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Software engineering, testing, and quality assurance
for natural language processing

Software engineering in general is a first-class research object in computer science, but generally has
not been treated as such within the natural language processing community. This is despite the fact that
natural language as an input type has unique characteristics that present special problems for software
testing, quality assurance, and even requirements specification.

The goals of this workshop included raising awareness of the need for good software engineering
practices in NLP, stimulating research on same, and disseminating the results of current work in this
area. We are grateful to the authors for sharing their work, and to the program committee for their
efforts.

Kevin Bretonnel Cohen and Bob Carpenter
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Abstract

Computing precision and recall metrics for named
entity tagging and resolution involves classifying
text spans as true positives, false positives, or false
negatives. There are many factors that make this
classification complicated for real world systems.
We describe an evaluation system that attempts to
control this complexity through a set of rules and a
forward chaining inference engine.

1 Introduction

Computing precision and recall metrics for named entity
recognition systems involves classifying each text span
that the system proposes as an entity and a subset of the
text spans that the gold data specifies as an entity. These
text spans must be classified as true positives, false posi-
tives, or false negatives.

In the simple case, it is easy to write a procedure to
walk through the list of text spans from the system and
check to see if a corresponding text span exists in the gold
data with the same label, mark the text span as true posi-
tive or false positive accordingly, and delete the span from
the gold data set. Then the procedure need only walk
through the remaining gold data set and mark these spans
as false negatives. The three predicates are the equality
of the span’s two offsets and the labels. This evaluation
procedure is useful for any natural language processing
task that involves finding and labeling text spans.

The question this poster addresses is how best to man-
age the complexity of the evaluation system that results
from adding a number of additional requirements to the
classification of text spans. The requirements may in-
clude fuzzy extent predicates, label hierarchies, confi-
dence levels for gold data, and collapsing multiple men-
tions in a document to produce a single classification. In
addition, named entity tasks often also involve resolving
a mention of an entity to an entry in an authority file (i.e.,

record in a relational database). This extension also re-
quires an interleaved evaluation where the error source is
important.

We started with a standard procedural approach, en-
coding the logic in nested conditionals. When the nesting
reached a depth of five (e.g., Figure 1), we decided to try
another approach. We implemented the logic in a set of
rules. More specifically, we used the Drools rules and for-
ward chaining engine (http://labs.jboss.com/drools/) to
classify text spans as true positives, false positives, and/or
false negatives. The procedural code was 379 lines long.
The declarative system consists of 25 rules with 150 lines
of supporting code. We find the rules more modular and
easier to modify and maintain. However, at this time, we
have no experimental result to support this opinion.

2 Added Complexity of the Classification
of Text Spans for Evaluation

Matching extents and labels: A system text span may
overlap a gold data span but leave out, say, punctuation.
This may be deemed correct but should be recorded as a
fuzzy match. A match may also exist for span labels also
since they may be organized hierarchically (e.g, cities and
countries are kinds of locations). Thus, calling a city a
location may be considered a partial match.

Annotator Confidence: We allowed our annotators to
mark text span gold data with an attribute of “low con-
fidence.” We wanted to pass this information through to
the classification of the spans so that they might be fil-
tered out for final precision and recall if desired.

Document level statistics: Some named entity tagging
tasks are only interested in document level tagging. In
other words, the system need only decide if an entity is
mentioned in a document: how many times it is men-
tioned is unimportant.

Resolution: Many of our named entity tagging tasks
go a step further and also require linking each entity men-
tion to a record in a database of entities. For error anal-
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ysis, we wished to note if a false negative/positive with
respect to resolution is caused by the upstream named
entity tagger. Finally, our authority files often have many
entries for the same entity and thus the gold data contains
multiple correct ids.

for (annotations)
if(extents & labels match)

if(ids match => TP res)
if(notresolved => TN res)
else if(single id => TP res)
else if(multiple ids => contitional TP res)
else error

else
if(gold id exists)

if(gold id uncertain => FP res low confidence)
else => FP res

else
if(fuzzy extents & labels match)

if(ids match)
if(no gold id => TN res)
else if(multiple ids => conditional TP res)
else => fuzzy TP res

else ...

Figure 1: Nested conditionals for instance classification

3 Using Rules to Implement the Logic of
the Classification

The rules define the necessary conditions for membership
in a class. These rules are evaluated by an inference en-
gine, which forward chains through the rule set. In this
manner, rules for fuzzy matches, for handling gold data
confidence factors, and for adding exclusionary condi-
tions could be added (or removed) from the rule set with-
out modifying procedural code.

rule “truepositive” salience 100
sa : SourceAnnotation( assigned == false )
ta : TargetAnnotation( type == sa.type,

beginOffset == sa.beginOffset, endOffset == sa.endOffset )
then sa.setResult(“TP”);

rule “false positive” salience 90
sa : SourceAnnotation( assigned == false )
not TargetAnnotation( type == sa.type,

beginOffset == sa.beginOffset, endOffset == sa.endOffset )
then sa.setResult(“FP”);

rule “false negative” salience 80
ta : TargetAnnotation( assigned == false )
not SourceAnnotation( type == ta.type,

beginOffset == ta.beginOffset, endOffset == ta.endOffset )
then ta.setResult(”FN”);

Figure 2: Rules for instance classification

Three rules were needed to determine the basic col-
lection level metrics. The results of these rules were
then passed on to the next sets of rules for modification
for conditional checks. We use agenda groups and rule
salience to control the firing precedence within the rule

sets. In Figure 2, we present an example of the sort of
rules that are defined.

For example, the determination of true positives was
made by firing the “true positive” rule whenever an an-
notation from the system matched an annotation from
the gold data. This occurred if the entity type and off-
sets were equal. This rule was given higher salience than
those for true negatives and false positives since it had the
effect of removing the most candidate annotations from
the working memory.

Note that because we use a Java implementation that
adheres to JSR94, all of the rules apply their conditions
to Java objects. The syntax for tautologies within the con-
dition statements, refer to bean properties within the en-
closing object.

In Figure 3, we show first, a modification to add a fuzzy
metric rule that checks false negative annotations to see if
they might be a fuzzy match. Second, we show a rule that
removes false positives that are defined in a stop-word
list.

rule“fuzzy check” agenda-group “FuzzyMatch”
ta : TargetAnnotation( result == ”FN” );
sa : SourceAnnotation( type == ta.type, result == ”FP”,

ta.beginOffset < endOffset, ta.endOffset > beginOffset );
eval(ifFuzzyMatch(sa.getText(), ta.getText(), sa.getType()));

then sa.setResult(”FzTP”);
rule “filter FP” salience 10 agenda-group “Filter”

sa : SourceAnnotation( result == “FP” );
eval(DexterMetrics.ifStopWord(sa.getText(), sa.getType()));

then sa.setResult(sa.getResult() + “-ignored:stop word”);

Figure 3: Rules for modified classification

4 Conclusion
We described some of the complexities that our evalua-
tion module had to deal with and then introduce a rule-
based approach to its implementation. We feel that this
approach made our evaluation code easier to understand
and modify. Based on this positive experience, we sug-
gest that other groups try using rules in their evaluation
modules.
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Abstract

Type checking defines and constrains system
output and intermediate representations. We
report on the advantages of introducing multi-
ple levels of type checking in deep parsing sys-
tems, even with untyped formalisms.

1 Introduction

Some formalisms have type checking as an inherent
part of their theory (Copestake (2002)). However,
many formalisms do not require type checking. We
report on our experiences with a broad-coverage sys-
tem for mapping English text into semantic repre-
sentations for search applications. This system uses
the XLE LFG parser for converting from text to syn-
tactic structures and the XLE ordered-rewriting sys-
tem to convert from syntax to semantic structures.
Neither component formally requires type checking.
However, type checking was introduced into the syn-
tactic parser and at multiple levels in the semantics in
response to the engineering requirements on a large-
scale, multi-developer, multi-site system.

2 Syntactic Typing

The syntactic parser outputs a tree and an attribute
value matrix (f(unctional)-structure). Meaning-
sensitive applications use the f-structure which
contains predicate argument relations and other
semantically relevant dependencies.

A feature declaration (FD) requires every f-
structure attribute to be declared with its possible
values. These values are typed as to whether they
are atomic or are embedded f-structures. (1) shows

the FD for NUM(ber) and SPEC(ifier). NUM takes
an atomic value, while SPEC takes an f-structure
containing the features ADJUNCT, AQUANT, etc.

(1) a. NUM: - $ pl sg .

b. SPEC: - [ADJUNCT AQUANT DET

NUMBER POSS QUANT SPEC-TYPE].

XLE supports overlay grammars where a gram-
mar for an application uses another grammar as its
base. The FDs form part of the overlay system. For
example, there is an FD used by the Parallel Gram-
mar project (Butt et al. (2003)); the standard English
FD adds and modifies features; then domain specific
FDs overlay this. (2) gives the number of features in
the ParGram FD and the standard English overlay.

(2) atomic f-structure
English 76 33
ParGram 34 11

The grammar cannot be loaded if there is a feature
or value that is not licensed by the FD (to type check
the lexicon, the generator is loaded). The command
print-unused-feature-declarations
can be used after a large parse run to determine
which features never surfaced in the analysis of the
corpus and hence might be candidates to be removed
from the grammar.

As LFG does not have type checking as part of its
theory (Dalrymple et al. (2004)), XLE originally did
not implement it. However, in grammar engineering,
type checking over features speeds up the develop-
ment process and informs later processes and appli-
cations what features to expect since the FD serves
as an overview of the output of the grammar.
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3 Semantic Typing

The syntactic output is the input to several sets of
ordered rewriting rules that produce semantic struc-
tures (Crouch and King (2006)). The nature of or-
dered rewriting systems, which consume input facts
to create novel output facts, makes type checking ex-
tremely important for determining well formedness.
When these representations are used in applications,
type declarations can document changes so that the
subsequent processing can take them into account.

The semantic typing is done by declaring ev-
ery fact that can appear in the structure, its arity,
and the type of its arguments. A field is available
for comments and examples. (3) shows the licens-
ing of nominal modifiers in noun-noun compounds
(nn element), where skolem and integer are argu-
ment types.

(3) - type(proposition,
nn element(%%Element:skolem,

%%Head:skolem,
%%Nth:integer),

comment([ %%Element is the %%Nth
term in the compound noun %%Head
Example NP: the hinge oil bottle
in context(t,nn element(hinge:10,bottle:1,2)) ])).

The xfr semantics is developed by multiple users.
By breaking the rules into modules, type checking
can occur at several stages in the processing pipeline.
The current system provides for type checking at
word-prime semantics, the final semantics, and ab-
stract knowledge representation. (4) shows the num-
ber of (sub)features licensed at each level.1

(4) word prime 91
lexical semantics 102
akr 45

In addition to aiding the developers of the seman-
tics rules, the type declarations serve as documenta-
tion for the next steps in the process, e.g. creating the
semantic search index and query reformulation.

4 Additional Engineering Support

The semantic type checking is a set of ordered
rewrite rules, using the same mechanism as the se-

1A stripped-down XML version of the semantics uses an
xschema which checks that only the reduced feature set is used
and that the XML is well-formed.

mantics rules. As such, the notation and applica-
tion are familiar to the grammar engineers and hence
more accessible. Since the type checking involves
additional processing time, it is not part of run-time
processing. Instead, it is run within a larger regres-
sion testing regime (Chatzichrisafis et al. (2007)).
Grammar engineers run a core set of regression tests
before checking in any changes to the svn repository.
Larger nightly runs check performance as well as
typing at all levels of analysis and help ensure com-
patibility of changes from multiple developers.

The syntactic grammar cannot be loaded with fea-
ture type violations. However, the nature of an or-
dered rewriting system makes it so that loading the
rules does not give the full feature type space of
the resulting output. To force compliance with type
checking requirements, check-ins require regression
tests before committing changes. The output of these
tests is type checked and, if unlicensed features are
found, the commit is blocked. The grammar engi-
neer can then update the type checking rules or mod-
ify the semantic rules to produce only licensed fea-
tures. The regression testing is then rerun and, if the
type checking passes, the commit proceeds.

In sum, introducing type checking at multiple lev-
els provides a better development environment for
grammar engineers as well as documentation for the
developers and for applications.
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Abstract

Experiments in natural language processing
and machine learning typically involve run-
ning a complicated network of programs to
create, process, and evaluate data. Re-
searchers often write one or more UNIX shell
scripts to “glue” together these various pieces,
but such scripts are suboptimal for several rea-
sons. Without significant additional work, a
script does not handle recovering from fail-
ures, it requires keeping track of complicated
filenames, and it does not support running pro-
cesses in parallel. In this paper, we present
zymake as a solution to all these problems.
zymake scripts look like shell scripts, but
have semantics similar to makefiles. Using
zymake improves repeatability and scalabil-
ity of running experiments, and provides a
clean, simple interface for assembling compo-
nents. A zymake script also serves as doc-
umentation for the complete workflow. We
present a zymake script for a published set
of NLP experiments, and demonstrate that it
is superior to alternative solutions, including
shell scripts and makefiles, while being far
simpler to use than scientific grid computing
systems.

1 Introduction

Running experiments in natural language process-
ing and machine learning typically involves a com-
plicated network of programs. One program might
extract data from a raw corpus, others might pre-
process it with various linguistic tools, before finally
the main program being tested is run. Further pro-
grams must evaluate the output, and produce graphs

and tables for inclusion in papers and presentations.
All of these steps can be run by hand, but a more typ-
ical approach is to automate them using tools such
as UNIX shell scripts. We argue that any approach
should satisfy a number of basic criteria.

Reproducibility At some future time, the original
researcher or other researchers ought to be able to
re-run the set of experiments and produce identical
results1. Such reproducibility is a cornerstone of sci-
entific research, and ought in principle to be easier
in our discipline than in a field requiring physical
measurements such as physics or chemistry.

Simplicity We want to create a system that we and
other researchers will find easy to use. A system
which requires significant overhead before any ex-
periment can be run can limit a researcher’s ability
to quickly and easily try out new ideas.

A realistic life-cycle of experiments A typical ex-
periment evolves in structure as it goes along - the
researcher may choose partway through to add new
datasets, new ranges of parameters, or new sets of
models to test. Moreover, a computational exper-
iment rarely works correctly the first time. Com-
ponents break for various reasons, a tool may not
perform as expected, and so forth. A usable tool
must be simple to use in the face of such repeated
re-execution.

Software engineering Whether writing shell
scripts, makefiles, or Java, one is writing code,
and software engineering concerns apply. One
key principle is modularity, that different parts of

1User input presents difficulties which we will not discuss.
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training regime classes
two-way distinction A vs B+O
two-way distinction B vs A+O
three-way distinction A vs B vs O
baseline comparison A+B vs O

Table 1: Training regimes

a program should be cleanly separated. Another
is generality, creating solutions that are re-usable
in different specific cases. A usable tool must
encourage good software engineering.

Inherent support for the combinatorial nature of
our experiments Experiments in natural language
processing and machine learning typically compare
different datasets, different models, different feature
sets, different training regimes, and train and test on
a number of cross-validation folds. This produces a
very large number of files which any system must
handle in a clean way.

In this paper, we present zymake2, and argue that
is superior to several alternatives for the task of au-
tomating the steps in running an experiment in natu-
ral language processing or machine learning.

2 A Typical NLP Experiment

As a running example, we present the following
set of experiments (abstracted from (Breck et al.,
2007)). The task is one of entity identification -
we have a large dataset in which two different types
of opinion entities are tagged, type A, and type B.
We will use a sequence-based learning algorithm to
model the entities, but we want to investigate the re-
lationship between the two types. In particular, will
it be preferable to learn a single model which pre-
dicts both entity type A and entity type B, or two
separate models, one predicting A, and one predict-
ing B. The former case makes a three-way distinc-
tion between entities of type A, of type B, and of
type O, all other words. The latter two models make
a distinction between type A and both other types
or between type B and both other types. Further-

2Any name consisting of a single letter followed by make
already refers to an existing software project. zymake is the
first pronouncable name consisting of a two letter prefix to
make, starting from the end of the alphabet. I pronounce “zy-”
as in “zydeco.”

more, prior work to which we wish to compare does
not distinguish at all between type A and type B, so
we also need a model which just predicts entities to
be of either type A or B, versus the background O.
These four training regimes are summarized in Ta-
ble 1.

Given one of these training regimes, the model
is trained and tested using 10-fold cross-validation,
and the result is evaluated using precision and re-
call. The evaluation is conducted separately for class
A, for class B, and for predicting the union of both
classes.

2.1 Approach 1: A UNIX Shell Script

Many researchers use UNIX shell scripts to co-
ordinate experiments3. Figure 1 presents a poten-
tial shell script for the experiments discussed in Sec-
tion 2. Shell scripting is familiar and widely used
for co-ordinating the execution of programs. How-
ever, there are three difficulties with this approach -
it is difficult to partially re-run, the specification of
the filenames is error-prone, and the script is badly
modularized.

Re-running the experiment The largest difficulty
with this script is how it handles errors - namely, it
does not. If some early processes succeed, but later
ones fail, the researcher can only re-run the entire
script, wasting the time spent on the previous run.
There are two common solutions to this problem.
The simplest is to comment out the parts of the script
which have succeeded, and re-run the script. This
is highly brittle and error-prone. More reliable but
much more complicated is to write a wrapper around
each command which checks whether the outputs
from the command already exist before running it.
Neither of these is desirable. It is also worth not-
ing that this problem can arise not just through error,
but when an input file changes, an experiment is ex-
tended with further processing, additional graphs are
added, further statistics are calculated, or if another
model is added to the comparison.

3Some researchers use more general programming lan-
guages, such as Perl, Python, or Java to co-ordinate their ex-
periments. While such languages may make some aspects of
co-ordination easier – for example, such languages would not
have to call out to an external program to produce a range of in-
tegers as does the script in Figure 1 – the arguments that follow
apply equally to these other approaches.
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for fold in ‘seq 0 9‘; do
extract-test-data $fold raw-data $fold.test
for class in A B A+B; do
extract-2way-training $fold raw-data $class > $fold.$class.train
train $fold.$class.train > $fold.$class.model
predict $fold.$class.model $fold.test > $fold.$class.out
prep-eval-2way $fold.$class.out > $fold.eval-in
eval $class $fold.$class.eval-in > $fold.$class.eval

done
extract-3way-training $fold raw-data > $fold.3way.train
train $fold.3way.train > $fold.3way.model
predict $fold.3way.model $fold.test > $fold.3way.out
for class in A B A+B; do
prep-eval-3way $class $fold.3way.out > $fold.3way.$class.eval-in
eval $class $fold.3way.$class.eval-in > $fold.3way.$class.eval

done
done

Figure 1: A shell script

Problematic filenames In this example, a file-
name is a concatenation of several variable names -
e.g. $(fold).$(class).train. This is also
error-prone - the writer of the script has to keep
track, for each filename, of which attributes need to
be specified for a given file, and the order in which
they must be specified. Either of these can change
as an experiment’s design evolves, and subtle design
changes can require changes throughout the script of
the references to many filenames.

Bad modularization In this example, the eval
program is called twice, even though the input and
output files in each case are of the same format.
The problem is that the filenames are such that the
line in the script which calls eval needs to be in-
clude information about precisely which files (in
one case $fold.3way.$class, and in the other
$fold.$class) are being evaluated. This is irrel-
evant – a more modular specification for the eval
program would simply say that it operates on a
.eval-in file and produces an .eval file. We
will see ways below of achieving exactly this.4

4One way of achieving this modularization with shell scripts
could involve defining functions. While this could be effective,
this greatly increases the complexity of the scripts.

%.model: %.train
train $< > $@

%.out: %.model %.test
predict $ˆ > $@

Figure 2: A partial makefile

2.2 Approach 2: A makefile

One solution to the problems detailed above is to
use a makefile instead of a shell script. The make
program (Feldman, 1979) bills itself as a “utility to
maintain groups of programs”5, but from our per-
spective, make is a declarative language for speci-
fying dependencies. This seems to be exactly what
we want, and indeed it does solve some of the prob-
lems detailed above. make has several new prob-
lems, though, which result in its being not an ideal
solution to our problem.

Figure 2 presents a portion of a makefile for this
task. For this part, the makefile ideally matches what
we want. It will pick up where it left off, avoiding
the re-running problem above. The question of file-
names is sidestepped, as we only need to deal with
the extensions here. And each command is neatly

5GNU make manpage.
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partitioned into its own section, which specifies its
dependencies, the files created by each command,
and the shell command to run to create them. How-
ever, there are three serious problems with this ap-
proach.

Files are represented by strings The first prob-
lem can be seen by trying to write a similar line for
the eval command. It would look something like
this:

%.eval: %.eval-in
eval get-class $ˆ > $@

However, it is hard to write the code represented
here as get-class. This code needs to examine
the filename string of $ˆ or $@, and extract the class
from that. This is certainly possible using standard
UNIX shell tools or make extensions, but it is ugly,
and has to be written once for every time such a
field needs to be accessed. For example, one way of
writing get-class using GNU make extensions
would be:

GETCLASS = $(filter A B A+B,\
$(subst ., ,$(1)))

%.eval: %.eval-in
eval $(call GETCLASS,$@) $ˆ > $@

The basic problem here is that to make, a
file is represented by a string, its filename.
For machine learning and natural language pro-
cessing experiments, it is much more natu-
ral to represent a file as a set of key-value
pairs. For example, the file 0.B.model might
be represented as { fold = 0, class = B,
filetype = model } .

Combinatorial dependencies The second prob-
lem with make is that it is very difficult to spec-
ify combinatorial dependencies. If one continued to
write the makefile above, one would eventually need
to write a final all target to specify all the files
which would need to be built. There are 60 such
files: one for each fold of the following set

$fold.3way.A.eval
$fold.3way.B.eval
$fold.3way.A+B.eval
$fold.A.eval

%.taggerA.pos: %.txt
tagger_A $ˆ > $@

%.taggerB.pos: %.txt
tagger_B $ˆ > $@

%.taggerC.pos: %.txt
tagger_C $ˆ > $@

%.chunkerA.chk: %.pos
chunker_A $ˆ > $@

%.chunkerB.chk: %.pos
chunker_B $ˆ > $@

%.chunkerC.chk: %.pos
chunker_C $ˆ > $@

%.parserA.prs: %.chk
parser_A $ˆ > $@

%.parserB.prs: %.chk
parser_B $ˆ > $@

%.parserC.prs: %.chk
parser_C $ˆ > $@

Figure 3: A non-functional makefile for testing three in-
dependent decisions

$fold.B.eval
$fold.A+B.eval

There is no easy way in make of listing these 60
files in a natural manner. One can escape to a shell
script, or use GNU make’s foreach function, but
both ways are messy.

Non-representable dependency structures The
final problem with make also relates to dependen-
cies. It is more subtle, but it turns out that there are
some sorts of dependency structures which cannot
be represented in make. Suppose I want to com-
pare the effect of using one of three parsers, one of
three part-of-speech-taggers and one of three chun-
kers for a summarization experiment. This involves
three separate three-way distinctions in the makefile,
where for each, there are three different commands
that might be run. A non-working example is in Fig-
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ure 3. The problem is that make pattern rules (rules
using the % character) can only match the suffix or
prefix of a filename6. This makefile does not work
because it requires the parser, chunker, and tagger
to all be the last part of the filename before the type
suffix.

2.3 Approach 3: zymake

zymake is designed to address the problems out-
lined above. The key principles of its design are as
follows:

• Like make, zymakefiles can be re-run multi-
ple times, each time picking up where the last
left off.

• Files are specified by key-value sets, not by
strings

• zymake includes a straightforward way of
handling combinatorial sets of files.

• zymake syntax is minimally different from
shell syntax.

Figure 4 presents a zymakefile which runs the run-
ning example experiment. Rather than explaining
the entire file at once, we will present a series of in-
creasingly complex parts of it.

Figure 5 presents the simplest possible zymake-
file, consisting of one rule, which describes how to
create a $().test file, and one goal, which lists
what files should be created by this file. A rule is
simply a shell command7, with some number of in-
terpolations8. An interpolation is anything between
the characters $( and the matching ). This is the
only form of interpolation done by zymake, so as
to minimally conflict with other interpolations done
by the shell, scripting languages such as Perl, etc.

6Thus, if we were only comparing two sets of items – e.g.
parsers and taggers but not chunkers – we could write this set
of dependencies by using a prefix to distinguish one set and a
suffix to distinguish the other. This is hardly pretty, though, and
does not extend to more than two sets.

7Users who are familiar with UNIX shells will find it use-
ful to be able to use input/output redirection and pipelines in
zymakefiles. Knowledge of advanced shell programming is not
necessary to use zymake, however.

8This term is used in Perl; it is sometimes referred to in other
languages as “substitution” or “expansion.”

extract-test-data $(fold) raw-data
$(>).test

extract-2way-training $(fold) raw-data
$(class) > $(train="2way").train

extract-3way-training $(fold) raw-data
> $(train="3way").train

train $().train > $().model

predict $().model $().test > $().out

prep-eval-3way $(class) $().out >
$(train="3way").eval-in

prep-eval-2way $().out >
$(train="2way").eval-in

eval $(class) $().eval-in > $().eval

classes = A B A+B
ways = 2way 3way

: $(fold = *(range 0 9)
class = *classes
train = *ways).eval

Figure 4: An example zymakefile. The exact commands
run by this makefile are presented in Appendix A.

extract-test-data raw-data $(>).test

: $().test

Figure 5: Simple zymakefile #1

extract-test-data $(fold) raw-data
$(>).test

: $(fold=0).test $(fold=1).test

Figure 6: Simple zymakefile #2

9



extract-test-data $(fold) raw-data
$(>).test

folds = 0 1

: $(fold=*folds).test

Figure 7: Simple zymakefile #3

The two interpolations in this example are file in-
terpolations, which are replaced by zymake with a
generated filename. Files in zymake are identified
not by a filename string but by a set of key-value
pairs, along with a suffix. In this case, the two in-
terpolations have no key-value pairs, and so are only
represented by a suffix. Finally, there are two kinds
of file interpolations - inputs, which are files that are
required to exist before a command can be run, and
outputs, which are files created by a command9. In
this case, the interpolation $(>).test is marked
as an output by the > character10, while $().test
is an input, since it is unmarked.

The goal of this program is to create a file match-
ing the interpolation $().test. The single rule
does create a file matching that interpolation, and so
this program will result in the execution of the fol-
lowing single command:

extract-test-data raw-data .test

Figure 6 presents a slightly more complex zy-
makefile. In this case, there are two goals - to create
a .test file with the key fold having the value
0, and another .test file with fold equal to 1.
We also see that the rule has become slightly more
complex – there is now another interpolation. This,
however, is not a file interpolation, but a variable in-
terpolation. $(fold) will be replaced by the value
of fold.

9Unlike make, zymake requires that each command ex-
plicitly mention an interpolation corresponding to each input
or output file. This restriction is caused by the merging of the
command part of the rule with the dependency part of the rule,
which are separate in make. We felt that this reduced redun-
dancy and clutter in the zymakefiles, but this may occasionally
require writing a wrapper around a program which does not be-
have in this manner.

10zymakewill also infer that any file interpolation following
the > character, representing standard output redirection in the
shell, is an output

Executing this zymakefile results in the execution
of two commands:

extract-test-data 0 raw-data 0.test
extract-test-data 1 raw-data 1.test

Note that the output files are now not just .test
but include the fold number in their name. This is
because zymake infers that the fold key, mentioned
in the extract rule, is needed to distinguish the two
test files. In general the user should specify as few
keys as possible for each file interpolation, and allow
zymake to infer the exact set of keys necessary to
distinguish each file from the rest11.

Figure 7 presents a small refinement to the zy-
makefile in Figure 6. The commands that will be run
are the same, but instead of separately listing the two
test files to be created, we create a variable folds
which is a list of all the folds we want, and use a
splat to create multiple goals. A splat is indicated
by the asterisk character, and creates one copy of the
file interpolation for each value in the variable’s list.

Figure 4 is now a straightforward extension of the
example we have seen so far. It uses a few more
features of zymake that we will not discuss, such
as string-valued keys, and the range function, but
further documentation is available on the zymake
website. zymake wants to create the goals at the
end, so it examines all the rules and constructs a di-
rected acyclic graph, or DAG, representing the de-
pendencies among the files. It then executes the
commands in some order based on this DAG – see
Section 3 for discussion of execution order.

2.4 Benefits of zymake
zymake satisfies the criteria set out above, and han-
dles the problems discussed with other systems.

• Reproducibility. By providing a single file
which can be re-executed many times, zymake
encourages a development style that encodes
all information about a workflow in a single
file. This also serves as documentation of the
complete workflow.

11Each file will be distinguished by all and only the keys
needed for the execution of the command that created it, and
the commands that created its inputs. A unique, global ordering
of keys is used along with a unique, global mapping of filename
components to key, value pairs so that the generated filename
for each file uniquely maps to the appropriate set of key, value
pairs.
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• Simplicity. zymake only requires writing a set
of shell commands, annotated with interpola-
tions. This allows researchers to quickly and
easily construct new and more complex exper-
iments, or to modify existing ones.

• Experimental life-cycle. zymake can re-
execute the same file many times when com-
ponents fail, inputs change, or the workflow is
extended.

• Software engineering. Each command in a
zymakefile only needs to describe the inputs
and outputs relevant for that command, making
the separate parts of the file quite modular.

• Combinatorial experiments. zymake includes
a built-in method for specifying that a particu-
lar variable needs to range over several possi-
bilities, such as a set of models, parameter val-
ues, or datasets.

2.5 Using zymake
Beginning to use zymake is as simple as download-
ing a single binary from the website12. Just as with
a shell script or makefile, the user then writes a sin-
gle textual zymakefile, and passes it to zymake for
execution. Typical usage of zymake will be in an
edit-run development cycle.

3 Parallel Execution

For execution of very large experiments, efficient
use of parallelism is necessary. zymake offers a
natural way of executing the experiment in a maxi-
mally parallel manner. The default serial execution
does a topological sort of the DAG, and executes
the components in that order. To execute in paral-
lel, zymake steps through the DAG starting at the
roots, starting any command which does not depend
on a command which has not yet executed.

To make this practical, of course, remote execu-
tion must be combined with parallel execution. The
current implementation provides a simple means of
executing a remote job using ssh, combined with
a simple /proc-based measure of remote cpu uti-
lization to find the least-used remote cpu from a

12Binaries for Linux, Mac OS X, and Windows, as well
as full source code, are available at http://www.cs.
cornell.edu/∼ebreck/zymake/.

provided set. We are currently looking at extend-
ing zymake to interface it with the Condor sys-
tem (Litzkow et al., 1988). Condor’s DAGMan
is designed to execute a DAG in parallel on a set
of remote machines, so it should naturally fit with
zymake. Interfaces to other cluster software are
possible as well. Another important extension will
be to allow the system to throttle the number of con-
current jobs produced and/or collect smaller jobs to-
gether, to better match the available computational
resources.

4 Other approaches

Deelman et al. (2004) and Gil et al. (2007) describe
the Pegasus and Wings systems, which together have
a quite similar goal to zymake. This system is de-
signed to manage large scientific workflows, with
both data and computation distributed across many
machines. A user describes their available data and
resources in a semantic language, along with an
abstract specification of a workflow, which Wings
then renders into a complete workflow DAG. This is
passed to Pegasus, which instantiates the DAG with
instances of the described resources and passes it to
Condor for actual execution. The system has been
used for large-scale scientific experiments, such as
earthquake simulation. However, we believe that
the added complexity of the input that a user has
to provide over zymake’s simple shell-like syntax
will mean a typical machine learning or natural lan-
guage processing researcher will find zymake eas-
ier to use.

The GATE and UIMA architectures focus specif-
ically on the management of components for lan-
guage processing (Cunningham et al., 2002; Fer-
rucci and Lally, 2004). While zymake knows noth-
ing about the structure of the files it manages, these
systems provide a common format for textual an-
notations which all components must use. GATE
provides a graphical user interface for running com-
ponents and for viewing and producing annotations.
UIMA provides a framework not just for running ex-
periments but for data analysis and application de-
ployment. Compared to writing a zymake script,
however, the requirements for using these systems
to manage an experiment are greater. In addition,
both these architectures most naturally support com-
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ponents written in Java (and in the case of UIMA,
C++). zymake is agnostic as to the source language
of each component, making it easier to include pro-
grams written by third parties or by researchers who
prefer different languages.
make, despite dating from 1979, has proved its

usefulness over time, and is still widely used. Many
other systems have been developed to replace it,
including ant13, SCons14, maven15, and others.
However, so far as we are aware, none of these sys-
tems solves the problems we have described with
make. As with make and shell scripts, running
experiments is certainly possible using these other
tools, but we believe they are far more complex and
cumbersome than zymake.

5 Future Extensions

There are a number of extensions to zymake which
could make it even more useful. One is to allow the
dependency DAG to vary during the running of the
experiment. At the moment, zymake requires that
the entire DAG be known before any processes can
run. As an example of when this is less than ideal,
consider early-stopping an artificial neural network.
One way of doing this is train the network to full
convergence, and output predictions from the inter-
mediate networks at some fixed interval of epochs.
We would like then to evaluate all these predictions
on held-out data (running one process for each of
them) and then to choose the point at which this
score is maximized (running one process for the
whole set). Since the number of iterations to con-
vergence is not known ahead of time, at the moment
we cannot support this structure in zymake. We
plan, however, to allow the structure of the DAG to
vary at run-time, allowing such experiments.

We are also interested in other extensions, includ-
ing an optional textual or graphical progress bar,
providing a way for the user to have more control
over the string filename produced from a key-value
set16, and keeping track of previous versions of cre-
ated files, to provide a sort of version control of the
output files.

13http://ant.apache.org/.
14http://www.scons.org/.
15http://maven.apache.org/.
16This will better allow zymake to interact with other work-

flows.

6 Conclusion

Most experiments in machine learning and natu-
ral language processing involve running a complex,
interdependent set of processes. We have argued
that there are serious difficulties with common ap-
proaches to automating these experiments. In their
place, we offer zymake, a new scripting language
with shell-like syntax but make-like semantics. We
hope our community will find it as useful as we have.
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A Output of Figure 4

We present here the commands run by zymake
when presented with the file in Figure 4. We present
only the commands run for fold 0, not for all 10
folds. Also, in actual execution zymake adds a pre-
fix to each filename based on the name of the zy-
makefile, so as to separate different experiments. Fi-
nally, note that this is only one possible order that the
commands could be run in.
extract-2way-training 0 raw-data A > A.0.2way.train
train A.0.2way.train > A.0.2way.model
extract-2way-training 0 raw-data B > B.0.2way.train
train B.0.2way.train > B.0.2way.model
extract-2way-training 0 raw-data A+B > AB.0.2way.train
train AB.0.2way.train > AB.0.2way.model
extract-3way-training 0 raw-data > 0.3way.train
train 0.3way.train > 0.3way.model
extract-test-data 0 raw-data 0.test
predict A.0.2way.model 0.test > A.0.2way.out
prep-eval-2way A.0.2way.out > A.0.2way.eval-in
eval A A.0.2way.eval-in > A.0.2way.eval
predict B.0.2way.model 0.test > B.0.2way.out
prep-eval-2way B.0.2way.out > B.0.2way.eval-in
eval B B.0.2way.eval-in > B.0.2way.eval
predict AB.0.2way.model 0.test > AB.0.2way.out
prep-eval-2way AB.0.2way.out > AB.0.2way.eval-in
eval A+B AB.0.2way.eval-in > AB.0.2way.eval
predict 0.3way.model 0.test > 0.3way.out
prep-eval-3way A 0.3way.out > A.0.3way.eval-in
eval A A.0.3way.eval-in > A.0.3way.eval
prep-eval-3way B 0.3way.out > B.0.3way.eval-in
eval B B.0.3way.eval-in > B.0.3way.eval
prep-eval-3way A+B 0.3way.out > AB.0.3way.eval-in
eval A+B AB.0.3way.eval-in > AB.0.3way.eval
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Abstract 

Natural language processing modules such as 
part-of-speech taggers, named-entity recog-

nizers and syntactic parsers are commonly 

evaluated in isolation, under the assumption 

that artificial evaluation metrics for individual 

parts are predictive of practical performance 

of more complex language technology sys-

tems that perform practical tasks. Although 

this is an important issue in the design and en-

gineering of systems that use natural language 

input, it is often unclear how the accuracy of 

an end-user application is affected by parame-

ters that affect individual NLP modules.  We 
explore this issue in the context of a specific 

task by examining the relationship between 

the accuracy of a syntactic parser and the 

overall performance of an information extrac-

tion system for biomedical text that includes 

the parser as one of its components.  We 

present an empirical investigation of the rela-

tionship between factors that affect the accu-

racy of syntactic analysis, and how the 

difference in parse accuracy affects the overall 

system.   

1 Introduction 

Software systems that perform practical tasks with 

natural language input often include, in addition to 

task-specific components, a pipeline of basic natu-

ral language processing modules, such as part-of-
speech taggers, named-entity recognizers, syntactic 

parsers and semantic-role labelers.  Although such 

building blocks of larger language technology so-
lutions are usually carefully evaluated in isolation 

using standard test sets, the impact of improve-

ments in each individual module on the overall 

performance of end-to-end systems is less well 
understood.  While the effects of the amount of 

training data, search beam widths and various ma-

chine learning frameworks have been explored in 

detail with respect to speed and accuracy in basic 
natural language processing tasks, how these trade-

offs in individual modules affect the performance 

of the larger systems they compose is an issue that 
has received relatively little attention.  This issue, 

however, is of great practical importance in the 

effective design and engineering of complex soft-

ware systems that deal with natural language.   
In this paper we explore some of these issues 

empirically in an information extraction task in the 

biomedical domain, the identification of protein- 
protein interactions (PPI) mentioned in papers ab-

stracts from MEDLINE, a large database of bio-

medical papers.  Due in large part to the creation of 
biomedical treebanks (Kulick et al., 2004; Tateisi 

et al., 2005) and rapid progress of data-driven 

parsers (Lease and Charniak, 2005; Nivre et al., 

2007), there are now fast, robust and accurate syn-
tactic parsers for text in the biomedical domain.  

Recent research shows that parsing accuracy of 

biomedical corpora is now between 80% and 90% 
(Clegg and Shepherd, 2007; Pyysalo et al., 2007; 

Sagae et al., 2008).  Intuitively, syntactic relation-

ships between words should be valuable in deter-
mining possible interactions between entities 

present in text.  Recent PPI extraction systems 

have confirmed this intuition (Erkan et al., 2007; 

Sætre et al., 2007; Katrenko and Adriaans, 2006).     
While it is now relatively clear that syntactic 

parsing is useful in practical tasks that use natural 

language corpora in bioinformatics, several ques-
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tions remain as to research issues that affect the 

design and testing of end-user applications, includ-
ing how syntactic analyses should be used in a 

practical setting, whether further improvements in 

parsing technologies will result in further im-

provements in practical systems, whether it is im-
portant to continue the development of treebanks 

and parser adaptation techniques for the biomedi-

cal domain, and how much effort should be spent 
on comparing and benchmarking parsers for bio-

medical data.  We attempt to shed some light on 

these matters by presenting experiments that show 
the relationship of the accuracy of a dependency 

parser and the accuracy of the larger PPI system 

that includes the parser.  We investigate the effects 

of domain-specific treebank size (the amount of 
available manually annotated training data for syn-

tactic parsers) and final system performance, and 

obtain results that should be informative to re-
searchers in bioinformatics who rely on existing 

NLP resources to design information extraction 

systems, as well as to members of the parsing 
community who are interested in the practical im-

pact of parsing research. 

In section 2 we discuss our motivation and re-

lated efforts.  Section 3 describes the system for 
identification of protein-protein interactions used 

in our experiments, and in section 4 describes the 

syntactic parser that provides the analyses for the 
PPI system, and the data used to train the parser.  

We describe our experiments, results and analysis 

in section 5, and conclude in section 6.  

2 Motivation and related work 

While recent work has addressed questions relating 
to the use of different parsers or different types of 

syntactic representations in the PPI extraction task 

(Sætre et al., 2007, Miyao et al., 2008), little con-
crete evidence has been provided for potential ben-

efits of improved parsers or additional resources 

for training syntactic parsers.  In fact, although 
there is increasing interest in parser evaluation in 

the biomedical domain in terms of precision/recall 

of brackets and dependency accuracy (Clegg and 

Shepherd, 2007; Pyysalo et al., 2007; Sagae et al., 
2008), the relationship between these evaluation 

metrics and the performance of practical informa-

tion extraction systems remains unclear.  In the 
parsing community, relatively small accuracy gains 

are often reported as success stories, but again, the 

precise impact of such improvements on practical 

tasks in bioinformatics has not been established. 
One aspect of this issue is the question of do-

main portability and domain adaptation for parsers 

and other NLP modules.  Clegg and Shepherd 

(2007) mention that available statistical parsers 
appear to overfit to the newswire domain, because 

of their extensive use of the Wall Street Journal 

portion of the Penn Treebank (Marcus et al., 1994) 
during development and training.  While this claim 

is supported by convincing evaluations that show 

that parsers trained on the WSJ Penn Treebank 
alone perform poorly on biomedical text in terms 

of accuracy of dependencies or bracketing of 

phrase structure, the benefits of using domain-

specific data in terms of practical system perfor-
mance have not been quantified.  These expected 

benefits drive the development of domain-specific 

resources, such as the GENIA treebank (Tateisi et 
al., 2005), and parser domain adaption (Hara et al., 

2007), which are of clear importance in parsing 

research, but of largely unconfirmed impact on 
practical systems. 

Quirk and Corston-Oliver (2006) examine a 

similar issue, the relationship between parser accu-

racy and overall system accuracy in syntax-
informed machine translation.  Their research is 

similar to the work presented here, but they fo-

cused on the use of varying amounts of out-of-
domain training data for the parser, measuring how 

a translation system for technical text performed 

when its syntactic parser was trained with varying 

amounts of Wall Street Journal text.  Our work, in 
contrast, investigates the use of domain-specific 

training material in parsers for biomedical text, a 

domain where significant amounts of effort are 
allocated for development of domain-specific NLP 

resources in hope that such resources will result in 

better overall performance in practical systems.  

3 A PPI extraction system based on syn-

tactic parsing 

PPI extraction is an NLP task to identify protein 

pairs that are mentioned as interacting in biomedi-
cal papers.  Figure 2 shows two sentences that in-

clude protein names: the former sentence mentions 

a protein interaction, while the latter does not.  
Given a protein pair, PPI extraction is a task of 

binary classification; for example, <IL-8, CXCR1> 
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is a positive example, and <RBP, TTR> is a ne-

gative example. 
Following recent work on using dependency 

parsing in systems that identify protein interactions 

in biomedical text (Erkan et al., 2007; Sætre et al., 
2007; Katrenko and Adriaans, 2006), we have built 

a system for PPI extraction that uses dependency 

relations as features. As exemplified, for the pro-

tein pair IL-8 and CXCR1 in the first sentence of 
Figure 2, a dependency parser outputs a dependen-

cy tree shown in Figure 1.  From this dependency 

tree, we can extract a dependency path between 
IL-8 and CXCR1 (Figure 3), which appears to be 

a strong clue in knowing that these proteins are 

mentioned as interacting. 
The system we use in this paper is similar to the 

one described in Sætre et al. (2007), except that it 

uses syntactic dependency paths obtained with a 

dependency parser, but not predicate-argument 
paths based on deep-parsing.  This method is based 

on SVM with SubSet Tree Kernels (Collins, 2002; 

Moschitti, 2006).  A dependency path is encoded 
as a flat tree as depicted in Figure 4. Because a tree 

kernel measures the similarity of trees by counting 

common subtrees, it is expected that the system 

finds effective subsequences of dependency paths.   
In addition to syntactic dependency features, we 

incorporate bag-of-words features, which are re-

garded as a strong baseline for IE systems.  We use 
lemmas of words before, between and after the pair 

of target proteins. 

In this paper, we use Aimed (Bunescu and 
Mooney, 2004), which is a popular benchmark for 

the evaluation of PPI extraction systems.  The 

Aimed corpus consists of 225 biomedical paper 

abstracts (1970 sentences), which are sentence-

split, tokenized, and annotated with proteins and 

PPIs.  

4 A data-driven dependency parser for 

biomedical text 

The parser we used as component of our PPI ex-

traction system was a shift-reduce dependency 

parser that uses maximum entropy models to de-

termine the parser’s actions.  Our overall parsing 
approach uses a best-first probabilistic shift-reduce 

algorithm, working left-to right to find labeled de-

pendencies one at a time. The algorithm is essen-
tially a dependency version of the constituent 

parsing algorithm for probabilistic parsing with 

LR-like data-driven models described by Sagae 
and Lavie (2006).  This dependency parser has 

been shown to have state-of-the-art accuracy in the 

CoNLL shared tasks on dependency parsing 

(Buchholz and Marsi, 2006; Nivre, 2007). Sagae 
and Tsujii (2007) present a detailed description of 

the parsing approach used in our work, including 

the parsing algorithm and the features used to clas-
sify parser actions.  In summary, the parser uses an 

algorithm similar to the LR parsing algorithm 

(Knuth, 1965), keeping a stack of partially built 
syntactic structures, and a queue of remaining in-

put tokens.  At each step in the parsing process, the 

parser can apply a shift action (remove a token 

from the front of the queue and place it on top of 
the stack), or a reduce action (pop the two topmost 

This study demonstrates that IL-8 recognizes 
and activates CXCR1, CXCR2, and the Duf-

fy antigen by distinct mechanisms. 

 

The molar ratio of serum retinol-binding pro-

tein (RBP) to transthyretin (TTR) is not 

useful to assess vitamin A status during infec-

tion in hospitalized children. 

Figure 2: Example sentences with protein names 

Figure 1: A dependency tree 

ROOT  IL-8  recognizes  and  activates  CXCR1 

ROOT 

SBJ 

OBJ 

COORD 

CC 

ENTITY1(IL-8)    recognizes   ENTITY2(CXCR1) 

Figure 3: A dependency path between protein names 

SBJ OBJ 
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stack items, and push a new item composed of the 

two popped items combined in a single structure). 

This parsing approach is very similar to the one 

used successfully by Nivre et al. (2006), but we 
use a maximum entropy classifier (Berger et al., 

1996) to determine parser actions, which makes 

parsing considerably faster. In addition, our pars-
ing approach performs a search over the space of 

possible parser actions, while Nivre et al.’s ap-

proach is deterministic. 
The parser was trained using 8,000 sentences 

from the GENIA Treebank (Tateisi et al., 2005), 

which contains abstracts of papers taken from 

MEDLINE, annotated with syntactic structures.  
To determine the effects of training set size on the 

parser, and consequently on the PPI extraction sys-

tem, we trained several parsing models with differ-
ent amounts of GENIA Treebank data.  We started 

with 100 sentences, and increased the training set 

by 100 sentence increments, up to 1,000 sentences.  
From that point, we increased the training set by 

1,000 sentence increments.  Figure 5 shows the 

labeled dependency accuracy for the varying sizes 

of training sets.  The accuracy was measured on a 
portion of the GENIA Treebank reserved as devel-

opment data.  The result clearly demonstrates that 

the increase in the size of the training set contri-
butes to increasing parse accuracy.  Training the 

parser with only 100 sentences results in parse ac-

curacy of about 72.5%.  Accuracy rises sharply 

with additional training data until the size of the 
training set reaches about 1,000 sentences (about 

82.5% accuracy).  From there, accuracy climbs 

consistently, but slowly, until 85.6% accuracy is 
reached with 8,000 sentences of training data. 

It should be noted that parser accuracy on the 

Aimed data used in our PPI extraction experiments 
may be slightly lower, since the domain of the 

GENIA Treebank is not exactly the same as the 

Aimed corpus.  Both of them were extracted from 

MEDLINE, but the criteria for data selection were 

not the same in the two corpora, creating possible 

differences in sub-domains.  We also note that the 
accuracy of a parser trained with more than 40,000 

sentences from the Wall Street Journal portion of 

the Penn Treebank is under 79%, a level equivalent 

to that obtained by training the parser with only 
500 sentences of GENIA data. 

 

 
Figure 5: Data size vs. parse accuracy 

 

5 Experiments and Results 

In this section we present our PPI extraction expe-
riments applying the dependency parsers trained 

with the different amounts of the GENIA Treebank 

in our PPI system.  As we mentioned, the GENIA 
Treebank is used for training the parser, while the 

Aimed is used for training and evaluation of PPI 

extraction.  A part-of-speech tagger trained with 

GENIA and PennBioIE was used.  We do not ap-
ply automatic protein name detection, and instead 

use the gold-standard protein annotations in the 

Aimed corpus.  Before running a parser, multiword 
protein names are concatenated and treated as sin-

gle words. As described in Section 3, bag-of-words 

and syntactic dependency paths are fed as features 
to the PPI classifier. The accuracy of PPI extrac-

tion is measured by the abstract-wise 10-fold cross 

validation (Sætre et al, 2007). 

When we use the part-of-speech tagger and the 
dependency parser trained with WSJ, the accuracy 

(F-score) of PPI extraction on this data set is 55.2.  

The accuracy increases to 56.9 when we train the 
part-of-speech tagger with GENIA and Penn BioIE, 

while using the WSJ-trained parser.  This confirms 

the claims by Lease and Charniak (2005) that sub-
sentential lexical analysis alone is helpful in adapt-

ing WSJ parsers to the biomedical domain.  While 

Lease and Charniak looked only at parse accuracy, 

70
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0 2000 4000 6000 8000

Figure 4: A tree kernel representation of the dependency 

path 

(dep_path (SBJ (ENTITY1 ecognizes)) 
(rOBJ (recognizes ENTITY2))) 
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our result shows that the increase in parse accuracy 

is, as expected, beneficial in practice. 
Figure 6 shows the relationship between the 

amount of parser training data and the F-score for 

the PPI extraction.  The result shows that the accu-

racy of PPI extraction increases with the use of 
more sentences to train the parser.    The best accu-

racy was obtained when using 4,000 sentences, 

where parsing accuracy is around 84.3.  Although 
it may appear that further increasing the training 

data for the parser may not improve the PPI extrac-

tion accuracy (since only small and inconsistent 
variations in F-score are observed in Figure 6), 

when we plot the curves shown in Figures 5 and 6 

in a single graph (Figure 7), we see that the two 

curves match each other to a large extent.  This is 
supported by the strong correlation between parse 

accuracy and PPI accuracy observed in Figure 8.  

While this suggests that training the parser with a 
larger treebank may result in improved accuracy in 

PPI extraction, we observe that a 1% absolute im-

provement in parser accuracy corresponds roughly 
to a 0.25 improvement in PPI extraction F-score.  

Figure 5 indicates that to obtain even a 1% im-

provement in parser accuracy by using more train-

ing data, the size of the treebank would have to 
increase significantly. 

Although the results presented so far seem to 

suggest the need for a large data annotation effort 
to achieve a meaningful improvement in PPI ex-

traction accuracy, there are other ways to improve 

the overall accuracy of the system without an im-

provement in parser accuracy.  One obvious alter-
native is to increase the size of the PPI-annotated 

corpus (which is distinct from the treebank used to 

train the parser).  As mentioned in section 3, our 
system is trained using the Aimed corpus, which 

contains 225 abstracts from biomedical papers with 

manual annotations indicating interactions between 
proteins.  Pairs of proteins with no interaction de-

scribed in the text are used as negative examples, 

and pairs of proteins described as interacting are 

used as positive examples.  The corpus contains a 
total of roughly 9,000 examples.  Figure 9 shows 

how the overall system accuracy varies when dif-

ferent amounts of training data (varying amounts 
of training examples) are used to train the PPI sys-

tem (keeping the parse accuracy constant, using all 

of the available training data in the GENIA tree-
bank to train the parser).  While Figure 5 indicates 

that a significant improvement in parse accuracy 

requires a large increase in the treebank used to 

train the parser, and Figure 7 shows that improve-
ments in PPI extraction accuracy may require a 

sizable improvement in parse accuracy, Figure 9 

suggests that even a relatively small increase in the 

PPI corpus may lead to a significant improvement 
in PPI extraction accuracy. 

 
Figure 6: Parser training data size vs. PPI extraction 

accuracy 

 

 

 
Figure 7: Parser training data size vs. parser accuracy 

and PPI extraction accuracy 

 

 

 
Figure 8: Parse accuracy vs. PPI extraction accuracy 
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Figure 9: Number of PPI training examples vs. PPI ex-

traction accuracy 

 
While some of the conclusions that can be 

drawn from these results may be somewhat sur-

prising, most are entirely expected.  However, even 
in these straightforward cases, our experiments 

provide some empirical evidence and concrete 

quantitative analysis to complement intuition.  We 

see that using domain-specific training data for the 
parsing component for the PPI extraction system 

produces superior results, compared to using train-

ing data from the WSJ Penn Treebank.  When the 
parser trained on WSJ sentences is used, PPI ex-

traction accuracy is about 55, compared to over 57 

when sentences from biomedical papers are used.  
This corresponds fairly closely to the differences in 

parser accuracy: the accuracy of the parser trained 

on 500 sentences from GENIA is about the same 

as the accuracy of the parser trained on the entire 
WSJ Penn Treebank, and when these parsers are 

used in the PPI extraction system, they result in 

similar overall task accuracy.  However, the results 
obtained when a domain-specific POS tagger is 

combined with a parser trained with out-of-domain 

data, overall PPI results are nearly at the same lev-
el as those obtained with domain-specific training 

data (just below 57 with a domain-specific POS 

tagger and out-of-domain parser, and just above 57 

for domain-specific POS tagger and parser).  At 
the same time, the argument against annotating 

domain-specific data for parsers in new domains is 

not a strong one, since higher accuracy levels (for 
both the parser and the overall system) can be ob-

tained with a relatively small amount of domain-

specific data. 

Figures 5, 6 and 7 also suggest that additional 

efforts in improving parser accuracy (through the 
use of feature engineering, other machine learning 

techniques, or an increase in the size of its training 

set) could improve PPI extraction accuracy, but a 

large improvement in parser accuracy may be re-
quired.  When we combine these results with the 

findings obtained by Miyao et al. (2008), they sug-

gest that a better way to improve the overall sys-
tem is to spend more effort in designing a specific 

syntactic representation that addresses the needs of 

the system, instead of using a generic representa-
tion designed for measuring parser accuracy.  

Another potentially fruitful course of action is to 

design more sophisticated and effective ways for 

information extraction systems to use NLP tools, 
rather than simply extracting features that corres-

pond to small fragments of syntactic trees.  Of 

course, making proper use of natural language 
analysis is a considerable challenge, but one that 

should be kept in mind through the design of prac-

tical systems that use NLP components. 

6 Conclusion 

This paper presented empirical results on the rela-

tionship between the amount of training data used 

to create a dependency parser, and the accuracy of 

a system that performs identification of protein-
protein interactions using the dependency parser.  

We trained a dependency parser with different 

amounts of data from the GENIA Treebank to es-
tablish how the improvement in parse accuracy 

corresponds to improvement in practical task per-

formance in this information extraction task.  

While parsing accuracy clearly increased with 
larger amounts of data, and is likely to continue 

increasing with additional annotation of data for 

the GENIA Treebank, the trend in the accuracy of 
PPI extraction indicates that a sizable improvement 

in parse accuracy may be necessary for improved 

detection of protein interactions. 
When combined with recent findings by Miyao 

et al. (2008), our results indicate that further work 

in designing PPI extraction systems that use syn-

tactic dependency features would benefit from 
more adequate syntactic representations or more 

sophisticated use of NLP than simple extraction of 

syntactic subtrees.  Furthermore, to improve accu-
racy in this task, efforts on data annotation should 

focus on task-specific data (manual annotation of 
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protein interactions in biomedical papers), rather 

than on additional training data for syntactic pars-
ers.  While annotation of parser training data might 

seems like a cost-effective choice, since improved 

parser results might be beneficial in a number of 

systems where the parser can be used, our results 
show that, in this particular task, efforts should be 

focused elsewhere, such as the annotation of addi-

tion PPI data.  
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Abstract

This paper describes the structure of a test
suite for evaluation of clinical question an-
swering systems; presents several manually
compiled resources found useful for test suite
generation; and describes the adaptation of
these resources for evaluation of a clinical
question answering system.

1 Introduction

The community-wide interest in rapid development
in many areas of natural language processing and in-
formation retrieval resulted in creation of reusable
test collections in large-scale evaluations such as the
Text REtrieval Conference (TREC)1. Researchers in
more specific areas, for which no TREC or other col-
lections are available, have to create or find suitable
test collections to evaluate their systems.

For example, Cramer et al. (2006) recruited vol-
unteers and quickly gathered a sizeable corpus of
question-answer pairs for evaluation of German
open-domain question answering systems. This was
achieved through a Web-based tool that allowed
marking up “interesting” passages in Wikipedia ar-
ticles and then asking questions about the content
of those passages. This appealing approach can not
easily be applied in the domain of clinical ques-
tion answering because the quality of the questions
and answers as well as the answer completeness
are paramount. A test suite for evaluation of clini-
cal question answering systems should contain a set

1http://trec.nist.gov/

of real-life questions asked by clinicians and high-
quality answers compiled by experts. The answers
should be presented in the form deemed useful by
clinicians.

One of the benefits of focusing on a specific do-
main, such as clinical question answering, is that the
user-needs and desirable results are well-studied and
their descriptions are readily-available. In the case
of clinical question answering, clinicians’ desider-
ata are: to see a “bottom-line advice” first, have
on-demand access to the context that was used in
generation of the advice, and finally have access
to the original sources of information (Ely et al.,
2005). A fair number of high-quality manually cre-
ated collections present answers to clinical questions
in this form and could be obtained online. Three par-
tially freely-available sources: Family Practitioner
Inquiry Network (FPIN)2, Parkhurst Exchange Fo-
rum (PE)3, and BMJ Clinical Evidence (BMJ-CE)4

were used to design and develop the presented test
suites and evaluation methods.

Although there seems to be a distinction between
test collections and test suites (Co-
hen et al., 2004) (the former defined as “pieces
of text” and associated with corpora, the latter, as
lists of specially constructed sentences, or sentence
sequences, or sentence fragments (Balkan et al.,
1994)), evaluation of answers to clinical questions
crosses this boundary and requires the availability
of carefully generated sentence fragments as well as
suitable document collections.

2http://www.primeanswers.org/primeanswers/
3http://www.parkhurstexchange.com/qa/index.php
4http://www.clinicalevidence.com/ceweb/conditions/index.jsp
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2 Test suite structure

The multi-tiered answer model of the FPIN and
BMJ-CE resources is adapted in this work. The top
tier contains the “bottom-line advice”. FPIN pro-
vides the key-points of the advice in the form of a
short sentence sequence, whereas BMJ-CE provides
a list of sentence fragments (see Figure 1). Both
sources employ experts in question areas to care-
fully construct the answers. The second tier elab-
orates each of the key-points in 2-3 paragraph-long
summaries generated by the same experts. The third
tier provides references to the original sources used
in answer compilation.

Likely to be beneficial:

• Angiotensin converting enzyme inhibitors

• Aspirin

• β Blockers . . .

Trade-off between benefits and harms:

• Nitrates (in the absence of thrombolysis)

Likely to be ineffective or harmful: . . .

Figure 1: The top tier of a multi-tiered answer to the clin-
ical question How to improve outcomes in acute myocar-
dial infarction? contains key-points generated by a panel
of cardiologists.

3 Using the test suite in an evaluation

The answer presented in Figure 1 can be used to
evaluate a system’s answer to this question by ex-
tracting the reference list from the FPIN or BMJ-CE
answer. Similarly, the second-tier summaries can be
used to evaluate the context for the key-points gener-
ated by a system. The references can be used to eval-
uate the quality of the original sources retrieved by a
system if the documents in both lists are represented
using their unique identifiers: DOI or a PubMed5

identifier. Availability of these test suites provides
for the following evaluation forms:

• diagnostic, in which developers could evaluate
how a tier is affected by changes in its own
module(s) or in the underlying tiers;

5http://www.ncbi.nlm.nih.gov/sites/entrez

• task-oriented, in which the system is evaluated
as a whole on its ability to answer clinical ques-
tions.

It is conceivable to evaluate a system as a whole
by evaluating its performance in each tier and then
combining the results. In a task-oriented evalua-
tion, it seems reasonable to evaluate the quality of
the first-tier answer and verify the adequacy of the
second-tier context.

3.1 Caveats

Even the simplest case of the top-tier evaluation,
checking the list of fragments generated by a sys-
tem against the reference list, ideally should be con-
ducted manually by a person with biomedical back-
ground. For example, Acetylsalicylic acid in a sys-
tem’s answer needs to be matched to Aspirin in the
reference list. Automation of this step is possible
through mapping of both lists to an ontology, e.g.,
UMLS6, but such evaluation will be significantly
less accurate and potentially biased (if a system uses
the same mapping algorithm to find the answer).

A manual evaluation based on 30 of 54 BMJ-CE
question-answer pairs in the presented test suite is
described in (Demner-Fushman and Lin, 2006). An-
other 50 question-answer pairs originated in FPIN
and PE.
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Abstract

It is a widely accepted belief in natural lan-
guage processing research that naturally oc-
curring data is the best (and perhaps the only
appropriate) data for testing text mining sys-
tems. This paper compares code coverage us-
ing a suite of functional tests and using a large
corpus and finds that higher class, line, and
branch coverage is achieved with structured
tests than with even a very large corpus.

1 Introduction

In 2006, Geoffrey Chang was a star of the protein
crystallography world. That year, a crucial compo-
nent of his code was discovered to have a simple
error with large consequences for his research. The
nature of the bug was to change the signs (positive
versus negative) of two columns of the output. The
effect of this was to reverse the predicted “handed-
ness” of the structure of the molecule—an impor-
tant feature in predicting its interactions with other
molecules. The protein for his work on which Chang
was best known is an important one in predicting
things like human response to anticancer drugs and
the likelihood of bacteria developing antibiotic re-
sistance, so his work was quite influential and heav-
ily cited. The consequences for Chang were the
withdrawal of 5 papers in some of the most presti-
gious journals in the world. The consequences for
the rest of the scientific community have not been

∗K. Bretonnel Cohen is with The MITRE Corporation. All
three co-authors are at the Center for Computational Pharma-
cology in the University of Colorado School of Medicine.

quantified, but were substantial: prior to the retrac-
tions, publishing papers with results that did not
jibe with his model’s predictions was difficult, and
obtaining grants based on preliminary results that
seemed to contradict his published results was dif-
ficult as well. The Chang story (for a succinct dis-
cussion, see (Miller, 2006), and see (Chang et al.,
2006) for the retractions) is an object illustration of
the truth of Rob Knight’s observation that “For sci-
entific work, bugs don’t just mean unhappy users
who you’ll never actually meet: they mean retracted
publications and ended careers. It is critical that
your code be fully tested before you draw conclu-
sions from results it produces” (personal communi-
cation). Nonetheless, the subject of software testing
has been largely neglected in academic natural lan-
guage processing. This paper addresses one aspect
of software testing: the monitoring of testing efforts
via code coverage.

1.1 Code coverage

Code coverage is a numerical assessment of the
amount of code that is executed during the running
of a test suite (McConnell, 2004). Although it is
by no means a completely sufficient method for de-
termining the completeness of a testing effort, it is
nonetheless a helpful member of any suite of met-
rics for assessing testing effort completeness. Code
coverage is a metric in the range 0-1.0. A value of
0.86 indicates that 86% of the code was executed
while running a given test suite. 100% coverage is
difficult to achieve for any nontrivial application, but
in general, high degrees of “uncovered” code should
lead one to suspect that there is a large amount of
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code that might harbor undetected bugs simply due
to never having been executed. A variety of code
coverage metrics exist. Line coverage indicates the
proportion of lines of code that have been executed.
It is not the most revealing form of coverage assess-
ment (Kaner et al., 1999, p. 43), but is a basic part
of any coverage measurement assessment. Branch
coverage indicates the proportion of branches within
conditionals that have been traversed (Marick, 1997,
p. 145). For example, for the conditional if $a
&& $b, there are two possible branches—one is tra-
versed if the expression evaluates to true, and the
other if it evaluates to false. It is more informative
than line coverage. Logic coverage (also known as
multicondition coverage (Myers, 1979) and condi-
tion coverage (Kaner et al., 1999, p. 44) indicates the
proportion of sets of variable values that have been
tried—a superset of the possible branches traversed.
For example, for the conditional if $a || $b,
the possible cases (assuming no short-circuit logic)
are those of the standard (logical) truth table for that
conditional. These coverage types are progressively
more informative than line coverage. Other types of
coverage are less informative than line coverage. For
example, function coverage indicates the proportion
of functions that are called. There is no guarantee
that each line in a called function is executed, and all
the more so no guarantee that branch or logic cov-
erage is achieved within it, so this type of coverage
is weaker than line coverage. With the advent of
object-oriented programming, function coverage is
sometimes replaced by class coverage—a measure
of the number of classes that are covered.

We emphasize again that code coverage is not
a sufficient metric for evaluating testing complete-
ness in isolation—for example, it is by definition
unable to detect “errors of omission,” or bugs that
consist of a failure to implement needed functional-
ity. Nonetheless, it remains a useful part of a larger
suite of metrics, and one study found that testing in
the absence of concurrent assessment of code cov-
erage typically results in only 50-60% of the code
being executed ((McConnell, 2004, p. 526), citing
Wiegers 2002).

We set out to question whether a dominant, if of-
ten unspoken, assumption of much work in contem-
porary NLP holds true: that feeding a program a
large corpus serves to exercise it adequately. We be-

gan with an information extraction application that
had been built for us by a series of contractors, with
the contractors receiving constant remote oversight
and guidance but without ongoing monitoring of the
actual code-writing. The application had benefitted
from no testing other than that done by the develop-
ers. We used a sort of “translucent-box” or “gray-
box” paradigm, meaning in this case that we treated
the program under test essentially as a black box
whose internals were inaccessible to us, but with the
exception that we inserted hooks to a coverage tool.
We then monitored three types of coverage—line
coverage, branch coverage, and class coverage—
under a variety of contrasting conditions:

• A set of developer-written functional tests ver-
sus a large corpus with a set of semantic rules
optimized for that corpus.

• Varying the size of the rule set.

• Varying the size of the corpus.

We then looked for coverage differences between
the various combinations of input data and rule sets.
In this case, the null hypothesis is that no differences
would be observed. In contrast with the null hypoth-
esis, the unspoken assumption in much NLP work
is that the null hypothesis does not hold, that the
primary determinant of coverage will be the size of
the corpus, and that the observed pattern will be that
coverage is higher with the large corpus than when
the input is not a large corpus.

2 Methods and materials

2.1 The application under test
The application under test was an information ex-
traction application known as OpenDMAP. It is de-
scribed in detail in (Hunter et al., 2008). It achieved
the highest performance on one measure of the
protein-protein interaction task in the BioCreative
II shared task (Krallinger et al., 2007). Its use in
that task is described specifically in (Baumgartner
Jr. et al., In press). It contains 7,024 lines of code
spread across three packages (see Table 1). One
major package deals with representing the seman-
tic grammar rules themselves, while the other deals
with applying the rules to and extracting data from
arbitrary textual input. (A minor package deals with
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Component Lines of code
Parser 3,982
Rule-handling 2,311
Configuration 731
Total 7,024

Table 1: Distribution of lines of code in the application.

the configuration files and is mostly not discussed in
this paper.)

The rules and patterns that the system uses are
typical “semantic grammar” rules in that they allow
the free mixing of literals and non-terminals, with
the non-terminals typically representing domain-
specific types such as “protein interaction verb.”
Non-terminals are represented as classes. Those
classes are defined in a Protégé ontology. Rules typ-
ically contain at least one element known as a slot.
Slot-fillers can be constrained by classes in the on-
tology. Input that matches a slot is extracted as one
of the participants in a relation. A limited regular
expression language can operate over classes, liter-
als, or slots. The following is a representative rule.
Square brackets indicate slots, curly braces indicate
a class, the question-mark is a regular expression op-
erator, and any other text is a literal.

{c-interact} := [interactor1]
{c-interact-verb} the?
[interactor2]

The input NEF binds PACS-2 (PMID 18296443)
would match that rule. The result would be the
recognition of a protein interaction event, with in-
teractor1 being NEF and interactor2 being PACS-2.
Not all rules utilize all possibilities of the rule lan-
guage, and we took this into account in one of our
experiments; we discuss the rules further later in the
paper in the context of that experiment.

2.2 Materials
In this work, we made use of the following sets of
materials.

• A large data set distributed as training data for
part of the BioCreative II shared task. It is de-
scribed in detail in (Krallinger et al., 2007).
Briefly, its domain is molecular biology, and
in particular protein-protein interactions—an
important topic of research in computational

Test type Number of tests
Basic 85
Pattern/rule 67
Patterns only 90
Slots 9
Slot nesting 7
Slot property 20
Total 278

Table 2: Distribution of functional tests.

bioscience, with significance to a wide range
of topics in biology, including understanding
the mechanisms of human diseases (Kann et
al., 2006). The corpus contained 3,947,200
words, making it almost an order of mag-
nitude larger than the most commonly used
biomedical corpus (GENIA, at about 433K
words). This data set is publicly available via
biocreative.sourceforge.net.

• In conjunction with that data set: a set of 98
rules written in a data-driven fashion by man-
ually examining the BioCreative II data de-
scribed just above. These rules were used in the
BioCreative II shared task, where they achieved
the highest score in one category. The set of
rules is available on our SourceForge site at
bionlp.sourceforge.net.

• A set of functional tests created by the primary
developer of the system. Table 2 describes the
breakdown of the functional tests across vari-
ous aspects of the design and functionality of
the application.

2.3 Assessing coverage

We used the open-source Cobertura tool
(Mark Doliner, personal communication;
cobertura.sourceforge.net) to mea-
sure coverage. Cobertura reports line coverage and
branch coverage on a per-package basis and, within
each package, on a per-class basis1.

The architecture of the application is such that
Cobertura’s per-package approach resulted in three

1Cobertura is Java-specific. PyDEV provides code coverage
analysis for Python, as does Coverage.py.
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sets of coverage reports: for the configuration file
processing code, for the rule-processing code, and
for the parser code. We report results for the appli-
cation as a whole, for the parser code, and for the
rule-processing code. We did note differences in the
configuration code coverage for the various condi-
tions, but it does not change the overall conclusions
of the paper and is omitted from most of the discus-
sion due to considerations of space and of general
interest.

3 Results

We conducted three separate experiments.

3.1 The most basic experiment: test suite
versus corpus

In the most basic experiment, we contrasted
class, line, and branch coverage when running the
developer-constructed test suite and when running
the corpus and the corpus-based rules. Tables 3 and
4 show the resulting data. As the first two lines
of Table 3 show, for the entire application (parser,
rule-handling, and configuration), line coverage was
higher with the test suite—56% versus 41%—and
branch coverage was higher as well—41% versus
28% (see the first two lines of Table 3).

We give here a more detailed discussion of the re-
sults for the entire code base. (Detailed discussions
for the parser and rule packages, including granular
assessments of class coverage, follow.)

For the parser package:

• Class coverage was higher with the test suite
than with the corpus—88% (22/25) versus 80%
(20/25).

• For the entire parser package, line coverage
was higher with the test suite than with the
corpus—55% versus 41%.

• For the entire parser package, branch cover-
age was higher with the test suite than with the
corpus—57% versus 29%.

Table 4 gives class-level data for the two main
packages. For the parser package:

• Within the 25 individual classes of the parser
package, line coverage was equal or greater

with the test suite for 21/25 classes; it was not
just equal but greater for 14/25 classes.

• Within those 21 of the 25 individual classes
that had branching logic, branch coverage was
equal or greater with the test suite for 19/21
classes, and not just equal but greater for 18/21
classes.

For the rule-handling package:

• Class coverage was higher with the test suite
than with the corpus—100% (20/20) versus
90% (18/20).

• For the entire rules package, line coverage was
higher with the test suite than with the corpus—
63% versus 42%.

• For the entire rules package, branch coverage
was higher with the test suite than with the
corpus—71% versus 24%.

Table 4 gives the class-level data for the rules
package:

• Within the 20 individual classes of the rules
package, line coverage was equal or greater
with the test suite for 19/20 classes, and not just
equal but greater for 6/20 classes.

• Within those 11 of the 20 individual classes
that had branching logic, branch coverage was
equal or greater with the test suite for all
11/11 classes, and not just equal but greater for
(again) all 11/11 classes.

3.2 The second experiment: Varying the size of
the rule set

Pilot studies suggested (as later experiments veri-
fied) that the size of the input corpus had a negligible
effect on coverage. This suggested that it would be
worthwhile to assess the effect of the rule set on cov-
erage independently. We used simple ablation (dele-
tion of portions of the rule set) to vary the size of the
rule set.

We created two versions of the original rule set.
We focussed only on the non-lexical, relational pat-
tern rules, since they are completely dependent on
the lexical rules. Each version was about half the
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Metric Functional tests Corpus, all rules nominal rules verbal rules
Overall line coverage 56% 41% 41% 41%
Overall branch coverage 41% 28% 28% 28%
Parser line coverage 55% 41% 41% 41%
Parser branch coverage 57% 29% 29% 29%
Rules line coverage 63% 42% 42% 42%
Rules branch coverage 71% 24% 24% 24%
Parser class coverage 88% (22/25) 80% (20/25)
Rules class coverage 100% (20/20) 90% (18/20)

Table 3: Application and package-level coverage statistics using the developer’s functional tests, the full corpus with
the full set of rules, and the full corpus with two reduced sets of rules. The highest value in a row is bolded. The final
three columns are intentionally identical (see explanation in text).

Package Line coverage >= Line coverage > Branch coverage >= Branch coverage >

Classes in parser package 21/25 14/25 19/21 18/21
Classes in rules package 19/20 6/20 11/11 11/11

Table 4: When individual classes were examined, both line and branch coverage were always higher with the functional
tests than with the corpus. This table shows the magnitude of the differences. >= indicates the number of classes that
had equal or greater coverage with the functional tests than with the corpus, and > indicates just the classes that had
greater coverage with the functional tests than with the corpus.

size of the original set. The first consisted of the
first half of the rule set, which happened to consist
primarily of verb-based patterns. The second con-
sisted of the second half of the rule set, which corre-
sponded roughly to the nominalization rules.

The last two columns of Table 3 show the
package-level results. Overall, on a per-package ba-
sis, there were no differences in line or branch cov-
erage when the data was run against the full rule set
or either half of the rule set. (The identity of the last
three columns is due to this lack of difference in re-
sults between the full rule set and the two reduced
rule sets.) On a per-class level, we did note minor
differences, but as Table 3 shows, they were within
rounding error on the package level.

3.3 The third experiment: Coverage closure

In the third experiment, we looked at how cover-
age varies as increasingly larger amounts of the cor-
pus are processed. This methodology is compara-
ble to examining the closure properties of a corpus
in a corpus linguistics study (see e.g. Chapter 6 of
(McEnery and Wilson, 2001)) (and as such may be
sensitive to the extent to which the contents of the
corpus do or do not fit the sublanguage model). We

counted cumulative line coverage as increasingly
large amounts of the corpus were processed, rang-
ing from 0 to 100% of its contents. The results for
line coverage are shown in Figure 1. (The results for
branch coverage are quite similar, and the graph is
not shown.) Line coverage for the entire application
is indicated by the thick solid line. Line coverage
for the parser package is indicated by the thin solid
line. Line coverage for the rules package is indi-
cated by the light gray solid line. The broken line
indicates the number of pattern matches—quantities
should be read off of the right y axis.

The figure shows quite graphically the lack of ef-
fect on coverage of increasing the size of the cor-
pus. For the entire application, the line coverage is
27% when an empty document has been read in, and
39% when a single sentence has been processed; it
increases by one to 40% when 51 sentences have
been processed, and has grown as high as it ever
will—41%—by the time 1,000 sentences have been
processed. Coverage at 191,478 sentences—that is,
3,947,200 words—is no higher than at 1,000 sen-
tences, and barely higher, percentagewise, than at a
single sentence.

An especially notable pattern is that the huge rise
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Figure 1: Increase in percentage of line coverage as in-
creasing amounts of the corpus are processed. Left y axis
is the percent coverage. The x axis is the number of sen-
tences. Right y axis (scale 0-12,000) is the number of
rule matches. The heavy solid line is coverage for the en-
tire package, the thin solid line is coverage for the parser
package, the light gray line is coverage for the rules pack-
age, and the broken line is the number of pattern matches.

in the number of matches to the rules (graphed by
the broken line) between 5,000 sentences and 191K
sentences has absolutely no effect on code coverage.

4 Discussion

The null hypothesis—that a synthetic test suite
and a naturalistic corpus provide the same code
coverage—is not supported by the data shown here.
Furthermore, the widely, if implicitly, held assump-
tion that a corpus would provide the best testing data
can be rejected, as well. The results reported here
are consistent with the hypothesis that code cover-
age for this application is not affected by the size of
the corpus or by the size of the rule set, and that run-
ning it on a large corpus does not guarantee thorough
testing. Rather, coverage is optimized by traditional
software testing.

4.1 Related work
Although software testing is a first-class research
object in computer science, it has received little at-
tention in the natural language processing arena. A
notable exception to this comes from the grammar

engineering community. This has produced a body
of publications that includes Oepen’s work on test
suite design (Oepen et al., 1998), Volk’s work on test
suite encoding (Volk, 1998), Oepen et al.’s work on
the Redwoods project (Oepen et al., 2002), Butt and
King’s discussion of the importance of testing (Butt
and King, 2003), Flickinger et al.’s work on “seman-
tics debugging” with Redwoods data (Flickinger et
al., 2005), and Bender et al.’s recent work on test
suite generation (Bender et al., 2007). Outside of
the realm of grammar engineering, work on test-
ing for NLP is quite limited. (Cohen et al., 2004)
describes a methodology for generating test suites
for molecular biology named entity recognition sys-
tems, and (Johnson et al., 2007) describes the de-
velopment of a fault model for linguistically-based
ontology mapping, alignment, and linking systems.
However, when most researchers in the NLP com-
munity refer in print to “testing,” they do not mean
it in the sense in which that term is used in soft-
ware engineering. Some projects have publicized as-
pects of their testing work, but have not published on
their approaches: the NLTK project posts module-
level line coverage statistics, having achieved me-
dian coverage of 55% on 116 Python modules2 and
38% coverage for the project as a whole; the MAL-
LET project indicates on its web site that it en-
courages the production of unit tests during devel-
opment, but unfortunately does not go into details
of their recommendations for unit-testing machine
learning code3.

4.2 Conclusions
We note a number of shortcomings of code cov-
erage. For example, poor coding conventions
can actually inflate your line coverage. Con-
sider a hypothetical application consisting only
of the following, written as a single line of code
with no line breaks: if (myVariable ==
1) doSomething elsif (myVariable
== 2) doSomethingElse elsif
(myVariable = 3) doYetAnotherThing
and a poor test suite consisting only of inputs that
will cause myVariable to ever have the value 1.
The test suite will achieve 100% line coverage for

2nltk.org/doc/guides/coverage
3mallet.cs.umass.edu/index.php/

Guidelines for writing unit tests
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this application—and without even finding the error
that sets myVariable to 3 if it is not valued 1
or 2. If the code were written with reasonable line
breaks, code coverage would be only 20%. And,
as has been noted by others, code coverage can not
detect “sins of omission”—bugs that consist of the
failure to write needed code (e.g. for error-handling
or for input validation). We do not claim that code
coverage is wholly sufficient for evaluating a test
suite; nonetheless, it is one of a number of metrics
that are helpful in judging the adequacy of a testing
effort. Another very valuable one is the found/fixed
or open/closed graph (Black, 1999; Baumgartner Jr.
et al., 2007).

While remaining aware of the potential shortcom-
ings of code coverage, we also note that the data
reported here supports its utility. The developer-
written functional tests were produced without mon-
itoring code coverage; even though those tests rou-
tinely produced higher coverage than a large corpus
of naturalistic text, they achieved less than 60% cov-
erage overall, as predicted by Wiegers’s work cited
in the introduction. We now have the opportunity to
raise that coverage via structured testing performed
by someone other than the developer. In fact, our
first attempts to test the previously unexercised code
immediately uncovered two showstopper bugs; the
coverage analysis also led us to the discovery that
the application’s error-handling code was essentially
untested.

Although we have explored a number of dimen-
sions of the space of the coverage phenomenon, ad-
ditional work could be done. We used a relatively
naive approach to rule ablation in the second experi-
ment; a more sophisticated approach would be to ab-
late specific types of rules—for example, ones that
do or don’t contain slots, ones that do or don’t con-
tain regular expression operators, etc.—and monitor
the coverage changes. (We did run all three experi-
ments on a separate, smaller corpus as a pilot study;
we report the results for the BioCreative II data set
in this paper since that is the data for which the rules
were optimized. Results in the pilot study were en-
tirely comparable.)

In conclusion: natural language processing appli-
cations are particularly susceptible to emergent phe-
nomena, such as interactions between the contents
of a rule set and the contents of a corpus. These

are especially difficult to control when the evalua-
tion corpus is naturalistic and the rule set is data-
driven. Structured testing does not eliminate this
emergent nature of the problem space, but it does
allow for controlled evaluation of the performance
of your system. Corpora also are valuable evalua-
tion resources: the combination of a structured test
suite and a naturalistic corpus provides a powerful
set of tools for finding bugs in NLP applications.

Acknowledgments

The authors thank James Firby, who wrote the func-
tional tests, and Helen L. Johnson, who wrote the
rules that were used for the BioCreative data. Steve
Bethard and Aaron Cohen recommended Python
coverage tools. We also thank the three anonymous
reviewers.

References

William A. Baumgartner Jr., K. Bretonnel Cohen, Lynne
Fox, George K. Acquaah-Mensah, and Lawrence
Hunter. 2007. Manual curation is not sufficient
for annotation of genomic databases. Bioinformatics,
23:i41–i48.

William A. Baumgartner Jr., Zhiyong Lu, Helen L. John-
son, J. Gregory Caporaso, Jesse Paquette, Anna Linde-
mann, Elizabeth K. White, Olga Medvedeva, K. Bre-
tonnel Cohen, and Lawrence Hunter. In press. Con-
cept recognition for extracting protein interaction rela-
tions from biomedical text. Genome Biology.

Emily M. Bender, Laurie Poulson, Scott Drellishak, and
Chris Evans. 2007. Validation and regression test-
ing for a cross-linguistic grammar resource. In ACL
2007 Workshop on Deep Linguistic Processing, pages
136–143, Prague, Czech Republic, June. Association
for Computational Linguistics.

Rex Black. 1999. Managing the Testing Process.
Miriam Butt and Tracy Holloway King. 2003. Grammar

writing, testing and evaluation. In Ali Farghaly, editor,
A handbook for language engineers, pages 129–179.
CSLI.

Geoffrey Chang, Christopher R. Roth, Christopher L.
Reyes, Owen Pornillos, Yen-Ju Chen, and Andy P.
Chen. 2006. Letters: Retraction. Science, 314:1875.

K. Bretonnel Cohen, Lorraine Tanabe, Shuhei Kinoshita,
and Lawrence Hunter. 2004. A resource for construct-
ing customized test suites for molecular biology entity
identification systems. In HLT-NAACL 2004 Work-
shop: BioLINK 2004, Linking Biological Literature,
Ontologies and Databases, pages 1–8. Association for
Computational Linguistics.

29



Dan Flickinger, Alexander Koller, and Stefan Thater.
2005. A new well-formedness criterion for semantics
debugging. In Proceedings of the HPSG05 Confer-
ence.

Lawrence Hunter, Zhiyong Lu, James Firby, William
A. Baumgartner Jr., Helen L. Johnson, Philip V. Ogren,
and K. Bretonnel Cohen. 2008. OpenDMAP: An
open-source, ontology-driven concept analysis engine,
with applications to capturing knowledge regarding
protein transport, protein interactions and cell-specific
gene expression. BMC Bioinformatics, 9(78).

Helen L. Johnson, K. Bretonnel Cohen, and Lawrence
Hunter. 2007. A fault model for ontology mapping,
alignment, and linking systems. In Pacific Sympo-
sium on Biocomputing, pages 233–244. World Scien-
tific Publishing Company.

Cem Kaner, Hung Quoc Nguyen, and Jack Falk. 1999.
Testing computer software, 2nd edition. John Wiley
and Sons.

Maricel Kann, Yanay Ofran, Marco Punta, and Predrag
Radivojac. 2006. Protein interactions and disease. In
Pacific Symposium on Biocomputing, pages 351–353.
World Scientific Publishing Company.

Martin Krallinger, Florian Leitner, and Alfonso Valen-
cia. 2007. Assessment of the second BioCreative PPI
task: automatic extraction of protein-protein interac-
tions. In Proceedings of the Second BioCreative Chal-
lenge Evaluation Workshop.

Brian Marick. 1997. The craft of software testing:
subsystem testing including object-based and object-
oriented testing. Prentice Hall.

Steve McConnell. 2004. Code complete. Microsoft
Press, 2nd edition.

Tony McEnery and Andrew Wilson. 2001. Corpus Lin-
guistics. Edinburgh University Press, 2nd edition.

Greg Miller. 2006. A scientist’s nightmare: software
problem leads to five retractions. Science, 314:1856–
1857.

Glenford Myers. 1979. The art of software testing. John
Wiley and Sons.

S. Oepen, K. Netter, and J. Klein. 1998. TSNLP - test
suites for natural language processing. In John Ner-
bonne, editor, Linguistic Databases, chapter 2, pages
13–36. CSLI Publications.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The LinGO Redwoods treebank: mo-
tivation and preliminary applications. In Proceedings
of the 19th international conference on computational
linguistics, volume 2.

Martin Volk. 1998. Markup of a test suite with SGML.
In John Nerbonne, editor, Linguistic databases, pages
59–76. CSLI Publications.

30



Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 31–39,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Building a B IOWORDNET by Using WORDNET ’s Data Formats
and WORDNET ’s Software Infrastructure — A Failure Story

Michael Poprat Elena Beisswanger

Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universität Jena

D-07743 Jena, Germany
{poprat,beisswanger,hahn}@coling-uni-jena.de

Udo Hahn

Abstract

In this paper, we describe our efforts to build
on WORDNET resources, using WORDNET

lexical data, the data format that it comes with
and WORDNET’s software infrastructure in
order to generate a biomedical extension of
WORDNET, the BIOWORDNET. We began
our efforts on the assumption that the soft-
ware resources were stable and reliable. In
the course of our work, it turned out that this
belief was far too optimistic. We discuss the
stumbling blocks that we encountered, point
out an error in the WORDNET software with
implications for research based on it, and con-
clude that building on the legacy of WORD-
NET data structures and its associated soft-
ware might preclude sustainable extensions
that go beyond the domain of general English.

1 Introduction

WORDNET (Fellbaum, 1998) is one of the most au-
thoritative lexical resources for the general English
language. Due to its coverage – currently more than
150,000 lexical items – and its lexicological rich-
ness in terms of definitions (glosses) and semantic
relations, synonymy via synsets in particular, it has
become ade factostandard for all sorts of research
that rely on lexical content for the English language.

Besides this perspective on rich lexicological
data, over the years a software infrastructure has
emerged around WORDNET that was equally ap-
proved by the NLP community. This included,
e.g., a lexicographic file generator, various editors
and visualization tools but also meta tools rely-
ing on properly formated WORDNET data such as

a library of similarity measures (Pedersen et al.,
2004). In numerous articles the usefulness of this
data and software ensemble has been demonstrated
(e.g., for word sense disambiguation (Patwardhan
et al., 2003), the analysis of noun phrase conjuncts
(Hogan, 2007), or the resolution of coreferences
(Harabagiu et al., 2001)).

In our research on information extraction and text
mining within the field of biomedical NLP, we sim-
ilarly recognized an urgent need for a lexical re-
source comparable to WORDNET, both in scope and
size. However, the direct usability of the original
WORDNET for biomedical NLP is severely ham-
pered by a (not so surprising) lack of coverage of the
life sciences domain in the general-language English
WORDNET as was clearly demonstrated by Burgun
and Bodenreider (2001).

Rather than building a BIOWORDNET by hand,
as was done for the general-language English
WORDNET, our idea to set up a WORDNET-style
lexical resource for the life sciences was different.
We wanted tolink the original WORDNET with
various biomedical terminological resources vastly
available in the life sciences domain. As an obvious
candidate for this merger, we chose one of the ma-
jor high-coverage umbrella systems for biomedical
ontologies, the OPEN BIOMEDICAL ONTOLOGIES

(OBO).1 These (currently) over 60 OBO ontologies
provide domain-specific knowledge in terms of hi-
erarchies of classes that often come with synonyms
and textual definitions for lots of biomedical sub-
domains (such as genes, proteins, cells, sequences,

1http://www.bioontology.org/
repositories.html#obo
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etc.).2 Given these resources and their software in-
frastructure, our plan was to create a biomedically
focused lexicological resource, the BIOWORDNET,
whose coverage would exceed that of any of its com-
ponent resources in a so far unprecedented man-
ner. Only then, given such a huge combined re-
source advanced NLP tasks such as anaphora res-
olution seem likely to be tackled in a feasible way
(Hahn et al., 1999; Castaño et al., 2002; Poprat and
Hahn, 2007). In particular, we wanted to makedi-
rect use of available software infrastructure such as
the library of similarity metrics without the need for
re-programming and hence foster the reuse of exist-
ing softwareas is.

We began our efforts on the assumption that the
WORDNET software resources were stable and reli-
able. In the course of our work, it turned out that this
belief was far too optimistic. We discuss the stum-
bling blocks that we encountered, point out an er-
ror in the WORDNET software with implications for
research based on it, and conclude that building on
the legacy of WORDNET data structures and its as-
sociated software might preclude sustainable exten-
sions that go beyond the domain of general English.
Hence, our report contains one of the rare failure sto-
ries (not only) in our field.

2 Software Around WORDNET Data

While the stock of lexical data assembled in the
WORDNET lexicon was continuously growing over
time,3 its data format and storage structures, the so-
calledlexicographic file, by and large, remained un-
altered (see Section 2.1). In Section 2.2, we will deal
with two important software components with which
the lexicographic file can be created and browsed.
Over the years, together with the continuous exten-
sion of the WORDNET lexicon, a lot of software
tools have been developed in various programming
languages allowing browsing and accessing WORD-
NET as well as calculating semantic similarities on
it. We will discuss the most relevant of these tools
in Section 2.3.

2Bodenreider and Burgun (2002) point out that the structure
of definitions in WORDNET differ to some degree from more
domain-specialized sources such as medical dictionaries.

3The latest version 3.0 was released in December 2006

2.1 Lexicon Organization of WORDNET and
Storage in Lexicographic Files

At the top level, WORDNET is organized accord-
ing to four parts of speech,viz. noun, verb, adjec-
tive and adverb. The most recent version 3.0 cov-
ers more than 117,000 nouns, 11,500 verbs, 21,400
adjectives and 4,400 adverbs, interlinked bylexical
relations, mostly derivations. The basic semantic
unit for all parts of speech are sets of synonymous
words, so-calledsynsets. These are connected by
different semantic relations, imposing a thesaurus-
like structure on WORDNET. In this paper, we dis-
cuss the organization of noun synsets in WORDNET

only, because this is the relevant part of WORD-
NET for our work. There are two importantseman-
tic relation types linking noun synsets. Thehyper-
nym/ hyponymrelation on which the whole WORD-
NET noun sense hierarchy is built links more spe-
cific to more general synsets, while themeronym/
holonymrelation describes partonomic relations be-
tween synsets, such as part of the whole, member of
the whole or substance of the whole.

From its very beginning, WORDNET was built
and curated manually. Lexicon developing experts
introduced new lexical entries into WORDNET,
grouped them into synsets and defined appropriate
semantic and lexical relations. Since WORDNET

was intended to be an electronic lexicon, a data
representation format had to be defined as well.
When the WORDNET project started more than two
decades ago, markup languages such as SGML or
XML were unknown. Because of this reason, a
rather idiosyncratic, fully text-based data structure
for these lexicographic files was defined in a way to
be readable and editable by humans — and survived
until to-day. This can really be considered as an
outdated legacy given the fact that the WORDNET

community has been so active in the last years in
terms of data collection, but has refrained from
adapting its data formats in a comparable way to
to-day’s specification standards. Very basically,4

each line in the lexicographic file holds one synset
that is enclosed by curly brackets. Take as an
example the synset for “monkey”:

4A detailed description can be found in the WORDNET

manualwninput(5WN), available fromhttp://wordnet.
princeton.edu/man/wninput.5WN .

32



{ monkey, primate,@ (any of various

long-tailed primates (excluding the

prosimians)) }

Within the brackets at the first position synonyms
are listed, separated by commas. In the exam-
ple, there is only one synonym, namely “monkey”.
The synonyms are followed by semantic relations to
other synsets, if available. In the example, there is
only one hypernym relation (denoted by “@”) point-
ing to the synset “primate”. The final position is
reserved for the gloss of the synset encapsulated in
round brackets. It is important to notice that there
are no identifiers for synsets in the lexicographic file.
Rather, the string expressions themselves serve as
identifiers. Given the fundamental idea of synsets –
all words within a synset mean exactly the same in
a certain context – it is sufficient to relate one word
in the synset in order to refer to the whole synset.
Still, there must be a way to deal with homonyms,
i.e., lexical items which share the same string, but
have different meanings. WORDNET’s approach to
distinguish different senses of a word is to add num-
bers from 0 to 15, calledlexical identifiers. Hence,
in WORDNET, a word cannot be more than 16-fold
ambiguous. This must be kept in mind when one
wants to build a WORDNET for highly ambiguous
sublanguages such as the biomedical one.

2.2 Software Provided with WORDNET

To guarantee fast access to the entries and their rela-
tions, an optimized index file must be created. This
is achieved through the easy-to-use GRIND software
which comes with WORDNET. It simply consumes
the lexicographic file(s) as input and creates two
plain-text index files,5 namelydata and index .
Furthermore, there is a command line tool,WN, and
a graphical browser,WNB, for data visualization that
require the specific index created by GRIND (as all
the other tools that query the WORDNET data do as
well). These tools are the most important (and only)
means of software support for WORDNET creation
by checking the syntax as well as allowing the (man-
ual) inspection of the newly created index.

5Its syntax is described in http://wordnet.
princeton.edu/man/wndb.5WN .

2.3 Third-Party W ORDNET Tools

Due to the tremendous value of WORDNET for the
NLP and IR community and its usefulness as a
resource for coping with problems requiring mas-
sive amounts of lexico-semantic knowledge, the
software-developing community was and continues
to be quite active. Hence, in support of WORDNET

several APIs and software tools were released that
allow accessing, browsing and visualizing WORD-
NET data and measuring semantic similarity on the
base of the WORDNET’s lexical data structures.6

The majority of these APIs are maintained well
and kept up to date, such as JAWS7 and JWNL,8

and enable connecting to the most recent ver-
sion of WORDNET. For the calculation of vari-
ous similarity measures, the PERL library WORD-
NET::SIMILARITY initiated and maintained by Ted
Pedersen9 can be considered as ade facto stan-
dard and has been used in various experimental set-
tings and applications. This availability of well-
documented and well-maintained software is defi-
nitely a strong argument to rely on WORDNET as
a powerful lexico-semantic knowledge resource.

3 The BIOWORDNET Initiative

In this section, we describe our approach to extend
WORDNET towards the biomedical domain by in-
corporating terminological resources from the OBO
collection. The most obvious problems we faced
were to define a common data format and to map
non-compliant data formats to the chosen one.

3.1 OBO Ontologies

OBO is a collection of publicly accessible biomed-
ical ontologies.10 They cover terms from
many biomedical subdomains and offer structured,
domain-specific knowledge in terms of classes
(which often come with synonyms and textual defi-
nitions) and class hierarchies. Besides the hierarchy-
defining relationis-a, some OBO ontologies provide

6For a comprehensive overview of available WORDNET

tools we refer to WORDNET’s ‘related project’ website (http:
//wordnet.princeton.edu/links ).

7http://engr.smu.edu/ ˜ tspell/
8http://jwordnet.sourceforge.net/
9http://wn-similarity.sourceforge.net/

10http://www.bioontology.org/
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Figure 1: From OBO ontologies to BIOWORDNET— towards a domain-specific WORDNET for biomedicine

additional semantic relation types such assequence-
of or develops-fromto express even more complex
and finer-grained domain-specific knowledge. The
ontologies vary significantly in size (up to 60,000
classes with more than 150,000 synonyms), the
number of synonyms per term and the nature of
terms.

The OBO ontologies are available in various for-
mats including the OBO flat file format, XML and
OWL. We chose to work with the OWL version for
our purpose,11 since for the OWL language also ap-
propriate tools are available facilitating the extrac-
tion of particular information from the ontologies,
such as taxonomic links, labels, synonyms and tex-
tual definitions of classes.

3.2 From OBO to BIOWORDNET

Our plan was to construct a BIOWORDNET by con-
verting, in the first step, the OBO ontologies into a
WORDNET hierarchy of synsets, while keeping to
the WORDNET lexicographic file format, and build-
ing a WORDNET index. As a preparatory step, we
defined a mapping from the ontology to WORDNET

items as shown in Table 1.
The three-stage conversion approach is depicted

in Figure 1. First, domain specific terms and tax-

11http://www.w3.org/TR/owl-semantics/

OBO ontology BIOWORDNET

ontology class synset
class definition synset gloss
class name word in synset
synonym of class name word in synset
Ci is-aCj Si hyponymof Sj

Cj has-subclassCi Sj hypernymof Si

Table 1: Mapping between items from OBO and from
BIOWORDNET (Ci andCj denote ontology classes,Si

andSj the corresponding BIOWORDNET synsets)

onomic links between terms were extracted sepa-
rately from each of the OBO ontologies. Then
the extracted data was converted according to the
syntax specifications of WORDNET’s lexicographic
file. Finally for each of the converted ontologies the
WORDNET-specific index was built using GRIND.

Following this approach we ran into several prob-
lems, both regarding the WORDNET data structure
and the WORDNET-related software that we used
for the construction of the BIOWORDNET. Con-
verting the OBO ontologies turned out to be cum-
bersome, especially the conversion of the CHEBI
ontology12 (long class names holding many special
characters) and the NCI thesaurus13 (large number

12http://www.ebi.ac.uk/chebi/
13http://nciterms.nci.nih.gov/

34



of classes and some classes that also have a large
number of subclasses). These and additional prob-
lems will be addressed in more detail in Section 4.

4 Problems with WORDNET’s Data
Format and Software Infrastructure

We here discuss two types of problems we found
for the data format underlying the WORDNET lex-
icon and the software that helps building a WORD-
NET file and creating an index for this file. First,
WORDNET’s data structure puts several restrictions
on what can be expressed in a WORDNET lexicon.
For example, it constrains lexical information to a
fixed number of homonyms and a fixed set of rela-
tions. Second, the data structure imposes a number
of restrictions on the string format level. If these
restrictions are violated the WORDNET processing
software throws error messages which differ consid-
erably in terms of informativeness for error tracing
and detection or even do not surface at all at the lex-
icon builder’s administration level.

4.1 Limitations of Expressiveness

The syntax on which the current WORDNET lex-
icographic file is based imposes severe limitations
on what can be expressed in WORDNET. Although
these limitations might be irrelevant for representing
general-language terms, they do affect the construc-
tion of a WORDNET-like resource for biomedicine.
To give some examples, the WORDNET format al-
lows a 16-fold lexical ambiguity only (lexical IDs
that are assigned to ambiguous words are restricted
to the numbers 0-15, see Section 2). This forced us
to neglect some of the OBO ontology class names
and synonyms that were highly ambiguous.14

Furthermore, the OBO ontologies excel in a richer
set of semantic relations than WORDNET can of-
fer. Thus, a general problem with the conversion
of the OBO ontologies into WORDNET format was
that except from the taxonomicis-a relation (which
corresponds to the WORDNET hyponymrelation)
and thepart-of relation (which corresponds to the
WORDNET meronymrelation) all remaining OBO-
specific relations (such asdevelops-from, sequence-
of, variant-of and position-of) could not be rep-

14This is a well-known limitation that is already mentioned
in the WORDNET documentation.

resented in the BIOWORDNET. The structure of
WORDNET neither contains such relations nor is
it flexible enough to include them so that we face
a systematic loss of information in BIOWORDNET

compared to the original OBO ontologies. Al-
though these restrictions are well-known, their re-
moval would require extending the current WORD-
NET data structure fundamentally. This, in turn,
would probably necessitate a full re-programming of
all of WORDNET-related software.

4.2 Limitations of Data Format and Software

When we tried to convert data extracted from the
OBO ontologies into WORDNET’s lexicographic
file format (preserving its syntactic idiosyncrasies
for the sake of quick and straightforward reusability
of software add-ons), we encountered several intri-
cacies that took a lot of time prior to building a valid
lexicographic file.

First, we had to replace 31 different charac-
ters with unique strings such as “(” with “-LRB-
” and “+” with “-PLU-” before GRIND was able
to process the lexicographic file. The reason is
that many of such special characters occurring
in domain specific terms, especially in designa-
tors of chemical compounds such as“methyl es-
ter 2,10-dichloro-12H-dibenzo(d,g)(1,3)dioxocin-6-
carboxylic acid” (also known as“treloxinate” with
the CAS registry number 30910-27-1), are reserved
symbols in the WORDNET data formatting syntax.
If these characters are not properly replaced GRIND

throws an exact and useful error message (see Table
2, first row).

Second, we had to find out that we have to replace
all empty glosses by at least one whitespace charac-
ter. Otherwise, GRIND informs the user in terms of
a rather cryptic error message that mentions the po-
sition of the error though not its reason (see Table 2,
second row).

Third, numbers at the end of a lexical item need to
be escaped. In WORDNET, the string representation
of an item is used as its unique identifier. To dis-
tinguish homonyms (words with the same spelling
but different meaning, such as“cell” as the func-
tional unit of all organisms, on the one hand, and
as small compartment, on the other hand) accord-
ing to the WORDNET format different numbers from
0 to 15 (so-called lexical IDs) have to be appended
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Problem Description Sample Error Message Usefulness of Er-
ror Message

Problem Solution

illegal use of key characters noun.cell, line 7: Illegal
character %

high replace illegal characters

empty gloss sanity error - actual pos
2145 != assigned pos
2143!

moderate add gloss consisting of at least
one whitespace character

homonyms (different words
with identical strings)

noun.rex, line 5: Syn-
onym ”electrochem-
ical reaction” is not
unique in file

high distinguish word senses by
adding lexical identifiers (use
the numbers 1-15)

lexical ID larger than 15 noun.rex, line 4: ID must
be less than 16: cd25

high quote trailing numbers of
words, only assign lexical
identifiers between 1-15, omit
additional word senses

word with more than 425
characters

Segmentation fault (core
dumped)

low omit words that exceed the max-
imal length of 425 characters

synset with more than 998
direct hyponymous synsets

Segmentation fault (core
dumped)

low omit some hyponymous synsets
or introduce intermediate
synsets with a limited number
of hyponymous synsets

no query result though the
synset is in the index, access
software crashes

none – not known

Table 2: Overview of the different kinds of problems that we encountered when creating a BIOWORDNET keeping to
the WORDNET data structure and the corresponding software. Each problem description is followed by a sample error
message that GRIND had thrown, a statement about how useful the error message was to detect the source of the error
and a possible solution for the problems, if available. The last row documents a special experience with data viewers
for data from the NCI thesaurus.

to the end of each homonym. If in a lexicographic
file two identical strings occur that have not been as-
signed different lexical identifiers (it does not mat-
ter whether this happens within or across synsets)
GRIND emits an error message that mentions both,
the position and the lexical entry which caused this
error (cf. Table 2, third row).

Numbers that appear at the end of a lexical item as
an integral part of it (such as“2” in “IL2” , a special
type of cytokine (protein)) have to be escaped in or-
der to avoid their misinterpretation as lexical identi-
fiers. This, again, is a well-documented shortcoming
of WORDNET’s data specification rules.

In case such numbers are not escaped prior to pre-
senting the lexicographic file to GRIND the word
closing numbers are always interpreted as lexical
identifiers. Closing numbers that exceed the num-
ber 15 cause GRIND to throw an informative error
message (see Table 2, fourth row).

4.3 Undocumented Restrictions and
Insufficient Error Messages

In addition to the more or less documented re-
strictions of the WORDNET data format mentioned
above we found additional restrictions that lack doc-
umentation up until now, to the best of our knowl-
edge.

First, it seems that the length of a word is re-
stricted to 425 characters. If a word in the lexico-
graphic file exceeds this length, GRIND is not able to
create an index and throws an empty error message,
namely the memory error “segmentation fault” (cf.
Table 2, fifth row). As a consequence of this restric-
tion, some very long CHEBI class names could not
have been included in the BIOWORDNET.

Second, it seems that synsets are only allowed to
group up to 988 direct hyponymous synsets. Again,
GRIND is not able to create an index, if this restric-
tion is not obeyed and throws the null memory er-
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ror message “segmentation fault” (cf. Table 2, sixth
row). An NCI thesaurus class that had more than
998 direct subclasses thus could not have been in-
cluded in the BIOWORDNET.

Due to insufficient documentation and utterly
general error messages the only way to locate the
problem causing the “segmentation fault” errors was
to examine the lexicographic files manually. We had
to reduce the number of synset entries in the lexico-
graphic file, step by step, in a kind of trial and error
approach until we could resolve the problem. This
is, no doubt, a highly inefficient and time consum-
ing procedure. More informative error messages of
GRIND would have helped us a lot.

4.4 Deceptive Results from WORDNET

Software and Third-Party Components

After getting rid of all previously mentioned errors,
valid index files were compiled. It was possible to
access these index files using the WORDNET query-
ing tools WN and WNB, indicating the index files
were ‘valid’. However, when we tried to query
the index file that was generated by GRIND for the
NCI thesaurus we got strange results. WhileWN

did not return any query results, the browserWNB

crashed without any error message (cf. Table 2, sev-
enth row). The same holds for the Java APIs JAWS
and JWNL.

Since a manual examination of the index file re-
vealed that the entries that we were searching for, in
fact, were included in the file, some other, up to this
step unknown error must have prevented the soft-
ware tools from finding the targeted entries. Hence,
we want to point out that although we have exam-
ined this error for the NCI thesaurus only, the risk
is high that this “no show” error is likely to bias
any other application as well which makes use of
the the same software that we grounded our ex-
periments on. Since the NCI thesaurus is a very
large resource, even worse, further manual error
search is nearly impossible. At this point, we
stopped our attempt building a WORDNET resource
for biomedicine based on the WORDNET formatting
and software framework.

5 Related Work

In the literature dealing with WORDNET and its
structures from a resource perspective (rather than
dealing with its applications), two directions can
be distinguished. On the one hand, besides the
original English WORDNET and the various vari-
ant WORDNETs for other languages (Vossen, 1998),
extensions to particular domains have already been
proposed (for the medical domain by Buitelaar and
Sacaleanu (2002) and Fellbaum et al. (2006); for the
architectural domain Bentivogli et al. (2004); and
for the technical report domain by Vossen (2001)).
However, none of these authors neither mentions im-
plementation details of the WORDNETs or perfor-
mance pitfalls we have encountered, nor is supple-
mentary software pointed out that might be useful
for our work.

On the other hand, there are suggestions concern-
ing novel representation formats of next-generation
WORDNETs. For instance in the BALKA NET

project (Tufiş et al., 2004), an XML schema plus
a DTD was proposed (Smrž, 2004) and an editor
called CISDIC with basic maintenance functionali-
ties and consistency check was released (Horák and
Smrž, 2004). The availability of APIs or software to
measure similarity though remains an open issue.

So, our approach to reuse the structure and the
software for building a BIOWORDNET was moti-
vated by the fact that we could not find any al-
ternatives coming with a software ensemble as de-
scribed in Section 2. Against all expectations, we
did not manage to reuse the WORDNET data struc-
ture. However, there are no publications that report
on such difficulties and pitfalls we were confronted
with.

6 Discussion and Conclusion

We learnt from our conversion attempt that the cur-
rent WORDNET representation format of WORD-
NET suffers from several limitations and idiosyn-
crasies that cannot be by-passed by a simple, yet
ad hoc work-around. Many of the limitations and
pitfalls we found limiting (in the sense what can be
expressed in WORDNET) are due to the fact that its
data format is out-of-date and not really suitable for
the biomedical sublanguage. In addition, though we
do not take into doubt that the WORDNET software
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works fine for the official WORDNET release, our
experiences taught us that it fails or gives limited
support in case of building and debugging a new
WORDNET resource. Even worse, we have evidence
from one large terminological resource (NCI) that
WORDNET’s software infrastructure (GRIND) ren-
ders deceptive results.

Although WORDNET might no longerbe the one
and only lexical resource for NLP each year a con-
tinuously strong stream of publications on the use of
WORDNET illustrates its importance for the com-
munity. On this account we find it remarkable that
although improvements in content and structure of
WORDNET have been proposed (e.g., Boyd-Graber
et al. (2006) propose to add (weighted) connec-
tions between synsets, Oltramari et al. (2002) sug-
gest to restructure WORDNET’s taxonomical struc-
ture, and Mihalcea and Moldovan (2001) recom-
mend to merge synsets that are too fine-grained)
to the best of our knowledge, no explicit proposals
have been made to improve the representation for-
mat of WORDNET in combination with the adaption
of the WORDNET-related software.

According to our experiences the existing WORD-
NET software is hardly (re)usable due to insufficient
error messages that the software throws and limited
documentation. From our point of view it would be
highly preferable if the software would be improved
and made more user-supportive (more meaningful
error messages would already improve the useful-
ness of the software). In terms of the actual rep-
resentation format of WORDNET we found that us-
ing the current format is not only cumbersome and
error-prone, but also limits what can be expressed in
a WORDNET resource.

From our perspective this indicates the need for
a major redesign of WORDNET’s data structure
foundations to keep up with the standards of to-
day’s meta data specification languages (e.g., based
on RFD (Graves and Gutierrez, 2006), XML or
OWL (Lüngen et al., 2007)). We encourage the re-
implementation of WORDNET resources based on
such a state-of-the-art markup language (for OWL in
particular a representation of WORDNET is already
available, cf. van Assem et al. (2006)). Of course, if
a new representation format is used for a WORDNET

resource also the software accessing the resource has
to be adapted to the new format. This may require

substantial implementation efforts that we think are
worth to be spent, if the new format overcomes the
major problems that are due to the original WORD-
NET format.
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Abstract

In this paper we describe a natural language
generation system which takes as its input a
set of assertions encoded as a semantic graph
and outputs a data structure connecting the se-
mantic graph to a text which expresses those
assertions, encoded as a TAG syntactic tree.
The scope of the system is restricted to con-
trolled natural language, and this allows the
generator to work within a tightly restricted
domain of locality. We can exploit this fea-
ture of the system to ensure fast and efficient
generation, and also to make the generator re-
liable by providing a rapid algorithm which
can exhaustively test at compile time the com-
pleteness of the linguistic resources with re-
spect to the range of potential meanings. The
system can be exported for deployment with
a minimal build of the semantic and linguistic
resources that is verified to ensure that no run-
time errors will result from missing resources.
The framework is targeted at using natural lan-
guage generation technology to build semantic
web applications where machine-readable in-
formation can be automatically expressed in
natural language on demand.

1 Introduction

This paper describes a fast, reliable and scalable
framework for developing applications supporting
tactical generation – by which we mean applications
which take as their input some semantic structure
that has already been organised at a high level, and
choose the syntactic structures and words required to
express it. The framework takes as input a semantic

graph representing a set of assertions in Description
Logic (DL) (Baader et al., 2003) and transforms it
into a tree which encodes the grammar rules, syn-
tactic subcategorisations, orderings and lexical an-
chors required to construct a textual representation
of the input data. The resulting text isconceptu-
ally aligned, by which we mean that each compo-
nent of the text structure (such as words, clauses or
sentences, for example) is linked back to the medi-
ating structure from which the text was generated,
and from there back to vertices and edges in the
semantic graph received as input. The target con-
text for the framework is the construction of se-
mantic web (Berners-Lee et al., 2001) resources us-
ing Natural Language Generation (NLG) technology
which extends the notion of semantic alignment de-
veloped in theWYSIWYM system (Power and Scott,
1998; Power et al., 2003). In this context the text is
ephemeral and is generated on demand, while the
document content is fully machine-readable, sup-
porting tasks such as automated consistency check-
ing, inferencing and semantic search/query. Since
the text is fully linked to the underlying semantic
representation it supports a rich user interface en-
compassing fast and reliable semantic search, inline
syntax or anaphora highlighting, knowledge editing,
and so on. Finally, the text could be generated in
many different natural languages making the infor-
mation content more widely available. We envisage
the technology supporting a range of different use
cases such as information feeds, technical instruc-
tions, medical orders or short, factual reports.

For such a system to be of practical value in an
enterprise system the NLG component must sup-
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port standard aspects of software engineering qual-
ity such as modularity, reliability, speed and scala-
bility. The design of the framework relies on two key
simplifying assumptions and these limit the range of
information which can be represented and the flu-
ency of the text used to express it. Specifically, the
information is limited by the expressivity of DL –
for example only limited quantification is possible –
and the surface text is restricted to controlled natu-
ral language (Hartley and Paris, 2001). The upside
of this trade-off is that the domain of locality is very
restricted. This means that there is minimal search
during generation and so the algorithm is fast and
scalable. It also enables us to design the generator
so that it is predictable and can therefore be statically
tested forcompleteness, a notion which we define in
Section 3.

Our aim in this paper is to show how the simpli-
fying assumptions behind the design bring consider-
able engineering benefits. We discuss the theoreti-
cal background to our approach (Sections 2 and 3)
and then present the implementation details, focus-
ing on the features of the design that support speed
and scalability (Section 4) and reliability (Section
5), followed by an overview of the architectural con-
siderations (Section 6). Finally we present the re-
sults of tests evaluating the system’s performance
(Section 7).

2 Implementation Theory

The generation algorithm has its roots in the WYSI-
WYM system, which was originally developed as a
way of defining the input for multilingual NLG in
DRAFTER (Paris et al., 1995), one of a series of
projects in the KPML/Penman tradition (Bateman
et al., 1989). The system uses the standard seman-
tic representation employed in DL and the Semantic
Web: a Terminology Box, orTbox, defining the con-
cepts and their interrelations and an Assertion Box,
or Abox, representing the information content that
forms the input (Baader et al., 2003). An Abox is a
set of assertions defining relations between instances
of the types defined in the Tbox. It can be depicted
by a connected graph (Figure 1) in which vertices
represent entities and edges represent relations, and
is represented in the input to the system by a set
of RDF subject-predicate-argument triples (Lassila

Figure 1: Sample Abox

and Swick, 1998), with one-place predications as-
signing types and two-place predications asserting
relationships. Assuming that the entities are being
mentioned for the first time, we might express this
Abox fragment in English by the sentence ‘a woman
lost her bag’1. This sentence can be aligned with the
Abox by associating spans of the text with the enti-
ties expressed by the Abox, as follows:

Span Entity Context
a woman lost her bag e1 ROOT

a woman e2 AGENT

her bag e3 PATIENT

her e2 OWNER

Note that the same entity may be expressed in
multiple contexts (denoted by the incoming arcs
in the semantic graph). The relationships between
the entities are represented by syntactic dependen-
cies between the spans of the text. For instance,
AGENT(e1,e2) is realised by the clause-subject rela-
tion between ‘a woman lost her bag’ and its subspan
‘a woman’. This direct linking of semantic and syn-
tactic dependencies has of course been noted many
times, for instance in Meaning-Text Theory (Can-
dito and Kahane, 1998).

The structure of the spans of text can be repre-
sented by a reconfiguration of the original Abox as
an ordered tree, which we will henceforth call an
Atree. Figure 2 shows an Atree that fits the exam-
ple Abox. Note that since this is a tree, the vertex
with two incoming edges (e2) has to be repeated,
and there are two spans referring to the woman.

1The system is able to generate a referring expression, ‘her’,
for the second reference to the woman since it knows that the
entity has already been mentioned in the text. This informa-
tion is available because the Atree, see Figure 2, is an ordered
structure.
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Figure 2: Sample Atree

This Atree is constructed using a set of bindings
which map instances of concepts from the Tbox in a
given context onto a subcategorisation frame, gram-
mar rule call and list of lexical anchors. As each ver-
tex of the Atree is constructed it is labelled with the
grammar rule and lexical anchors and linked back to
the vertex of the Abox which it expresses. Our cur-
rent model uses the Tree Adjoining Grammar (TAG)
formalism, see Joshi (1987), and the Atree acts as a
stand-inderivation treefrom which the derived syn-
tactic tree can be computed. Each vertex of the de-
rived tree is linked back to the vertex of the Atree
from which it was generated, and so the output from
the system is a composite data structure compris-
ing the Tbox, Abox, Atree and derived tree with a
chain of references connecting each span of the sur-
face text via the Atree to the underlying semantic
representation. A detailed exposition of the process
through which the Atree and derivation tree are con-
structed is presented in a separate Technical Report
(Hardcastle and Power, 2008).

2.1 Simplifying assumptions

The design of the generator relies on two simplify-
ing assumptions. The key assumption for this paper
is that the text should adhere strictly to a controlled
language, so that a given local semantic configura-
tion is always realised by the same linguistic pattern.
The cost is that the text is likely to be repetitive and
may be awkward at times; however the trade-off is
that the domain of locality is tightly restricted and
this yields important benefits in speed, scalability,
reliability and verifiability that make the system suit-
able for deployment in an enterprise environment.

We also assume that the strategic element of the

NLG process, comprising content selection and doc-
ument structuring, has occurred prior to our system
receiving its input. Our framework is focused specif-
ically on tactical generation – rendering the semantic
representation of the selected content as text.

3 Completeness

We can verify that the generator iscomplete, in the
sense that we can guarantee that it will produce a
derivation tree for any Abox valid under the Tbox.
We present the details of the verification algorithm
below, in Section 5. Note that we assume that the
system is equipped with the requisite morpholog-
ical and orthographic rules to realise the resulting
derivation tree. We also note that we cannot verify
that the generator isconsistent, by which we mean
that it should produce different texts for different
Aboxes, nor that the syntactic frames and lexical an-
chors mapped to the concepts in the Tbox are appro-
priate. Checking the system for consistency remains
an open research question.

4 Speed and Scalability

In many NLG systems the choice of syntactic struc-
ture and lexical arguments depends on a large num-
ber of interdependent variables. This means that the
process of realizing the semantic input involves ex-
ploring a large search space, often with some back-
tracking. In contrast, the algorithm described in this
paper is monotonic and involves minimal search.
The system begins at the root of the Abox and uses
a set of mappings to construct the Atree one node
at a time. Because the same local semantic context
is always expressed in the same way the choice of
syntactic structure and lexical arguments can always
be made on the basis of a single mapping. Over
the course of this section we demonstrate this with a
simple example using resources that were automati-
cally inferred to construct the test harness described
in Section 8, which could be used to construct the
following simple sentence:

The nurse reminded the doctor that the pa-
tient was allergic to aspirin.

The Abox representing this sentence is rooted in
an instance of a Tbox concept representing an event
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in which one person reminds another of a fact. Fig-
ure 3 shows the attributes defined for this Tbox con-
cept,938B, namely anactor, acteeandtarget. The
range ofactor andacteeis any concept in the Tbox
subsumed by thepersonconcept, the range oftar-
get is any fact. There will therefore be three out-
going arcs from the root Abox node, labelled with
attributesactor, acteeand target, pointing respec-
tively to nodes representing the nurse, doctor and
the fact about the patient’s allergy described in the
sample sentence above. Some of these nodes will
themselves have out-going arcs expressing their own
attributes, such as the subsidiary details of the fact
about the allergy.

938B
actor(person)
actee(person)
target(fact)

Figure 3: A Sample Tbox Node

To realize the first node in the Abox the system
searches for mappings for concept938B. The con-
trolled language assumption allows the system to
search with a restricted domain of locality, and so
the only variables affecting the choice of frame will
be: the Tbox concept represented by the Abox node
to be realized (938Bin this case), the syntactic con-
text (there is none at this stage since we are process-
ing the root node, so the system will default toclause
context), the incoming arc (there is none at this stage
so no constraint is applied), the out-going arcs (the
three attributes specified), and whether or not the in-
stance has already been expressed (in this case it has
not)2. The search parameters are used to locate a

2The last of these variables is used to determine whether or
not a referring expression (an anaphoric reference to an entity
which has already been mentioned) is required. Because the
Atree is ordered and is constructed in order, the system always
knows whether an instance is being mentioned for the first time.
We currently render subsequent mentions by pruning all of the
out-going arcs from the Abox node, which also allows us to
manage cycles in the semantic graph. Since the system knows
which nodes in the semantic graph have already been mentioned
it would also be possible to configure an external call to a GRE
system (Dale, 1989) - an application which infers the content of
a referring expression given the current semantic context.

mapping such as the one depicted in Figure 4 below.

<frame concept=”938B”
role=”any”
subcat=”CatClause-33”
bindings=”SUB,DOB,CL COM”>

<gr key=”TnxOVnx1s2”>
<anchor lemma=”remind” pos=”verb”/>

</gr>
</frame>

Figure 4: A Sample Mapping

This mapping tells the system which subcategori-
sation frame to use, which grammar rule to asso-
ciate with it, which lexical anchors to pass as argu-
ments to the grammar rule and also how to order the
subsidiary arguments of the subcategorisation frame
(the bindingsattribute in theframe element). The
subcategorisation frame itself (shown in Figure 5) is
highly reusable as it only defines a coarse-grained
syntactic type and a list of arguments, each of which
consists of a free text label (such asSUB indicat-
ing the subject syntactic dependency) and a coarse-
grained syntactic constraint such asclause, nomi-
nal or modifier. In this example the first attribute

CatClause-33
type= CLAUSE
args= SUB/NOMINAL,

D OB/NOMINAL,
CL COM/CLAUSE

Figure 5: Sample Subcategorisation Frame

of the 938Bnode, namely theactor, is mapped to
the SUB (subject) argument, so it will become the
first child of the Atree node representing theremind
event. Thenominalsyntactic constraint will be car-
ried forward as the syntactic context for thenurse
node of the Abox, constraining the choice of map-
ping that the system can make to realise it. So, each
mapping enforces an ordering on the out-going arcs
of the Abox which is used to order the Atree and pro-
vides a syntactic context which is used to constrain
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the mapping search for each child. The process of
locating and imposing mappings cascades through
the Abox from the root with minimal search and no
backtracking. If multiple mappings are defined for
a given context the first one is always chosen. If no
mapping is located then the system fails.

While the Atree is constructed, it is annotated
with the grammar rules and lexical anchors listed
in each mapping, allowing it to serve as a stand-in
TAG derivation tree from which a derived syntactic
tree can be constructed by instantiating and connect-
ing the elementary trees specified by each grammar
rule. Further details of this process are given in a
Technical Report (Hardcastle and Power, 2008).

So while the controlled language assumption that
we should always express the same local semantic
context in the same way limits expressivity, it also
limits algorithmic choice and prevents backtracking,
which means that the system can generate rapidly
and scale linearly. In the following section we show
how we can prove at compile time that no Abox can
be constructed which will result in a local semantic
context not accounted for in the mappings.

5 Reliability

In a real-world context the Tbox will evolve as the
underlying domain model is extended and enhanced.
As a result, some of the mappings described above
will become defunct and in some instances a re-
quired mapping will not be present. If the system
encounters an Abox which requires a mapping that
is not present it will not backtrack but will fail, mak-
ing the system fragile. To address this problem we
need to be able to run a static test in a short period
of time to determine if any mappings are unused or
missing.

Although the set of possible Abox graphs is an
infinite set, the tight domain of locality means that
there is a finite set of parameters which could be
passed to the generator for any given Tbox. As de-
scribed in the previous section the choice of map-
ping is based only on the following information:
the concept being realised, the syntactic context, the
number of attributes expressed by the concept, the
attribute used to select it, and whether or not this
Abox instance is being mentioned for the first time.
Given a starting TBox node and syntactic context

the system can crawl the TBox recursively using the
subcategorisation frames returned from each param-
eter set to derive a new list of parameter sets to be
tested. Each of these must be tested both as a first
and as a subsequent mention. The result is an algo-
rithm which proves the application’scompleteness
(as defined in Section 3) with respect to a particular
domain (represented by the Tbox); if the test suc-
ceeds then it guarantees that the mappings defined
by the system can transform any Abox that is valid
under the given domain into an Atree annotated with
the information required to produce a derived syn-
tactic tree.

As above, the proving algorithm starts with a root
concept in the Tbox and an initial syntactic context
and uses these as the starting parameter set to find
the first mapping. Once a mapping is located it ex-
plores each of the attributes of the root concept using
the syntactic context to which the attribute is bound
by the mapping. Since there is no Abox it constructs
a list of parameter sets to check using every concept
in the range of the attribute.

For example, during the verification process the
prover will encounter the mapping shown above in
Figure 4 for theremind concept938B in a clausal
context. The concept has three attributes: anactor,
an acteeand atarget. The first of these has as its
range all of the subconcepts ofpersondefined in the
Tbox, and this introduces a new sub-problem. The
first attribute is bound to theSUBargument of the
subcategorisation frame used in the mapping, in Fig-
ure 4, by thebindingselement, and this argument of
the subcategorisation frame imposes a nominal con-
straint. So the fact that concept938B might need
to be expressed using this mapping means that any
subconcept ofpersonmight need to be expressed in
a nominal syntactic context with semantic roleac-
tor, and so the prover now checks each subconcept
with these parameters. If none of the subconcepts of
persondefine any attributes and a mapping is found
for each then no new sub-problems are introduced
and so this branch of the search bottoms out.

The prover then returns to938Band processes the
acteeand target attributes. Thetarget attribute is
bound to theCL COMargument of the subcategori-
sation frame, and so the new sub-problem involves
checking that every subconcept offact can be ex-
pressed as a clause with semantic roletarget. In
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the ontology the subconcepts offact includeevents,
each of which define a number of attributes, and so
this sub-problem branches out into many new sub-
problems before it bottoms out. One sucheventwill
be the concept938B, but since the mapping that we
have already encountered (Figure 4) is encoded for
any semantic role and the system has already pro-
cessed it the prover can break out and does not fall
into an infinite loop. This checking process contin-
ues recursively until the search space is exhausted,
with each parameter set tested being cached to re-
duce the size of the search space.

6 Relaxing the Simplifying Constraints

The simplifying assumptions described in Sec-
tion 2.1 deliver benefits in terms of performance
and reliability; however, they limit the expressiv-
ity of the language and reduce the scope of what
can be expressed. We can relax some of the con-
straints imposed by the simplifying assumptions and
still have a performant and reliable system, although
proving completeness becomes more complex and
some localised exponential complexity is introduced
into the generation algorithm. In this section we ex-
plore the ways in which relaxing the constraints to
allow quantification or underspecification impact on
the system.

The simplest scenario, which adheres to our sim-
plifying constraints, is that each node in the Abox
expresses exactly one of each of the attributes de-
fined by the Tbox concept which it instantiates. So,
using theremindexample above, every instance of
remindmust express anactor, an acteeand afact.
In practice the Tbox may allow an attribute not to be
expressed, to be expressed many times or to be ex-
pressed but not specified. We handle the first case by
allowing arguments in the subcategorisation frames
to be marked as optional; for example, a verb frame
may include an optionaladverbslot. These optional
arguments increase the number of tests that must be
performed; if a frame hasn optional slots then the
system will need to perform2n checks to verify it,
and will have to consider2n mapping combinations
during generation. This introduces localised expo-
nentiation into both the generation and the verifica-
tion algorithm, although it will only lead to tractabil-
ity problems if the number of optional slots on any

single frame is too high, since the exponent isonly
applied to each frame and not across the whole
search space.

Where an attribute may remain unspecified the
system can be configured to respond in two different
ways. First, unspecified attributes can be included
in the text using the concept that represents the root
of the range. For example, if an event occurs at a
time which is not specified then the system can use
the concept that represents the root of the range (e.g.
timePeriodperhaps) and render it accordingly (“at
some time”). Alternatively the system can prune
all underspecified instances from the Abox before
the Atree is generated. Attributes which may not be
expressed (for either reason) must be flagged in the
TBox so that the proving algorithm knows to match
them to optional arguments in the subcategorisation
frames. This is implemented with a flag on each at-
tribute definition indicating whether its presence in
the Abox is optional.

Relaxing the constraints also impacts on our abil-
ity to verify the grammar rules which are associated
with each mapping. If we use TAG, then we can
easily verify that the syntactic type of the root of the
elementary tree defined by each mapping matches
the syntactic type of the subcategorisation frame to
which it is bound. However, if a mapping can be
accessed via an optional slot in another subcategori-
sation frame, then it must be bound to anauxiliary
tree, that is to an elementary tree which can be added
to the derived tree through adjunction, since any de-
rived tree with open substitution sites will be gram-
matically incomplete. For the system to support this
behaviour each mapping must declare not just the
concept which it realises but also the role (Tbox at-
tribute) which it fulfils, so that both the prover can
determine whether it may be left out, and this in-
creases the combinatorial complexity of the algo-
rithm.

7 Architecture

The design of the generator ensures that it can gen-
erate rapidly and that it can be verified at compile
time. A further feature is that it is implemented
with a component-based modular architecture. For
NLP applications it is particularly important that in-
dividual components can be independently verified

45



and reused, because linguistic resources are time-
consuming and expensive to build and curate. Fur-
thermore, because the mappings from concepts to
subcategorisation frames, grammar rules and lexi-
cal anchors are defined in a single file, the task of
building and maintaining the mappings is easier to
learn and easier to manage. It is also easier to boot-
strap the mappings through resource mining, as we
did ourselves in the construction of the test data set
discussed in Section 8.

The framework manages the graph and tree struc-
tures and the transformations between them, and it
defines the API for the domain and language specific
resources that will be required by the application. It
also defines the API of the linguistic resource man-
ager, leaving it to the application layer to provide
an appropriate implementer using dependency injec-
tion (Fowler, 2004). Rather than define a core ‘in-
terlingual’ feature structure that attempts to capture
all of the lexical features used by the grammar, the
framework provides a genericised interface to the
linguistic resource manager. This means that gram-
mars for different natural languages can use different
feature structures to define the lexical anchors used
by the application and to support tasks that are the
responsibility of the grammar, such as unification or
morphological inflection. For example, all verbs in
French should have a flag indicating whetheravoir
or être is used as a modal auxiliary for thepasśe
compośe, but this flag need not be present for other
languages. The Tbox, the subcategorisation frames
and the mappings between them are all defined as
data sources and can be reused across applications
as appropriate. Although they are not defined in
code they can still be verified at compile time by
the prover discussed in the previous section, and this
allows the system to be flexible and modular with-
out introducing the risk of runtime failures caused
by faulty mapping data.

7.1 Export

A further feature of the system which arises from
the proving algorithm is that it supports export be-
haviour. In an enterprise context we want to be
able to reuse linguistic resource components, such
as a lexicon, a grammar, a morphological genera-
tor and so on, across many different applications.
These resources are large and complex and for a

given application much of the data may not be re-
quired. Because the proving algorithm is able to
compile a comprehensive list of the concepts, gram-
matical relations, subcategorisation frames and lexi-
cal anchors that will be required to realise any Abox,
given a starting concept and syntactic context, the
system can cut the Tbox, lexicon, grammar, subcat-
egorisation frame store and related resources to ex-
port a build for deployment, while guaranteeing that
the deployed application will never fail because of
a missing resource. This is of particular value if we
want to reuse large-scale, generic, curated resources
for a small domain and deploy where bandwidth is
an issue – for example where language generation is
required in a client-heavy internet-based or mobile
application.

8 Testing and Results

We unit-tested the mechanics of the framework,
such as the graph and tree managers. We then built a
proof-of-concept application with a small ontology
representing the domain of patient treatment narra-
tives and handcrafted the subcategorisation frames,
lexical resources and TAG grammars for English,
French, Spanish and Italian. We used this applica-
tion to verify the independence of the framework,
domain and linguistic resources and verified that we
could develop linguistic resources offline and plug
them into the application effectively. The applica-
tion also served as a test harness to test the adaptibil-
ity of the framework to render the same semantic
context in different syntactic structures depending
on the target natural language. For example, we
included the examination of a body part belonging
to a person in the domain, and this was expressed
through a Saxon genitive in English but a preposi-
tional phrase (with the subsidiary NPs in the reverse
order) in the other languages.

To test our assumptions about efficiency and scal-
ability we inferred a larger Tbox, subcategorisation
frames and mappings using a pre-existing data set
of verb frames for English encoded using the COM-
LEX subcategorisation frame inventory (Grishman
et al., 1994). The linguistic resources for the appli-
cation comprised a generative TAG grammar based
on X-TAG (Doran et al., 1994) which we wrote our-

46



selves, the CUV+ lexicon3, and a pre-existing mor-
phological generator for English (Hardcastle, 2007).

To test the performance of the generation process
we used a set of randomly-generated Aboxes derived
from the Tbox to produce texts of increasing size.
For the purposes of testing we defined the size of an
Abox as the total number of nodes and edges in the
graph, which is the number of RDF triples required
to represent it. Table 1 shows the size of the out-
put text in sentences, the time taken to generate it in
milliseconds, averaged over 5 runs, and the ratio of
the time taken to the size of the output which shows
linear scaling4.

Size Timing Timing/Size
31 2 0.065
280 10 0.036
2,800 59 0.021
28,000 479 0.017

Table 1: The time, in milliseconds, taken to generate
Aboxes of increasing size and the ratio of time taken to
the size of the output.

To test the performance of the proving algorithm
we ran the algorithm on a set of Tboxes of differ-
ing sizes. The smallest Tbox in Table 2 is the hand-
crafted proof-of-concept Tbox, the largest is the in-
ferred Tbox described above, and the intermediate
ones were pruned from the large, inferred Tbox at
random cut points. The size of each Tbox is the
total number of attribute-concept pairs which it de-
fines. The table shows the time taken to run the
prover from the root node of the Tbox with no start-
ing syntactic context and the ratio of time taken to
size, which shows linear scaling.

We tested the mechanics of the implementation
of the prover through unit testing, and we tested
the the design with a test suite of sample data. We
performed white box tests by removing individual
bindings from a set of mappings which we judged
to be complete for the small handcrafted Tbox, and
checked to ensure that each was highlighted by the
prover. We performed black box tests by using a

3A publicly available lexicon for English available from the
Oxford Text Archive

4In fact scaling is slightly sub-linear for this test and the
test of the proving algorithm. In both cases that is because of
caching within the framework to improve performance.

Size Timing Timing/Size
125 10 0.08
86,766 432 0.005
2,054,020 8,217 0.004
9,267,444 21,526 0.002

Table 2: The time, in milliseconds, taken to prove relia-
bility for Tboxes of increasing size and the ratio of time
taken to size.

set of inferred mappings, judged by the prover to be
complete, to generate from a large number of ran-
domly structured Aboxes, drawn from our large in-
ferred Tbox, and checked that the generation process
never failed.

We chose not to undertake a formal evaluation
over and above the unit and sampling tests, because
the accuracy of the prover is a function of the re-
stricted domain of locality imposed by the system
and of the recursive algorithm which depends on it.
Instead we show that the prover is accurate by de-
scribing the parameters that guide search in gener-
ation and explaining why they can be exhaustively
tested (see Section 5).

9 Conclusion

In this paper we presented a tactical generator which
exploits a simplifying assumption that the output
text will be restricted to controlled natural language
to enforce a restricted domain of locality on search
in generation. As a result, the generation process is
fast and scales linearly, and furthermore the system
is reliable, since we are able to perform a compile-
time check of the data sources which drive the as-
signment of syntactic subcategorisations to the ex-
pression of each node in the input semantic graph.

The generator is most appropriate for applications
which need to present small chunks of structured
data as text on demand and in high volume. For ex-
ample, information feeds such as local weather fore-
casts, traffic information, and tourist information or
technical information that must be both machine-
readable (for example because it is safety critical
and requires consistency checking) and also human-
readable (for example for an operator to make use of
it) such as machine operator instructions, business
process/protocol descriptions and medical orders.
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Abstract

Training word alignment models on large cor-
pora is a very time-consuming processes. This
paper describes two parallel implementations
of GIZA++ that accelerate this word align-
ment process. One of the implementations
runs on computer clusters, the other runs on
multi-processor system using multi-threading
technology. Results show a near-linear speed-
up according to the number of CPUs used, and
alignment quality is preserved.

1 Introduction

Training state-of-the-art phrase-based statistical ma-
chine translation (SMT) systems requires several
steps. First, word alignment models are trained on
the bilingual parallel training corpora. The most
widely used tool to perform this training step is the
well-known GIZA++(Och and Ney, 2003). The re-
sulting word alignment is then used to extract phrase
pairs and perhaps other information to be used in
translation systems, such as block reordering mod-
els. Among the procedures, more than 2/3 of the
time is consumed by word alignment (Koehn et al.,
2007). Speeding up the word alignment step can
dramatically reduces the overall training time, and in
turn accelerates the development of SMT systems.

With the rapid development of computing hard-
ware, multi-processor servers and clusters become
widely available. With parallel computing, process-
ing time (wall time) can often be cut down by one
or two orders of magnitude. Tasks, which require
several weeks on a single CPU machine may take
only a few hours on a cluster. However, GIZA++

was designed to be single-process and single-thread.
To make more efficient use of available computing
resources and thereby speed up the training of our
SMT system, we decided to modify GIZA++ so that
it can run in parallel on multiple CPUs.

The word alignment models implemented in
GIZA++, the so-called IBM (Brown et al., 1993) and
HMM alignment models (Vogel et al., 1996) are typ-
ical implementation of the EM algorithm (Dempster
et al., 1977). That is to say that each of these mod-
els run for a number of iterations. In each iteration
it first calculates the best word alignment for each
sentence pairs in the corpus, accumulating various
counts, and then normalizes the counts to generate
the model parameters for the next iteration. The
word alignment stage is the most time-consuming
part, especially when the size of training corpus is
large. During the aligning stage, all sentences can
be aligned independently of each other, as model
parameters are only updated after all sentence pairs
have been aligned. Making use of this property, the
alignment procedure can be parallelized. The basic
idea is to have multiple processes or threads aligning
portions of corpus independently and then merge the
counts and perform normalization.

The paper implements two parallelization meth-
ods. The PGIZA++ implementation, which is based
on (Lin et al, 2006), uses multiple aligning pro-
cesses. When all the processes finish, a master pro-
cess starts to collect the counts and normalizes them
to produce updated models. Child processes are then
restarted for the new iteration. The PGIZA++ does
not limit the number of CPUs being used, whereas
it needs to transfer (in some cases) large amounts
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of data between processes. Therefore its perfor-
mance also depends on the speed of the network in-
frastructure. The MGIZA++ implementation, on the
other hand, starts multiple threads on a common ad-
dress space, and uses a mutual locking mechanism
to synchronize the access to the memory. Although
MGIZA++ can only utilize a single multi-processor
computer, which limits the number of CPUs it can
use, it avoids the overhead of slow network I/O. That
makes it an equally efficient solution for many tasks.
The two versions of alignment tools are available on-
line at http://www.cs.cmu.edu/q̃ing/giza.

The paper will be organized as follows, section 2
provides the basic algorithm of GIZA++, and sec-
tion 3 describes the PGIZA++ implementation. Sec-
tion 4 presents the MGIZA++ implementation, fol-
lowed by the profile and evaluation results of both
systems in section 5. Finally, conclusion and future
work are presented in section 6.

2 Outline of GIZA++

2.1 Statistical Word Alignment Models

GIZA++ aligns words based on statistical models.
Given a source stringfJ

1
= f1, · · · , fj , · · · , fJ and a

target stringeI
1

= e1, · · · , ei, · · · , eI , an alignmentA
of the two strings is defined as(Och and Ney, 2003):

A ⊆ {(j, i) : j = 1, · · · , J ; i = 0, · · · , I} (1)

in case thati = 0 in some(j, i) ∈ A, it represents
that the source wordj aligns to an “empty” target
worde0.

In statistical world alignment, the probability of a
source sentence given target sentence is written as:

P (fJ
1 |e

I
1) =

∑

aJ

1

P (fJ
1 , aJ

1 |e
I
1) (2)

in which aJ
1

denotes the alignment on the sen-
tence pair. In order to express the probability in
statistical way, several different parametric forms of
P (fJ

1
, aJ

1
|eI

1
) = pθ(f

J
1
, aJ

1
|eI

1
) have been proposed,

and the parametersθ can be estimated using maxi-
mum likelihood estimation(MLE) on a training cor-
pus(Och and Ney, 2003).

θ̂ = arg max
θ

S
∏

s=1

∑

a

pθ(fs, a|es) (3)

The best alignment of the sentence pair,

âJ
1 = arg max

aJ

1

p
θ̂
(fJ

1 , aJ
1 |e

I
1) (4)

is called Viterbi alignment.

2.2 Implementation of GIZA++

GIZA++ is an implementation of ML estimators for
several statistical alignment models, including IBM
Model 1 through 5 (Brown et al., 1993), HMM (Vo-
gel et al., 1996) and Model 6 (Och and Ney, 2003).

Although IBM Model 5 and Model 6 are sophisti-
cated, they do not give much improvement to align-
ment quality. IBM Model 2 has been shown to be
inferior to the HMM alignment model in the sense
of providing a good starting point for more complex
models. (Och and Ney, 2003) So in this paper we
focus on Model 1, HMM, Model 3 and 4.

When estimating the parameters, the EM (Demp-
ster et al., 1977) algorithm is employed. In the
E-step the counts for all the parameters are col-
lected, and the counts are normalized in M-step.
Figure 1 shows a high-level view of the procedure
in GIZA++. Theoretically the E-step requires sum-
ming over all the alignments of one sentence pair,
which could be(I + 1)J alignments in total. While
(Och and Ney, 2003) presents algorithm to imple-
ment counting over all the alignments for Model 1,2
and HMM, it is prohibitive to do that for Models 3
through 6. Therefore, the counts are only collected
for a subset of alignments. For example, (Brown
et al., 1993) suggested two different methods: us-
ing only the alignment with the maximum probabil-
ity, the so-called Viterbi alignment, or generating a
set of alignments by starting from the Viterbi align-
ment and making changes, which keep the align-
ment probability high. The later is called “pegging”.
(Al-Onaizan et al., 1999) proposed to use the neigh-
bor alignments of the Viterbi alignment, and it yields
good results with a minor speed overhead.

During training we starts from simple models use
the simple models to bootstrap the more complex
ones. Usually people use the following sequence:
Model 1, HMM, Model 3 and finally Model 4. Table
1 lists all the parameter tables needed in each stage
and their data structures1. Among these models, the

1In filename,prefix is a user specified parameter, andn is
the number of the iteration.
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Figure 1: High-level algorithm of GIZA++

lexicon probability table (TTable) is the largest. It
should contain all thep(fi, ej) entries, which means
the table will have an entry for every distinct source
and target word pairfi, ej that co-occurs in at least
one sentence pair in the corpus. However, to keep
the size of this table manageable, low probability en-
tries are pruned. Still, when training the alignment
models on large corpora this statistical lexicon often
consumes several giga bytes of memory.

The computation time of aligning a sentence pair
obviously depends on the sentence length. E.g. for
IBM 1 that alignment isO(J ∗ I), for the HMM
alignment it isO(J + I2), with J the number of
words in the source sentence andI the number of
words in the target sentence. However, given that
the maximum sentence length is fixed, the time com-
plexity of the E-step grows linearly with the num-
ber of sentence pairs. The time needed to perform
the M-step is dominated by re-normalizing the lexi-
con probabilities. The worst case time complexity is
O(|VF | ∗ |VE |), where|VF | is the size of the source
vocabulary and|VE | is the size of the target vocabu-
lary. Therefore, the time complexity of the M-step is
polynomial in the vocabulary size, which typically
grows logarithmic in corpus size. As a result, the
alignment stage consumes most of the overall pro-
cessing time when the number of sentences is large.

Because the parameters are only updated during
the M-step, it will be no difference in the result
whether we perform the word alignment in the E-
step sequentially or in parallel2. These character-

2However, the rounding problem will make a small differ-

istics make it possible to build parallel versions of
GIZA++. Figure 2 shows the basic idea of parallel
GIZA++.

Figure 2: Basic idea of Parallel GIZA++

While working on the required modification to
GIZA++ to run the alignment step in parallel we
identified a bug, which needed to be fixed. When
training the HMM model, the matrix for the HMM
trellis will not be initialized if the target sentence has
only one word. Therefore some random numbers
are added to the counts. This bug will also crash
the system when linking againstpthreadlibrary. We
observe different alignment and slightly lower per-
plexity after fixing the bug3.

3 Multi-process version - PGIZA++

3.1 Overview

A natural idea of parallelizing GIZA++ is to sep-
arate the alignment and normalization procedures,
and spawn multiple alignment processes. Each pro-
cess aligns a chunk of the pre-partitioned corpus and
outputs partial counts. A master process takes these
counts and combines them, and produces the nor-
malized model parameters for the next iteration. The
architecture of PGIZA++ is shown in Figure 3.

ence in the results even when processing the sentences sequen-
tially, but in different order.

3The details of the bug can be found in: http://www.mail-
archive.com/moses-support@mit.edu/msg00292.html
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Model Parameter tables Filename Description Data structure

Model 1 TTable prefix.t1.n Lexicon Probability Array of Array
HMM TTable prefix.thmm.n

ATable prefix.ahmm.n Align Table 4-D Array
HMMTable prefix.hhmm.n HMM Jump Map

Model 3/4 TTable prefix.t3.n
ATable prefix.a3.n Align Table
NTable prefix.n3.n Fertility Table 2-D Array
DTable prefix.d3.n Distortion Table 4-D Array
pz prefix.p0 3.n Probability for null wordsp0 Scalar

(Model 4 only) D4Table prefix.d4.n prefix.D4.n Distortion Table for Model 4 Map

Table 1: Model tables created during training

Figure 3: Architecture of PGIZA++

3.2 Implementation

3.2.1 I/O of the Parameter Tables

In order to ensure that the next iteration has the
correct model, all the information that may affect the
alignment needs to be stored and shared. It includes
model files and statistics over the training corpus.
Table 1 is a summary of tables used in each model.

Step Without With
Pruning(MB) Pruning(MB)

Model 1, Step 1 1,273 494
HMM , Step 5 1,275 293
Model 4 , Step 3 1,280 129

Table 2: Comparison of the size of count tables for the
lexicon probabilities

In addition to these models, the summation of
“sentence weight” of the whole corpus should be
stored. GIZA++ allows assigning a weightwi for
each sentence pairsi sto indicate the number of oc-
currence of the sentence pair. The weight is normal-

ized bypi = wi/
∑

i wi, so that
∑

i pi = 1. Then
the pi serves as a prior probability in the objective
function. As each child processes only see a portion
of training data, it is required to calculate and share
the

∑

i wi among the children so the values can be
consistent.

The tables and count tables of the lexicon proba-
bilities (TTable) can be extremely large if not pruned
before being written out. Pruning the count tables
when writing them into a file will make the result
slightly different. However, as we will see in Sec-
tion 5, the difference does not hurt translation per-
formance significantly. Table 2 shows the size of
count tables written by each child process in an ex-
periment with 10 million sentence pairs, remember
there are more than 10 children writing the the count
tables, and the master would have to read all these
tables, the amount of I/O is significantly reduced by
pruning the count tables.

3.2.2 Master Control Script

The other issue is the master control script. The
script should be able to start processes in other
nodes. Therefore the implementation varies accord-
ing to the software environment. We implemented
three versions of scripts based on secure shell, Con-
dor (Thain et al., 2005) and Maui.

Also, the master must be notified when a child
process finishes. In our implementation, we use sig-
nal files in the network file system. When the child
process finishes, it will touch a predefined file in a
shared folder. The script keeps watching the folder
and when all the children have finished, the script
runs the normalization process and then starts the
next iteration.
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3.3 Advantages and Disadvantages

One of the advantages of PGIZA++ is its scalability,
it is not limited by the number of CPUs of a sin-
gle machine. By adding more nodes, the alignment
speed can be arbitrarily fast4. Also, by splitting the
corpora into multiple segments, each child process
only needs part of the lexicon, which saves mem-
ory. The other advantage is that it can adopt differ-
ent resource management systems, such as Condor
and Maui/Torque. By splitting the corpus into very
small segments, and submitting them to a scheduler,
we can get most out of clusters.

However, PGIZA++ also has significant draw-
backs. First of all, each process needs to load the
models of the previous iteration, and store the counts
of the current step on shared storage. Therefore,
I/O becomes a bottleneck, especially when the num-
ber of child processes is large. Also, the normal-
ization procedure needs to read all the count files
from network storage. As the number of child pro-
cesses increases, the time spent on reading/writing
will also increase. Given the fact that the I/O de-
mand will not increase as fast as the size of corpus
grows, PGIZA++ can only provide significant speed
up when the size of each training corpus chunk is
large enough so that the alignment time is signifi-
cantly longer than normalization time.

Also, one obvious drawback of PGIZA++ is its
complexity in setting up the environment. One has
to write scripts specially for the scheduler/resource
management software.

Balancing the load of each child process is an-
other issue. If any one of the corpus chunks takes
longer to complete, the master has to wait for it. In
other words, the speed of PGIZA++ is actually de-
termined by the slowest child process.

4 Multi-thread version - MGIZA++

4.1 Overview

Another implementation of parallelism is to run sev-
eral alignment threads in a single process. The
threads share the same address space, which means
it can access the model parameters concurrently
without any I/O overhead.

4The normalization process will be slower when the number
of nodes increases

The architecture of MGIZA++ is shown in Figure
4.

Data Sentence 
Provider

Thread 1 Thread 2 Thread n

Synchronized Assignment of 

Sentence Pairs

Model
Synchronized 

Count Storage

Main Thread

Normalization

Figure 4: Architecture of MGIZA++

4.2 Implementation

The main thread spawns a number of threads, us-
ing the same entry function. Each thread will ask
a provider for the next sentence pair. The sentence
provider is synchronized. The request of sentences
are queued, and each sentence pair is guaranteed to
be assigned to only one thread.

The threads do alignment in their own stacks, and
read required probabilities from global parameter ta-
bles, such as the TTable, which reside on the heap.
Because no update on these global tables will be per-
formed during this stage, the reading can be concur-
rent. After aligning the sentence pairs, the counts
need to be collected. For HMMTable and D4Table,
which use maps as their data structure, we cannot
allow concurrent read/write to the table, because the
map structure may be changed when inserting a new
entry. So we must either put mutual locks to post-
pone reading until writing is complete, or dupli-
cate the tables for each thread and merge them af-
terwards. Locking can be very inefficient because
it may block other threads, so the duplicate/merge
method is a much better solution. However, for the
TTable the size is too large to have multiple copies.
Instead, we put a lock on every target word, so only
when two thread try to write counts for the same tar-
get word will a collisions happen. We also have to
put mutual locks on the accumulators used to calcu-
late the alignment perplexity.
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Table Synchronizations Method
TTable Write lock on every target words
ATable Duplicate/Merge
HMMTable Duplicate/Merge
DTable Duplicate/Merge
NTable Duplicate/Merge
D4Table Duplicate /Merge
Perplexity Mutual lock

Table 3: Synchronizations for tables in MGIZA++

Each thread outputs the alignment into its own
output file. Sentences in these files are not in sequen-
tial order. Therefore, we cannot simply concatenate
them but rather have to merge them according to the
sentence id.

4.3 Advantages and Disadvantages

Because all the threads within a process share the
same address space, no data needs to be transferred,
which saves the I/O time significantly. MGIZA++ is
more resource-thrifty comparing to PGIZA++, it do
not need to load copies of models into memory.

In contrast to PGIZA++, MGIZA++ has a much
simpler interface and can be treated as a drop-in
replacement for GIZA++, except that one needs
to run a script to merge the final alignment files.
This property makes it very simple to integrate
MGIZA++ into machine translation packages, such
as Moses(Koehn et al., 2007).

One major disadvantage of MGIZA++ is also ob-
vious: lack of scalability. Accelerating is limited
by the number of CPUs the node has. Compared
to PGIZA++ on the speed-up factor by each addi-
tional CPU, MGIZA++ also shows some deficiency.
Due to the need for synchronization, there are al-
ways some CPU time wasted in waiting.

5 Experiments

5.1 Experiments on PGIZA++

For PGIZA++ we performed training on an Chinese-
English translation task. The dataset consists of ap-
proximately 10 million sentence pairs with 231 mil-
lion Chinese words and 258 million English words.
We ran both GIZA++ and PGIZA++ on the same
training corpus with the same parameters, then ran
Pharaoh phrase extraction on the resulting align-
ments. Finally, we tuned our translation systems on
the NIST MT03 test set and evaluate them on NIST

MT06 test set. The experiment was performed on
a cluster of several Xeon CPUs, the storage of cor-
pora and models are on a central NFS server. The
PGIZA++ uses Condor as its scheduler, splitting the
training data into 30 fragments, and ran training in
both direction (Ch-En, En-Ch) concurrently. The
scheduler assigns11 CPUs on average to the tasks.
We ran 5 iterations of Model 1 training, 5 iteration
of HMM, 3 Model 3 iterations and 3 Model 4 iter-
ations. To compare the performance of system, we
recorded the total training time and the BLEU score,
which is a standard automatic measurement of the
translation quality(Papineni et al., 2002). The train-
ing time and BLEU scores are shown in Table 4:5

Running (TUNE) (TEST)
Time MT03 MT06 CPUs

GIZA++ 169h 32.34 29.43 2

PGIZA++ 39h 32.20 30.14 11

Table 4: Comparison of GIZA++ and PGIZA++

The results show similar BLEU scores when us-
ing GIZA++ and PGIZA++, and a 4 times speed up.

Also, we calculated the time used in normaliza-
tion. The average time of each normalization step is
shown in Table 5.

Per-iteration (Avg) Total
Model 1 47.0min 235min (3.9h)
HMM 31.8min 159min (2.6h)

Model 3/4 25.2 min 151min (2.5h)

Table 5: Normalization time in each stage

As we can see, if we rule out the time spent in
normalization, the speed up is almost linear. Higher
order models require less time in the normalization
step mainly due to the fact that the lexicon becomes
smaller and smaller with each models (see Table 2.
PGIZA++, in small amount of data,

5.2 Experiment on MGIZA++

Because MGIZA++ is more convenient to integrate
into other packages, we modified the Moses sys-
tem to use MGIZA++. We use the Europal English-
Spanish dataset as training data, which contains 900
thousand sentence pairs, 20 million English words
and 20 million Spanish words. We trained the

5All the BLEU scores in the paper are case insensitive.
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English-to-Spanish system, and tuned the system
on two datasets, the WSMT 2006 Europal test set
(TUNE1) and the WSMT news commentary dev-
test set 2007 (TUNE2). Then we used the first pa-
rameter set to decode WSMT 2006 Europal test set
(TEST1) and used the second on WSMT news com-
mentary test set 2007 (TEST2)6. Table 6 shows the
comparison of BLEU scores of both systems. listed
in Table 6:

TUNE1 TEST1 TUNE2 TEST2
GIZA++ 33.00 32.21 31.84 30.56

MGIZA++ 32.74 32.26 31.35 30.63

Table 6: BLEU Score of GIZA++ and MGIZA++

Note that when decoding using the phrase table
resulting from training with MGIZA++, we used
the parameter tuned for a phrase table generated
from GIZA++ alignment, which may be the cause
of lower BLEU score in the tuning set. However,
the major difference in the training comes from fix-
ing the HMM bug in GIZA++, as mentioned before.

To profile the speed of the system according to
the number of CPUs it use, we ran MGIZA++ on
1, 2 and 4 CPUs of the same speed. When it runs
on 1 CPU, the speed is the same as for the original
GIZA++. Table 7 and Figure 5 show the running
time of each stage:
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Figure 5: Speed up of MGIZA++

When using 4 CPUs, the system uses only41%
time comparing to one thread. Comparing to
PGIZA++, MGIZA++ does not have as high an ac-

6http://www.statmt.org/wmt08/shared-task.html

CPUs M1(s) HMM(s) M3,M4(s) Total(s)
1 2167 5101 7615 14913
2 1352 3049 4418 8854

(62%) (59%) (58%) (59%)
4 928 2240 2947 6140

(43%) (44%) (38%) (41%)

Table 7: Speed of MGIZA++

celeration rate. That is mainly because of the re-
quired locking mechanism. However the accelera-
tion is also significant, especially for small training
corpora, as we will see in next experiment.

5.3 Comparison of MGIZA++ and PGIZA++

In order to compare the acceleration rate of
PGIZA++ and MGIZA++, we also ran PGIZA++ in
the same dataset as described in the previous section
with 4 children. To avoid the delay of starting the
children processes, we chose to use ssh to start re-
mote tasks directly, instead of using schedulers. The
results are listed in Table 8.

M1(s) HMM(s) M3,M4(s) Total(s)
MGIZA+1CPU 2167 5101 7615 14913
MGIZA+4CPUs 928 2240 2947 6140
PGIZA+4Nodes 3719 4324 4920 12963

Table 8: Speed of PGIZA++ on Small Corpus

There is nearly no speed-up observed, and in
Model 1 training, we observe a loss in the speed.
Again, by investigating the time spent in normaliza-
tion, the phenomenon can be explained (Table 9):

Even after ruling out the normalization time, the
speed up factor is smaller than MGIZA++. That
is because of reading models when child processes
start and writing models when child processes finish.

From the experiment we can conclude that
PGIZA++ is more suited to train on large corpora
than on small or moderate size corpora. It is also im-
portant to determine whether to use PGIZA++ rather
than MGIZA++ according to the speed of network
storage infrastructure.

5.4 Difference in Alignment

To compare the difference in final Viterbi alignment
output, we counted the number of sentences that
have different alignments in these systems. We use
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Per-iteration (Avg) Total
Model 1 8.4min 41min (0.68h)
HMM 7.2min 36min (0.60h)

Model 3/4 5.7 min 34min (0.57h)
Total 111min (1.85h)

Table 9: Normalization time in each stage : small data

GIZA++ with the bug fixed as the reference. The
results of all other systems are listed in Table 10:

Diff Lines Diff Percent
GIZA++(origin) 100,848 10.19%
MGIZA++(4CPU) 189 0.019%
PGIZA++(4Nodes) 18,453 1.86%

Table 10: Difference in Viterbi alignment (GIZA++ with
the bug fixed as reference)

From the comparison we can see that PGIZA++
has larger difference in the generated alignment.
That is partially because of the pruning on count ta-
bles.

To also compare the alignment score in the differ-
ent systems. For each sentence pairi = 1, 2, · · · , N ,
assume two systemsb andc have Viterbi alignment
scoresSb

i , Sc
i . We define the residualR as:

R = 2
∑

i

(

|Sb

i
− Sc

i
|

(Sb

i
+ Sc

i
)

)

/N (5)

The residuals of the three systems are listed in Table
11. The residual result shows that the MGIZA++ has
a very small (less than 0.2%) difference in alignment
scores, while PGIZA++ has a larger residual.

The results of experiments show the efficiency
and also the fidelity of the alignment generated by
the two versions of parallel GIZA++. However,
there are still small differences in the final align-
ment result, especially for PGIZA++. Therefore,
one should consider which version to choose when
building systems. Generally speaking, MGIZA++
provides smoother integration into other packages:
easy to set up and also more precise. PGIZA++ will
not perform as good as MGIZA++ on small-size cor-
pora. However, PGIZA++ has good performance on
large data, and should be considered when building
very large scale systems.

6 Conclusion

The paper describes two parallel implementations
of the well-known and widely used word alignment

R
GIZA++(origin) 0.6503
MGIZA++(4CPU) 0.0017
PGIZA++(4Nodes) 0.0371

Table 11: Residual in Viterbi alignment scores (GIZA++
with the bug fixed as reference)

tool GIZA++. PGIZA++ does alignment on a num-
ber of independent processes, uses network file sys-
tem to collect counts, and performs normalization by
a master process. MGIZA++ uses a multi-threading
mechanism to utilize multiple cores and avoid net-
work transportation. The experiments show that the
two implementation produces similar results with
original GIZA++, but lead to a significant speed-up
in the training process.

With compatible interface, MGIZA++ is suit-
able for a drop-in replacement for GIZA++, while
PGIZA++ can utilize huge computation resources,
which is suitable for building large scale systems
that cannot be built using a single machine.

However, improvements can be made on both
versions. First, a combination of the two imple-
mentation is reasonable, i.e. running multi-threaded
child processes inside PGIZA++’s architecture. This
could reduce the I/O significantly when using the
same number of CPUs. Secondly, the mechanism
of assigning sentence pairs to the child processes can
be improved in PGIZA++. A server can take respon-
sibility to assign sentence pairs to available child
processes dynamically. This would avoid wasting
any computation resource by waiting for other pro-
cesses to finish. Finally, the huge model files, which
are responsible for a high I/O volume can be reduced
by using binary formats. A first implementation of a
simple binary format for the TTable resulted in files
only about 1/3 in size on disk compared to the plain
text format.

The recent development of MapReduce frame-
work shows its capability to parallelize a variety of
machine learning algorithms, and we are attempting
to port word alignment tools to this framework. Cur-
rently, the problems to be addressed is the I/O bot-
tlenecks and memory usage, and an attempt to use
distributed structured storage such as HyperTable to
enable fast access to large tables and also performing
filtering on the tables to alleviate the memory issue.
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Abstract 

We present a description of the implemen-

tation of the open source decoder for statis-

tical machine translation which has become 

popular with many researchers in SMT re-

search. The goal of the project is to create 

an open, high quality phrase-based decoder 

which can reduce the time and barrier to 

entry for researchers wishing to do SMT 

research. We discuss the major design ob-

jective for the Moses decoder, its perform-

ance relative to other SMT decoders, and 

the steps we are taking to ensure that its 

success will continue. 

1 Motivation 

Phrase-based translation has been one of the 

major advances in statistical machine translation 

(Brown et al. 1990) in recent years and is currently 

one of the techniques which can claim to be state-

of-the-art in machine translation. Phrase-based 

models are a development of the word based mod-

els as exemplified by the (Brown et al. 1990). In 

phrase-based translation, contiguous segments of 

words in the input sentence are mapped to contigu-

ous segments of words in the output sentence.  

In SMT, we are given a source language sen-

tence, s, which is to be translated into a target lan-

guage sentence, t. The goal of machine translation 

is to find the translation, t̂ , which is defined as: 

ˆ arg max ( | )
t

t p t s=  

where ( | )p t s is the probability model. The argmax 

implies a search for the best translation t̂  in the 

space of possible translations t. This search is the 

task of the decoder, which we will concentrate on 

in this paper. 

There have been numerous implementations of 

phrase-based decoders for SMT prior to our work. 

Early systems such as the Alignment Template 

System (ATS) (Och and Ney 2004) and Pharaoh 

(Koehn 2004) were widely used and accepted by 

the research community. ATS is perhaps the cross-

over system, in that word classes were translated as 

phrases but the surface words were translated word 

by word. Pharaoh substituted the word classes with 

surface words, thereby discarding the use of word 

classes in decoding altogether. 

There has been other phrase-based decoders 

such as PORTAGE (Sadat et al. 2005), Phramer 

(Olteanu et al. 2006), the MITLL/AFRL system 

(Shen et al. 2005), ITC-irst (Bertoldi et al. 2004), 

Ramses/Mood (Patry et al. 2006) to name but a 

few. Other researchers such as (Kumar and Byrne 

2003) have also used weighted finite state trans-

ducers but they have more difficulty modeling re-

ordering. 

Many early systems came with restrictive li-

censes; ATS has never been publicly released, 

Pharaoh was released in 2003 as a pre-compiled 

binary with documentation. This severely limited 

the extent to which other researchers can study and 

enhance the decoder. Without access to the de-

coder source code research was generally restricted 

to altering the input, augmenting it with extra in-

formation, or modifying the output or re-ranking 

the n-best list output.  

The main contribution of this paper is to show 

how we have created an extensible decoder, has 

acceptable run time performance compared to 

similar systems, and the ease of use and develop-

ment that has made it the preferred choice for re-

searchers looking for a phrase-based SMT decoder.  
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As an indication of the take-up of the Moses 

toolkit, out of over 20 competing teams at the re-

cent IWSLT 2007 conference
1
, half used Moses. 

As an indication of the extensibility of the de-

coder, there are currently four language model im-

plementations which has been integrated with the 

decoder by various researchers. In addition, the 

framework exists to integrate language models, 

such as those described in (Bilmes and Kirchhoff 

2003), which takes advantage of the factored rep-

resentation within Moses. 

 It is noted that Mood/Ramses also supports 

multiple LM implementations, an internally devel-

oped language model, in additional to SRILM, to 

overcome the latter’s licensing restrictions. 

In addition, there are two built-in phrase table 

implementations, one which loads all data into 

memory for fast decoding, and a binary phrase ta-

ble as described in (Zens and Ney 2007) which 

loads on demand to conserve memory usage. 

The Moses decoder has the ability to accept 

simple sentence input, confusion network or lattice 

networks, in common with SMT decoders such as 

the MITLL/AFRL or ITC-irst systems. The de-

coder also produces diverse types of output, rang-

ing from 1-best, n-best lists and word lattices. 

2 Comparison with other projects 

The Moses decoder is designed within a strict 

modular and object-oriented framework for easy 

maintainability and extensibility. 

In designing the decoder, we modeled the soft-

ware design methodology and aims on some re-

search-oriented software libraries outside of the 

SMT and NLP field which is open source, written 

in C++, have a large and diverse user-base, have 

succeeded in becoming the industry norm in their 

field.  

Specifically, we modeled the software on the 

CGAL library (Fabri et al. 2000), used in computa-

tional geometry, and DCMTK (Eichelberg et al. 

2004) library used in medical imaging. We believe 

they set good examples of the standards that we 

should follow. 

However, there are differences between our pro-

ject and CGAL or DCMTK. 

The first difference is project size, for example, 

whereas CGAL consists of over 500,000 lines of 

                                                 
1
 http://iwslt07.oitc.it/menu/program.html 

code and multiple libraries and example program, 

the Moses decoder consists of 20,000 lines in 2 

libraries. The difference is scale makes implement-

ing some steps in the development life cycle im-

practical or unnecessary. For example, functional-

ity specification before implementation was de-

scribed for CGAL and is typical of large projects 

but would have been cumbersome for Moses. 

Secondly, the aims of Moses and these projects 

are different. The goal of the CGAL project is to 

‘make…computational geometry available for in-

dustrial application’
2
. 

Both CGAL and DCMTK are used extensively 

in commercial applications. Therefore, issues such 

robustness, cross-platform compatibility and ease-

of-use are predominant for these projects. 

Commercialization is not an aim of the Moses 

project but we believe these issues are still as im-

portant as they affect the usability and uptake of 

the system. Therefore, the Moses decoder was built 

to address these issues without compromising the 

academic priorities of the project.  

Thirdly, the correct implementation is easier to 

decide in libraries such as CGAL as the algorithms 

are closely specified by the mathematical specifi-

cation, therefore, testing and specification writing 

is more prevalent and easier than in Moses. For 

DCMTK, the medical imaging standards and pro-

tocols offers a clear guide for implementation. By 

contrast, the function of an SMT decoder is search 

for which there are no correct implementation, we 

can only measure its performance relative to previ-

ous versions and other similar decoders. 

These differences are minor compared to the 

similarities Moses has to CGAL and DCMTK, and 

indeed, to any well developed software project. 

Design goals such as robustness, flexibility, ease of 

use and efficiency are commonality that we share 

and which we will discuss in more detail in the 

next section. 

As a contrast to CGAL and DCMTK whose de-

sign we would like to emulate, we also looked at a 

project within the NLP field which contains certain 

aspect in the design we would like to avoid. 

GIZA++ (Och and Ney 2003) is a very popular 

system within SMT for creating word alignment 

from parallel corpus, in fact, the Moses training 

scripts uses it. The system was release under the 

GPL open source license. However, its lack of 

                                                 
2
 http://cordis.europa.eu/esprit/src/21957.htm 
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clear design, documentation and obscure coding 

style makes it difficult for other researcher to con-

tribute or extend the system. For a long time, it 

couldn’t even be compiled on modern GCC com-

pilers. Other systems which seeks to improve word 

alignment and segmentation, such as MTTK (Deng 

et al. 2006), have been created to replace GIZA++.  

3 Design Goals 

We decided to develop the Moses decoder as a 

C++ library.  

We steered clear of scripting languages for per-

formance reasons and the fact they often offer even 

less in the way of cross-platform compatibility. 

Java was also avoided for performance reasons but 

it’s rich library and multi-platform support would 

have been useful. 

We note that Hiero (Chiang 2005) is written in a 

scripting language with performance critical com-

ponents rewritten in a compiled language. This is 

not the approach we considered as we believed it 

would have raised the complexity and reduce reli-

ability of the project having to develop (and debug) 

in two languages and managing the interface be-

tween them. We also note that the LinearB and 

Phramer decoders are implemented in Java and 

have reported significantly worse run time speeds, 

(Olteanu et al. 2006). 

C++ can be inelegant and difficult for inexperi-

enced developers but using other object oriented 

language such as Smalltalk or C# was out of the 

question as they lack acceptance within the MT 

research community. 

3.1 Comparable Performance 

The Pharaoh decoder (Koehn 2004) represented 

the state-of-the-art in phrase-based decoders prior 

to the introduction of Moses. Moses was designed 

to supersede Pharaoh in performance and function-

ality. Moses was used as the basis for the JHU 

Workshop (Koehn et al. 2006) on Factored Ma-

chine Translation where it was extensively en-

hanced; we capitalized on the experience of col-

leagues at the workshop and used Pharaoh as the 

baseline during development to ensure that we ob-

tain comparable performance. Table 1 shows the 

comparison of the translation performance of Phar-

aoh and Moses for a typical decoding of 2000 sen-

tence trained on the news-commentary corpus
3
. We 

also include Phramer as an example of a Java-

based decoder. Due to improvements in the search 

algorithm, Moses can slightly outperform Pharaoh 

on most tasks, which was confirmed by (Shen et al. 

2007). 

Table 1 Comparison with pharaoh & Phramer for a 

typical fr-en translation of 2000 sentences 

 Time 

taken 

Peak 

memory 

usage 

BLEU 

Pharaoh 99min 46MB 19.57 

Moses 69min 154MB 19.57 

Moses, with load 

on-demand PT & 

LM 

102min 239MB 19.57 

Phramer 649min 1218MB 19.44 

 

In addition, most of the functionality of Pharaoh 

has been replicated. 

3.2 Integration of Word-Level Factors 

The Moses decoder isn’t purely a clone of Phar-

aoh, it was created to conduct research into word-

level factors in phrase-base MT. Whereas tradi-

tional, non-factored SMT typically deals only with 

the surface form of words, factored translation 

models augments different factors, such as POS 

tags or lemma, into source and target sentences to 

improve translation. This transforms the represen-

tation of a word from a string to a vector of strings, 

and a phrase or sentence from a sequence of words 

to a sequence of vectors. Such a change to the ba-

sic data structure of a decoder propagated through-

out the rest of the system, therefore, it was simpler 

to build the Moses decoder from scratch rather 

than extend an existing decoder such as Pharaoh. 

Some research into factored machine translation 

has been published by (Koehn and Hoang 2007). 

3.3 Flexibility 

Flexibility is an important software design goal 

which will enable researchers to extend the use of 

the Moses decoders to tasks that were not origi-

nally envisioned.  

Following (Fabri et al. 2000), we identify four 

sub-issues which affects flexibility: 

i. Modularity 

                                                 
3
 http://www.statmt.org/wmt07/shared-task.html 
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ii. Adaptability 

iii. Extensibility 

iv. Openness 

3.4 Modularity 

Firstly, software modularity enables developers 

to work on one component of the decoder without 

affecting other components. A modular design re-

duces the learning curve for developers by shield-

ing them from having to understand the entire sys-

tem if they are only developing a specific part.  

Modularity also assists in the re-using of com-

ponents by separating the implementation details 

from the module interface. 

Moses takes advantage of C++ support for ob-

ject-oriented and generic programming to enable 

modularity. 

In keeping with the extensible design of CGAL 

and DCMTK, the core of the decoder is compiled 

as a static library which can interact with other 

components through a well-defined API. The sim-

ple application which currently comes with the 

decoder enables users to use the system via the 

command line and also provides an example of the 

API. 

Therefore, the current typical compilation of the 

decoder would combine the libraries from 

IRSTLM, SRILM, Moses, and moses-cmd to cre-

ate a binary executable. 

SRILM IRSTLM

moses

moses-
cmd

 

Figure 1 Project Dependencies 

Any of these libraries can be dropped or re-

placed with other components with the same API. 

We detail some examples of the object-oriented 

design of Moses below. 

The input into the decoder can be one of three 

types: a simple string (sentence), a confusion net-

work or a lattice network, Figure 2. 

 

Figure 2 Input Types 

Language models are abstracted to enable different 

implementations to be used and provide a frame-

work for more complex models such as factored 

LM and the Bloom filter language model (Talbot 

and Osborne 2007). Similarly, phrase tables are 

abstracted to provide support for multiple imple-

mentations. 

Each component model which contributes to the 

log-linear hypothesis score inherits from the 

ScoreProducer base class, Figure 3. 

 

Figure 3 Score Producer 

The Moses library provide a simple API whose 

main entry point is the class 
 Manager 

This class is instantiated in the client application, 

moses-cmd in our case. Each input is decoded by 

calling the class method below: 
 ProcessSentence() 

3.5 Adaptability 

Phrase-based SMT is a fast moving research 

field where virtually all aspects of the theory are 
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still being explored and implementations can be 

improved. The Moses decoder has to be amenable 

to researchers to adapt any component of the de-

coder in ways that perhaps wasn’t foreseen in the 

original implementation.  

Certainly, modularity plays an important part 

in this but it can also have the opposite effect of 

allowing obtuse or badly written implementation to 

hide behind the API, reducing the ability for re-

searchers to question, investigate or extend. As a 

voluntary project, there is limited power to enforce 

good implementation and it would be difficult not 

to accept added functionality. 

However, we use coding standards and designs 

during the development of the decoder that we 

hope makes the task of working with Moses easier  

for developers, and that they will continue to use 

those standards to uphold the clarity of the code. 

These coding standards include: 

i. strict object-oriented design 

ii. descriptive variable, class, object and  

function names 

iii. consistent indentation 

iv. use of STL containers 

v. implementation of STL-compatible it-

erators for internal container classes. 

The source code for the Moses decoder has con-

tributions from a number of developers in the last 

two years, Figure 4, including four developers who 

have made significant contributions but were not in 

the original JHU Workshop. However, code clarity 

has, by-and-large, remained intact. 
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Figure 4 Code committed 

We do not know how the decoder will be 

changed in future, nor do we know where and by 

whom it will be used. Moses is first and foremost 

an academic project but that doesn’t exclude its use 

in commercial applications.  

We also believe that it will be useful as a teach-

ing tool for computational linguists, machine trans-

lation researchers or general computer science stu-

dents. It is important with such a diverse potential 

user base, with widely varying degrees of C++ and 

programming experience, that we make the devel-

opment and use of Moses as easy as possible, 

without imposing a significant burden on advanced 

users. 

We would like to lower the learning curve by 

letting users use Moses in an environment and 

tools where they are most comfortable with. There-

fore, the Moses decoder is operating system and 

compiler neutral. It is known to run on Windows 

(natively, or with Cygwin), Linux 32 and 64 bits, 

Mac OSX and OpenBSD. It is known to be com-

pileable with modern gcc compilers, Visual Stu-

dio.net, Intel C++ for both Linux and Windows. 

We encourage the use of modern graphical inte-

grated development environments (IDE) for Moses 

and include project files for Visual Studio, Eclipse 

and XCode, in addition to conventional makefiles. 

We note that almost half of the source code 

downloads for the Moses toolkit from Sourceforge 

are for the non-Unix version, and that 58% of the 

visitors to the Moses website uses Windows, 

Figure 5. 

Window s

Linux

Mac

Other

 

Figure 5 OS of Moses website visitors 

This heterogeneous approach allows developers 

who have previously been excluded to participate 

within the SMT community and strengthens the 

decoder by allowing people of different back-

grounds to apply their skills. This is of particular 

concern to us as we are attempting to integrate lin-

62



 

guistic information into machine translation with 

factored decoding. 

 It also enables best-of-breed tools to be bought 

to the development of the decoder, regardless of 

platform. For example, we use both open source 

and commercial tools on Linux and Windows to 

track down memory issues, as well as performance 

profilers. This greatly enhances the efficiency of 

development and the reliability of the decoder. 

Other NLP libraries, such as SRILM (Stolcke 

2002) can be compiled and executed under multi-

ple platforms but its development are very much 

Unix-centric so requires porting tools for non-Unix 

platforms. We believe the platform and compiler 

agnostic approach is unique for a major open 

source C++ project within recent NLP history.  

3.6 Openness 

An important reason for initiating the Moses 

project was the need to create a competitive de-

coder which could be extended with factors, as 

well as other advances in phrase-based machine 

translation. It is open source to enable other re-

searchers to extend a state-of-the-art decoder with-

out having to recreate what we have already built. 

The decoder was improved at the JHU Work-

shop by a number of researchers so it needed to be 

flexible from the beginning. From this experience, 

we realize that releasing the source code is not 

enough. The decoder must be written and struc-

tured in a clear way to enable other researchers to 

contribute to the project. 

Aside from the legalese of releasing the source 

code under an open source license, we believe that 

open source also means the source code is clear 

and accessible to allow others to examine, critique 

and contribute. Coding standards aimed at source 

code clarity and support for modern tools backs 

this goal. 

Documentation of the algorithms used, and of 

the source code are also essential to allow others to 

understand the details of the decoder. Every class 

and function in the Moses decoder is commented 

in a Doxygen compatible format, HTML docu-

ments and figures, such as those in Figure 2 and 

Figure 3, are generated automatically from these 

comments and accessible via the Web
4
. 

Development is done through a source control 

system and all code changes are open to inspec-

                                                 
4
 http://www.statmt.org/moses/html/ 

tion. We encourage and enable all developers to 

use and extend Moses and feed back improve-

ments. However, to ensure that the performance of 

the decoder is maintained and that changes to the 

decoder doesn’t break existing setups, we maintain 

certain controls over the commit process.  

There is a regression test suite which should be 

passed before any code can be committed to ensure 

that unintended divergence haven’t crept in.  A 

framework exists for creation of regression tests, 

developers who add new functionality to the de-

coder are encouraged to create additional tests to 

ensure that their functionality will work in future.  

However, no amount of automated testing can 

be exhaustive. New committers are subject to peer 

review by a more experience contributor before the 

code is committed, and before the contributor is 

granted write access to the source control system. 

Also, code commits are monitored via email notifi-

cations to a public mailing list. 

These measures add a little overhead to the de-

velopment process this is necessary to maintain the 

quality of the system and assure to users and de-

velopers. 

We have benefited from the examples of sound 

software engineering principles set by the CGAL 

and DCMTK project and hope that we will emulate 

their success by bringing these engineering princi-

ples into NLP. In contrast to the ‘abandonware’ 

status of GIZA++, both CGAL and DCMTK are 

still being developed. 

4 Supporting Infrastructure 

Other factors have contributed to the wide adop-

tion of Moses. 

4.1 ‘One-Stop Shop’ for Phrase-Based SMT 

The Moses project encompasses the decoder and 

many of the other components necessary to create 

a translation system which were previously avail-

able separately. These include scripts for creating 

alignments from a parallel corpus, creating phrase 

tables and language models, binarizing phrase ta-

bles, scripts for weight optimization using MERT 

(Och 2003), and testing scripts.  

Steps such as MERT and testing which are CPU 

intensive have been re-engineered to run in parallel 

using Sun Grid Engine. 

All scripts have also been extended for factored 

translation. 
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4.2 Ongoing support 

We assist in the adoption of Moses by offering 

ongoing support to users and developers through 

the support mailing list
5
. Questions relating to 

Moses, phrase-based translation or machine trans-

lation in general are often asked, and usually an-

swered. The archived emails are publicly available 

and searchable, and have become an important 

knowledge source for the community. 

The mailing list popularity has been steadily in-

creasing since its inception, Figure 6, and is now 

the most popular mailing list for machine transla-

tion, based on volume. 
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Figure 6 Emails to Moses support mailing list 

5 Future Work 

There has been some important developments in 

phrase-based translation in recent years, including 

the hierarchical phrase-based model as described in 

(Chiang 2005).  Research have also been made into 

alternatives to the current log-linear scoring model 

such as discriminative models with millions of fea-

tures (Liang et al. 2006), or kernel based models 

(Wang et al. 2007). 

From a software engineering point of view, 

these improvements would require fundamental 

changes to the structure if they were to be imple-

mented into Moses. 

We are also interested in seeing the Moses de-

coder employed in search tasks outside of machine 

translation; Moses has been used for OCR correc-

tion, recasing, and transliteration. 

Other improvements such as smaller, faster, 

more efficient phrase tables are also welcomed. 

Lastly, we would like to see the training and 

tuning scripts re-engineered to the same modular 

                                                 
5
 moses-support@mit.edu 

design as the decoder. The future direction of the 

Moses decoder requires even more complex mod-

els which are already stretching the current script 

implementation to the limit of adaptability and re-

liability. 

6 Conclusion 

We have applied the sound software engineering 

principles and design to the implementation of the 

Moses decoder which has enabled other research-

ers to use and extend its functionality. We believe 

this has been a major factor for the widespread 

adoption of Moses within the SMT community. 

We hope that the design of the decoder will enable 

it to maintain it leading edge status into the future. 
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     The morphology of the Arabic language is rich
and complex; words are inflected to express varia-
tions in tense-aspect, person, number, and gender,
while they may also appear with clitics attached to
express possession on nouns, objects on verbs and
prepositions, and conjunctions. Furthermore, Ara-
bic script allows the omission of short vowel dia-
critics. For the Arabic language learner trying to
understand non-diacritized text, the challenge
when reading new vocabulary is first to isolate in-
dividual words within text tokens and then to de-
termine the underlying lemma and root forms to
look up the word in an Arabic dictionary.
     Buckwalter (2005)’s morphological analyzer
(BMA) provides an exhaustive enumeration of the
possible internal structures for individual Arabic
strings in XML, spelling out all possible vocaliza-
tions (diacritics added back in), parts of speech on
each token identified within the string, lemma ids,
and English glosses for each tokenized substring.
     The version of our Buckwalter-based Lookup
Tool (BBLT) that we describe in this poster pro-
vides an interactive interface for language learners
to copy and paste, or type in, single or multiple
Arabic strings for analysis by BMA (see Fig. 1)

Figure 1.  BBLT Input Screen

     We originally developed BBLT for ourselves as
machine translation (MT) developers and evaluat-
ors, to rapidly see the meanings of Arabic strings
that were not being translated by our Arabic-
English (MT) engines (Voss et al. 2006), while we
were also testing synonym lookup capabilities in
Arabic WordNet tool (Elkateb et al. 2006). While
BBLT allows users to see the “raw” BMA XML
(see Fig. 2), the look-up capability that sorts the
entries by distinct lemma and presents by English
gloss has proved the most useful to English-
speaking users who cannot simply lookup Arabic
words in the Hans Wehr dictionary (considered the
most complete source of Arabic words with about
13,000 entries, but requires the user to be able to
“know” the underlying form to search for).

Figure 2.  BBLT Output for single token with option
 “meanings with clitics and person inflections” on

The BBLT user can opt to see the glosses with or
without the clitics or inflections, with their
diacritized forms either transliterated or rewritten
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Figure 3.  BBLT Output for single token with additional
option “Buckwalter encoded vocalizations” on

in Arabic script (see Fig. 3) or in full table form for
full sentence glossing (see Fig. 4).

The web application is written as a Java webapp
to be run in a tomcat web server. It makes use of
wevlets written as both standalone sevlets, ex-
tending HttpServlet, and .jsp pages. One servlet
handles running BMA as a socket-server process
and another servlet handles request from the input
.jsp page, retrieves the raw output from the former,
process the output according to input page pa-
rameters, and redirects the output to the appropri-
ate .jsp page for display.
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Figure 4.  BBLT Output for Full Sentence with option “meanings with clitics & person inflections”
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Instituto Superior Técnico, Technical University of Lisbon
R. Alves Redol, 9 - 2◦ – 1000-029 Lisboa, Portugal

{fmfm,acbm,mviveiros,joana,pedro,njm,jpn}@l2f.inesc-id.pt
http://www.l2f.inesc-id.pt

Abstract

Our work in this area started as a re-
search project but when L2F joined TecnoVoz,
a Portuguese national consortium including
Academia and Industry partners, our focus
shifted to real-time professional solutions.
The integration of our domain-independent
Spoken Dialogue System (SDS) framework
into commercial products led to a major
reengineering process.

This paper describes the changes that the
framework went through and that deeply af-
fected its entire architecture. The communi-
cation core was enhanced, the modules inter-
faces were redefined for an easier integration,
the SDS deployment process was optimized
and the framework robustness was improved.
The work was done according to software en-
gineering guidelines and making use of design
patterns.

1 Introduction

Our SDS framework was created back in
2000 (Mourão et al., 2004), as the result of
three graduation theses (Cassaca and Maia, 2002;
Mourão et al., 2002; Viveiros, 2004), one of which
evolved into a masters thesis (Mourão, 2005).
The framework is highly inspired on the TRIPS
architecture (Allen et al., 2000): it is a frame-based
domain-independent framework that can be used
to build domain-specific dialogue systems. Every
domain is described by a frame, composed by
domain slots that are filled with user requests.
When a set of domain slots is filled, a service is

executed. In order to do so, the dialogue system
interacts with the user until enough information is
provided.

From the initial version of the framework two
systems were created for two different domains: a
bus ticket vending system, which provides an in-
terface to access bus timetables; and a digital vir-
tual butler named Ambrósio that controls home de-
vices, such as TVs (volume and channel), acclima-
tization systems, and lights (switch on/off and in-
tensity) through the X10 electrical protocol and the
IrDA (Infrared Data Association) standard. Since
2003, Ambrósio is publicly available in the “House
of the Future”1, on the Portuguese Telecommunica-
tions Museum2.

As proof of concept, we have also built a pro-
totype system that helps the user while performing
some task. This was tested for the cooking domain
and the automobile reparation domain.

After the successful deployment of the mentioned
systems, we began developing two new automatic
telephone-based systems: a home banking system
and a personal assistant. These are part of a project
of the TecnoVoz3 consortium technology migration
to enterprises. To answer to the challenges that the
creation of those new systems brought to light, the
focus of the framework shifted from academic issues
to interactive use, real-time response and real users.
Since our goal was to integrate our SDS framework
into enterprise products, we started the development
of a commercial solution. Nevertheless, despite this

1http://www.casadofuturo.org/
2http://www.fpc.pt/
3http://www.tecnovoz.pt/
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new focus, we wanted to maintain the research fea-
tures of the framework. This situation led to deep
changes in the framework development process: as
more robust techniques needed to be used to ensure
that new systems could easily be created to respond
to client requests. From this point of view, the goal
of the reengineering process was to create a frame-
work that provides means of rapid prototyping simi-
lar to those of Nuance4, Loquendo5 or Artificial So-
lutions6.

Also, the new systems we wanted to built carried
a significant change on the paradigm of the frame-
work: while in the first systems the effects of users’
actions were visible (as they could watch the lights
turning on and off, for instance) and a virtual agent
face provided feedback, in the new scenarios com-
munication is established only through a phone and,
being so, voice is the only feedback.

The new paradigm was the trigger to this pro-
cess and whenever a new issue needed to be solved
the best practices in similar successful systems were
studied. Not all can be mentioned. The most rele-
vant are described in what follows.

As it was previously mentioned, TRIPS was
the main inspiration for this framework. It is a
well known and stable architecture that has proven
its merits in accommodating a range of different
tasks (Allen et al., 2007; Jung et al., 2007). The
main modules of the system interact through a
Facilitator (Ferguson et al., 1996), similar to the
Galaxy HUB7 (Polifroni and Seneff, 2000) with
KQML (Labrou and Finin, 1997) messages. How-
ever, in TRIPS, the routing task is decentralized
since the sender modules decide where to send its
messages. At the same time, any module can sub-
scribe to selected messages through the Facilitator
according to the sender, the type of message or its
contents. This mechanism makes it easier to inte-
grate new modules that subscribe the relevant mes-
sages without the senders’ acknowledgment.

Like our framework, the CMU Olympus is a clas-
sical pipeline dialog system architecture (Bohus et

4http://www.nuance.com/
5http://www.loquendo.com/
6http://www.artificial-solutions.com/
7The Galaxy Hub maintains connections to modules (parser,

speech recognizer, back-end, etc.), and routes messages among
them. See http://communicator.sourceforge.net/

al., 2007) where the modules are connected via a
Galaxy HUB that uses a central hub and a set of
rules for relaying messages from one component to
the other. It has the three usual main blocks: Lan-
guage Understanding, through Phoenix parser and
Helios confidence-based annotation module, Dia-
logue Management, through RavenClaw (Raux et
al., 2005; Bohus, 2004), and Language Generation,
through Rosetta. Recognition is made with Sphinx
and synthesis with Theta. The back-end applications
are directly connected to the HUB through an in-
cluded stub.

Some of our recent developments are also inspired
in Voice XML8, in an effort to simplify the frame-
work parameterization and development, required in
the enterprise context. Voice XML provides stan-
dard means of declarative configuration of new sys-
tems reducing the need of coding to the related de-
vices implementation (Nyberg et al., 2002).

Our reengineering work aimed at: i) making the
framework more robust and flexible, enhancing the
creation of new systems for different domains; ii)
simplifying the system’s development, debug and
deployment processes through common techniques
from software engineering areas, such as design pat-
terns (Gamma et al., 1994; Freeman et al., 2004).

By doing this, we are trying to promote the de-
velopment and deployment of new dialogue systems
with our framework.

This paper is organized as follows: Section 2
presents the initial version of the framework; Sec-
tion 3 describes its problems and limitations, as well
as the techniques we adopted to solve them; Sec-
tion 4 describes a brief empirical evaluation of the
reengineering work; finally, Section 5 closes the pa-
per with conclusions and some remarks about future
work directions.

2 Framework description

This section briefly presents our architecture, at its
initial stage, before the reengineering process. We
also introduce some problems of the initial architec-
ture, as they will be later explained in the next sec-
tion.

8http://www.w3.org/Voice/
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2.1 Domain Model
The domain model that characterizes our framework
is composed by the following entities:

Domain, which includes a frame realization and
generalizes the information about several de-
vices;

Frame, which states the subset of slots to fill for a
given domain;

Device, which represents a real device with several
states and services. Only one active state exists,
at each time, for each device;

State, which includes a subset of services that are
active when the state is active;

Service, which instantiates a defined frame and
specifies a set of slots type of data and restric-
tions for that service.

When developing a new domain all these entities
have to be defined and instantiated.

2.2 Framework architecture
Our initial framework came into existence as the re-
sult of the integration of three main modules:

Input/Output Manager, that controls an Automatic
Speech Recognition (ASR) module (Meinedo,
2008), a Text-To-Speech (TTS) module (Paulo
et al., 2008) and provides a virtual agent
face (Viveiros, 2004);

Dialogue Manager, that interprets the user inten-
tions and generates output messages (Mourão
et al., 2002; Mourão, 2005);

Service Manager, that provides a dialogue man-
ager interface to execute the requested services,
and an external application interface through
the device concept (Cassaca and Maia, 2002).

2.3 Input/Output Manager
The Input/Output Manager (IOManager) controls an
ASR module and a TTS module. It also integrates
a virtual agent face, providing a more realistic in-
teraction with the user. The synchronization be-
tween the TTS output and the animated face is done
by an audio–face synchronization manager, which

generates the visemes9 for the corresponding TTS
phonemes information. The provided virtual agent
face is based on a state machine that informs, among
others, when the system is “thinking” or when what
the user said was not understood.

Besides, a Graphical User Interface (GUI) exists
for text interactions between the user and the system.
Although this input interface is usually only used for
test and debug proposes (as it skips the ASR mod-
ule), it could be used in combination with speech,
if requested by any specific multi-modal system im-
plementation.

The IOManager provides an interface to the Di-
alogue Manager that only includes text input and
output functions. However, the Dialogue Manager
needs to rely on other information, such as the in-
stant the user starts to speak or the moment a syn-
thesized sentence ends. These events are useful, for
instance, to set and trigger for user input timeouts.

2.4 Dialogue Manager

The architecture of the Dialogue Manager (Figure 1)
has seven main modules: a Parser, an Interpretation
Manager, a Task Manager, a Behavior Agent, a Gen-
eration Manager, a Surface Generation and a Dis-
course Context.

HUB

Surface
Generation

[16, 19]

Generation
Manager
[13, 15]

Discourse
Context
[4, 14]

Input/
Output

Manager
[1, 20]

Service
Manager
[7,10,18]

Behavior
Agent

[12]

Parser
[2]

Interpretation 
Manager

[3, 5, 8, 11]

Task
Manager
[6, 9, 17]

External
Applications

Figure 1: Dialogue Manager architecture through the
central HUB. Numbers show the execution sequence.

9A viseme is the visual representation of a phoneme and is
usually associated with muscles positioned near the region of
the mouth (Neto et al., 2006).
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These modules have specific code from the im-
plementations of the two first systems (the bus ticket
vending system and the butler). When building a
generic dialogue framework, this situation turns out
to be a problem since domain-dependent code was
being used that was not appropriate in new systems.
Also, the modules have many code for HUB messag-
ing, which makes debug and development harder.

2.5 Service Manager

The Service Manager (Figure 2) was initially devel-
oped to handle all domain specific information. It
has the following components:

Service Manager Galaxy Server, that works like a
HUB stub, managing the interface with the de-
vices and the Dialogue Manager;

Device Manager, that stores information related to
all devices. This information is used by the Di-
alogue Manager to find the service that should
be executed after an interaction;

Access Manager, that controls the user access to
some devices registered in the system;

Domain Manager, that stores all the information
about the domains. This information is used to
build interpretations and for the language gen-
eration process;

Object Recognition Manager, that recognizes the
discourse objects associated with a device;

Device Proxy, abstracts all communication with
the Device Core and device specific informa-
tion protocol. This is done through the Virtual
Proxy design pattern

Device Core, that implements the other part of the
communication protocol with the Service Man-
ager and the Dialogue Manager.

Since the Service Manager interface is shared by
the Dialogue Manager and all devices, a device can
execute a service that belongs to another device or
even access to internal Dialogue Manager informa-
tion.

External
Application

HUB

Database

Service
Manager

Galaxy
Server

Domain
Manager

Device
Manager

Access
Manager

Object
Recognition

Manager

Device
Proxy

Device Core

Device
specific

Implementation

Figure 2: Service Manager architecture.

3 Reengineering a framework

When the challenge of building two new SDSs on
our framework appeared, some of the mentioned ar-
chitectural problems were highlighted. A reengi-
neering process was critical. A starting point for the
reengineering process was needed, even though that
decision was not clear.

By observing the framework’s data and control
flow, we noticed that part of the code in the different
modules was related with HUB messaging, namely
the creation of messages to send, and the conversion
of received messages into internal structures (mar-
shalling). A considerable amount of time was spent
in this task that was repeated across the framework.

Based on that, we decided that the first step should
be the analysis of the Galaxy HUB communication
flow and the XML structures used to encode those
messages, replacing them with more appropriate and
efficient protocols.

3.1 Galaxy HUB and XML

The Galaxy HUB protocol is based in generic XML
messages. That allows new modules to be easily
plugged into the framework, written in any program-
ming language, without modifying any line of code.
However, we needed to improve the development
and debugging processes of the existing modules,
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and having a time consuming task that was repeated
whenever two modules needed to communicate was
a serious drawback.

Considering this, we decided to remove the
Galaxy HUB. This decision was enforced by the
fact that all the framework modules were written
in the Java programming language, which already
provides direct invocations and objects serialization
through Java Remote Method Invocation (RMI).

The major advantage associated with the use of
this protocol, was the possibility of removing all the
XML-based messaging that repeatedly forced the
creation and interpretation of generic messages in
execution time. With the use of RMI, these struc-
tures were replaced by Java objects that are inter-
changed between modules transparently. Not only
RMI is native to Java.

This was not a simple task, as the team that was
responsible for this process was not the team who
originally developed the framework. Because of
this, the new team lacked familiarity with the overall
code structure. In order to reduce the complexity of
the process, it was necessary to create a proper in-
terface for each module removing the several entry
points that each one had. To better understand the
real flow and to minimize the introduction of new
bugs while refactoring the code we made the infor-
mation flow temporarily synchronous.

The internal structure of each module was re-
designed and every block of code with unknown
functionality was commented out.

This substitution improved the code quality and
both the development and the debugging processes.
We believe that it also improved the runtime effi-
ciency of the system, even though no evaluation of
the performance was made. Empirically, we can say
that in the new version of the system less time is
needed to complete a task since no explicit conver-
sion of the objects into generic messages is made.

3.2 Domain dependent code
The code of the Parser, the Interpretation Manager
and the Surface Generation modules had domain de-
pendent code and it was necessary to clean it out.
Since we were modifying the Galaxy HUB code,
we took the opportunity and redesigned that code in
the aforementioned modules to make it more generic
(and, consequently less domain dependent). Being

so, the code cleaning process took place while the
Galaxy HUB was being replaced.

We were unable to redesign the domain dependent
code. Cases like hard-coded word replacement, used
both to provide a richer interpretation of the user ut-
terances and to allow giving a natural response to the
user. In such cases, we either isolated the domain
specific portions of the code or deleted them, even if
the interpretation or generation processes were de-
graded. It can be recovered in the future by includ-
ing the domain specific knowledge in the dynamic
configuration of the Interpretation and Generation
managers as suggested by Paulo Pardal (2007)

An example of this process is the split-
ting of the parser specific code into several
parsers: some domain-dependent, some domain-
independent, while creating a mechanism to com-
bine them in a configurable chain (through a pipes
and filters architecture). This allows the building
of smaller data-type specific parsers that the Inter-
pretation Manager selects to achieve the best pars-
ing result, according to the expectations of the sys-
tem (Martins et al., 2008). These expectations are
created according to the assumption that the user
will follow the mixed-initiative dialogue flow that
the system “suggests” during its turn in the interac-
tion. The strategy also handles those cases were the
user does not keep up with those expectations.

3.3 Dialogue Manager Interface
The enhancements introduced at the IOManager
level augmented the amount of the information in-
terchanged between this module and the Dialogue
Manager, as it could deal with more data coming
from the ASR, TTS and the virtual agent face.

However, the Dialogue Manager Interface was
continuously evolving and changing. This lack of
stability made it harder to maintain the successive
versions completely functional during the process.

Following the software engineering practices, and
using the Template Method design pattern, we
started with the definition of modules interfaces and
only after that the implementation code of the meth-
ods was written. This allows the simultaneous de-
velopment of different modules that interact. Only
when some conflict is reported, the parallel develop-
ment processes need to be synchronized resulting in
the possible revision of the interfaces. Even when
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an interface was not fully supported by the Dialogue
Manager, it was useful since it lead the IOManager
continuous improvements and allowed simultaneous
developments in the Dialogue Manager.

In order to ease the creation of this interface,
an Input/Output adapter was created. This adapter
makes the conversion of the information sent by the
IOManager to the Dialogue Manager specific for-
mat. Having this, when the information exchanged
with the Dialogue Manager changes, the Dialogue
Manager Interface does not need any transforma-
tion. In addition, the Dialogue Manager is able to
interact with other Input/Output platforms without
the need of internal changes.

This solution for the interfaces follows the Facade
design pattern, which provides an unique interface
for several internal modules.

3.4 File system reorganization
When the different dialogue systems were fully im-
plemented in the new version of the framework, we
wanted to keep providing simultaneous access to the
several available domains during the same execution
of the system.

In fact, in our initial framework it was already
possible to have several different domains running in
parallel. When an interaction is domain ambiguous,
the system tries to solve the ambiguity by asking the
user which domain is being referred.

User: Ligar
System: O que deseja fazer:

ligar um electrodoméstico
ou fazer um telefonema?

Figure 3: Example of a domain ambiguous interaction
while running with two different running domains. In
Portuguese “ligar” means “switch on” and “call”

Consider the example on Figure 3: an user inter-
action with two different running domains, the but-
ler and the personal digital assistant. In Portuguese,
the verb “ligar” means “to switch something on” or
“to make a phone call”. Since there are two running
domains, and the user utterance is domain ambigu-
ous, the systems requests for a disambiguation in its
next turn (O que deseja fazer), by asking if the user
wants to switch on a home device (ligar um elec-
trodoméstico) or make a phone call (fazer um tele-

fonema).
While using this feature, it came to our attention

that it was necessary to reorganize the file system:
the system folder held the code of all domains, and
every time we needed to change a specific domain
property, we had hundreds of properties files to look
at. This situation was even harder for novice frame-
work developers, since it was difficult to find ex-
actly which files needed to be modified in that dense
file system structure. Moreover, the ASR, TTS and
virtual agent configurations were shared by all do-
mains.

To solve this problem we applied the concept
of system–instance. A system–instance has one or
more domains. When the system starts, it receives
a parameter that specifies which instance we want
to run. The configuration of the existing instances
is split across different folders. A library folder
was created and organized in external libraries (li-
braries from an external source), internal libraries
(library developed internally at our laboratory) and
instance specific libraries (specific libraries of a
system–instance).

With this organization we improved the version-
ing management and updates. The conflicting con-
figuration was removed since each system–instance
has now its own configuration. The configuration
files are organized and whenever we need to deliver
a new version of a system–instance, we simply need
to select the files related with it.

3.5 Service Manager redesign
The Service Manager code had too many dependen-
cies with different modules. The Service Manager
design was based on the Virtual Proxy design pat-
tern. However, it was not possible to develop new
devices without creating dependencies on all of the
Service Manager code, as the Device Core code re-
lied heavily on some classes of the Service Manager.

This situation created difficulties in the SDSs de-
velopment process and affected new developments
since the Service Manager code needed to be copied
whenever a Device Core was running in another
computer or in a web container. This is a known
bad practice in software engineering, since the code
is scattered, making it harder to maintain updated
code in all the relevant locations.

It was necessary to split the Service Manager code
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for the communication protocol between communi-
cation itself and the device specific code.

Also, the Service Manager class10 interface was
shared by the Dialogue Manager and all devices. Be-
ing so, it was possible that a device requested the
execution of a service in other device, as well as to
access the internal information exchanged between
the Service Manager and the Dialogue Manager.

Example Device

Device Core

Device
specific

Implementation

Dialogue
Manager

Service Manager

Dialogue
Manager
Interface

Devices
Interface

Service
Manager

Class

Access
Manager

Device
Manager

Figure 4: Service Manager architecture.

Like we did with the Dialogue Manager, we spec-
ified a coherent interface for the different Service
Manager modules, removing the unwanted entry
points. The Service Manager class interface was
split and the Device Manager is now the interface
between the Service Manager and the devices (Fig-
ure 4). Also, the Service Manager class interface is
only accessed by the Dialogue Manager. The classes
between the Service Manager and the Device imple-
mentation were organized in a small library, contain-
ing the classes and the Device Core code. This li-
brary is all what is needed to create a new device
and to connect it to both the Service Manager and
the Dialogue Manager.

Finally, we changed the Access Manager to con-
trol not only user access to registered devices, but
also the registry of devices in the system. This
prevents a device which is running on a specific
system–instance to be registered in some other run-
ning system–instance. This module changed its po-
sition in the framework architecture: now it is be-

10The Service Manager Galaxy Server was renamed to Ser-
vice Manager. However, we decided to call it here by Service
Manager class so it will not be mistaken with the Service Man-
ager module.

tween the Service Manager class and the Device
Manager.

3.6 Event Manager
In the initial stage, when the Galaxy HUB was
removed, all the communication was made syn-
chronous. After that, to enhance the framework and
allow mixed initiative interactions, a mechanism that
provides asynchronous communication was needed.
Also, it was necessary to propagate information be-
tween the ASR, TTS, GUI and the Dialogue System,
crucial for the error handling and recovery tasks.

We came to the conclusion that most of the frame-
works deal with these problems by using event man-
agement dedicated modules. Although TRIPS, the
framework that initially inspired ours, has an Event
Manager, that was not available in ours. The ASR
and TTS modules provided already an event-based
information propagation, and we needed to imple-
ment a dedicated module to make the access to this
sort of information simpler. This decision was en-
forced by the existence of a requirement on han-
dling events originated by an external Private Branch
eXchange (PBX) system, like incoming call and
closed call events. The PBX system was integrated
with the personal assistant that is available through
a phone connection. SDS.

We decided to create an Event Manager in the
IOManager. The Dialogue Manager implements an
event handler that receives events from the Event
Manager and knows where to deliver them. Quickly
we understood that the event handler needed to be
dependent of the system–instance since the events
and their handling are different across systems (like
a telephone system and kiosk system). With this in
mind, we implemented the event handler module,
following the Simple Factory design pattern, by del-
egating the events handling to the specific system-
instance handler. If this specific system–instance
event handler is not specified, the system will use
a default event handler with “generic” behavior.

This developments were responsible for the con-
tinuous developments in the IOManager, referred in
section 3.3, and occurred at the same time.

With this approach, we can propagate and handle
all the ASR events, the TTS events, GUI events and
external applications events.

The Event Manager has evolved to a decentral-
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ized HUB. Through this, the sender can set identi-
fiers in some events. These identifiers are used by
other modules to identify messages relevant to them.
In TRIPS a similar service is provided by the Facil-
itator, that routes messages according to the recipi-
ents specified by the sender, and following the sub-
scriptions that modules can do by informing the Fa-
cilitator. This approach eases the integration of new
modules without changing the existing ones, just by
subscribing the relevant type of messages.

3.7 Dialogue Manager distribution

Currently, there are some clients interested in our
framework to create their own SDS. However, since
the code is completely written in Java, distributions
are made available through jar files that can be eas-
ily decoded, giving access to the source of our code.
To avoid this we need to obfuscate the code.

Even though obfuscation is an interesting solu-
tion, our code used Java’s reflexion in several points.
This technique enables dynamic retrieval of classes
and data structures by name. By doing so, it needs to
know the specific name of the classes being reflected
so that the Java class loader knows where to find
them. Obfuscation, among other things, changes
class names and locations, preventing the Java class
loader from finding them.

To cope with this additional challenge, the code
that makes use of reflexion was replaced using the
Simple Factory design pattern. This change allows
the translation of the hard-coded names to the new
obfuscated names in obfuscation time. After that,
when some class needs to instantiate one of those
classes that used reflection, that instance can be cre-
ated through the proper factory.

4 Evaluation

Although a SDS was successfully deployed in our
initial framework, which is publicly available at a
Museum since 2003, no formal evaluation was made
at that initial time. Due to this, effective or numeric
comparison between the framework as it was before
the reengineering work and as it is now, is not possi-
ble. Previous performance parameters are not avail-
able. However, some empirical evaluation is pos-
sible, based on generic principles of Software (re)
Engineering.

In the baseline framework, each improvement,
like modifications in the dialogue flow or at the
parser level, was a process that took more than two
weeks of work, of two software engineers. With the
new version, similar changes are done in less than
one week, by the same team. This includes internal
improvements, and external developments made by
entities using the system. The system is more stable
and reliable now: in the beginning, the system had
an incorrect behavior after some hours of running
time; currently with a similar load, it runs for more
than one month without needing to be restarted.

This is one great step for the adoption of our
framework. This stability, reliability and develop-
ment speed convinced our partners to create their
Spoken Dialogue Systems with our framework.

5 Conclusions and Future Work

Currently, our efforts are concentrated on interpreta-
tion improvement and on error handling and recov-
ery (Harris et al., 2004).

Currently, we are working on representing emo-
tions within the SDS framework. We want to test
the integration, and how people will react to a sys-
tem with desires and moods.

The next big step will be the inclusion of an ef-
ficient morpho-syntactic parser which generates and
provides more information (based on speech acts) to
the Interpretation Manager.

Another step we have in mind is to investigate
how the events and probabilistic information that the
ASR module injects in the system can be used to re-
cover recognition errors.

The integration of a Question-Answering (QA)
system (Mendes et al., 2007) in this framework is
also in our horizon. This might require architectural
changes in order to bring together the interpretation
and disambiguation features from the SDS with the
Information Retrieval (IR) features of QA systems.
This would provide information-providing systems
through voice interaction (Mendes, 2008).

Another ongoing work is the study of whether
ontologies can enrich a SDS. Namely, if they can
be used to abstract knowledge sources allowing the
system to focus only on dialogue phenomena rather
than architecture adaptation, when including new
domains (Paulo Pardal, 2007).
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Técnica de Lisboa (UTL), Graduation Thesis.

George Ferguson, James Allen, Brad Miller, and Eric
Ringger. 1996. The design and implementation of
the TRAINS-96 system: A prototype mixed-initiative
planning assistant. Technical Report TN96-5.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy
Sierra. 2004. Head First Design Patterns. O’Reilly.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series.

Thomas Harris, Satanjeev Banerjee, Alexander Rud-
nicky, June Sison, Kerry Bodine, and Alan Black.
2004. A research platform for multi-agent dialogue
dynamics. In 13th IEEE Intl. Workshop on Robot and
Human Interactive Communication (ROMAN).

Hyuckchul Jung, James Allen, Nathanael Chambers, Lu-
cian Galescu, Mary Swift, and William Taysom. 2007.
Utilizing natural language for one-shot task learning.
Journal of Logic and Computation.

Yannis Labrou and Tim Finin. 1997. A proposal for a
new KQML specification. Technical Report CS-97-
03, Computer Science and Electrical Engineering De-
partment, Univ. of Maryland Baltimore County.

Filipe M. Martins, Ana Mendes, Joana Paulo Pardal,
Nuno J. Mamede, and João Paulo Neto. 2008. Us-
ing system expectations to manage user interactions.
In Proc. PROPOR 2008 (to appear), LNCS. Springer.

Hugo Meinedo. 2008. Audio Pre-processing and Speech
Recognition for Broadcast News. Ph.D. thesis, IST,
UTL.

Ana Mendes, Luı́sa Coheur, Nuno J. Mamede, Luı́s
Romão, João Loureiro, Ricardo Daniel Ribeiro, Fer-
nando Batista, and David Martins de Matos. 2007.
QA@L2F@QA@CLEF. In Cross Language Evalua-
tion Forum: Working Notes - CLEF 2007 Workshop.

Ana Mendes. 2008. Introducing dialogue in a QA sys-
tem. In Doctoral Symposium of 13th Intl. Conf. Apps.
Nat. Lang. to Information Systems, NLDB (to appear).
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