
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 62–70,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Multidisciplinary Instruction with the Natural Language Toolkit

Steven Bird
Department of Computer Science

University of Melbourne
sb@csse.unimelb.edu.au

Ewan Klein
School of Informatics

University of Edinburgh
ewan@inf.ed.ac.uk

Edward Loper
Computer and Information Science

University of Pennsylvania
edloper@gradient.cis.upenn.edu

Jason Baldridge
Department of Linguistics

University of Texas at Austin
jbaldrid@mail.utexas.edu

Abstract

The Natural Language Toolkit (NLTK ) is
widely used for teaching natural language
processing to students majoring in linguistics
or computer science. This paper describes
the design ofNLTK , and reports on how
it has been used effectively in classes that
involve different mixes of linguistics and
computer science students. We focus on three
key issues: getting started with a course,
delivering interactive demonstrations in the
classroom, and organizing assignments and
projects. In each case, we report on practical
experience and make recommendations on
how to useNLTK to maximum effect.

1 Introduction

It is relatively easy to teach natural language pro-
cessing (NLP) in a single-disciplinary mode to a uni-
form cohort of students. Linguists can be taught to
program, leading to projects where students manip-
ulate their own linguistic data. Computer scientists
can be taught methods for automatic text processing,
leading to projects on text mining and chatbots. Yet
these approaches have almost nothing in common,
and it is a stretch to call either of theseNLP: more
apt titles for such courses might be “linguistic data
management” and “text technologies.”

The Natural Language Toolkit, orNLTK , was
developed to give a broad range of students access
to the core knowledge and skills ofNLP (Loper
and Bird, 2002). In particular,NLTK makes it
feasible to run a course that covers a substantial
amount of theory and practice with an audience

consisting of both linguists and computer scientists.
NLTK is a suite of Python modules distributed
under the GPL open source license vianltk.org .
NLTK comes with a large collection of corpora,
extensive documentation, and hundreds of exercises,
makingNLTK unique in providing a comprehensive
framework for students to develop a computational
understanding of language.NLTK ’s code base of
100,000 lines of Python code includes support
for corpus access, tokenizing, stemming, tagging,
chunking, parsing, clustering, classification,
language modeling, semantic interpretation,
unification, and much else besides. As a measure of
its impact,NLTK has been used in over 60 university
courses in 20 countries, listed on theNLTK website.

Since its inception in 2001,NLTK has undergone
considerable evolution, based on the experience
gained by teaching courses at several universities,
and based on feedback from many teachers and
students.1 Over this period, a series of practical
online tutorials aboutNLTK has grown up into a
comprehensive online book (Bird et al., 2008). The
book has been designed to stay in lock-step with the
NLTK library, and is intended to facilitate “active
learning” (Bonwell and Eison, 1991).

This paper describes the main features of
NLTK , and reports on how it has been used
effectively in classes that involve a combination
of linguists and computer scientists. First we
discuss aspects of the design of the toolkit that

1(Bird and Loper, 2004; Loper, 2004; Bird, 2005; Hearst,
2005; Bird, 2006; Klein, 2006; Liddy and McCracken, 2005;
Madnani, 2007; Madnani and Dorr, 2008; Baldridge and Erk,
2008)

62



arose from our need to teach computational
linguistics to a multidisciplinary audience (§2). The
following sections cover three distinct challenges:
getting started with a course (§3); interactive
demonstrations (§4); and organizing assignments
and projects (§5).

2 Design Decisions Affecting Teaching

2.1 Python

We chose Python2 as the implementation language
for NLTK because it has a shallow learning curve, its
syntax and semantics are transparent, and it has good
string-handling functionality. As an interpreted
language, Python facilitates interactive exploration.
As an object-oriented language, Python permits
data and methods to be encapsulated and re-used
easily. Python comes with an extensive standard
library, including tools for graphical programming
and numerical processing, which means it can be
used for a wide range of non-trivial applications.
Python is ideal in a context serving newcomers and
experienced programmers (Shannon, 2003).

We have taken the step of incorporating a detailed
introduction to Python programming in theNLTK

book, taking care to motivate programming con-
structs with linguistic examples. Extensive feedback
from students has been humbling, and revealed that
for students with no prior programming experience,
it is almost impossible to over-explain. Despite the
difficulty of providing a self-contained introduction
to Python for linguists, we nevertheless have also
had very positive feedback, and in combination with
the teaching techniques described below, have man-
aged to bring a large group of non-programmer stu-
dents rapidly to a point where they could carry out
interesting and useful exercises in text processing.

In addition to theNLTK book, the code in the
NLTK core is richly documented, using Python doc-
strings and Epydoc3 support for API documenta-
tion.4 Access to the code documentation is available
using the Pythonhelp() command at the interac-
tive prompt, and this can be especially useful for
checking the parameters and return type of func-
tions.

2http://www.python.org/
3http://epydoc.sourceforge.net/
4http://nltk.org/doc/api/

Other Python libraries are useful in theNLP con-
text: NumPy provides optimized support for linear
algebra and sparse arrays (NumPy, 2008) and PyLab
provides sophisticated facilities for scientific visual-
ization (Matplotlib, 2008).

2.2 Coding Requirements

As discussed in Loper & Bird (2002), the priorities
for NLTK code focus on its teaching role. When code
is readable, a student who doesn’t understand the
maths ofHMMs, smoothing, and so on may benefit
from looking at how an algorithm is implemented.
Thus consistency, simplicity, modularity are all vital
features ofNLTK code. A similar importance is
placed on extensibility, since this helps to ensure that
the code grows as a coherent whole, rather than by
unpredictable and haphazard additions.

By contrast, although efficiency cannot be
ignored, it has always taken second place to
simplicity and clarity of coding. In a similar vein,
we have tried to avoid clever programming tricks,
since these typically hinder intelligibility of the
code. Finally, comprehensiveness of coverage has
never been an overriding concern ofNLTK ; this
leaves open many possibilities for student projects
and community involvement.

2.3 Naming

One issue which has absorbed a considerable
amount of attention is the naming of user-oriented
functions inNLTK . To a large extent, the system of
namingis the user interface to the toolkit, and it is
important that users should be able to guess what
action might be performed by a given function.
Consequently, naming conventions need to be
consistent and semantically transparent. At the same
time, there is a countervailing pressure for relatively
succinct names, since excessive verbosity can also
hinder comprehension and usability. An additional
complication is that adopting an object-oriented
style of programming may be well-motivated for
a number of reasons but nevertheless baffling to
the linguist student. For example, although it is
perfectly respectable to invoke an instance method
WordPunctTokenizer().tokenize(text)

(for some input stringtext ), a simpler version is
also provided:wordpunct tokenize(text) .

63



2.4 Corpus Access

The scope of exercises and projects that students
can perform is greatly increased by the inclusion
of a large collection of corpora, along with easy-to-
use corpus readers. This collection, which currently
stands at 45 corpora, includes parsed, POS-tagged,
plain text, categorized text, and lexicons.5

In designing the corpus readers, we emphasized
simplicity, consistency, and efficiency. Corpus
objects, such as nltk.corpus.brown and
nltk.corpus.treebank , define common
methods for reading the corpus contents, abstracting
away from idiosyncratic file formats to provide a
uniform interface. See Figure 1 for an example of
accessing POS-tagged data from different tagged
and parsed corpora.

The corpus objects provide methods for loading
corpus contents in various ways. Common meth-
ods include: raw() , for the raw contents of the
corpus; words() , for a list of tokenized words;
sents() , for the same list grouped into sentences;
tagged words() , for a list of (word, tag) pairs;
tagged sents() , for the same list grouped into
sentences; andparsed sents() , for a list of parse
trees. Optional parameters can be used to restrict
what portion of the corpus is returned, e.g., a partic-
ular section, or an individual corpus file.

Most corpus reader methods return acorpus view
which acts as a list of text objects, but maintains
responsiveness and memory efficiency by only load-
ing items from the file on an as-needed basis. Thus,
when we print a corpus view we only load the first
block of the corpus into memory, but when we pro-
cess this object we load the whole corpus:

>>> nltk.corpus.alpino.words()
[’De’, ’verzekeringsmaatschappijen’,
’verhelen’, ...]
>>> len(nltk.corpus.alpino.words())
139820

2.5 Accessing Shoebox Files

NLTK provides functionality for working with
“Shoebox” (or “Toolbox”) data (Robinson et
al., 2007). Shoebox is a system used by many
documentary linguists to produce lexicons and
interlinear glossed text. The ability to work

5http://nltk.org/corpora.html

straightforwardly with Shoebox data has created a
new incentive for linguists to learn how to program.

As an example, in the Linguistics Department at
the University of Texas at Austin, a course has been
offered on Python programming and working with
corpora,6 but so far uptake from the target audience
of core linguistics students has been low. They usu-
ally have practical computational needs and many of
them are intimidated by the very idea of program-
ming. We believe that the appeal of this course can
be enhanced by designing a significant component
with the goal of helping documentary linguistics stu-
dents take control of theirown Shoebox data. This
will give them skills that are useful for their research
and also transferable to other activities. Although
the NLTK Shoebox functionality was not originally
designed with instruction in mind, its relevance to
students of documentary linguistics is highly fortu-
itous and may prove appealing for similar linguistics
departments.

3 Getting Started

NLP is usually only available as an elective course,
and students will vote with their feet after attending
one or two classes. This initial period is important
for attracting and retaining students. In particular,
students need to get a sense of the richness of lan-
guage in general, andNLP in particular, while gain-
ing a realistic impression of what will be accom-
plished during the course and what skills they will
have by the end. During this time when rapport
needs to be rapidly established, it is easy for instruc-
tors to alienate students through the use of linguistic
or computational concepts and terminology that are
foreign to students, or to bore students by getting
bogged down in defining terms like “noun phrase”
or “function” which are basic to one audience and
new for the other. Thus, we believe it is crucial
for instructors to understand and shape the student’s
expectations, and to get off to a good start. The best
overall strategy that we have found is to use succinct
nuggets ofNLTK code to stimulate students’ interest
in both data and processing techniques.

6http://comp.ling.utexas.edu/courses/
2007/corpora07/

64



>>> nltk.corpus.treebank.tagged_words()
[(’Pierre’, ’NNP’), (’Vinken’, ’NNP’), (’,’, ’,’), ...]
>>> nltk.corpus.brown.tagged_words()
[(’The’, ’AT’), (’Fulton’, ’NP-TL’), ...]
>>> nltk.corpus.floresta.tagged_words()
[(’Um’, ’>N+art’), (’revivalismo’, ’H+n’), ...]
>>> nltk.corpus.cess_esp.tagged_words()
[(’El’, ’da0ms0’), (’grupo’, ’ncms000’), ...]
>>> nltk.corpus.alpino.tagged_words()
[(’De’, ’det’), (’verzekeringsmaatschappijen’, ’noun’) , ...]

Figure 1: Accessing Different Corpora via a Uniform Interface

3.1 Student Expectations

Computer science students come toNLP expecting
to learn aboutNLP algorithms and data structures.
They typically have enough mathematical prepara-
tion to be confident in playing with abstract for-
mal systems (including systems of linguistic rules).
Moreover, they are already proficient in multiple
programming languages, and have little difficulty in
learningNLP algorithms by reading and manipulat-
ing the implementations provided withNLTK . At the
same time, they tend to be unfamiliar with the termi-
nology and concepts that linguists take for granted,
and may struggle to come up with reasonable lin-
guistic analyses of data.

Linguistics students, on the other hand, are
interested in understandingNLP algorithms and
data structures only insofar as it helps them to
use computational tools to perform analytic tasks
from “core linguistics,” e.g. writing a set of CFG
productions to parse some sentences, or plugging
together NLP components in order to derive the
subcategorization requirements of verbs in a corpus.
They are usually not interested in reading significant
chunks of code; it isn’t what they care about and
they probably lack the confidence to poke around in
source files.

In a nutshell, the computer science students typ-
ically want to analyze the tools and synthesize new
implementations, while the linguists typically want
to use the tools to analyze language and synthe-
size new theories. There is a risk that the former
group never really gets to grips with natural lan-
guage, while the latter group never really gets to
grips with processing. Instead, computer science

students need to learn thatNLP is not just an applica-
tion of techniques from formal language theory and
compiler construction, and linguistics students need
to understand thatNLP is not just computer-based
housekeeping and a solution to the shortcomings of
office productivity software for managing their data.

In many courses, linguistics students or computer
science students will dominate the class numeri-
cally, simply because the course is only listed in
one department. In such cases it is usually enough
to provide additional support in the form of some
extra readings, tutorials, and exercises in the open-
ing stages of the course. In other cases, e.g. courses
we have taught at the universities of Edinburgh, Mel-
bourne, Pennsylvania, and Texas-Austin or in sum-
mer intensive programs in several countries, there is
more of an even split, and the challenge of serving
both cohorts of students becomes acute. It helps to
address this issue head-on, with an early discussion
of the goals of the course.

3.2 Articulating the Goals

Despite an instructor’s efforts to add a cross-
disciplinary angle, students easily “revert to
type.” The pressure of assessment encourages
students to emphasize what they do well. Students’
desire to understand what is expected of them
encourages instructors to stick to familiar
assessment instruments. As a consequence,
the path of least resistance is for students to
remain firmly monolingual in their own discipline,
while acquiring a smattering of words from a
foreign language, at a level we might call “survival
linguistics” or “survival computer science.” If they
ever get to work in a multidisciplinary team they are

65



likely only to play a type-cast role.
Asking computer science students to write their

first essay in years, or asking linguistics students
to write their first ever program, leads to stressed
students who complain that they don’t know what
is expected of them. Nevertheless, students need
to confront the challenge of becoming bilingual, of
working hard to learn the basics of another disci-
pline. In parallel, instructors need to confront the
challenge of synthesizing material from linguistics
and computer science into a coherent whole, and
devising effective methods for teaching, learning,
and assessment.

3.3 Entry Points

It is possible to identify several distinct pathways
into the field of Computational Linguistics. Bird
(2008) identifies four; each of these are supported
by NLTK , as detailed below:

Text Processing First: NLTK supports variety of
approaches to tokenization, tagging, evaluation, and
language engineering more generally.

Programming First: NLTK is based on Python
and the documentation teaches the language and
provides many examples and exercises to test and
reinforce student learning.

Linguistics First: Here, students come with a
grounding in one or more areas of linguistics, and
focus on computational approaches to that area by
working with the relevant chapter of theNLTK book
in conjunction with learning how to program.

Algorithms First: Here, students come with a
grounding in one or more areas of computer sci-
ence, and can use, test and extendNLTK ’S reference
implementations of standard NLP algorithms.

3.4 The First Lecture

It is important that the first lecture is effective at
motivating and exemplifyingNLP to an audience
of computer science and linguistics students. They
need to get an accurate sense of the interesting
conceptual and technical challenges awaiting them.
Fortunately, the task is made easier by the simple
fact that language technologies, and language itself,
are intrinsically interesting and appealing to a wide
audience. Several opening topics appear to work
particularly well:

The holy grail: A long term challenge,
mythologized in science fiction movies, is to
build machines that understand human language.
Current technologies that exhibit some basic level
of natural language understanding include spoken
dialogue systems, question answering systems,
summarization systems, and machine translation
systems. These can be demonstrated in class
without too much difficulty. The Turing test is a
linguistic test, easily understood by all students, and
which helps the computer science students to see
NLP in relation to the field of Artificial Intelligence.
The evolution of programming languages has
brought them closer to natural language, helping
students see the essentially linguistic purpose of
this central development in computer science.
The corresponding holy grail in linguistics is full
understanding of the human language faculty;
writing programs and building machines surely
informs this quest too.

The riches of language: It is easy to find
examples of the creative richness of language in its
myriad uses. However, linguists will understand
that language contains hidden riches that can only
be uncovered by careful analysis of large quantities
of linguistically annotated data, work that benefits
from suitable computational tools. Moreover, the
computational needs for exploratory linguistic
research often go beyond the capabilities of the
current tools. Computer scientists will appreciate
the cognate problem of extracting information from
the web, and the economic riches associated with
state-of-the-art text mining technologies.

Formal approaches to language: Computer sci-
ence and linguistics have a shared history in the area
of philosophical logic and formal language theory.
Whether the language is natural or artificial, com-
puter scientists and linguists use similar logical for-
malisms for investigating the formal semantics of
languages, similar grammar formalisms for model-
ing the syntax of languages, and similar finite-state
methods for manipulating text. Both rely on the
recursive, compositional nature of natural and arti-
ficial languages.

3.5 First Assignment

The first coursework assignment can be a significant
step forwards in helping students get to grips with

66



the material, and is best given out early, perhaps
even in week 1. We have found it advisable for
this assignment to include both programming and
linguistics content. One example is to ask students
to carry out NP chunking of some data (e.g. a section
of the Brown Corpus). Thenltk.RegexpParser

class is initialized with a set of chunking rules
expressed in a simple, regular expression-oriented
syntax, and the resulting chunk parser can be run
over POS-tagged input text. Given a Gold Standard
test set like the CoNLL-2000 data,7 precision
and recall of the chunk grammar can be easily
determined. Thus, if students are given an existing,
incomplete set of rules as their starting point, they
just have to modify and test their rules.

There are distinctive outcomes for each set of stu-
dents: linguistics students learn to write grammar
fragments that respect the literal-minded needs of
the computer, and also come to appreciate the noisi-
ness of typicalNLP corpora (including automatically
annotated corpora like CoNLL-2000). Computer
science students become more familiar with parts
of speech and with typical syntactic structures in
English. Both groups learn the importance of formal
evaluation using precision and recall.

4 Interactive Demonstrations

4.1 Python Demonstrations

Python fosters a highly interactive style of teaching.
It is quite natural to build up moderately complex
programs in front of a class, with the less confi-
dent students transcribing it into a Python session
on their laptop to satisfy themselves it works (but
not necessarily understanding everything they enter
first time), while the stronger students quickly grasp
the theoretical concepts and algorithms. While both
groups can be served by the same presentation, they
tend to ask quite different questions. However, this
is addressed by dividing them into smaller clusters
and having teaching assistants visit them separately
to discuss issues arising from the content.

The NLTK book contains many examples, and
the instructor can present an interactive lecture that
includes running these examples and experiment-
ing with them in response to student questions. In

7http://www.cnts.ua.ac.be/conll2000/
chunking/

early classes, the focus will probably be on learning
Python. In later classes, the driver for such interac-
tive lessons can be an externally-motivated empiri-
cal or theoretical question.

As a practical matter, it is important to consider
low-level issues that may get in the way of students’
ability to capture the material covered in interactive
Python sessions. These include choice of appropri-
ate font size for screen display, avoiding the prob-
lem of output scrolling the command out of view,
and distributing a log of the instructor’s interactive
session for students to study in their own time.

4.2 NLTK Demonstrations

A significant fraction of anyNLP syllabus covers
fundamental data structures and algorithms. These
are usually taught with the help of formal notations
and complex diagrams. Large trees and charts are
copied onto the board and edited in tedious slow
motion, or laboriously prepared for presentation
slides. It is more effective to use live demonstrations
in which those diagrams are generated and updated
automatically. NLTK provides interactive graphical
user interfaces, making it possible to view program
state and to study program execution step-by-step.
Most NLTK components have a demonstration
mode, and will perform an interesting task without
requiring any special input from the user. It is
even possible to make minor modifications to
programs in response to “what if” questions. In this
way, students learn the mechanics ofNLP quickly,
gain deeper insights into the data structures and
algorithms, and acquire new problem-solving skills.

An example of a particularly effective set
of demonstrations are those for shift-reduce
and recursive descent parsing. These make
the difference between the algorithms glaringly
obvious. More importantly, students get a concrete
sense of many issues that affect the design of
algorithms for tasks like parsing. The partial
analysis constructed by the recursive descent
parser bobs up and down as it steps forward and
backtracks, and students often go wide-eyed as the
parser retraces its steps and does “dumb” things
like expanding N toman when it has already
tried the rule unsuccessfully (but is now trying
to match a bare NP rather than an NP with a PP
modifier). Linguistics students who are extremely

67



knowledgeable about context-free grammars and
thus understand the representations gain a new
appreciation for just how naive an algorithm can be.
This helps students grasp the need for techniques
like dynamic programming and motivates them to
learn how they can be used to solve such problems
much more efficiently.

Another highly useful aspect ofNLTK is the abil-
ity to define a context-free grammar using a sim-
ple format and to display tree structures graphically.
This can be used to teach context-free grammars
interactively, where the instructor and the students
develop a grammar from scratch and check its cov-
erage against a testbed of grammatical and ungram-
matical sentences. Because it is so easy to modify
the grammar and check its behavior, students readily
participate and suggest various solutions. When the
grammar produces an analysis for an ungrammatical
sentence in the testbed, the tree structure can be dis-
played graphically and inspected to see what went
wrong. Conversely, the parse chart can be inspected
to see where the grammar failed on grammatical sen-
tences.

NLTK ’s easy access to many corpora greatly facil-
itates classroom instruction. It is straightforward to
pull in different sections of corpora and build pro-
grams in class for many different tasks. This not
only makes it easier to experiment with ideas on the
fly, but also allows students to replicate the exer-
cises outside of class. Graphical displays that show
the dispersion of terms throughout a text also give
students excellent examples of how a few simple
statistics collected from a corpus can provide useful
and interesting views on a text—including seeing the
frequency with which various characters appear in a
novel. This can in turn be related to other resources
like Google Trends, which shows the frequency with
which a term has been referenced in news reports or
been used in search terms over several years.

5 Exercises, Assignments and Projects

5.1 Exercises

Copious exercises are provided with theNLTK book;
these have been graded for difficulty relative to the
concepts covered in the preceding sections of the
book. Exercises have the tremendous advantage of
building on theNLTK infrastructure, both code and

documentation. The exercises are intended to be
suitable both for self-paced learning and in formally
assigned coursework.

A mixed class of linguistics and computer sci-
ence students will have a diverse range of program-
ming experience, and students with no programming
experience will typically have different aptitudes for
programming (Barker and Unger, 1983; Caspersen
et al., 2007). A course which forces all students
to progress at the same rate will be too difficult for
some, and too dull for others, and will risk alien-
ating many students. Thus, course materials need
to accommodate self-paced learning. An effective
way to do this is to provide students with contexts
in which they can test and extend their knowledge at
their own rate.

One such context is provided by lecture or lab-
oratory sessions in which students have a machine
in front of them (or one between two), and where
there is time to work through a series of exercises to
consolidate what has just been taught from the front,
or read from a chapter of the book. When this can be
done at regular intervals, it is easier for students to
know which part of the materials to re-read. It also
encourages them to get into the habit of checking
their understanding of a concept by writing code.

When exercises are graded for difficulty, it is
easier for students to understand how much effort
is expected, and whether they even have time to
attempt an exercise. Graded exercises are also good
for supporting self-evaluation. If a student takes
20 minutes to write a solution, they also need to
have some idea of whether this was an appropriate
amount of time.

The exercises are also highly adaptable. It is com-
mon for instructors to take them as a starting point
in building homework assignments that are tailored
to their own students. Some instructors prefer to
include exercises that do not allow students to take
advantage of built-inNLTK functionality, e.g. using
a Python dictionary to count word frequencies in the
Brown corpus rather thanNLTK ’s FreqDist (see
Figure 2). This is an important part of building
facility with general text processing in Python, since
eventually students will have to work outside of
the NLTK sandbox. Nonetheless, students often use
NLTK functionality as part of their solutions, e.g.,
for managing frequencies and distributions. Again,

68



nltk.FreqDist(nltk.corpus.brown.words())

fd = nltk.FreqDist()
for filename in corpus_files:

text = open(filename).read()
for w in nltk.wordpunct_tokenize(text):

fd.inc(w)

counts = {}
for w in nltk.corpus.brown.words():

if w not in counts:
counts[w] = 0

counts[w] += 1

Figure 2: Three Ways to Build up a Frequency Distribu-
tion of Words in the Brown Corpus

this flexibility is a good thing: students learn to
work with resources they know how to use, and can
branch out to new exercises from that basis. When
course content includes discussion of Unix com-
mand line utilities for text processing, students can
furthermore gain a better appreciation of the pros
and cons of writing their own scripts versus using
an appropriate Unix pipeline.

5.2 Assignments

NLTK supports assignments of varying difficulty and
scope: experimenting with existing components to
see what happens for different inputs or parameter
settings; modifying existing components and
creating systems using existing components;
leveraging NLTK ’s extensible architecture by
developing entirely new components; or employing
NLTK ’s interfaces to other toolkits such as Weka
(Witten and Frank, 2005) and Prover9 (McCune,
2008).

5.3 Projects

Group projects involving a mixture of linguists
and computer science students have an initial
appeal, assuming that each kind of student can
learn from the other. However, there’s a complex
social dynamic in such groups, one effect of which
is that the linguistics students may opt out of the
programming aspects of the task, perhaps with
view that their contribution would only hurt the
chances of achieving a good overall project mark.
It is difficult to mandate significant collaboration

across disciplinary boundaries, with the more
likely outcome being, for example, that a parser is
developed by a computer science team member,
then thrown over the wall to a linguist who will
develop an appropriate grammar.

Instead, we believe that it is generally more pro-
ductive in the context of a single-semester introduc-
tory course to have students work individually on
their own projects. Distinct projects can be devised
for students depending on their background, or stu-
dents can be given a list of project topics,8 and
offered option of self-proposing other projects.

6 Conclusion

We have argued that the distinctive features of
NLTK make it an apt vehicle for teachingNLP

to mixed audiences of linguistic and computer
science students. On the one hand, complete
novices can quickly gain confidence in their ability
to do interesting and useful things with language
processing, while the transparency and consistency
of the implementation also makes it easy for
experienced programmers to learn about natural
language and to explore more challenging tasks.
The success of this recipe is borne out by the
wide uptake of the toolkit, not only within tertiary
education but more broadly by users who just want
try their hand atNLP. We also have encouraging
results in presentingNLTK in classrooms at the
secondary level, thereby trying to inspire the
computational linguists of the future!

Finally, we believe thatNLTK has gained much
by participating in the Open Source software move-
ment, specifically from the infrastructure provided
by SourceForge.net and from the invaluable
contributions of a wide range of people, including
many students.

7 Acknowledgments

We are grateful to the members of theNLTK com-
munity for their helpful feedback on the toolkit and
their many contributions. We thank the anonymous
reviewers for their feedback on an earlier version of
this paper.

8http://nltk.org/projects.html

69



References

Jason Baldridge and Katrin Erk. 2008. Teaching com-
putational linguistics to a large, diverse student body:
courses, tools, and interdepartmental interaction. In
Proceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics. Association for Com-
putational Linguistics.

Ricky Barker and E. A. Unger. 1983. A predictor for
success in an introductory programming class based
upon abstract reasoning development.ACM SIGCSE
Bulletin, 15:154–158.

Steven Bird and Edward Loper. 2004. NLTK: The Nat-
ural Language Toolkit. InCompanion Volume to the
Proceedings of 42st Annual Meeting of the Association
for Computational Linguistics, pages 214–217. Asso-
ciation for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2008.
Natural Language Processing in Python.http://
nltk.org/book.html .

Steven Bird. 2005. NLTK-Lite: Efficient scripting
for natural language processing. In4th International
Conference on Natural Language Processing, Kanpur,
India, pages 1–8.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia, July. Association for Computational
Linguistics.

Steven Bird. 2008. Defining a core body of knowledge
for the introductory computational linguistics curricu-
lum. In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics. Association
for Computational Linguistics.

Charles C. Bonwell and James A. Eison. 1991.Active
Learning: Creating Excitement in the Classroom.
Washington, D.C.: Jossey-Bass.

Michael Caspersen, Kasper Larsen, and Jens Benned-
sen. 2007. Mental models and programming aptitude.
SIGCSE Bulletin, 39:206–210.

Marti Hearst. 2005. Teaching applied natural language
processing: Triumphs and tribulations. InProceedings
of the Second ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL, pages 1–8,
Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

Ewan Klein. 2006. Computational semantics in the Nat-
ural Language Toolkit. InProceedings of the Aus-
tralasian Language Technology Workshop, pages 26–
33.

Elizabeth Liddy and Nancy McCracken. 2005. Hands-on
NLP for an interdisciplinary audience. InProceedings
of the Second ACL Workshop on Effective Tools and

Methodologies for Teaching NLP and CL, pages 62–
68, Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Edward Loper and Steven Bird. 2002. NLTK: The Nat-
ural Language Toolkit. InProceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computa-
tional Linguistics, pages 62–69. Association for Com-
putational Linguistics.

Edward Loper. 2004. NLTK: Building a pedagogical
toolkit in Python. InPyCon DC 2004. Python Soft-
ware Foundation.

Nitin Madnani and Bonnie Dorr. 2008. Combining
open-source with research to re-engineer a hands-on
introductory NLP course. InProceedings of the Third
Workshop on Issues in Teaching Computational Lin-
guistics. Association for Computational Linguistics.

Nitin Madnani. 2007. Getting started on natural lan-
guage processing with Python.ACM Crossroads,
13(4).

Matplotlib. 2008. Matplotlib: Python 2D plotting
library. http://matplotlib.sourceforge.
net/ .

William McCune. 2008. Prover9: Automated
theorem prover for first-order and equational logic.
http://www.cs.unm.edu/˜mccune/mace4/
manual-examples.html .

NumPy. 2008. NumPy: Scientific computing with
Python.http://numpy.scipy.org/ .

Stuart Robinson, Greg Aumann, and Steven Bird. 2007.
Managing fieldwork data with Toolbox and the Natu-
ral Language Toolkit.Language Documentation and
Conservation, 1:44–57.

Christine Shannon. 2003. Another breadth-first
approach to CS I using Python. InProceedings of
the 34th SIGCSE Technical Symposium on Computer
Science Education, pages 248–251. ACM.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann.

70


