically compare
different datasets, different models, different feature
sets, different training regimes, and train and test on
a number of cross-validation folds. This produces a
very large number of files which any system must
handle in a clean way.

In this paper, we present zymake?, and argue that
is superior to several alternatives for the task of au-
tomating the steps in running an experiment in natu-
ral language processing or machine learning.

2 A Typical NLP Experiment

As a running example, we present the following
set of experiments (abstracted from (Breck et al.,
2007)). The task is one of entity identification -
we have a large dataset in which two different types
of opinion entities are tagged, type A, and type B.
We will use a sequence-based learning algorithm to
model the entities, but we want to investigate the re-
lationship between the two types. In particular, will
it be preferable to learn a single model which pre-
dicts both entity type A and entity type B, or two
separate models, one predicting A, and one predict-
ing B. The former case makes a three-way distinc-
tion between entities of type A, of type B, and of
type O, all other words. The latter two models make
a distinction between type A and both other types
or between type B and both other types. Further-

2Any name consisting of a single letter followed by make
already refers to an existing software project. zymake is the
first pronouncable name consisting of a two letter prefix to
make, starting from the end of the alphabet. I pronounce “zy-"
as in “zydeco.”

more, prior work to which we wish to compare does
not distinguish at all between type A and type B, so
we also need a model which just predicts entities to
be of either type A or B, versus the background O.
These four training regimes are summarized in Ta-
ble 1.

Given one of these training regimes, the model
is trained and tested using 10-fold cross-validation,
and the result is evaluated using precision and re-
call. The evaluation is conducted separately for class
A, for class B, and for predicting the union of both
classes.

2.1 Approach 1: A UNIX Shell Script

Many researchers use UNIX shell scripts to co-
ordinate experiments>. Figure 1 presents a poten-
tial shell script for the experiments discussed in Sec-
tion 2. Shell scripting is familiar and widely used
for co-ordinating the execution of programs. How-
ever, there are three difficulties with this approach -
it is difficult to partially re-run, the specification of
the filenames is error-prone, and the script is badly
modularized.

Re-running the experiment The largest difficulty
with this script is how it handles errors - namely, it
does not. If some early processes succeed, but later
ones fail, the researcher can only re-run the entire
script, wasting the time spent on the previous run.
There are two common solutions to this problem.
The simplest is to comment out the parts of the script
which have succeeded, and re-run the script. This
is highly brittle and error-prone. More reliable but
much more complicated is to write a wrapper around
each command which checks whether the outputs
from the command already exist before running it.
Neither of these is desirable. It is also worth not-
ing that this problem can arise not just through error,
but when an input file changes, an experiment is ex-
tended with further processing, additional graphs are
added, further statistics are calculated, or if another
model is added to the comparison.

3Some researchers use more general programming lan-
guages, such as Perl, Python, or Java to co-ordinate their ex-
periments. While such languages may make some aspects of
co-ordination easier — for example, such languages would not
have to call out to an external program to produce a range of in-
tegers as does the script in Figure 1 — the arguments that follow
apply equally to these other approaches.

for fold in ‘seq 0 9'; do

extract-test—-data $fold raw-data $fold.test

for class in A B A+B; do

extract-2way-training $fold raw-data $class > $fold.$class.train
train $fold.S$Sclass.train > $fold.S$class.model

predict $fold.$class.model $fold.test > $fold.S$class.out
prep-eval-2way $fold.S$class.out > $fold.eval-in

eval S$Sclass S$fold.S$class.eval-in > S$fold.Sclass.eval

done

extract-3way-training $fold raw-data > $fold.3way.train
train $fold.3way.train > $fold.3way.model
predict $fold.3way.model $fold.test > $fold.3way.out

for class in A B A+B; do

prep-eval-3way S$class $fold.3way.out > $fold.3way.Sclass.eval-in
eval Sclass $fold.3way.Sclass.eval—-in > $fold.3way.S$class.eval

done
done

Figure 1: A shell script

Problematic filenames In this example, a file-
name is a concatenation of several variable names -
e.g. $(fold).S$(class) .train. This is also
error-prone - the writer of the script has to keep
track, for each filename, of which attributes need to
be specified for a given file, and the order in which
they must be specified. Either of these can change
as an experiment’s design evolves, and subtle design
changes can require changes throughout the script of
the references to many filenames.

Bad modularization In this example, the eval
program is called twice, even though the input and
output files in each case are of the same format.
The problem is that the filenames are such that the
line in the script which calls eval needs to be in-
clude information about precisely which files (in
one case Sfold.3way.S$class, and in the other
$fold.Sclass) are being evaluated. This is irrel-
evant — a more modular specification for the eval
program would simply say that it operates on a
.eval-in file and produces an .eval file. We
will see ways below of achieving exactly this.*

*One way of achieving this modularization with shell scripts
could involve defining functions. While this could be effective,
this greatly increases the complexity of the scripts.

o

.model: %.train
train $< > $Q@

%$.out: %.model %.test
predict $° > $a@

Figure 2: A partial makefile

2.2 Approach 2: A makefile

One solution to the problems detailed above is to
use a makefile instead of a shell script. The make
program (Feldman, 1979) bills itself as a “utility to
maintain groups of programs™, but from our per-
spective, make is a declarative language for speci-
fying dependencies. This seems to be exactly what
we want, and indeed it does solve some of the prob-
lems detailed above. make has several new prob-
lems, though, which result in its being not an ideal
solution to our problem.

Figure 2 presents a portion of a makefile for this
task. For this part, the makefile ideally matches what
we want. It will pick up where it left off, avoiding
the re-running problem above. The question of file-
names is sidestepped, as we only need to deal with
the extensions here. And each command is neatly

>GNU make manpage.

partitioned into its own section, which specifies its
dependencies, the files created by each command,
and the shell command to run to create them. How-
ever, there are three serious problems with this ap-
proach.

Files are represented by strings The first prob-
lem can be seen by trying to write a similar line for
the eval command. It would look something like
this:

$.eval: %$.eval—-in

eval get-class $° > $@

However, it is hard to write the code represented
here as get—class. This code needs to examine
the filename string of $~ or $@, and extract the class
from that. This is certainly possible using standard
UNIX shell tools or make extensions, but it is ugly,
and has to be written once for every time such a
field needs to be accessed. For example, one way of
writing get—-class using GNU make extensions
would be:

GETCLASS = $(filter A B A+B,\
S(subst ., ,S$(1)))
eval—-in

$.eval: %.

eval $(call GETCLASS,S$@) $° > s@
The basic problem here is that to make, a
file is represented by a string, its filename.
For machine learning and natural language pro-
cessing experiments, it is much more natu-
ral to represent a file as a set of key-value
pairs. For example, the file 0.B.model might
be represented as { fold = 0, class = B,
filetype = model } .

Combinatorial dependencies The second prob-
lem with make is that it is very difficult to spec-
ify combinatorial dependencies. If one continued to
write the makefile above, one would eventually need
to write a final all target to specify all the files
which would need to be built. There are 60 such
files: one for each fold of the following set

Sfold.3way.A.eval
$fold.3way.B.eval
$fold.3way.A+B.eval
S$fold.A.eval

o\

$.txt
> S@

.taggerA.pos:
tagger_A $°

o

%.txt
> s

.taggerB.pos:
tagger_B $°

o\°

.taggerC.pos: %$.txt
tagger_C $° > $@

%.chunkerA.chk: %.pos
chunker_A $° > 3@
%.chunkerB.chk: %.pos
chunker_B $° > s@
%.chunkerC.chk: %.pos
chunker_C $° > 3@
%.parserA.prs: %.chk
parser_ A $° > 3@
%.parserB.prs: %.chk
parser_B $° > $@
%.parserC.prs: %.chk

parser_C $° > 5@

Figure 3: A non-functional makefile for testing three in-
dependent decisions

Sfold.B.eval
Sfold.A+B.eval

There is no easy way in make of listing these 60
files in a natural manner. One can escape to a shell
script, or use GNU make’s foreach function, but
both ways are messy.

Non-representable dependency structures The
final problem with make also relates to dependen-
cies. It is more subtle, but it turns out that there are
some sorts of dependency structures which cannot
be represented in make. Suppose I want to com-
pare the effect of using one of three parsers, one of
three part-of-speech-taggers and one of three chun-
kers for a summarization experiment. This involves
three separate three-way distinctions in the makefile,
where for each, there are three different commands
that might be run. A non-working example is in Fig-

ure 3. The problem is that make pattern rules (rules
using the % character) can only match the suffix or
prefix of a filename®. This makefile does not work
because it requires the parser, chunker, and tagger
to all be the last part of the filename before the type
suffix.

2.3 Approach 3: zymake

zymake is designed to address the problems out-
lined above. The key principles of its design are as
follows:

e Like make, zymakefiles can be re-run multi-
ple times, each time picking up where the last
left off.

e Files are specified by key-value sets, not by
strings

e zymake includes a straightforward way of
handling combinatorial sets of files.

e zymake syntax is minimally different from
shell syntax.

Figure 4 presents a zymakefile which runs the run-
ning example experiment. Rather than explaining
the entire file at once, we will present a series of in-
creasingly complex parts of it.

Figure 5 presents the simplest possible zymake-
file, consisting of one rule, which describes how to
create a $ () .test file, and one goal, which lists
what files should be created by this file. A rule is
simply a shell command’, with some number of in-
terpolations®. An interpolation is anything between
the characters $ (and the matching). This is the
only form of interpolation done by zymake, so as
to minimally conflict with other interpolations done
by the shell, scripting languages such as Perl, etc.

SThus, if we were only comparing two sets of items — e.g.
parsers and taggers but not chunkers — we could write this set
of dependencies by using a prefix to distinguish one set and a
suffix to distinguish the other. This is hardly pretty, though, and
does not extend to more than two sets.

"Users who are familiar with UNIX shells will find it use-
ful to be able to use input/output redirection and pipelines in
zymakefiles. Knowledge of advanced shell programming is not
necessary to use zymake, however.

8This term is used in Perl; it is sometimes referred to in other
languages as “substitution” or “expansion.”

extract-test-data $(fold)
S(>) .test

raw—data

extract-2way-training $(fold)

S(class) > S$(train="2way").train

extract-3way-training $(fold)
> $(train="3way") .train

train $().train > $() .model
predict $().model $().test > $().out

prep-eval-3way $(class) $().out >
$(train="3way") .eval-in

prep-eval-2way $() .out >
S(train="2way") .eval-in
eval $(class) $().eval—-in > $() .eval

A B A+B
2way 3way

classes =
ways =

$(fold =
class =

* (range 0 9)
*classes

train = xways) .eval

Figure 4: An example zymakefile. The exact commands
run by this makefile are presented in Appendix A.

extract-test-data raw-data $(>) .test

S () .test

Figure 5: Simple zymakefile #1

extract-test-data $(fold) raw-data

S(>) .test

S(fold=0) .test $(fold=1l) .test

Figure 6: Simple zymakefile #2

raw—data

raw—data

extract-test-data $(fold)
S(>) .test

raw—data

folds = 0 1
S(fold=+«folds) .test

Figure 7: Simple zymakefile #3

The two interpolations in this example are file in-
terpolations, which are replaced by zymake with a
generated filename. Files in zymake are identified
not by a filename string but by a set of key-value
pairs, along with a suffix. In this case, the two in-
terpolations have no key-value pairs, and so are only
represented by a suffix. Finally, there are two kinds
of file interpolations - inputs, which are files that are
required to exist before a command can be run, and
outputs, which are files created by a command®. In
this case, the interpolation $ (>) .test is marked
as an output by the > character'?, while $ () .test
is an input, since it is unmarked.

The goal of this program is to create a file match-
ing the interpolation $ () .test. The single rule
does create a file matching that interpolation, and so
this program will result in the execution of the fol-
lowing single command:

extract-test-data raw-data .test

Figure 6 presents a slightly more complex zy-
makefile. In this case, there are two goals - to create
a .test file with the key fold having the value
0, and another .test file with fold equal to 1.
We also see that the rule has become slightly more
complex — there is now another interpolation. This,
however, is not a file interpolation, but a variable in-
terpolation. $ (fold) will be replaced by the value
of fold.

“Unlike make, zymake requires that each command ex-
plicitly mention an interpolation corresponding to each input
or output file. This restriction is caused by the merging of the
command part of the rule with the dependency part of the rule,
which are separate in make. We felt that this reduced redun-
dancy and clutter in the zymakefiles, but this may occasionally
require writing a wrapper around a program which does not be-
have in this manner.

102 ymake will also infer that any file interpolation following
the > character, representing standard output redirection in the
shell, is an output

10

Executing this zymakefile results in the execution
of two commands:

extract-test—-data 0 raw-data 0O.test
extract-test-data 1 raw—-data l.test

Note that the output files are now not just . test
but include the fold number in their name. This is
because zymake infers that the fold key, mentioned
in the extract rule, is needed to distinguish the two
test files. In general the user should specify as few
keys as possible for each file interpolation, and allow
zymake to infer the exact set of keys necessary to
distinguish each file from the rest'!.

Figure 7 presents a small refinement to the zy-
makefile in Figure 6. The commands that will be run
are the same, but instead of separately listing the two
test files to be created, we create a variable folds
which is a list of all the folds we want, and use a
splat to create multiple goals. A splat is indicated
by the asterisk character, and creates one copy of the
file interpolation for each value in the variable’s list.

Figure 4 is now a straightforward extension of the
example we have seen so far. It uses a few more
features of zymake that we will not discuss, such
as string-valued keys, and the range function, but
further documentation is available on the zymake
website. zymake wants to create the goals at the
end, so it examines all the rules and constructs a di-
rected acyclic graph, or DAG, representing the de-
pendencies among the files. It then executes the
commands in some order based on this DAG — see
Section 3 for discussion of execution order.

2.4 Benefits of zymake

zymake satisfies the criteria set out above, and han-
dles the problems discussed with other systems.

® Reproducibility. By providing a single file
which can be re-executed many times, zymake
encourages a development style that encodes
all information about a workflow in a single
file. This also serves as documentation of the
complete workflow.

"Each file will be distinguished by all and only the keys
needed for the execution of the command that created it, and
the commands that created its inputs. A unique, global ordering
of keys is used along with a unique, global mapping of filename
components to key, value pairs so that the generated filename
for each file uniquely maps to the appropriate set of key, value
pairs.

e Simplicity. zymake only requires writing a set
of shell commands, annotated with interpola-
tions. This allows researchers to quickly and
easily construct new and more complex exper-
iments, or to modify existing ones.

o Experimental life-cycle. zymake can re-
execute the same file many times when com-
ponents fail, inputs change, or the workflow is
extended.

e Software engineering. Each command in a
zymakefile only needs to describe the inputs
and outputs relevant for that command, making
the separate parts of the file quite modular.

e Combinatorial experiments. zymake includes
a built-in method for specifying that a particu-
lar variable needs to range over several possi-
bilities, such as a set of models, parameter val-
ues, or datasets.

2.5 Using zymake

Beginning to use zymake is as simple as download-
ing a single binary from the website!?. Just as with
a shell script or makefile, the user then writes a sin-
gle textual zymakefile, and passes it to zymake for
execution. Typical usage of zymake will be in an
edit-run development cycle.

3 Parallel Execution

For execution of very large experiments, efficient
use of parallelism is necessary. zymake offers a
natural way of executing the experiment in a maxi-
mally parallel manner. The default serial execution
does a topological sort of the DAG, and executes
the components in that order. To execute in paral-
lel, zymake steps through the DAG starting at the
roots, starting any command which does not depend
on a command which has not yet executed.

To make this practical, of course, remote execu-
tion must be combined with parallel execution. The
current implementation provides a simple means of
executing a remote job using ssh, combined with
a simple /proc-based measure of remote cpu uti-
lization to find the least-used remote cpu from a

?Binaries for Linux, Mac OS X, and Windows, as well
as full source code, are available at http://www.cs.
cornell.edu/~ebreck/zymake/.

11

provided set. We are currently looking at extend-
ing zymake to interface it with the Condor sys-
tem (Litzkow et al., 1988). Condor’s DAGMan
is designed to execute a DAG in parallel on a set
of remote machines, so it should naturally fit with
zymake. Interfaces to other cluster software are
possible as well. Another important extension will
be to allow the system to throttle the number of con-
current jobs produced and/or collect smaller jobs to-
gether, to better match the available computational
resources.

4 Other approaches

Deelman et al. (2004) and Gil et al. (2007) describe
the Pegasus and Wings systems, which together have
a quite similar goal to zymake. This system is de-
signed to manage large scientific workflows, with
both data and computation distributed across many
machines. A user describes their available data and
resources in a semantic language, along with an
abstract specification of a workflow, which Wings
then renders into a complete workflow DAG. This is
passed to Pegasus, which instantiates the DAG with
instances of the described resources and passes it to
Condor for actual execution. The system has been
used for large-scale scientific experiments, such as
earthquake simulation. However, we believe that
the added complexity of the input that a user has
to provide over zymake’s simple shell-like syntax
will mean a typical machine learning or natural lan-
guage processing researcher will find zymake eas-
ier to use.

The GATE and UIMA architectures focus specif-
ically on the management of components for lan-
guage processing (Cunningham et al., 2002; Fer-
rucci and Lally, 2004). While zymake knows noth-
ing about the structure of the files it manages, these
systems provide a common format for textual an-
notations which all components must use. GATE
provides a graphical user interface for running com-
ponents and for viewing and producing annotations.
UIMA provides a framework not just for running ex-
periments but for data analysis and application de-
ployment. Compared to writing a zymake script,
however, the requirements for using these systems
to manage an experiment are greater. In addition,
both these architectures most naturally support com-

ponents written in Java (and in the case of UIMA,
C++). zymake is agnostic as to the source language
of each component, making it easier to include pro-
grams written by third parties or by researchers who
prefer different languages.

make, despite dating from 1979, has proved its
usefulness over time, and is still widely used. Many
other systems have been developed to replace it,
including ant!3, scons!¥, maven!?, and others.
However, so far as we are aware, none of these sys-
tems solves the problems we have described with
make. As with make and shell scripts, running
experiments is certainly possible using these other
tools, but we believe they are far more complex and
cumbersome than zymake.

5 Future Extensions

There are a number of extensions to zymake which
could make it even more useful. One is to allow the
dependency DAG to vary during the running of the
experiment. At the moment, zymake requires that
the entire DAG be known before any processes can
run. As an example of when this is less than ideal,
consider early-stopping an artificial neural network.
One way of doing this is train the network to full
convergence, and output predictions from the inter-
mediate networks at some fixed interval of epochs.
We would like then to evaluate all these predictions
on held-out data (running one process for each of
them) and then to choose the point at which this
score is maximized (running one process for the
whole set). Since the number of iterations to con-
vergence is not known ahead of time, at the moment
we cannot support this structure in zymake. We
plan, however, to allow the structure of the DAG to
vary at run-time, allowing such experiments.

We are also interested in other extensions, includ-
ing an optional textual or graphical progress bar,
providing a way for the user to have more control
over the string filename produced from a key-value
set'®, and keeping track of previous versions of cre-
ated files, to provide a sort of version control of the
output files.

Bhttp://ant.apache.org/.

“http://www.scons.org/.

Bhttp://maven.apache.org/.

19This will better allow zymake to interact with other work-
flows.

12

6 Conclusion

Most experiments in machine learning and natu-
ral language processing involve running a complex,
interdependent set of processes. We have argued
that there are serious difficulties with common ap-
proaches to automating these experiments. In their
place, we offer zymake, a new scripting language
with shell-like syntax but make-like semantics. We
hope our community will find it as useful as we have.

Acknowledgements

We thank Yejin Choi, Alex Niculescu-Mizil, David
Pierce, the Cornell machine learning discussion
group, and the anonymous reviewers for helpful
comments on earlier drafts of this paper.

A Output of Figure 4

We present here the commands run by zymake
when presented with the file in Figure 4. We present
only the commands run for fold 0, not for all 10
folds. Also, in actual execution zymake adds a pre-
fix to each filename based on the name of the zy-
makefile, so as to separate different experiments. Fi-
nally, note that this is only one possible order that the
commands could be run in.

extract-2way-training 0 raw-data A > A.0.2way.train
train A.0.2way.train > A.0.2way.model
extract-2way-training 0 raw-data B > B.0.2way.train
train B.0.2way.train > B.0.2way.model
extract-2way-training 0 raw-data A+B > AB.0.2way.train
train AB.0.2way.train > AB.0.2way.model
extract-3way-training 0 raw-data > 0.3way.train
train 0.3way.train > 0.3way.model

extract-test-data 0 raw-data O.test

predict A.0.2way.model O.test > A.0.2way.out
prep-eval-2way A.0.2way.out > A.0.2way.eval-in

eval A A.0.2way.eval-in > A.0.2way.eval

predict B.0.2way.model O.test > B.0.2way.out
prep-eval-2way B.0.2way.out > B.0.2way.eval-in

eval B B.0.2way.eval-in > B.0.2way.eval

predict AB.0.2way.model O.test > AB.0.2way.out
prep-eval-2way AB.0O.2way.out > AB.0.2way.eval-in
eval A+B AB.0.2way.eval-in > AB.0.2way.eval

predict 0.3way.model O.test > 0.3way.out
prep-eval-3way A 0.3way.out > A.0.3way.eval-in
eval A A.0.3way.eval-in > A.0.3way.eval
prep-eval-3way B 0.3way.out > B.0.3way.eval-in
eval B B.0.3way.eval-in > B.0.3way.eval
prep-eval-3way A+B 0.3way.out > AB.0O.3way.eval-in
eval A+B AB.0O.3way.eval-in > AB.0O.3way.eval

References

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In Pro-
ceedings of the Twentieth International Joint Confer-
ence on Artificial Intelligence (IJCAI-2007), Hyder-
abad, India, January.

Hamish Cunningham, Diana Maynard, Kalina Bont-
cheva, and Valentin Tablan. 2002. GATE: A frame-
work and graphical development environment for ro-
bust NLP tools and applications. In Proceedings of the
40th Anniversary Meeting of the Association for Com-
putational Linguistics (ACL ’02), Philadelphia, July.

Ewa Deelman, James Blythe, Yolanda Gil, Carl Kessel-
man, Gaurang Mehta, Sonal Patil, Mei-Hui Su, Karan
Vahi, and Miron Livny. 2004. Pegasus : Mapping
scientific workflows onto the grid. In Across Grids
Conference, Nicosia, Cyprus.

Stuart I. Feldman. 1979. Make-a program for maintain-
ing computer programs. Software - Practice and Ex-
perience, 9(4):255-65.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-
tectural approach to unstructured information process-
ing in the corporate research environment. Nat. Lang.
Eng., 10(3-4):327-348.

Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang
Mebhta, and Jihie Kim. 2007. Wings for pegasus: Cre-
ating large-scale scientific applications using semantic
representations of computational workflows. In Pro-
ceedings of the 19th Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI), Vancou-
ver, British Columbia, Canada, July.

Michael Litzkow, Miron Livny, and Matthew Mutka.
1988. Condor - a hunter of idle workstations. In Pro-
ceedings of the 8th International Conference of Dis-
tributed Computing Systems, June.

13

