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Abstract 29000 rules which may overlap in an arbitrary
way (but not recursively) are handled efficiently.
The paper presents an extension of a dynamic  Example rules which are used to control the novel
g‘;\c/’lgr?z‘m'hng gggz dgcaderdfc:\: phrz""g&;)?setd DP-based decoder are shown in Table 1, where each
oehn, ; Och and Ney, a . . , _
tightly integrates POS-based re-order rules POS ste?_uencel 1S 3SS?CIatec|i \f[vr:th pIOSSI,:Dth _sev?ral
(Crego and Marino, 2006) into a left-to-right permutationsr. In order to apply the rules, the inpu
beam-search algorithm, rather than handling ~ Sentences are POS-tagged. If a POS sequence of a
them in a pre-processing or re-order graph rule matches some identical POS sequence in the in-
generation step. The novel decoding algo- put sentence the corresponding words are re-ordered
rithm can handle tens of thousands of rules  according tor. The contributions of this paper are
efficiently. An improvement over a standard a5 follows: 1) The novel DP decoder can handle
phrase-based decoder is shown on an Arabic- a5 of thousands of POS-based rules efficiently
English translation task with respect to trans- . .
. rather than a few dozen rules as is typically reported
lation accuracy and speed for large re-order . . . . .
window sizes. in the SMT literature by fughtly integrating them
into a beam search algorithm. As a result phrase
_ re-ordering with a large distortion window can be
1 Introduction carried out efficiently and reliably. 2) The current
rgle-driven decoder is a first step towards including

The paper presents an extension of a dynam . .
ore complex rules, i.e. syntax-based rules as in

rogramming (DP) decoder for phrase-based SM
prog g (OP) P Wang et al., 2007) or chunk rules as in (Zhang et

(Koehn, 2004; Och and Ney, 2004) where PO L 2007) usi decodi lqorithm that i
based re-order rules (Crego and Marino, 2006) ard I ) l_JS'_Tg a ecoE lnlg agolrlt m that :ES clon-
tightly integrated into a left-to-right run over the ceptually similar to an Earley-style parser (Earley,

input sentence. In the literature, re-order rules ar%gm)' More generally, ‘rule-driven’ decoding is

applied to the source and/or target sentence astlghtly linked to standard phrase-based decoding. In

pre-processing step (Xia and McCord, 2004; Collingu_ture’ the e_dge generation technique pr_esente_d n
et al., 2005; Wang et al., 2007) where the rules caW'S paper might be extended to handle hierarchical

be applied on both training and test data. Anothd#es (Chiang, 2007) in a simple left-to-right beam

way of incorporating re-order rules is via extende&earCh decoder.

monotone search graphs (Crego and Marino, 2006)

or lattices (Zhang et al., 2007; Paulik et al., 2007). In the next section, we briefly summarize the
This paper presents a way of handling POS-basdmhseline decoder. Section 3 shows the novel rule-
re-order rules as an edge generation process: theéven DP decoder. Section 4 shows how the current
POS-based re-order rules are tightly integrated intdecoder is related to both DP-based decoding algo-
a left to right beam search decoder in a way thaithms in speech recognition and parsing. Finally,
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Table 1: A list of 28 878 reorder rules sorted according to the rule occurrence countV(r) is used in this paper.
For each POS sequence the corresponding permutationis shown. Rule ID is the ordinal number of a rule in
the sorted list. The maximum rule length that can be handled #iciently is surprisingly long: about 20 words.

Rule ID r POS sequence ™ N(r)
1 DET NOUN DET ADJ — 2301 4421
2 DET NOUN NSUFF-FEM-SG DET ADJ NSUFF-FEM-SG — 345012 2257

3000 NOUN CASE-INDEF-ACC ADJ NSUFF-FEM-SG CONJ ADJ NSUFF-FEM-SG — 2345601 6

28878 PREP DET NOUN DET ADJ PREP NOUN-PROP ADJ — 0127834

NSUFF-MASC-SG-ACC-INDEF CONJ IV3MS IV IVSUFF-DO:3FS 910111256 2
Section 5 shows experimental results. carries out the optimization in Eqg. 1 is similar to a
. standard phrase-based decoder (Koehn, 2004; Och
2 Baseline DP Decoder and Ney, 2004), where states are tuples of the fol-
The translation model used in this paper is a phraséwing type:
based model (Koehn et al., 2003), where the trans- [Cs [4,4] ) (2)

lation units are so-called blocks: a blothks a pair

cons!stmg of a source phraseand a target phrase track of the already processed source positjarj)
t which are translations of each other. The ex

is the source interval covered by the last source

pression block is used here to emphasize that pai $irase match. In comparison, (Koehn, 2004) uses
of phrases (especially longer phrases) tend to for

) o ly the position of the final word of the last source
c_Ioser linked units in SUCh_ a way that the tranSIabhrase translated. Since we are using the distortion
tIOI"l process can be formalized as a bIQCk S€IMEHodel in (Al-Onaizan and Papineni, 2006) the entire
tation process (Nagata _et al., 2006; T!Ilmann aLnfjast source phrase interval needs to be stored. Hy-
Zhang, 2007)_' Here,.the |.nput sentence is Segm,emﬁgthesis score and language model history are omit-
from left to right while S|multaneously generating;e g oy brevity reasons. The states are stored in lists
the target sentence, one block at a time. _In P'aGr stacks and DP recombination is used to reduce the
tice, phrase-based or block-based translation mogl'ze of the search space while extending states.

els which largely monotone decoding algorithms ob- The algorithm described in this paper uses an in-

tain close to state-of-the-art performance by usmgarmediate data structure called edge that repre-

Skip a;]nd wmdo;v -based relstri(;t;o(sns g rgduge th ents a source phrase together with a target phrase
search space ( erger et al,, ). During €CO%hat is one of its possible translation. Formally, we
ing, we maximize the score, (b}) of a phrase-pair

where( is the so-called coverage vector that keeps

- i define:
sequencéy = (s;,t;)1: ], £V, 3)
sw(bl) = ZwT - f(bi, bi—1), (1) wheret} is the target phrase linked to the source
i=1 phrases;, - - -, s;. The edges are stored in a so-called

whereb; is a block,b; 1 is its predecessor block, chart. For each input interval that is matched by
and f(b;,b;—1) is a 8-dimensional feature vector some source phrase in the block set, a list of pos-
where the features are derived from some probabilisible target phrase translations is stored in the chart.
tic models: language model, translation model, andere, ssimple edges as in Eq. 3 are used to gener-
distortion model probabilities.n is the number of ate so-called rule edges that are defined later in the
blocks in the translation and the weight vecteis paper. A similar data structure corresponding to an
trained in a way as to maximize the decoBBLEU edge is calledrandation option in (Koehn, 2004).
score on some training data using an on-line algdA/hile the edge generation potentially slows down
rithm (Tillmann and Zhang, 2008). The decoder thathe overall decoding process, for the baseline de-
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Figure 1: Addition of rule edges to a chart containthgimple edges (some rule edges are not shown). The simple
edges remain in the chart after the rule edges have been:atiégdire used to carry out monotone translations.

coder generating all the simple edges takes less tharodified as follows:
0.3 % of the overall decoding time. o
[s3 [i,5],7, sr, e € {falsetrue}]  (4)
Here, the coverage vectdris replaced by a single
3 DP-Search with Rules numbers: a monotone search is carried out and all
the source positions up to positien(including s)

This section explains the handling of the re-ordef"® covered|i, j] is the coverage interval for the last
rules as an edge generation process. AssumingS@urce phrase translated (the same as in Eq: B).
monotone translation, for the baseline DP decoddhe rule identifier, i.e. a rule position in the list in
(Koehn, 2004) each edge ending at positi@an be Table 1.s, is the starting position for the rule match
continued by any edge starting at positiph 1, i.e. of rule r in the input sentence, andis a flag that
the simple edges are fully connected with respect #hdicates whether the hypothedishas covered the
their start and ending positions. For the rule-drivei$ntire span of rule: yet. The search starts with the
decoder, all the re-ordering is handled by generafollowing initial state:

ing additional edges which are .’copic_as’ of the sim- 15 [-1,-1,-1, 1, e=true], (5)

ple edges in each rule context in which they occur.

Here, a rule edge copy ending at positipiis not where the starting positions s,., and the coverage
fully connected with all other edges starting at pointerval [i, j] are all initialized with—1, a virtual
sition j + 1. Once a rule edge copy for a particularsource position to the left of the uncovered source
rule id » has been processed that edge can be canput. Throughout the search, a rule id ofl in-
tinued only by an edge copy for the same rule untitlicates that no rule is currently applied for that hy-
the end of the rule has been reached. To formalizeothesis, i.e. a contiguous source interval to the left
the approach, the search state definition in Eq. 2 ©f s is covered.
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States are extended by finding matching edgebilities when extending partial decoder hypotheses
and the generation of these edges is illustrated f Typically rule matches are much longer than edge
Fig. 1 for the use o8 overlapping rules on a source matches where several simple edges are needed to
segment ob wordsay, - - -, a4 1. Edges are shown cover the entire rule interval, i.e. three edges for rule
as rectangles where the number on the left inside the= 3 in Fig. 1. As the edge copies corresponding
box corresponds to the enumeration of the simpl® the same rule must be processed in sequence they
edges. In the top half of the picture the simple edgeare assigned one out of three possible positions
which correspond t6 phrase-to-phrase translations
are shown. In the bottom half all the edges after the *
rule edge extension are shown (including singoid
rule edges). A rule edge contains additional compo- o \rer: Edge copy lies within rule match inter-
nents: the rule id, a relative edge positiop (ex- val.
plained below), and the original source interval of a
rule edge before it has been re-ordered. A rule edge ® END: Edge copy matches at the end of rule
is generated from a simple edge via a re-order rule  match.
gppllcatlon. the newly _generated edges are add%%rmally, the rule edges in Fig. 1 are defined as fol-
into the chart as shown in the lower half of Figure 1 .

lows, where a rule edge includes all the components
Here, rulel and2 generate two new edges and rule f a simole edge:
3 generates three new edges that are added into t?le P ge:
chart at their new re-ordered pos_ltlons, e.g. copies [[i,j} 7 t{v, rp, [w(i),w(j)” , (6)
of edgel are added for the rule id = 1 at start
position2, for ruler = 2 at start positior8, and for \herer is the rule id and is the relative edge po-
ruler = 3 at start positiord. Even if an edge copy sition. [r(i),x(j)] is the original coverage inter-
is added at the same position as the original edge\@| where the edge matched before being re-ordered.
new copy is needed. The three rules correspond fthe original interval is not a necessary component of
matching POS sequences, i.e. the Arabic input sefhe rule-driven algorithm but it makes a direct com-
tence has been POS tagged and a PPBas been parison with the window-based decoder straight-
assigned to each Arabic worg;. The same POS forward as explained below. The rule edge defi-
sequence might generate several different permutaition for a rule r that matches at positios, is
tions which is not shown here. slightly simplified: the processing interval is ac-

More formally, the edge generation process is cakyally [s, + i, s, + j] and the original interval is
ried out as follows. First, for each source intervals 1 7 (;), s+ (j)]. For simplicity reasons, the off-
[k,1] all the matching phrase pairs are found andets, is omitted in Fig 1. Using the original interval
added into the chart as simple edges. In a secof@ds the following advantage: as the edges are pro-
run over the input sentence for each source integessed from left-to-right and the re-ordering is con-
val [k, 1] all matching POS sequences are computegblled by the rules the translation score computation
and the corresponding source worgs - - -, a; are  is based on the original source interyali), 7(j)]
re-ordered according to the rule permutation. Omnd the monotone processing is based on the match-
the re-ordered word sequence phrase matches @k interval [i,j]. For the rule-driven decoder it
computed only for those source phrases that alreaglyoks like the re-ordering is carried out like in a reg-
occurred in the original (un-reordered) source senyjar decoder with a window-based re-ordering re-
tence. Both edge generation steps together still takgriction, but the rule-induced window can be large,
less thanl % of the overall decoding time as shownj e up to15 source word positions. In particular

in Section 5: most of the decoding time is needed tg distortion model can be applied when using the
access the translation and the language model pr

BEG. Edge copy matches at the begin of rule
match.

2strictly speaking, the edge generation constitutes two addi-
'Rule edges and simple edges may overlap arbitrarily, butonal runs over the input sentence. In future, the rule edges can
the final translation constitutes a non-overlapping boundary sée computed 'on demand’ for each input positjoresulting in
guence. an even stricter implementation of the beam search concept.
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Figure 2: Search lattice for the rule-driven decoder. Theygircles indicated partial hypotheses. An hypothesis is
expanded by applying an edge. DP recombination is usedtrictdhe search space throughout the rule lattice.

re-order rules. Additionally, rule-based probabilitiesvhich are marked by a dashed borderline. Hypothe-
can be used as well. This concept allows to directlges covering the same input may not be merged, i.e.
compare a window-based decoder and the currehypothesesy andhq3 for rulesr = 1 andr = 2
rule based decoder in Section 5. have to be kept separate from the hypoth&gisBut

The search space for the rule-driven decoder is iE{&t€ Merging may occur for states generated by rule

lustrated in Fig. 2. The gray shaded circles represeRfi9€s for the same rulg i.e. ruler = 1 and state
translation hypotheses according to Eq. 4. A trand- ) )

lation hypothesish; is extended by an edge which Since rule ec_lges have to be processed in asequen-
covers some uncovered portion of the input serfidl order, looking up those that can extend a given
tence to produce a new hypothesis The decoder hypothgslsh is more complicated than a _phrase
searches monotonically through the entire chart dfansiation look-up in a regular decoder. Given the
edges, and word re-ordering is possible only through€arch state definition in Eq. 4, for a given rulerid

the use of rule edges. The top half of the pictur@nd coverage positionwe have to be able to look-
shows the way simple edges contribute to the searti? all possible edge. extenspns efficiently. This is
process: they are used to carry out a monotone trar/§Plemented by storing two lists:

lation. The dgshed arrows indic_ate that hypotheses; £qr each source positiof a list of possible

can berecombined: when extending hypothesis;

by edgee = 2 and hypothesig, by edgee = 8
only a single hypothesig; is kept as the history of
edge extensions can be ignored for future decoder
decisions with respect to the uncovered source posi-
tions. Here, the distortion model and the language
model history are ignored for illustration purposes.
As it can be seen in Fig. 2, the rule edge generation2. The second list is for continuing edges €
step has creategl copies of the simple edge= 7, INTER OF p = END). For each rule idr, rule

'starting’ edges: these are all the simple edges
plus all rule edges with relative edge position
p = BEG. This listis used to expand hypotheses
according to the definition in Eq. 4 where the
rule flage = true, i.e. the search has finished
covering an entire rule interval.
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start positions,. and source position a list of recent phrase match. The states form a potentially
rule edges has to be stored that can continue dnuge lattice as shown in Fig. 2. Similarly, (Ort-
already started rule coverage. This list is usechanns and Ney, 2000) presents a DP search algo-
to expand hypotheses for which the rule flag rithm where the interdependent decisions between
is e = falsg i.e. the hypothesis has not yetnon-linear time alignment, word boundary detec-
finished covering the current rule interval, e.gtion, and word identification (the pronunciation lex-
the hypotheseby andh;; in Fig. 2. icon is organized efficiently as a lexical tree) are all

) ) carried out by searching a shortest path trough a pos-
The two lists are computed by a single run ovegjy|y hyge composite trellis or HMM. The similar-

the chart after all chart edges have been generatgd e yeen those speech recognition algorithms and
and before the search is carried out (the CPU timgg ¢ rrent rule decoder derives from the following
to generate these lists is included in the edge gengfpsernation: the use of a language model in speech
ation CPU time reported in Section 5). The two list§ecognition introduces a coupling between adjacent
are used to find the successor edges for each hypotysq sic word models. Similarly, a rule match which
esish that corresponds to a ruleefficiently: only  nically spans several source phrase matches intro-
a small fraction of the chart edges starting at posiy,ces a coupling between adjacent simple edges.
tion j needs to be retrieved for an extension. Th&;awed in this way, the handling of copies is a

rule s.ta.rt.p.ositions?« has to be included for the sec-(gchnique of incorporating higher-level knowledge
ond list: it is possible that the same .rmemaf[/chfes sources into a simple one-step search process: ei-
the input sentences for two intervdls;j] and[i', j']  ther by processing acoustic models in the context of
which overlap. This results in an invalid search statg language model or by processing simple edges in
configuration. Based on the two lists @ MoNotoNg,g context of bigger re-ordering units, which exploit
search is carried out over the extended rule edge sgticher linguistic context.

V\{high implicitly generates a reordering lattice as in 1 Earley parser in the presentation (Jurafsky
similar approaches (Crego and Marln_o, 2006; Zhang, 4 Martin, 2000) also uses the notion edges
etal., 2007). But because the handling of the edgggich represent partial constituents derived in the
is t|ghtly_|ntegrated into the beam searc_h algorlt_hnbarsing process. These constituents are interpreted
by applying the same beam thresho_ld_s it potentially g edges in a directed acyclic graph (DAG) which
handlesl0's of thousands of rules efficiently. represents the set of all sub parse trees considered.
This paper uses the notion efdgesas well fol-
4 DP Search lowing (Tillmann, 2006) where phrase-based decod-
The DP decoder described in the previous sectidng is also linked to a DAG path finding problem.
bears some resemblance with search algorithms f&ince the re-order rules are not applied recursively,
large vocabulary speech recognition. For examthe rule-driven algorithm can be linked to an Earley
ple, (Jelinek, 1998) presents a Viterbi decoder thatarser where parsing is done with a linear grammar
searches a composite trellis consisting of smalldfor a definition of linear grammar see (Harrison,
HMM acoustic trellises that are combined with lan-1978)). A formal analysis of the rule-driven decoder
guage model states in the case a trigram languag@ght be important because of the following consid-
model. Multiple 'copies’ of the same acoustic suleration: in phrase-based machine translation the tar-
models are incorporated into the overall trellis. Theet sentence is generated from left-to-right by con-
highest probability word sequences is obtained ugatenating target phrases linked to source phrases
ing a Viterbi shortest path finding algorithm in athat cover some source positions. Here, a coverage
possibly huge composite HMM (cf. Figh.3 of vector is typically used to ensure that each source
(Jelinek, 1998)). In comparison, in this paper thgosition is covered a limited number of times (typi-
edge 'copies’ are used to generate hypotheses ttally once). Including a coverage vectiinto the
are hypotheses 'copies’ of the same phrase matckgarch state definition results in an inherently expo-
e.g. in Fig. 2 the stateky, hg, and hy4 all result nential complexity: for an input sentence of length
from covering the same simple edgeas the most J there are2’ coverage vectors (Koehn, 2004). On
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Table 2: Translation results on the MTO6 datais the distortion limit.
words / sec| generation [%]| BLEU | PREC | TER

Baseline decoder w =10 171.6 1.90 34.6 35.2 65.3
w =2 25.4 0.29 36.6 37.7 63.5
w=2>5 8.2 0.10 35.0 36.1 65.1
Rule decoder N(r)>2 9.1 0.75 37.1 38.2 63.5
(w = 15) N(r)>5 10.5 0.43 37.2 382 | 63.5

the contrary, the search state definition in Eq. 4 eX2006).

plicitly avoids the use of a coverage vector result- Our baseline decoder is similar to (Koehn, 2004;
ing in an essentially linear time decoding algorithnMoore and Quirk, 2007). The goal of the current
(Section 5 reports the size of the the extended searphper is not to demonstrate an improvement in de-
graph in terms of number of edges and shows thabding speed but show the validity of the rule edge
the number of permutations per POS sequence generation algorithm. While the baseline and the
less thar2 on average). The rule-driven algorithmrule-driven decoder are compared with respect to
might be formallycorrect in the following sense. A speed, they are both run with conservatively large
phrase-based decoder has to generate a phrase aligpam thresholds, e.g. a beam limit5@0 hypothe-
ment where each source position needs to be coses and a beam threshold’®©$ (logarithmic scale)
ered by exactly one source phrase. The rule-basgér source positiofi. The baseline decoder and the
decoder achieves this tbgcal computation only: 1) rule decoder use onB/stacks to carry out the search
no coverage vector is used, 2) the rule edge gener@ather than a stack for each source position) (Till-
tion is local to each individual rule, i.e. looking only mann, 2006). No rest-cost estimation is employed.
at the span of that rule, and 3) rules whose appliFor the results in lin@ the number of phrase 'holes’
cation spans overlap arbitrarily (but not recursively), in the coverage vector for a left to right traver-
are handled correctly. In future, a formal correctnessal of the input sentence is restricted using a typi-

proof might be given. cal skip-based decoder (Berger et al., 1996). Up to
2 phrases can be skipped. Additionally, the phrase
5 Experimental Results re-ordering is restricted to take place within a given

window sizew. The28, 878 rules used in this paper
We test the novel edge generation algorithm o@re obtained from4 989 manually aligned Arabic-
a standard Arabic-to-English translation tasks: thgnglish sentences where the Arabic sentences have
MTO6 Arabic-English DARPA evaluation set con-peen segmented and POS tagged . The rule selec-
sisting of1 529 sentences withi8 331 Arabic words tion procedure is similar to the one used in (Crego
and4 English reference translations . The translaand Marino, 2006) and rules are extracted that oc-
tion model is defined in Eq. 1 whegprobabilis- cur at least twice. The rule-based re-ordering uses
tic features (language, translation,distortion modelin additional probabilistic feature which is derived
are used. The distortion model is similar to (Al-from the rule unigram counv¥ (r) shown in Table. 1:
Onaizan and Papineni, 2006). An on-line algorithm,,.) — N The average number of POS se-
similar to (Tillmann and Zhang, 2008) is used to 2N
train the weight vectorw. The decoder uses & quence matches per input sentenc&li® where the
gram language model , and the phrase table consistgerage number of permutations that generate edges
of about3.2 million phrase pairs. The phrase tableis 57.7. The average number of simple edges i.e.
as well as the probabilistic features are trained onphrase pairs per input sentence7isl.1. For the
much larger training data consisting ®8 million  rule-based decoder the average number of edges is
sentences. Translation results are given in terms 8187.8 which includes the simple edges.
the automatiBLEU evaluation metric (Papineniet Table 2 presents results that compare the base-
al., 2002) as well as th€ ER metric (Snover et al., line decoder with the rule-driven decoder in terms
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of translation performance and decoding speed. The 0.39 ——————————

. . L. rule-driven decoder N(r)>=5 ——
second column shows the distortion limit used by 038 | rule-driven decoder N()>=2 - 1
the two decoders. For the rule-based decoder a max- distortion-limited phrase decoder
imum distortion limitw is implemented by filter-
ing out all the rule matches where the size of the
rule in terms of number of POS symbols is greater
than w, i.e. the rule edges are processed mono-

0.34 | :
tonically but a monotone rule edge sequence for

the same rule id may not span more tharsource BP L
positions. The third column shows the translation o 2z 4 maxfmumvfmdo ;gize 1z 1416
speed in terms of words per second. The fourth

column shows the percentage of CPU time needégdgure 3:BLEU score as a function of window size:
for the edge generation (including both simple and

rule edges). The final three columns report transla- T ule-driven decoder N(J>=5
tion results in terms oBLEU , BLEU precision disto;;g‘*n'jix‘fgdds'j:’ads‘;fg‘e(;{;:r o
score PREC), andTER. The rule-based reorder- 100 ]
ing restriction obtains the best translation scores on
the MTO06 data: BLEU score 0f37.2 compared

to aBLEU score 0f36.6 for the baseline decoder.

BLEU

R

CPU [words / sec]

The statistical significance interval is rather large: " L
2.9 % on this test set as text from various gen- e T
res is included. Additional visual evaluation on the —

0 2 4 6 8 10 12 14 16
dev set data shows that some successful phrase re- maximum window size

ordering is carried out by the rule decoder which L's:i
not handled correctly by the baseline decoder. As
can be seen from the results reducing the number

of rules by filtering all rules that occur at least _ )

times (aboutl0000 rules) slightly improves trans- 6 Discussion and Future Work

lation performance froms7.1 to 37.2. The edge The handling of the re-order rules is most similar to

generation accounts for only a small fraction of th%vOrk in (Crego and Marino, 2006) where the rules

overall decoding time. Fig. 3 and Fig. 4 demonstrate : :
. . re used to create re-order lattices. To make this
additional advantages when using the rule-based d?e

coder. Fig. 3 shows the translati@LEU score as easible, the rulgs have b_een vigorously filtered in
. . . L (Crego and Marino, 2006): only abo8® rules are
a function of the distortion limit windoww. The

. used in their experiments. On the contrary, the cur-
BLEU score actually decreases for the baseline de- b . Y

L : .~ Fent approach tightly integrates the re-order rules
coder as the size is increased. The optimal win-

- - . . into a phrase-based decoder such t&tgad00 rules
dow size is surprisingly smallw = 2. A simi-

o . . can be handled efficiently. In future work our novel
lar behavior is also reported in (Moore and Quirk y

2007) wherew — 5 is used . For the rule-driven de- approach might allow to make use of lexicalized re-

[ in (Xi M 2004 -
coder however thd&8LEU score does not decreaseOrder rules as in (Xia and McCord, 2004) or syntac

for largew: the rules restrict the local re-ordering intIC rules as in (Wang et al., 2007).
the context of potentially very long POS sequences
which makes the re-ordering more reliable. Fig. 4
which shows the decoding speed as a function of thenis work was supported by the DARPA GALE
window sizew demonstrates that the rule-based deproject under the contract number HR0011-06-2-
coder actually runs faster than the baseline decodep001. The authors would like to thank the anony-
for window sizesw > 5. mous reviewers for their detailed criticism.

gure 4: Decoding speed as a function of window size
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