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Abstract

This paper presents a technique for class-
dependent decoding for statistical machine 
translation (SMT). The approach differs from 
previous methods of class-dependent transla-
tion in that the class-dependent forms of all 
models are integrated directly into the decod-
ing process. We employ probabilistic mixture 
weights between models that can change dy-
namically on a segment-by-segment basis 
depending on the characteristics of the source 
segment. The effectiveness of this approach is 
demonstrated by evaluating its performance 
on travel conversation data. We used the ap-
proach to tackle the translation of questions 
and declarative sentences using class-
dependent models.  To achieve this, our system 
integrated two sets of models specifically built 
to deal with sentences that fall into one of two 
classes of dialog sentence: questions and dec-
larations, with a third set of models built to 
handle the general class. The technique was 
thoroughly evaluated on data from 17 lan-
guage pairs using 6 machine translation 
evaluation metrics. We found the results were 
corpus-dependent, but in most cases our sys-
tem was able to improve translation perform-
ance, and for some languages the improve-
ments were substantial.

1 Introduction

Topic-dependent  modeling has proven to be an 
effective way to improve quality the quality of 
models in speech recognition (Iyer and Osendorf, 
1994; Carter, 1994). Recently, experiments in the 
field of machine translation (Hasan and Ney, 2005; 
Yamamoto and Sumita, 2007; Finch et al. 2007, 
Foster and Kuhn, 2007) have shown that class-
specific models are also useful for translation.

In the method proposed by Yamamoto and Su-
mita (2007), topic dependency was implemented 
by partitioning the data into sets before the decod-
ing process commenced, and subsequently decod-
ing these sets independently using different models 
that were specific to the class predicted for the 
source sentence by a classifier that  was run over 
the source sentences in a pre-processing pass. Our 
approach is in many ways a generalization of this 
work. Our technique allows the use of multiple-
model sets within the decoding process itself. The 
contributions of each model set  can be controlled 
dynamically during the decoding through a set of 
interpolation weights. These weights can be 
changed on a sentence-by-sentence basis. The pre-
vious approach is, in essence, the case where the 
interpolation weights are either 1 (indicating that 
the source sentence is the same topic as the model) 
or 0 (the source sentence is a different  topic). One 
advantage of our proposed technique is that it is a 
soft approach. That is, the source sentence can be-
long to multiple classes to varying degrees. In this 
respect our approach is similar to that  of Foster and 
Kuhn (2007), however we used a probabilistic 
classifier to determine a vector of probabilities rep-
resenting class-membership, rather than distance-
based weights. These probabilities were used di-
rectly as the mixture weights for the respective 
models in an interpolated model-set. A second dif-
ference between our approach and that of Foster 
and Kuhn, is that  we include a general model built 
from all of the data along with the set  of class-
specific models.

Our approach differs from all previous ap-
proaches in the models that are class-dependent. 
Hasan and Ney (2005) used only a class-dependent 
language model. Both Yamamoto and Sumita 
(2007) and Foster and Kuhn (2007), extended this 
to include the translation model. In our approach 
we combine all of the models, including the distor-
tion and target length models, in the SMT system 
within  a single framework.

The contribution of this paper is two-fold. The 
first  is the proposal of a technique for combining 

Dynamic Model Interpolation for Statistical Machine Translation

Andrew FINCH
NICT†-ATR‡

Kyoto, Japan
andrew.finch@atr.jp

Eiichiro SUMITA
NICT†-ATR‡ 
Kyoto, Japan

eiichiro.sumita@atr.jp

†  National Institute for Science and Technology
‡  Advanced Telecommunications Research Laboratories

208



multiple SMT systems in a weighted manner to 
allow probabilistic soft  weighting between topic-
dependent models for all models in the system. 
The second is the application of this technique to 
improve the quality of dialog systems by building 
and combing class-based models for interrogative 
and declarative sentences.

For the purposes of this paper, we wish to make 
the distinction between interrogative sentences and 
those which are not. For the sake of simplicity of 
expression we will call those sentences which are 
interrogative, questions and those which are not, 
declarations for the remainder of this article. 

The techniques proposed here were evaluated on 
a variety of different languages. We enumerate 
them below as a key: Arabic (ar), Danish (da), 
German (de), English (en), Spanish (es), French 
(fr), Indonesian (Malay) (id), Italian (it), Japanese 
(ja), Korean (ko), Malaysian (Malay) (ms), Dutch 
(nl), Portugese (pt), Russian (ru), Thai (th), Viet-
namese (vi) and Chinese (zh).

2 System Overview

2.1 Experimental Data

To evaluate the proposed technique, we conducted 
experiments on a travel conversation corpus. The 
experimental corpus was the travel arrangement 

task of the BTEC corpus (Kikui et al., 2003) and 
used English as the target  and each of the other 
languages as source languages. The training, de-
velopment, and evaluation corpus statistics are 
shown in Table 1. The evaluation corpus had six-
teen reference translations per sentence. This train-
ing corpus was also used in the IWSLT06 Evalua-
tion Campaign on Spoken Language Translation 
(Paul 2006) J-E open track, and the evaluation cor-
pus was used as the IWSLT05 evaluation set. 

2.2 System Architecture

Figure 1 shows the overall structure of our system. 
We used punctuation (a sentence-final ‘?’ charac-
ter) on the target-side as the ground truth as to the 
class of the target sentence. Neither punctuation 
nor case information was used for any other pur-
pose in the experiments.  The data were partitioned 
into classes, and further sub-divided into training 
and development sets for each class. 1000 sen-
tences were set  aside as development data, and the 
remainder was used for training. Three complete 
SMT  systems were built: one for each class, and 
one on the data from both classes. A probabilistic 
classifier (described in the next section) was also 
trained from the full set of training data. 

The machine translation decoder used is able to 
linearly interpolate all of the models models from 

Figure 1. The architecture of the class-based SMT system used in our experiments
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all of the sub-systems according to a vector of in-
terpolation weights supplied for each source word 
sequence to be decoded. To do this, prior to the 
search, the decoder must  first merge the phrase-
tables from each sub-system. Every phrase from all 
of the phrase-tables is used during the decoding. 
Phrases that  occur in one sub-system’s table, but 
do not  occur in another sub-system’s table will be 
used, but will receive no support  (zero probability) 
from those sub-systems that did not acquire this 
phrase during training. The search process pro-
ceeds as in a typical multi-stack phrase-based de-
coder. The weight for the general model was set  by 
tuning the parameter on the general development 
set in order to maximize performance in terms of 
BLEU score. This weight determines the amount 
of probability mass to be assigned to the general 
model, and it  remains fixed during the decoding of 
all sentences. The remainder of the probability 
mass is divided among the class-specific models 
dynamically sentence-by-sentence at  run-time. The 
proportion that  is assigned to each class is simply 
the class membership probability of the source se-
quence assigned by the classifier.

3 Question Prediction 

3.1 Outline of the Problem

Given a source sentence of a particular class (inter-
rogative or declarative in our case), we wish to 
ensure that  the target  sentence generated is of an 
appropriate class. Note that this does not necessar-
ily mean that given a question in the source, a 
question should be generated in the target. How-
ever, it seems reasonable to assume that, intuitively 
at  least, one should be able to generate a target 
question from a source question, and a target decla-
ration from a source declaration.  This is reason-
able because the role of a machine translation en-

gine is not  to be able to generate every possible 
translation from the source, but to be able to gener-
ate one acceptable translation. This assumption 
leads us to two plausible ways to proceed.

1. To predict the class of the source sentence, and 
use this to constrain the decoding process used 
to generate the target

2. To predict the class of the target  

In our experiments, we chose the second 
method, as it  seemed the most correct, but  feel 
there is some merit in both strategies.

3.2 The Maximum Entropy Classifier

We used a Maximum Entropy (ME) classifier to 
determine which class to which the input source 
sentence belongs using a set  of lexical features. 
That is, we use the classifier to set  the mixture 
weights of the class-specific models. In recent 
years such classifiers have produced powerful 
models utilizing large numbers of lexical features 
in a variety of natural language processing tasks, 
for example Rosenfeld (1996).  An ME model is an 
exponential model with the following form:

where: 
t is the class being predicted; 
c is the context of t; 
γ is a normalization coefficient; 
K is the number of features in the model; 
αk is the weight of feature fk; 
fk are binary feature functions;

    p0 is the default model

p(t, c) = γ

K∏

k=0

α
fk(c,t)
k p0

Questions + Decls. Questions Declarations Test

Train Dev Train Dev Train Dev

Sentences 161317 1000 69684 1000 90633 1000 510

Words 1001671 6112 445676 6547 549375 6185 3169

Table 1. The corpus statistics of the target language corpus (en). The number of sentences is the same as 
these values for all source languaes. The number of words in the source language differs, and depends 
on the segmentation granularity.
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We used the set of all n-grams (n≤3) occurring 
in the source sentences as features to predict  the 
sentence’s class. Additionally we introduced be-
ginning of sentence tokens (<s>) and end of sen-
tence tokens into the word sequence to distinguish 
n-grams occurring at the start and end of sentences 
from those occurring within the sentence. This was 
based on the observation that “question words” or 
words that indicate that the sentence is a question 
will frequently be found either at  the start of the 
sentence (as in the wh- <what, where, when> 
words in English or the -kah words in Malay <a-
pakah, dimanakah, kapankah>), or at the end of the 
sentence (for example the Japanese “ka” or the 
Chinese “ma”). In fact, in earlier models we used 
features consisting of n-grams occurring only at 
the start  and end of the source sentence. These 
classifiers performed quite well (approximately 4% 
lower than the classifiers that used features from 
all of the n-grams in the source), but  an error 
analysis showed that  n-grams from the interior of 
the sentence were necessary to handle sentences 
such as “excuse me please where is ...”. A simple 
example sentence and the set of features generated 
from the sentence is shown in Figure 2.

We used the ME modeling toolkit of (Zhang, 
2004) to implement our ME models. The models 
were trained by using L-BFGS parameter estima-
tion, and a Gaussian prior was used for smoothing 
during training.

3.3 Forcing the target to conform

Before adopting the mixture-based approach set 
out in this paper, we first pursued an obvious and  
intuitively appealing way of using this classifier. 
We applied it as a filter to the output of the de-
coder, to force source sentences that the classifier 
predicts should generate questions in the target to 
actually generate questions in the target. This ap-
proach was unsuccessful due to a number of issues. 

We took the n-best  output  from the decoder and 
selected the highest translation hypothesis on the 
list that  had agreement  on class according to source 
and target  classifiers. The issues we encountered 
included, too much similarity in the n-best hy-
potheses, errors of the MT system were correlated 
with errors of the classifier, and the number of 
cases that were corrected by the system was small 
<2%. As a consequence, the method proposed in 
this paper was preferred.

4 Experiments

4.1 Experimental Conditions

Decoder
The decoder used to in the experiments, CleopA-
TRa is an in-house phrase-based statistical decoder 
that can operate on the same principles as the 
PHARAOH (Koehn, 2004) and MOSES (Koehn et 

Source
Language

English 
Punctuation

Own 
Punctuation

ar 98.0 N/A

da 97.3 98.0

de 98.1 98.6

en 98.9 98.9

es 96.3 96.7

fr 97.7 98.7

id 97.9 98.5

it 94.9 95.4

ja 94.1 N/A

ko 94.2 99.4

ms 98.1 99.0

nl 98.1 99.0

pt 96.2 96.0

ru 95.9 96.6

th 98.2 N/A

vi 97.7 98.0

zh 93.2 98.8

Table 2. The classifcation accuracy (%) of the 
classifier used to predict whether or not an input 
sentence either is or should give rise to a question in 
the target.

<s> where is the
<s> where is
<s> where is the is the station </s>

is the station </s>
the station </s>

Figure 2. The set of n-gram (n≤3) features extracted 
from the sentence <s> where is the station </s> for 
use as predicates in the ME model to predict target 
sentence class.
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al, 2007) decoders. The decoder was configured to 
produce near-identical output to MOSES for these 
experiments. The decoder was modified in order to 
handle multiple-sets of models, accept  weighted 
input, and to incorporate the dynamic interpolation 
process during the decoding. 

Practical Issues
Perhaps the largest concerns about the proposed 
approach come from the heavy resource require-
ments that could potentially occur when dealing 
with large numbers of models. However, one im-
portant characteristic of the decoder used in our 
experiments is its ability to leave its models on 
disk, loading only the parts of the models neces-

Source BLEU NIST WER PER GTM METEOR

ar 0.4457 
(0.00)

8.9386 
(0.00)

0.4458 
(0.00)

0.3742 
(0.00)

0.7469 
(0.00)

0.6766 
(0.00)

da 0.6640 
(0.64)

11.4500 
(1.64)

0.2560 
(0.08)

0.2174 
(2.42)

0.8338 
(0.68)

0.8154 
(1.23)

de
0.6642 
(0.79)

11.4107 
(0.44)

0.2606 
(2.18)

0.2105 
(0.14)

0.8348 
(-0.13)

0.8132 
(-0.07)

es 0.7345 
(0.00)

12.1384 
(0.00)

0.2117 
(0.00)

0.1668 
(0.00)

0.8519 
(0.00)

0.8541 
(0.00)

fr 0.6666 
(0.95)

11.7443 
(0.63)

0.2548 
(4.82)

0.2172 
(6.50)

0.8408 
(0.48)

0.8293 
(1.29)

id 0.5295 
(9.56)

10.3459 
(4.11)

0.3899 
(21.17)

0.3239 
(4.65)

0.7960 
(1.35)

0.7521 
(2.35)

it 0.6702 
(1.01)

11.5604 
(0.41)

0.2590 
(3.25)

0.2090 
(0.62)

0.8351 
(0.36)

0.8171 
(0.05)

ja 0.5971 
(3.47)

10.6346 
(2.56)

0.3779 
(5.53)

0.2842 
(2.80)

0.8125 
(0.74)

0.7669 
(0.67)

ko
0.5898 
(1.78)

10.2151 
(1.31)

0.3891 
(0.74)

0.3138 
(-0.10)

0.7880 
(0.36)

0.7397 
(0.35)

ms 0.5102 
(10.19)

9.9775 
(2.75)

0.4058 
(18.53)

0.3355 
(3.59)

0.7815 
(0.18)

0.7247 
(2.49)

nl 0.6906 
(2.55)

11.9092 
(1.47)

0.2415 
(3.21)

0.1872 
(1.73)

0.8548 
(0.39)

0.8399 
(0.36)

pt
0.6623 
(0.35)

11.6913 
(0.26)

0.2549 
(2.52)

0.2110 
(2.68)

0.8396 
(0.02)

0.8265 
(-0.07)

ru
0.5877 
(0.34)

10.1233 
(-1.10)

0.3447 
(1.99)

0.2928 
(1.71)

0.7900 
(0.15)

0.7537 
(-0.40)

th 0.4857 
(1.50)

9.5901 
(1.17)

0.4883 
(-0.23)

0.3579 
(2.03)

0.7608 
(0.45)

0.7104 
(1.23)

vi 0.5118 
(0.67)

9.8588 
(1.85)

0.4274 
(-0.05)

0.3301 
(0.12)

0.7806 
(1.05)

0.7254 
(0.43)

zh 0.5742 
(0.00)

10.1263 
(0.00)

0.3937 
(0.00)

0.3172 
(0.00)

0.7936 
(0.00)

0.7343 
(0.00)

Table 3. Performance results translating from a number of source languages into English. Figures in parentheses are 
the percentage improvement in the score relative to the original score. Bold-bordered cells indicate those conditions 
where performance degraded. White cells indicate the proposed system’s performance is significanly different from 
the baseline (using 2000-sample bootstrap resampling with a 95% confidence level). TER scores were not tested for 
significance due to technical difficulties. ar, es and zh were also omitted since the systems were identical.
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sary to decode the sentence in hand. This reduced 
the memory overhead considerably when loading 
multiple models, without noticeably affecting de-
coding time. Moreover, it is also possible to pre-
compute the interpolated probabilities for most of 
the models for each sentence before the search 
commences, reducing both search memory and 
processing time. 

Decoding Conditions
For tuning of the decoder's parameters, minimum 
error training (Och 2003) with respect  to the BLEU 
score using was conducted using the respective 
development  corpus. A 5-gram language model, 
built using the SRI language modeling toolkit 
(Stolcke, 1999) with Witten-Bell smoothing was 
used. The model included a length model, and also 
the simple distance-based distortion model used by 
the PHARAOH decoder (Koehn, 2004).

Source Baseline No Classifier Hard Proposed

ar 0.4457 (0.00) 0.4457 (0.00) 0.4457 (0.00) 0.4457

da 0.6598 (0.64) 0.6647 (-0.11) 0.6591 (0.74) 0.664

de 0.6590 (0.79) 0.6651 (-0.14) 0.6634 (0.12) 0.6642

es 0.7345 (0.00) 0.7345 (0.00) 0.7345 (0.00) 0.7345

fr 0.6603 (0.95) 0.6594 (1.09) 0.6605 (0.92) 0.6666

id 0.4833 (9.56) 0.5029 (5.29) 0.5276 (0.36) 0.5295

it 0.6635 (1.01) 0.6660 (0.63) 0.6644 (0.87) 0.6702

ja 0.5771 (3.47) 0.5796 (3.02) 0.5667 (5.36) 0.5971

ko 0.5795 (1.78) 0.5837 (1.05) 0.5922 (-0.41) 0.5898

ms 0.4630 (10.19) 0.5015 (1.73) 0.5057 (0.89) 0.5102

nl 0.6734 (2.55) 0.6902 (0.06) 0.6879 (0.39) 0.6906

pt 0.6600 (0.35) 0.6643 (-0.30) 0.6598 (0.38) 0.6623

ru 0.5857 (0.34) 0.5885 (-0.14) 0.5844 (0.56) 0.5877

th 0.4785 (1.50) 0.4815 (0.87) 0.4831 (0.54) 0.4857

vi 0.5084 (0.67) 0.5095 (0.45) 0.5041 (1.53) 0.5118

zh 0.5742 (0.00) 0.5742 (0.00) 0.5742 (0.00) 0.5742

Table 4. Performance results comaparing our proposes method with other techniques. The column labeled ‘Baseline’ 
is the same as in Table 3, for reference. The column lableled ‘No Classifier’, is the same system as our proposed 
method, except that the classifier was replaced with a default model that assigned a class membership probability of 
0.5 in every case. The column labeled ‘Hard’ corresponds to a system that used hard weights (either 1 or 0) for the 
class-dependent models. The column labeled ‘Proposed’ are the results from our proposed method. Figures in 
parentheses represent the percentage improvement of the proposed method’s score relative to the alternative method. 
Cells with bold borders indicate those conditions where performance was degraded.
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Tuning the interpolation weights
The interpolation weights were tuned by maximiz-
ing the BLEU score on the development set  over a 
set of weights ranging from 0 to 1 in increments of 
0.1. Figure 1 shows the behavior of two of our 
models with respect to their weight parameter. 

Evaluation schemes
To obtain a balanced view of the merits of our pro-
posed approach, in our experiments we used 6 
evaluation techniques to evaluate our systems. 
These were: BLEU (Papineni, 2001), NIST (Dod-
dington, 2002), WER (Word Error Rate), PER 
(Position-independent WER), GTM (General Text 
Matcher), and METEOR (Banerjee and Lavie, 
2005).

4.2 Classification Accuracy

The performance of the classifier (from 10-fold 
cross-validation on the training set) is shown in 
Table 2. We give classification accuracy figures for 
predicting both source (same language) and target 
(English) punctuation. Unsurprisingly, all systems 
were better at  predicting their own punctuation. 
The poorer scores in the table might reflect linguis-
tic characteristics (perhaps questions in the source 
language are often expressed as statements in the 
target), or characteristics of the corpus itself. For 
all languages the accuracy of the classifier seemed 
satisfactory, especially considering the possibility 
of inconsistencies in the corpus itself (and there-
fore our test data for this experiment).

4.3 Translation Quality

The performance of the SMT systems are shown in 
Table 3. It  is clear from the table that  for most  of 
the experimental conditions evaluated the system 
outperformed a baseline system that consisted of 
an SMT system trained on all of the data. For those 
metrics in which performance degraded, in all-but-
one the results were statistically insignificant, and 
in all cases most  of the other MT evaluation met-
rics showed an improvement. Some of the lan-
guage pairs showed striking improvements, in par-
ticular both of the Malay languages id and ms im-
proved by over 3.5 BLEU points each using our 
technique. Interestingly Dutch, a relative of Malay, 
also improved substantially. This evidence points 
to a linguistic explanation for the gains. Malay has 
very simple and regular question structure, the 
question words appear at the front of question sen-
tences (in the same way as the target  language) and 
do not take any other function in the language (un-
like the English “do” for example). Perhaps this 
simplicity of expression allowed our class-specific 
models to model the data well in spite of the re-
duced data caused by dividing the data. Another 
factor might be the performance of the classifier 
which was high for all these languages (around 
98%). Unfortunately, it is hard to know the reasons 
behind the variety of scores in the table. One large 
factor is likely to be differences in corpus quality, 
and also the relationship between the source and 
target  corpus. Some corpora are direct translations 
of each other, whereas others are translated 
through another language. Chinese was one such 
language, and this may explain why we were un-
able to improve on the baseline for this language 
even though we were very successful for both 
Japanese and Thai, which are relatives of Chinese.

4.4  Comparison to Previous Methods

We ran an experiment to compare our proposed 
method to an instance of our system that  used hard 
weights. The aim was to come as close as possible 
within our framework to the system proposed by 
Yamamoto and Sumita (2007). We used weights of 
1 and 0, instead of the classification probabilities 
to weight the class-specific models. To achieve 
this, we thresholded the probabilities from the clas-
sifier such that probabilities >0.5 gave a weight of 
1, otherwise a weight  of 0 was used. The perform-
ance of this system is shown in Table 4 under the 
column heading ‘Hard’. In all-but-one of the con-

Figure 3. Graph showing the BLEU score on the 
developmment set plotted against the general 
model’s interpolation weight (a weight of 0 
meaning no contribution from the general model) 
for two systems in our experiments.

0 0.2 0.4 0.6 0.8 1

Model interpolation weight

0.38

0.4

0.42

0.44

0.46

B
L

E
U

 s
c
o

re
zh
id

214



ditions this system was outperformed by or equal 
to the proposed approach. 

The column labeled “No Classifier” in Table 4 
illustrates the effectiveness of the classifier in our 
system. These results show the effect of using 
equal weights (0.5) to interpolate between the 
Question and Declaration models. This system, 
although not  as effective as the system with the 
classifier, gave a respectable performance.

5 Conclusion

In this paper we have presented a technique for 
combining all models from multiple SMT  engines 
into a single decoding process. This technique al-
lows for topic-dependent decoding with probabilis-
tic soft weighting between the component  models. 
We demonstrated the effectiveness of our approach 
on conversational data by building class-specific 
models for interrogative and declarative sentence 
classes. We carried out an extensive evaluation of 
the technique using a large number of language 
pairs and MT evaluation metrics. In most cases we 
were able to show significant improvements over a 
system without model interpolation, and for some 
language pairs the approach excelled. The best im-
provement of all the language pairs was for Malay-
sian (Malay)-English which outperformed the 
baseline system by 4.7 BLEU points (from 0.463 
to 0.510). In future research we would like to try 
the approach with larger sets of models, and also 
(possibly overlapping) subsets of the data produced 
using automatic clustering methods. 
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