
Proceedings of the Second ACL Workshop on Syntax and Structure in Statistical Translation (SSST-2), pages 37–45,
ACL-08: HLT, Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

A Rule-Driven Dynamic Programming Decoder for Statistical MT

Christoph Tillmann
IBM T.J. Watson Research Center

Yorktown Heights, N.Y. 10598
ctill@us.ibm.com

Abstract

The paper presents an extension of a dynamic
programming (DP) decoder for phrase-based
SMT (Koehn, 2004; Och and Ney, 2004) that
tightly integrates POS-based re-order rules
(Crego and Marino, 2006) into a left-to-right
beam-search algorithm, rather than handling
them in a pre-processing or re-order graph
generation step. The novel decoding algo-
rithm can handle tens of thousands of rules
efficiently. An improvement over a standard
phrase-based decoder is shown on an Arabic-
English translation task with respect to trans-
lation accuracy and speed for large re-order
window sizes.

1 Introduction

The paper presents an extension of a dynamic
programming (DP) decoder for phrase-based SMT
(Koehn, 2004; Och and Ney, 2004) where POS-
based re-order rules (Crego and Marino, 2006) are
tightly integrated into a left-to-right run over the
input sentence. In the literature, re-order rules are
applied to the source and/or target sentence as a
pre-processing step (Xia and McCord, 2004; Collins
et al., 2005; Wang et al., 2007) where the rules can
be applied on both training and test data. Another
way of incorporating re-order rules is via extended
monotone search graphs (Crego and Marino, 2006)
or lattices (Zhang et al., 2007; Paulik et al., 2007).
This paper presents a way of handling POS-based
re-order rules as an edge generation process: the
POS-based re-order rules are tightly integrated into
a left to right beam search decoder in a way that

29 000 rules which may overlap in an arbitrary
way (but not recursively) are handled efficiently.
Example rules which are used to control the novel
DP-based decoder are shown in Table 1, where each
POS sequence is associated with possibly several
permutationsπ. In order to apply the rules, the input
sentences are POS-tagged. If a POS sequence of a
rule matches some identical POS sequence in the in-
put sentence the corresponding words are re-ordered
according toπ. The contributions of this paper are
as follows: 1) The novel DP decoder can handle
tens of thousands of POS-based rules efficiently
rather than a few dozen rules as is typically reported
in the SMT literature by tightly integrating them
into a beam search algorithm. As a result phrase
re-ordering with a large distortion window can be
carried out efficiently and reliably. 2) The current
rule-driven decoder is a first step towards including
more complex rules, i.e. syntax-based rules as in
(Wang et al., 2007) or chunk rules as in (Zhang et
al., 2007) using a decoding algorithm that is con-
ceptually similar to an Earley-style parser (Earley,
1970). More generally, ’rule-driven’ decoding is
tightly linked to standard phrase-based decoding. In
future, the edge generation technique presented in
this paper might be extended to handle hierarchical
rules (Chiang, 2007) in a simple left-to-right beam
search decoder.

In the next section, we briefly summarize the
baseline decoder. Section 3 shows the novel rule-
driven DP decoder. Section 4 shows how the current
decoder is related to both DP-based decoding algo-
rithms in speech recognition and parsing. Finally,

37

Table 1: A list of 28 878 reorder rules sorted according to the rule occurrence countN(r) is used in this paper.
For each POS sequence the corresponding permutationπ is shown. Rule ID is the ordinal number of a rule in
the sorted list. The maximum rule length that can be handled efficiently is surprisingly long: about 20 words.

Rule ID r POS sequence π N(r)
1 DET NOUN DET ADJ → 2 3 0 1 4 421
2 DET NOUN NSUFF-FEM-SG DET ADJ NSUFF-FEM-SG → 3 4 5 0 1 2 2 257
...

...
...

3 000 NOUN CASE-INDEF-ACC ADJ NSUFF-FEM-SG CONJ ADJ NSUFF-FEM-SG → 2 3 4 5 6 0 1 6
...

...
...

28 878 PREP DET NOUN DET ADJ PREP NOUN-PROP ADJ → 0 1 2 7 8 3 4
NSUFF-MASC-SG-ACC-INDEF CONJ IV3MS IV IVSUFF-DO:3FS 9 10 11 12 5 6 2

Section 5 shows experimental results.

2 Baseline DP Decoder

The translation model used in this paper is a phrase-
based model (Koehn et al., 2003), where the trans-
lation units are so-called blocks: a blockb is a pair
consisting of a source phrases and a target phrase
t which are translations of each other. The ex-
pression block is used here to emphasize that pairs
of phrases (especially longer phrases) tend to form
closely linked units in such a way that the transla-
tion process can be formalized as a block segmen-
tation process (Nagata et al., 2006; Tillmann and
Zhang, 2007). Here, the input sentence is segmented
from left to right while simultaneously generating
the target sentence, one block at a time. In prac-
tice, phrase-based or block-based translation mod-
els which largely monotone decoding algorithms ob-
tain close to state-of-the-art performance by using
skip and window-based restrictions to reduce the
search space (Berger et al., 1996). During decod-
ing, we maximize the scoresw(bn

1) of a phrase-pair
sequencebn

1 = (si, ti)
n
1 :

sw(bn
1) =

n
∑

i=1

wT · f(bi, bi−1), (1)

wherebi is a block,bi−1 is its predecessor block,
and f(bi, bi−1) is a 8-dimensional feature vector
where the features are derived from some probabilis-
tic models: language model, translation model, and
distortion model probabilities.n is the number of
blocks in the translation and the weight vectorw is
trained in a way as to maximize the decoderBLEU

score on some training data using an on-line algo-
rithm (Tillmann and Zhang, 2008). The decoder that

carries out the optimization in Eq. 1 is similar to a
standard phrase-based decoder (Koehn, 2004; Och
and Ney, 2004), where states are tuples of the fol-
lowing type:

[C ; [i, j]], (2)

whereC is the so-called coverage vector that keeps
track of the already processed source position,[i, j]
is the source interval covered by the last source
phrase match. In comparison, (Koehn, 2004) uses
only the position of the final word of the last source
phrase translated. Since we are using the distortion
model in (Al-Onaizan and Papineni, 2006) the entire
last source phrase interval needs to be stored. Hy-
pothesis score and language model history are omit-
ted for brevity reasons. The states are stored in lists
or stacks and DP recombination is used to reduce the
size of the search space while extending states.

The algorithm described in this paper uses an in-
termediate data structure called anedge that repre-
sents a source phrase together with a target phrase
that is one of its possible translation. Formally, we
define:

[[i, j] , tN1], (3)

wheretN1 is the target phrase linked to the source
phrasesi, · · · , sj . The edges are stored in a so-called
chart. For each input interval that is matched by
some source phrase in the block set, a list of pos-
sible target phrase translations is stored in the chart.
Here, simple edges as in Eq. 3 are used to gener-
ate so-called rule edges that are defined later in the
paper. A similar data structure corresponding to an
edge is calledtranslation option in (Koehn, 2004).
While the edge generation potentially slows down
the overall decoding process, for the baseline de-

38

e = 1 e = 2

e = 3

a
2

a
1

a
0

e = 4

e = 5

a
3

a
4

 ’S imp le ’
’ E d g e s ’

1.

2 .

1 0

1 2 0

’ S imp le ’
E d g e s ’

A d d i t i o n a l
’ R u l e ’ E d g e

C o p i e s

e = 2 , r = 1

p = B E G
O R I G = [1 , 2]

e = 1 , r = 1

p = E N D
O R I G = [0 , 1]

e = 3 , r = 2

p = B E G
O R I G = [1 , 3]

e = 1 , r = 2
p = E N D
O R I G = [0 , 1]

e = 1 e = 2

e = 3

a
2

a
1

e = 4

e = 5

a
3

a
4

e = 1 , r = 3
p = B E G I N
O R I G = [0 , 1]

e = 4 , r = 3

p = I N T E R
O R I G = [3 , 4]

e = 3 , r = 3

p = E N D
O R I G = [1 , 2]

0 3 4 1 2

a
0

p
0

p
0

p
0

p
1

p
1

p
1

p
2

p
2

p
3

p
4

3 .

 ’Or ig ina l ’
C h a r t

 ’Ex tended ’
C h a r t

Figure 1: Addition of rule edges to a chart containing5 simple edges (some rule edges are not shown). The simple
edges remain in the chart after the rule edges have been added: they are used to carry out monotone translations.

coder generating all the simple edges takes less than
0.3 % of the overall decoding time.

3 DP-Search with Rules

This section explains the handling of the re-order
rules as an edge generation process. Assuming a
monotone translation, for the baseline DP decoder
(Koehn, 2004) each edge ending at positionj can be
continued by any edge starting at positionj + 1, i.e.
the simple edges are fully connected with respect to
their start and ending positions. For the rule-driven
decoder, all the re-ordering is handled by generat-
ing additional edges which are ’copies’ of the sim-
ple edges in each rule context in which they occur.
Here, a rule edge copy ending at positionj is not
fully connected with all other edges starting at po-
sition j + 1. Once a rule edge copy for a particular
rule id r has been processed that edge can be con-
tinued only by an edge copy for the same rule until
the end of the rule has been reached. To formalize
the approach, the search state definition in Eq. 2 is

modified as follows:

[s ; [i, j] , r , sr , e ∈ {false, true}] (4)

Here, the coverage vectorC is replaced by a single
numbers: a monotone search is carried out and all
the source positions up to positions (including s)
are covered.[i, j] is the coverage interval for the last
source phrase translated (the same as in Eq. 2).r is
the rule identifier, i.e. a rule position in the list in
Table 1.sr is the starting position for the rule match
of rule r in the input sentence, ande is a flag that
indicates whether the hypothesish has covered the
entire span of ruler yet. The search starts with the
following initial state:

[−1 ; [−1,−1] ,−1 , −1 , e = true] , (5)

where the starting positionss, sr, and the coverage
interval [i, j] are all initialized with−1, a virtual
source position to the left of the uncovered source
input. Throughout the search, a rule id of−1 in-
dicates that no rule is currently applied for that hy-
pothesis, i.e. a contiguous source interval to the left
of s is covered.

39

States are extended by finding matching edges
and the generation of these edges is illustrated in
Fig. 1 for the use of3 overlapping rules on a source
segment of5 wordsa0, · · · , a4

1. Edges are shown
as rectangles where the number on the left inside the
box corresponds to the enumeration of the simple
edges. In the top half of the picture the simple edges
which correspond to5 phrase-to-phrase translations
are shown. In the bottom half all the edges after the
rule edge extension are shown (including simpleand
rule edges). A rule edge contains additional compo-
nents: the rule idr, a relative edge positionp (ex-
plained below), and the original source interval of a
rule edge before it has been re-ordered. A rule edge
is generated from a simple edge via a re-order rule
application: the newly generated edges are added
into the chart as shown in the lower half of Figure 1.
Here, rule1 and2 generate two new edges and rule
3 generates three new edges that are added into the
chart at their new re-ordered positions, e.g. copies
of edge1 are added for the rule idr = 1 at start
position2, for rule r = 2 at start position3, and for
rule r = 3 at start position0. Even if an edge copy
is added at the same position as the original edge a
new copy is needed. The three rules correspond to
matching POS sequences, i.e. the Arabic input sen-
tence has been POS tagged and a POSpj has been
assigned to each Arabic wordaj . The same POS
sequence might generate several different permuta-
tions which is not shown here.

More formally, the edge generation process is car-
ried out as follows. First, for each source interval
[k, l] all the matching phrase pairs are found and
added into the chart as simple edges. In a second
run over the input sentence for each source inter-
val [k, l] all matching POS sequences are computed
and the corresponding source wordsak, · · · , al are
re-ordered according to the rule permutation. On
the re-ordered word sequence phrase matches are
computed only for those source phrases that already
occurred in the original (un-reordered) source sen-
tence. Both edge generation steps together still take
less than1 % of the overall decoding time as shown
in Section 5: most of the decoding time is needed to
access the translation and the language model prob-

1Rule edges and simple edges may overlap arbitrarily, but
the final translation constitutes a non-overlapping boundary se-
quence.

abilities when extending partial decoder hypotheses
2. Typically rule matches are much longer than edge
matches where several simple edges are needed to
cover the entire rule interval, i.e. three edges for rule
r = 3 in Fig. 1. As the edge copies corresponding
to the same rule must be processed in sequence they
are assigned one out of three possible positionsp:

• BEG: Edge copy matches at the begin of rule
match.

• INTER: Edge copy lies within rule match inter-
val.

• END: Edge copy matches at the end of rule
match.

Formally, the rule edges in Fig. 1 are defined as fol-
lows, where a rule edge includes all the components
of a simple edge:

[

[i, j] , tN1 , r, p, [π(i), π(j)]
]

, (6)

wherer is the rule id andp is the relative edge po-
sition. [π(i), π(j)] is the original coverage inter-
val where the edge matched before being re-ordered.
The original interval is not a necessary component of
the rule-driven algorithm but it makes a direct com-
parison with the window-based decoder straight-
forward as explained below. The rule edge defi-
nition for a rule r that matches at positionsr is
slightly simplified: the processing interval is ac-
tually [sr + i, sr + j] and the original interval is
[sr+π(i), sr+π(j)]. For simplicity reasons, the off-
setsr is omitted in Fig 1. Using the original interval
has the following advantage: as the edges are pro-
cessed from left-to-right and the re-ordering is con-
trolled by the rules the translation score computation
is based on the original source interval[π(i), π(j)]
and the monotone processing is based on the match-
ing interval [i, j]. For the rule-driven decoder it
looks like the re-ordering is carried out like in a reg-
ular decoder with a window-based re-ordering re-
striction, but the rule-induced window can be large,
i.e. up to15 source word positions. In particular
a distortion model can be applied when using the

2Strictly speaking, the edge generation constitutes two addi-
tional runs over the input sentence. In future, the rule edges can
be computed ’on demand’ for each input positionj resulting in
an even stricter implementation of the beam search concept.

40

e = 1 e = 2 e = 3

e = 4 e = 5 e = 6 e = 7 e = 8

2 , B E G I N

e = 9

6 , E N D

e = 1 1

e = 1 0

5 , I N T E R6 , B E G I N 8 , I N T E R 7 , E N D

1 , E N D7 , B E G I N

2 0 1

1 0 3 22 . R U L E :

3 . R U L E :

a
1

a
2

a
3

a
4

a
5

a
6

1 2 3 01 . R U L E :

a
0

7 , B E G I N

3 , I N T E R

8 , I N T E R

h
1

h
2

h
3

h 4 h
5

h
6

h
7

h
8

h
9

h
1 0

h
1 1

h
1 2

h
1 3

h
1 4

Figure 2: Search lattice for the rule-driven decoder. The gray circles indicated partial hypotheses. An hypothesis is
expanded by applying an edge. DP recombination is used to restrict the search space throughout the rule lattice.

re-order rules. Additionally, rule-based probabilities
can be used as well. This concept allows to directly
compare a window-based decoder and the current
rule based decoder in Section 5.

The search space for the rule-driven decoder is il-
lustrated in Fig. 2. The gray shaded circles represent
translation hypotheses according to Eq. 4. A trans-
lation hypothesish1 is extended by an edge which
covers some uncovered portion of the input sen-
tence to produce a new hypothesish2. The decoder
searches monotonically through the entire chart of
edges, and word re-ordering is possible only through
the use of rule edges. The top half of the picture
shows the way simple edges contribute to the search
process: they are used to carry out a monotone trans-
lation. The dashed arrows indicate that hypotheses
can berecombined: when extending hypothesish3

by edgee = 2 and hypothesish4 by edgee = 8
only a single hypothesish5 is kept as the history of
edge extensions can be ignored for future decoder
decisions with respect to the uncovered source posi-
tions. Here, the distortion model and the language
model history are ignored for illustration purposes.
As it can be seen in Fig. 2, the rule edge generation
step has created3 copies of the simple edgee = 7,

which are marked by a dashed borderline. Hypothe-
ses covering the same input may not be merged, i.e.
hypothesesh9 andh13 for rulesr = 1 andr = 2
have to be kept separate from the hypothesish4. But
state merging may occur for states generated by rule
edges for the same ruler, i.e. ruler = 1 and state
h9.

Since rule edges have to be processed in a sequen-
tial order, looking up those that can extend a given
hypothesish is more complicated than a phrase
translation look-up in a regular decoder. Given the
search state definition in Eq. 4, for a given rule idr

and coverage positions we have to be able to look-
up all possible edge extensions efficiently. This is
implemented by storing two lists:

1. For each source positionj a list of possible
’starting’ edges: these are all the simple edges
plus all rule edges with relative edge position
p = BEG. This list is used to expand hypotheses
according to the definition in Eq. 4 where the
rule flage = true, i.e. the search has finished
covering an entire rule interval.

2. The second list is for continuing edges (p =
INTER or p = END). For each rule idr, rule

41

start positionsr and source positionj a list of
rule edges has to be stored that can continue an
already started rule coverage. This list is used
to expand hypotheses for which the rule flage

is e = false, i.e. the hypothesis has not yet
finished covering the current rule interval, e.g.
the hypothesesh9 andh11 in Fig. 2.

The two lists are computed by a single run over
the chart after all chart edges have been generated
and before the search is carried out (the CPU time
to generate these lists is included in the edge gener-
ation CPU time reported in Section 5). The two lists
are used to find the successor edges for each hypoth-
esish that corresponds to a ruler efficiently: only
a small fraction of the chart edges starting at posi-
tion j needs to be retrieved for an extension. The
rule start positionsr has to be included for the sec-
ond list: it is possible that the same ruler matches
the input sentences for two intervals[i, j] and[i′, j′]
which overlap. This results in an invalid search state
configuration. Based on the two lists a monotone
search is carried out over the extended rule edge set
which implicitly generates a reordering lattice as in
similar approaches (Crego and Marino, 2006; Zhang
et al., 2007). But because the handling of the edges
is tightly integrated into the beam search algorithm
by applying the same beam thresholds it potentially
handles10’s of thousands of rules efficiently.

4 DP Search

The DP decoder described in the previous section
bears some resemblance with search algorithms for
large vocabulary speech recognition. For exam-
ple, (Jelinek, 1998) presents a Viterbi decoder that
searches a composite trellis consisting of smaller
HMM acoustic trellises that are combined with lan-
guage model states in the case a trigram language
model. Multiple ’copies’ of the same acoustic sub
models are incorporated into the overall trellis. The
highest probability word sequences is obtained us-
ing a Viterbi shortest path finding algorithm in a
possibly huge composite HMM (cf. Fig.5.3 of
(Jelinek, 1998)). In comparison, in this paper the
edge ’copies’ are used to generate hypotheses that
are hypotheses ’copies’ of the same phrase match,
e.g. in Fig. 2 the statesh4, h8, andh14 all result
from covering the same simple edgee7 as the most

recent phrase match. The states form a potentially
huge lattice as shown in Fig. 2. Similarly, (Ort-
manns and Ney, 2000) presents a DP search algo-
rithm where the interdependent decisions between
non-linear time alignment, word boundary detec-
tion, and word identification (the pronunciation lex-
icon is organized efficiently as a lexical tree) are all
carried out by searching a shortest path trough a pos-
sibly huge composite trellis or HMM. The similar-
ity between those speech recognition algorithms and
the current rule decoder derives from the following
observation: the use of a language model in speech
recognition introduces a coupling between adjacent
acoustic word models. Similarly, a rule match which
typically spans several source phrase matches intro-
duces a coupling between adjacent simple edges.
Viewed in this way, the handling of copies is a
technique of incorporating higher-level knowledge
sources into a simple one-step search process: ei-
ther by processing acoustic models in the context of
a language model or by processing simple edges in
the context of bigger re-ordering units, which exploit
a richer linguistic context.

The Earley parser in the presentation (Jurafsky
and Martin, 2000) also uses the notion ofedges
which represent partial constituents derived in the
parsing process. These constituents are interpreted
as edges in a directed acyclic graph (DAG) which
represents the set of all sub parse trees considered.
This paper uses the notion ofedgesas well fol-
lowing (Tillmann, 2006) where phrase-based decod-
ing is also linked to a DAG path finding problem.
Since the re-order rules are not applied recursively,
the rule-driven algorithm can be linked to an Earley
parser where parsing is done with a linear grammar
(for a definition of linear grammar see (Harrison,
1978)). A formal analysis of the rule-driven decoder
might be important because of the following consid-
eration: in phrase-based machine translation the tar-
get sentence is generated from left-to-right by con-
catenating target phrases linked to source phrases
that cover some source positions. Here, a coverage
vector is typically used to ensure that each source
position is covered a limited number of times (typi-
cally once). Including a coverage vectorC into the
search state definition results in an inherently expo-
nential complexity: for an input sentence of length
J there are2J coverage vectors (Koehn, 2004). On

42

Table 2: Translation results on the MT06 data.w is the distortion limit.
words / sec generation [%] BLEU PREC TER

Baseline decoder w = 0 171.6 1.90 34.6 35.2 65.3
w = 2 25.4 0.29 36.6 37.7 63.5
w = 5 8.2 0.10 35.0 36.1 65.1

Rule decoder N(r) ≥ 2 9.1 0.75 37.1 38.2 63.5
(w = 15) N(r) ≥ 5 10.5 0.43 37.2 38.2 63.5

the contrary, the search state definition in Eq. 4 ex-
plicitly avoids the use of a coverage vector result-
ing in an essentially linear time decoding algorithm
(Section 5 reports the size of the the extended search
graph in terms of number of edges and shows that
the number of permutations per POS sequence is
less than2 on average). The rule-driven algorithm
might be formallycorrect in the following sense. A
phrase-based decoder has to generate a phrase align-
ment where each source position needs to be cov-
ered by exactly one source phrase. The rule-based
decoder achieves this bylocal computation only: 1)
no coverage vector is used, 2) the rule edge genera-
tion is local to each individual rule, i.e. looking only
at the span of that rule, and 3) rules whose appli-
cation spans overlap arbitrarily (but not recursively)
are handled correctly. In future, a formal correctness
proof might be given.

5 Experimental Results

We test the novel edge generation algorithm on
a standard Arabic-to-English translation tasks: the
MT06 Arabic-English DARPA evaluation set con-
sisting of1 529 sentences with58 331 Arabic words
and4 English reference translations . The transla-
tion model is defined in Eq. 1 where8 probabilis-
tic features (language, translation,distortion model)
are used. The distortion model is similar to (Al-
Onaizan and Papineni, 2006). An on-line algorithm
similar to (Tillmann and Zhang, 2008) is used to
train the weight vectorw. The decoder uses a5-
gram language model , and the phrase table consists
of about3.2 million phrase pairs. The phrase table
as well as the probabilistic features are trained on a
much larger training data consisting of3.8 million
sentences. Translation results are given in terms of
the automaticBLEU evaluation metric (Papineni et
al., 2002) as well as theTER metric (Snover et al.,

2006).
Our baseline decoder is similar to (Koehn, 2004;

Moore and Quirk, 2007). The goal of the current
paper is not to demonstrate an improvement in de-
coding speed but show the validity of the rule edge
generation algorithm. While the baseline and the
rule-driven decoder are compared with respect to
speed, they are both run with conservatively large
beam thresholds, e.g. a beam limit of500 hypothe-
ses and a beam threshold of7.5 (logarithmic scale)
per source positionj. The baseline decoder and the
rule decoder use only2 stacks to carry out the search
(rather than a stack for each source position) (Till-
mann, 2006). No rest-cost estimation is employed.
For the results in line2 the number of phrase ’holes’
n in the coverage vector for a left to right traver-
sal of the input sentence is restricted using a typi-
cal skip-based decoder (Berger et al., 1996). Up to
2 phrases can be skipped. Additionally, the phrase
re-ordering is restricted to take place within a given
window sizew. The28, 878 rules used in this paper
are obtained from14 989 manually aligned Arabic-
English sentences where the Arabic sentences have
been segmented and POS tagged . The rule selec-
tion procedure is similar to the one used in (Crego
and Marino, 2006) and rules are extracted that oc-
cur at least twice. The rule-based re-ordering uses
an additional probabilistic feature which is derived
from the rule unigram countN(r) shown in Table. 1:
p(r) = N(r)

∑

r
′

N(r′)
. The average number of POS se-

quence matches per input sentence is34.9 where the
average number of permutations that generate edges
is 57.7. The average number of simple edges i.e.
phrase pairs per input sentence is751.1. For the
rule-based decoder the average number of edges is
3187.8 which includes the simple edges.

Table 2 presents results that compare the base-
line decoder with the rule-driven decoder in terms

43

of translation performance and decoding speed. The
second column shows the distortion limit used by
the two decoders. For the rule-based decoder a max-
imum distortion limit w is implemented by filter-
ing out all the rule matches where the size of the
rule in terms of number of POS symbols is greater
than w, i.e. the rule edges are processed mono-
tonically but a monotone rule edge sequence for
the same rule id may not span more thanw source
positions. The third column shows the translation
speed in terms of words per second. The fourth
column shows the percentage of CPU time needed
for the edge generation (including both simple and
rule edges). The final three columns report transla-
tion results in terms ofBLEU , BLEU precision
score (PREC), andTER. The rule-based reorder-
ing restriction obtains the best translation scores on
the MT06 data: aBLEU score of37.2 compared
to aBLEU score of36.6 for the baseline decoder.
The statistical significance interval is rather large:
2.9 % on this test set as text from various gen-
res is included. Additional visual evaluation on the
dev set data shows that some successful phrase re-
ordering is carried out by the rule decoder which is
not handled correctly by the baseline decoder. As
can be seen from the results reducing the number
of rules by filtering all rules that occur at least5
times (about10 000 rules) slightly improves trans-
lation performance from37.1 to 37.2. The edge
generation accounts for only a small fraction of the
overall decoding time. Fig. 3 and Fig. 4 demonstrate
additional advantages when using the rule-based de-
coder. Fig. 3 shows the translationBLEU score as
a function of the distortion limit windoww. The
BLEU score actually decreases for the baseline de-
coder as the sizew is increased. The optimal win-
dow size is surprisingly small:w = 2. A simi-
lar behavior is also reported in (Moore and Quirk,
2007) wherew = 5 is used . For the rule-driven de-
coder however theBLEU score does not decrease
for largew: the rules restrict the local re-ordering in
the context of potentially very long POS sequences
which makes the re-ordering more reliable. Fig. 4
which shows the decoding speed as a function of the
window sizew demonstrates that the rule-based de-
coder actually runs faster than the baseline decoder
for window sizesw ≥ 5.

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0 2 4 6 8 10 12 14 16

B
LE

U

maximum window size

rule-driven decoder N(r)>=5

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0 2 4 6 8 10 12 14 16

B
LE

U

maximum window size

rule-driven decoder N(r)>=5
rule-driven decoder N(r)>=2

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0 2 4 6 8 10 12 14 16

B
LE

U

maximum window size

rule-driven decoder N(r)>=5
rule-driven decoder N(r)>=2

distortion-limited phrase decoder

Figure 3:BLEU score as a function of window sizew.

 10

 100

 0 2 4 6 8 10 12 14 16

C
P

U
 [w

or
ds

 /
se

c]

maximum window size

rule-driven decoder N(r)>=5

 10

 100

 0 2 4 6 8 10 12 14 16

C
P

U
 [w

or
ds

 /
se

c]

maximum window size

rule-driven decoder N(r)>=5
rule-driven decoder N(r)>=2

 10

 100

 0 2 4 6 8 10 12 14 16

C
P

U
 [w

or
ds

 /
se

c]

maximum window size

rule-driven decoder N(r)>=5
rule-driven decoder N(r)>=2

distortion-limited phrase decoder

Figure 4: Decoding speed as a function of window size
w.

6 Discussion and Future Work

The handling of the re-order rules is most similar to
work in (Crego and Marino, 2006) where the rules
are used to create re-order lattices. To make this
feasible, the rules have been vigorously filtered in
(Crego and Marino, 2006): only about30 rules are
used in their experiments. On the contrary, the cur-
rent approach tightly integrates the re-order rules
into a phrase-based decoder such that29 000 rules
can be handled efficiently. In future work our novel
approach might allow to make use of lexicalized re-
order rules as in (Xia and McCord, 2004) or syntac-
tic rules as in (Wang et al., 2007).

7 Acknowledgment

This work was supported by the DARPA GALE
project under the contract number HR0011-06-2-
00001. The authors would like to thank the anony-
mous reviewers for their detailed criticism.

44

References

Yaser Al-Onaizan and Kishore Papineni. 2006. Dis-
tortion Models for Statistical Machine Translation.
In Proceedings of ACL-COLING’06, pages 529–536,
Sydney, Australia, July.

Adam L. Berger, Peter F. Brown, Stephen A. Della
Pietra, Vincent J. Della Pietra, Andrew S. Kehler, and
Robert L. Mercer. 1996. Language Translation Ap-
paratus and Method of Using Context-Based Trans-
lation Models. United States Patent, Patent Number
5510981, April.

David Chiang. 2007. Hierarchical Machine Translation.
Computational Linguistics, 33(2):201–228.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. InProc. of ACL’05, pages 531–540, Ann
Arbor, Michigan, June. Association for Computational
Linguistics.

J.M. Crego and José B. Marino. 2006. Integration of
POStag-based Source Reordering into SMT Decoding
by an Extended Search Graph. InProc. of AMTA06,
pages 29–36, Cambridge, MA, August.

Jay Earley. 1970. An Efficient Context-Free Parsing Al-
gorithm. Communications of the ACM, 13(2):94–102.

Michael A. Harrison. 1978.Introduction to Formal Lan-
guage Theory. Addison Wesley.

Fred Jelinek. 1998. Statistical Methods for Speech
Recognition. The MIT Press, Cambridge, MA.

Daniel Jurafsky and James H. Martin. 2000.Speech and
Language Processing. Prentice Hall.

Philipp Koehn, Franz J. Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InHLT-
NAACL’03: Main Proceedings, pages 127–133, Ed-
monton, Alberta, Canada, May 27 - June 1.

Philipp Koehn. 2004. Pharaoh: a Beam Search De-
coder for Phrase-Based Statistical Machine Transla-
tion Models. InProceedings of AMTA’04, Washington
DC, September-October.

Robet C. Moore and Chris Quirk. 2007. Faster Beam-
search Decoding for Phrasal SMT.Proc. of the MT
Summit XI, pages 321–327, September.

Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto,
and Kazuteru Ohashi. 2006. A Clustered Global
Phrase Reordering Model for Statistical Machine
Translation. In Proceedings of ACL-COLING’06,
pages 713–720, Sydney, Australia, July.

Franz-Josef Och and Hermann Ney. 2004. The Align-
ment Template Approach to Statistical Machine Trans-
lation. Computational Linguistics, 30(4):417–450.

Stefan Ortmanns and Hermann Ney. 2000. Progress in
Dynamic Programming Search for LVCSR.Proc. of
the IEEE, 88(8):1224–1240.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Auto-
matic Evaluation of Machine Translation. InProc. of
ACL’02, pages 311–318, Philadelphia, PA, July.

Matthias Paulik, Kay Rottmann, Jan Niehues, Silja
Hildebrand, and Stephan Vogel. 2007. The ISL
Phrase-Based MT System for the 2007 ACL Workshop
on SMT. In Proc. of the ACL 2007 Second Workshop
on SMT, June.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proc. of AMTA 2006, Boston,MA.

Christoph Tillmann and Tong Zhang. 2007. A Block Bi-
gram Prediction Model for Statistical Machine Trans-
lation. ACM-TSLP, 4(6):1–31, July.

Christoph Tillmann and Tong Zhang. 2008. An Online
Relevant Set Algorithm for Statistical Machine Trans-
lation. Accepted for publication in IEEE Transaction
on Audio, Speech, and Language Processing.

Christoph Tillmann. 2006. Efficient Dynamic Program-
ming Search Algorithms for Phrase-based SMT. In
Proceedings of the Workshop CHPSLP at HLT’06,
pages 9–16, New York City, NY, June.

Chao Wang, Michael Collins, and Philipp Koehn. 2007.
Chinese Syntactic reordering for statistical machine
translation. InProc. of EMNLP-CoNLL’07, pages
737–745, Prague, Czech Republic, July.

Fei Xia and Michael McCord. 2004. Improving a sta-
tistical mt system with automatically learned rewrite
patterns. InProc. of Coling 2004, pages 508–514,
Geneva, Switzerland, Aug 23–Aug 27. COLING.

Yuqi Zhang, Richard Zens, and Hermann Ney. 2007.
Chunk-level Reordering of Source Language Sen-
tences with Automatically Learned Rules for Statis-
tical Machine Translation. InProc. of SSST, NAACL-
HLT’07 / AMTA Workshop, pages 1–8, Rochester, NY,
April.

45

