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Abstract et al., 2005), the complexity of the SMT problem it-

self together with the computational complexities of
The novel kernel regression model for SMT  kernel methods significantly complicate the imple-
only demonstrated encouraging results on  antation of the regression technique in this field.
small-scale toy data sets in previous works due . . .
hy . Our system is actually designed as a hybrid of
to the complexities of kernel methods. It is .
the first time results based on the real-world the classic phrase-based SMT model (Koehn et al.,
data from the shared translation task will be ~ 2003) and the kernel regression model as follows:
reported at ACL 2008 Workshop on Statisti- First, for each source sentence a small relevant set of
cal Machine Translation. This paper presents  sentence pairs are retrieved from the large-scale par-
the key modules of our system, including the  allel corpus. Then, the regression model is trained
kernel ridge regression rr]nodel, rgtrlevlal-b_aﬁed on this small relevant set only as a sparse approx-
sparse approximation, the decoding algorithm, a4 of the regression hyperplane trained on the
as well as language modeling issues under this . . .
framework. entire training set, as proposed in (Wang and Shawe-
Taylor, 2008). Finally, a beam search algorithm is
. utilized to decode the target sentence from the very
1 Introduction noisy output feature vector we predicted, with the
2007.support of a pre-trained phrase table to generate pos-

This paper follows the work in (Wang et al., ) : : _
Wang and Shawe-Taylor, 2008) which applied thé'ble hypotheses (candidate translations). In addi-
’ ﬁion, alanguage model trained on a monolingual cor-

kernel regression method with high-dimensiona _ ) ) )
outputs proposed originally in (Cortes et al., 20055)_us can be mtegrgted either dlrt_actly into the regres-
to statistical machine translation (SMT) tasks. In our'o" modgl orfdurl_ng the decoding procedure as an
approach, the machine translation problemis Viewe@(trafscoréng U_E?t'on' hk ¢

as a string-to-string mapping, where both the source Before describing each key component of our sys-

and the target strings are embedded into their ré?m in detail, we give a block diagram overview in

spective kernel induced feature spaces. Then ké:rlgure 1.
nel ridge regression is employed to learn the ma
ping from the input feature space to the output one.
As a kernel method, this model offers the potentiaConcretely, the machine translation problem in our
advantages of capturing very high-dimensional comethod is formulated as follows. If we define a fea-
respondences among the features of the source ande spacé<, of our source languag®, and define
target languages as well as easy integration of athe mappingd : X — H,, then a sentence € X
ditional linguistic knowledge via selecting particu-can be expressed by its feature vectdk) € H,.

lar kernels. However, unlike the sequence labelinhe definition of the feature spa@¢, of our target
tasks such as optical character recognition in (Cortésnguage) can be made in a similar way, with cor-

Problem Formulation
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o where 1 is the identity matrix, andKgs =
. rase
Algnment =) ¢ o Gton D {Phrase Table| M Mg = (150 (x;, X;)1<i j<m). Note here, we use

the kernel function:

Monolingual
Corpus

Vogeing R (xi,%;) = (D(x;), ®(x))) = 2(x;) ' (%) (4)

@ to denote the inner product between two feature vec-
Of

_ NN tors. If the feature spaces are properly defined, the
Retriever otovam Sef = ‘kernel trick’ will allow us to avoid dealing with

V4 the very high-dimensional feature vectors explicitly

Kemel (Shawe-Taylor and Cristianini, 2004).
. ﬂ/ Decoder . . . .
‘ Regression Inserting Equation (3) into Equation (1), we ob-
ﬁ @ tain our prediction as:
Source Text Target Text \I/(y) = M\II (Kq) + Z/I)_lk(b (X) (5)

. whereks (x) = (ko (X, X;)1<i<m) IS @nm x 1 col-
umn matrix. Note here, we will use the exact matrix

Figure 1: System overview. The processes in gray blockaversion instead of iterative approximations.
are pre-performed for the whole system, while the white _
blocks are online processes for each input sentence. TBd. N-gram String Kernel

two dash-line arrows represent two possible ways of lan; 1he practical learning and prediction processes,

guage model integration in our system described in Se(c)—nly the inner products of feature vectors are re-

tion 6. . . .

quired, which can be computed with the kernel func-

. . ) tion implicitly without evaluating the explicit coor-

respondlng m'appmg/ V- Hy'. Now in the ma- dinates of points in the feature spaces. Here, we de-

chine translation task, we are trying to seek a mat”ffne our features of a sentence as its werdram

represented linear operat, such that: counts, so that a blendedgram string kernel can
U(y) = Wd(x) (1) be used. Thatis, if we denote by” a substring

of sentencex starting with theith word and ending

with the jth, then for two sentences and z, the

blendedn-gram string kernel is computed as:

3 Kernel Ridge Regression n |x|—p+1 |z|—p+1

.. . . — i+p—1 __ _j:j+p—1
Based on a set of training samples, i.e. bilinguaf(*:2) = > Z Z [x =z I
sentence pair§ = {(x;,y;) : x; € X,y; € V,i = p=1 =1 j=1 )
.1’ E ’Wii}’ Wf use_ ridge regression to learn é Here, | - | denotes the length of the sentence, and
In Equation (1), as: [-] is the indicator function for the predicate. In our

min  [|[WMg — My ||% + v|W]|2% (2) system, the blended tri-gram kernel is used, which
means we count the-grams of length up to 3.

to predict the translatioy for an arbitrary source
sentencex.

where Mgy = [®(x1),....,°2(x)], Mg =
[¥(y1),..., ¥(ym)], || - || denotes the Frobenius4 Retrieval-based Sparse Approximation
norm that is a matrix norm defined as the square ro?__to

of the sum of the absolute squares of the elements in rSMT, we are nqt _able o use the entire ”".’“”'”9
: : o - set that contains millions of sentences to train our
that matrix, and’is a regularization coefficient. regression model. Fortunately, it is not necessary ei
Differentiating the expression and setting it to 9 ' Y Y
. - . . ther. Wang and Shawe-Taylor (2008) suggested that
zero gives the explicit solution of the ridge regres- .

. _ a small set of sentences whose source is relevant to

sion problem: . . .
the input can be retrieved, and the regression model

W = My (Kg + vI)"'MJ (3) can be trained on this small-scale relevant set only.
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Src | n' ya-t-il pasici deux poids, deux mesures | et al., 2007). In addition, Wang and Shawe-Taylor
RIv | pourquoly a-t-il deux poids, deux mesures (2008) further showed that the search error rate of

pourquoideux poids et deux mesures this algorithm is acceptable.

peutétren’ y a-t-il pas d’ épicemie non )

plus 6 LanguageModel Integration

pourquoin’ y a-t-il pas urgence In previous works (Wang et al., 2007; Wang and

cette directive doit exister dti deux mois Shawe-Taylor, 2008), there was no language model
Table 1: A sample input (Src) and some of the retrieve(lf_m'_Zed N the regression fl.’amework for SMT, as
relevant examples (RIV). similar function can be achieved by the correspon-
dences among the-gram features. It was demon-

strated to work well on small-scale toy data, how-

In our system, we take each sentence as a doGier, real-world data are much more sparse and
ment and use thig-idf metric that is frequently used noisy, where a language model will help signifi-
in information retrieval tasks to retrieve the relevanl:amly_

set. Preliminary experiments show that the size of There are two ways to integrate a language model
the relevant set should be properly controlied, as {f, oyr framework. First, the most straightforward so-
many sentences that are not very close to the SoUfgion is to add a weight to adjust the strength of the
text are involved, they will correspond to adding;eqression based translation scores and the language
noise. Hence, we use a threshold of thielf score 1 q4e score during the decoding procedure. Alter-
to filter the r(_elevant set. On average, around 150rQativer, as language modelisgram-based which
sentence pairs are extracted for each source Sefiaiches the definition of our feature space, we can
tence. Table 1 shows a sample input and some Qfij 5 jangauge model loss to the objective function
its top relevant sentences retrieved. of our regression model as follows. We define our
language score for a target sentegpcas:

After the regression, we have a prediction of the LM(y) = VT\II(Y) (8)
target feature vector as in Equation (1). To obwhereV is a vector whose componerts,, ., will
tain the target sentence, a decoding algorithm is stilypically be log-probabilitiedog P(y|y"y’), andy,
required to solve the pre-image problem. This ig’ andy” are arbitrary words. Note here, in or-
achieved in our system by seeking the sentejce der to match our blended tri-gram induced feature
whose feature vector has the minimum Euclideaspace, we can mak¥ of the same dimension as

5 Decoding

distance to the prediction, as: U(y), while zero the components corresponding to
. ) uni-grams and bi-grams. Then the regression prob-
y = arg min, [We(x) - ¥(y)ll (") lem can be defined as:

. o 2 2 T
where)(x) C Y denotes a finite set covering all"™'" IWMg — My ||z +v1|W|F — 2V WM<(1>91)

potential translations for the given source sentence : - .

x. To obtain a smaller search space and more rg/_herez/g is a coefficient balancing between the pre-
liable translations)(x) is generated with the sup- |9t|on being close to the target feature vector and
port of a phrase table extracted from the whole traint—)e'ng a fluent target sentence, andenotes a vec-

ing set. Then a modified beam search algorithr%Or with components 1. By differentiating the ex-

is employed, in which we restricted the distortiorP' 3510 with respect v an_d_settlng the result to
of the phrases by only allowing adjacent phrases for'0 We can obtain the explicit solution as:
exchange their positions, and rank the search statesW = (My + 1, V1 ") (Kg + 11I)"'Mj  (10)
in the beams accor_dlng to Eq.uatlon (7 buj[ applle(} Experimental Results

directly to the partial translations and their corre-
sponding source parts. A more detailed explanatioBreliminary experiments are carried out on the
of the decoding algorithm can be found in (Wand-rench-English portion of the Europarl corpus. We
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System| BLEU (%) | NIST | METEOR (%) | TER (%) | WER (%) | PER (%)
Kernel Regression 26.59 7.00 52.63 55.98 60.52 43.20
Moses| 31.15 7.48 56.80 55.14 59.85 42.79

Table 3: Evaluations based on different metrics with consparto Moses.

train our regression model on the training set, and no-LM | LM3gam | LM3gram | EM5gram

test the effects of different language models on theBLEU | 23.27 25.19 25.66 26.59
development set (test2007). The results evaluated

by BLEU score (Papineni et al., 2002) is shown infable 2: BLEU score performance of different language
Table 2 ’ models. LM denotes adding the language model dur-

ing decoding process, while Lrepresents integrating

It can be found thf'it integrating the Ianguag?he language model into the regression framework as de-
model into the regression framework works slightlyscribed in Problem (9).

better than just using it as an additional score com-
ponent during decoding. But language models
higher-order than the-gram kernel cannot be for- _ . _
mulated to the regression problem, which would b&atanjeev Banerjee and Alon Lavie. 2005. METEOR:
a drawback of our system. Furthermore, the BLEU An automatic metric for MT evaluation with improved

' ' . correlation with human judgments. Rroceedings of
score performance sugge_sts that_ our model IS notthe ACL Workshop on Intrinsic and Extrinsic Evalu-
very powerful, but some interesting hints can be

i ~~ ation Measures for Machine Translation and/or Sum-
found in Table 3 when we compare our method with grization, pages 65-72.

a 5-gram language model to a state-of-the-art syste@brinna Cortes, Mehryar Mohri, and Jason Weston.
Moses (Koehn and Hoang, 2007) based on various 2005. A general regression technique for learning
evaluation metrics, including BLEU score, NIST transductions. liProc. of ICML’05.

score (Doddington, 2002), METEOR (Banerjee ané€orge Doddington. 2002. Automatic evaluation of ma-

Lavie, 2005), TER (Snover et al., 2006), WER and gth;:;gg”fr'g:'(‘;g‘ ;}“:Et%{SJZSnggZ‘grlang_Cl‘Z;CC“”ence
PER. Itis shown that our system's TER, WER an(Ighilipp Koehn and Hieu Hoang. 2007. Factored transla-

PER scores are very close to Moses, though the iisn models. InProc. of EMNLP-CoNLL' 07

gaps in BLEU, NIST and METEOR are significant,phjiipp Koehn, Franz Josef Och, and Daniel Marcu.

which suggests that we would be able to produce ac-2003. Statistical phrase-based translation. Ptoc.

curate translations but might not be good at making of HAACL-HLT 03, pages 48-54.

fluent sentences. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. Proc. of ACL'02.

John Shawe-Taylor and Nello Cristianini. 200<ernel

This work is a novel attempt to apply the advanced I\P/Ireetzgds for Pattern Analysis. Cambridge University

kernel method to SMT tasks. The contribution at thi§; «thew Snover. Bonnie Dorr. Richard Schwartz. Lin-

stage is still preliminary. When applied to real-world  neg Micciulla, and John Makhoul. 2006. A study of
data, this approach is not as powerful as the state-of-translation edit rate with targeted human annotation.
the-art phrase-based log-linear model. However, in- In Proc. of AMTA 06.

teresting prospects can be expected from the sharéauoran Wang and John Shawe-Taylor. 2008. Kernel-
translation task. based machine translation. In Cyril Goutte, Nicola
Cancedda, Marc Dymetman, and George Foster, edi-
tors,Learning Machine Tranglation. MIT Press, to ap-
pear.
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