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Abstract 

We propose to use user simulation for testing 
during the development of a sophisticated dia-
log system. While the limited behaviors of the 
state-of-the-art user simulation may not cover 
important aspects in the dialog system testing, 
our proposed approach extends the functional-
ity of the simulation so that it can be used at 
least for the early stage testing before the sys-
tem reaches stable performance for evaluation 
involving human users. The proposed ap-
proach includes a set of evaluation measures 
that can be computed automatically from the 
interaction logs between the user simulator 
and the dialog system. We first validate these 
measures on human user dialogs using user 
satisfaction scores. We also build a regression 
model to estimate the user satisfaction scores 
using these evaluation measures. Then, we 
apply the evaluation measures on a simulated 
dialog corpus trained from the real user cor-
pus. We show that the user satisfaction scores 
estimated from the simulated corpus are not 
statistically different from the real users’ satis-
faction scores.  

1 Introduction 

 Spoken dialog systems are being widely used in 
daily life. The increasing demands of such systems 
require shorter system development cycles and 
better automatic system developing techniques. As 
a result, machine learning techniques are applied to 
learn dialog strategies automatically, such as rein-
forcement learning (Singh et al., 2002; Williams & 
Young, 2007), supervised learning (Henderson et 
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al., 2005), etc. These techniques require a signifi-
cant amount of training data for the automatic 
learners to sufficiently explore the vast space of 
possible dialog states and strategies. However, it is 
always hard to obtain training corpora that are 
large enough to ensure that the learned strategies 
are reliable. User simulation is an attempt to solve 
this problem by generating synthetic training cor-
pora using computer simulated users. The simu-
lated users are built to mimic real users' behaviors 
to some extent while allowing them to be pro-
grammed to explore unseen but still possible user 
behaviors. These simulated users can interact with 
the dialog systems to generate large amounts of 
training data in a low-cost and time-efficient man-
ner. Many previous studies (Scheffler, 2002; 
Pietquin, 2004) have shown that the dialog strate-
gies learned from the simulated training data out-
perform the hand-crafted strategies. There are also 
studies that use user simulation to train speech rec-
ognition and understanding components (Chung, 
2004). 
    While user simulation is largely used in dialog 
system training, it has only been used in limited 
scope for testing specific dialog system compo-
nents in the system evaluation phase (López-Cózar 
et al., 2003; Filisko and Seneff, 2006). This is 
partly because the state-of-the-art simulated users 
have quite limited abilities in mimicking human 
users' behaviors and typically over-generate possi-
ble dialog behaviors. This is not a major problem 
when using simulated dialog corpus as the training 
corpus for dialog strategy learning because the 
over-generated simulation behaviors would only 
provide the machine learners with a broader dialog 
state space to explore (Ai et al., 2007). However, 
realistic user behaviors are highly desired in the 
testing phase because the systems are evaluated 
and adjusted based on the analysis of the dialogs 
generated in this phase. Therefore, we would ex-
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pect that these user behaviors are what we will see 
in the final evaluation with human users. In this 
case, any over-generated dialog behaviors may 
cause the system to be blamed for untargeted func-
tions. What is more, the simulated users cannot 
provide subjective user satisfaction feedback 
which is also important for improving the systems. 

Since it is expensive and time-consuming to test 
every version of the system with a significant 
amount of paid subjects, the testing during the de-
velopment is typically constrained to a limited 
number of users, and often, to repeated users who 
are colleagues or developers themselves. Thus, the 
system performance is not always optimized for 
the intended users.  

Our ultimate goal is to supplement human test-
ing with simulated users during the development to 
speed up the system development towards desired 
performance. This would be especially useful in 
the early development stage, since it would avoid 
conducting tests with human users when they may 
feel extremely frustrated due to the malfunction of 
the unstable system. 

As a first attempt, we try to extend the state-of-
the-art user simulation by incorporating a set of 
new but straightforward evaluation measures for 
automatically assessing the dialog system perform-
ance. These evaluation measures focus on three 
basic aspects of task-oriented dialog systems: un-
derstanding ability, efficiency, and the appropri-
ateness of the system actions. They are first 
applied on a corpus generated between a dialog 
system and a group of human users to demonstrate 
the validity of these measures with the human us-
ers' satisfaction scores. Results show that these 
measures are significantly correlated with the hu-
man users' satisfactions. Then, a regression model 
is built to predict the user satisfaction scores using 
these evaluation measures. We also apply the re-
gression model on a simulated dialog corpus 
trained from the above real user corpus, and show 
that the user satisfaction scores estimated from the 
simulated dialogs do not differ significantly from 
the real users’ satisfaction scores. Finally, we con-
clude that these evaluation measures can be used to 
assess the system performance based on the esti-
mated user satisfaction. 

2 User Simulation Techniques  

Most user simulation models are trained from dia-
log corpora generated by human users. Earlier 
models predict user actions based on simple rela-
tions between the system actions and the following 
user responses. (Eckert et al., 1997) first suggest a 
bigram model to predict the next user's action 
based on the previous system's action. (Levin et al., 
2000) add constraints to the bigram model to ac-
cept the expected dialog acts only. However, their 
basic assumption of making the next user's action 
dependent only on the system's previous action is 
oversimplified. Later, many studies model more 
comprehensive user behaviors by adding user goals 
to constrain the user actions (Scheffler, 2002; Piet-
quin, 2004). These simulated users mimic real user 
behaviors in a statistical way, conditioning the user 
actions on the user goals and the dialog contexts. 
More recent research defines agenda for simulated 
users to complete a set of settled goals (Schatz-
mann et al., 2007). This type of simulated user up-
dates the agenda and the current goal based on the 
changes of the dialog states. 

In this study, we build a simulated user similar 
to (Schatzmann et al., 2007) in which the simulated 
user keeps a list of its goals and another agenda of 
actions to complete the goals. In our restaurant se-
lection domain, the users’ tasks are to find a de-
sired restaurant based on several constraints 
specified by the task scenarios. We consider these 
restaurant constraints as the goals for the simulated 
user. At the beginning of the dialog, the simulated 
user randomly generates an agenda for the list of 
the ordered goals corresponding to the three con-
straints in requesting a restaurant. An agenda con-
tains multiple ordered items, each of which 
consists of the number of constraints and the spe-
cific constraints to be included in each user utter-
ance. During the dialog, the simulated user updates 
its list of goals by removing the constraints that 
have been understood by the system. It also re-
moves from its agenda the unnecessary actions that 
are related to the already filled goals while adding 
new actions. New actions are added according to 
the last system’s question (such as requesting the 
user to repeat the last utterance) as well as the 
simulated user’s current goals. The actions that 
address the last system’s question are given higher 
priorities then other actions in the agenda. For ex-
ample, if the dialog system fails to understand the 
last user utterance and thus requests a clarification, 
the simulated user will satisfy the system’s request 
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before moving on to discuss a new constraint. The 
simulated user updated the agenda with the new 
actions after each user turn.  

The current simulated user interacts with the 
system on the word level. It generates a string of 
words by instantiating its current action using pre-
defined templates derived from previously col-
lected corpora with real users. Random lexical 
errors are added to simulate a spoken language 
understanding performance with a word error rate 
of 15% and a semantic error rate of 11% based on 
previous experience (Weng et al., 2006). 

3 System and Corpus  

CHAT (Conversational Helper for Automotive 
Tasks) is a spoken dialog system that supports na-
vigation, restaurant selection and mp3 player ap-
plications. The system is specifically designed for 
users to interact with devices and receive services 
while performing other cognitive demanding, or 
primary tasks such as driving (Weng et al., 2007). 
CHAT deploys a combination of off-the-shelf 
components, components used in previous lan-
guage applications, and components specifically 
developed as part of this project. The core compo-
nents of the system include a statistical language 
understanding (SLU) module with multiple under-
standing strategies for imperfect input, an informa-
tion-state-update dialog manager (DM) that 
handles multiple dialog threads and mixed initia-
tives (Mirkovic and Cavedon, 2005), a knowledge 
manager (KM) that controls access to ontology-
based domain knowledge, and a content optimizer 
that connects the DM and the KM for resolving 
ambiguities from the users' requests, regulating the 
amount of information to be presented to the user, 
as well as providing recommendations to users. In 
addition, we use Nuance 8.51 with dynamic gram-
mars and classbased n-grams, for speech recogni-
tion, and Nuance Vocalizer 3.0 for text-to-speech 
synthesis (TTS). However, the two speech compo-
nents, i.e., the recognizer and TTS are not used in 
the version of the system that interacts with the 
simulated users.  

The CHAT system was tested for the navigation 
domain, the restaurant selection and the MP3 mu-
sic player. In this study, we focus on the dialog 
corpus collected on the restaurant domain only. A 
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small number of human users were used as dry-run 
tests for the system development from November, 
2005 to January, 2006. We group the adjacent dry-
runs to represent system improvement stages on a 
weekly basis. Table 1 shows the improvement 
stages, the dry-run dates which each stage in-
cludes, and the number of subjects tested in each 
stage. A final evaluation was conducted during 
January 19-31, 2006, without any further system 
modifications. This final evaluation involved 20 
paid subjects who were recruited via internet ad-
vertisement. 

Only the users in the final evaluation completed 
user satisfaction surveys after interacting with the 
system. In the survey, users were asked to rate the 
conversation from 6 perspectives, each on a 5-
point scale: whether the system was easy to use, 
whether the system understood the user well, 
whether the interaction pattern was natural, 
whether the system's actions were appropriate, 
whether the system acted as expected, and whether 
the user was willing to use the system on a regular 
base. A user satisfaction score was computed as 
the average of the 6 ratings. 

 

 
Nine tasks of restaurant selections were used in 

both dry-runs and the final evaluation using 12 
constraints in total (e.g., cuisine type, price level, 
location). These 12 constraints are spread across 
the nine tasks evenly with three constraints per 
task. In addition, each task is carefully worded 
based on the task-constrained and language-
unconstrained guideline. In other words, we want 
the users to form an intended mental context while 
trying to prevent them from copying the exact 
phrasing in the task description. During the dry-
runs, the users randomly pick three to four tasks to  

Stage Dry-run Dates Users
1 11/21/05, 11/22/05 2 
2 11/30/05, 12/1/05, 12/2/05 3 
3 12/7/05, 12/8/05 2 
4 12/13/05, 12/14/05, 12/15/05 5 
5 12/19/05, 12/20/05, 12/21/05 4 
6 12/27/05, 12/28/05 2 
7 1/4/06, 1/5/06 2 
8 1/10/06, 1/11/06, 1/13/06 4 
9 1/16/06, 1/17/06 3 

Table 1: Dry-runs 

166



test the system, while in the final evaluation each 
user is required to complete all of the 9 tasks. As a  
result of the final evaluation in the restaurant do-
main with 2500 restaurants, we reached a task 
completion rate of 94% with a word recognition 
rate of 85%, and a semantic accuracy rate of 89%. 

4 Evaluation Measures  

 In this section, we describe in detail the evaluation 
measures covering three basic aspects of task-
oriented dialog systems: understanding ability, ef-
ficiency, and the appropriateness of the system 
actions.  

4.1 Understanding Ability Measures 

Human-human dialog is a process to reach mutual 
understandings between the dialog partners by ex-
changing information through the dialog. This in-
formation exchanging process also takes place in 
the interaction between users and spoken dialog 
systems. In a task-oriented conversation, the dialog 
system's major task is to understand the users' 
needs in order to provide the right service. In the 
information-state update framework, the system 
continuously updates its information-states during 
the dialog while the users are conveying their re-
quirements. If a misunderstanding occurs, there 
would be a mismatch between the users’ require-
ments and the system’s understandings. Thus, the 
error recovery dialog is needed to fix the mis-

matches. The error recovery dialog can be initiated 
either by the system by asking the user to rephrase 
or to repeat the previous utterance, or by the user 
to restate the previous request. 

We use the percent of agreement between the 
system's and the user's understandings (under-
standingAgreement) to measure how well the 
system understands the user. The computation of 
this measure is illustrated through the example dia-
log in Table 2. In this table, the first column shows 
the system utterances and the user utterances re-
ceived by the system. The correct words are shown 
in square brackets immediately after the misunder-
stood words (E.g., in Utterance “User1”). The sec-
ond column represents semantic content from the 
users’ utterances in the form of constraint-value 
pairs based on the system’s understandings. This 
information can be automatically retrieved from 
the system logs. The third column includes the ac-
tion types of the current system/user utterances. 
Since the dialog manager is an information-
updating dialog manager that manages information 
in the format of slots, this column also shows the 
number of slots that are exchanged in the utterance 
and the number of matched slots. In our task do-
main, the user can request information (req_info), 
request the same information again (rereq_info), 
answer an explicit confirmation (exp_confirm), 
and close a dialog (close_dialog). The system can 
provide information (pro_info) or explicitly con-
firms (exp_confirm) the information. Another 

Utterances Constraints Understood by the 
System 

Action Types & Under-
standing Status 

User1: I'm looking for a five star Thai [Italian] 
restaurant accept credit cards  Action: req_info 

Slots conveyed: 3 slots 
System1: There are 7 restaurants that have 
a five star rating, accept credit cards, and 
serve Thai food in my database. Here are 
the first few: TeJUS, Slam Corner Cate, 
Setha's Restaurant. Should I continue? 

service level=five star 
cuisine type=Thai 

payment type=credit card 

Action: pro_info 
Slots accepted: 3 slots 

Completely matched: 2 slots 
 

User2: I need to look for Italian restaurant  Action: rereq_info 
Slot  conveyed: 1 slot 

System2: Are you looking for a restaurant 
that serves Italian food? 

service level=five star 
cuisine type=Italian (unconfirmed) 

payment type=credit card 

Action: exp_confirm 
Slot  updated: 1 slot 

Completely matched: 2.5 slot 

User3: yes  Action: exp_confirm 
Slot conveyed: 1 slot 

System3: I found 38 restaurants that serve 
Italian food, accept credit cards and have a 
five star rating, for example, Toto Café … 

service level=five star 
cuisine type=Italian (confirmed) 

payment type=credit card 

Action: pro_info 
Slots accepted: 3 slots 

Completely matched: 3 slots 
User4: I'm done.  Action: close_dialog 

Table 2: A Sample Dialog with Annotations. 
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available system action that is not shown in this 
example is to ask the user to repeat/rephrase (re-
phrase), where the user can respond by providing 
the information again (repro_info).  

In our experiment, we measure the understand-
ings between the users and the system by compar-
ing the values of the constraints that are specified 
by the users with their values understood by the 
system. In this dialog, the user specified all con-
straints in the first utterance: 

Service level = Five star 
           Cuisine type = Italian 

  Payment type = Credit card 
    The first system utterance shows that the system 
understood two constraints but misunderstood the 
cuisine type, thus the percent agreement of mutual 
understandings is 2/3 at this time. Then, the user 
restated the cuisine type and the second system 
utterance confirmed this information. Since the 
system only asks for explicit information when its 
confidence is low, we count the system's under-
standing on the cuisine type as a 50% match with 
the user's. Therefore, the total percent agreement is 
2.5/3. The user then confirmed that the system had 
correctly understood all constraints. Therefore, the 
system provided the restaurant information in the 
last utterance. The system's understanding matches 
100% with the user's at this point.  
    The percent agreement of system/user under-
standings over the entire dialog is calculated by 
averaging the percent agreement after each turn. In 
this example, understandingAgreement is (2/3 + 
2.5/3 + 1)/3 =83.3%. We hypothesize that the 
higher the understandingAgreement is, the better 
the system performs, and thus the more the user is 
satisfied. The matches of understandings can be 
calculated automatically from the user simulation 
and the system logs. However, since we work with 
human users' dialogs in the first part of this study, 
we manually annotated the semantic contents (e.g., 
cuisine name) in the real user corpus.  

Previous studies (E.g., Walker et al., 1997) use a 
corpus level semantic accuracy measure (semanti-
cAccuracy) to capture the system’s understanding 
ability. SemanticAccuracy is defined in the stan-
dard way as the total number of correctly under-
stood constraints divided by the total number of 
constraints mentioned in the entire dialog. The un-
derstandingAgreement measure we introduce here 
is essentially the averaged per-sentence semantic 
accuracy, which emphasizes the utterance level 

perception rather than a single corpus level aver-
age. The intuition behind this new measure is that 
it is better for the system to always understand 
something to keep a conversation going than for 
the system to understand really well sometimes but 
really bad at other times. We compute both meas-
ures in our experiments for comparison.  

4.2 Efficiency Measure 

Efficiency is another important measure of the sys-
tem performance. A standard efficiency measure is 
the number of dialog turns. However, we would 
like to take into account the user's dialog strategy 
because how the user specifies the restaurant selec-
tion constraints has a certain impact on the dialog 
pace. Comparing two situations where one user 
specifies the three constraints of selecting a restau-
rant in three separate utterances, while another user 
specifies all the constraints in one utterance, we 
will find that the total number of dialog turns in the 
second situation is smaller assuming perfect under-
standings. Thus, we propose to use the ratio be-
tween the number of turns in the perfect 
understanding situation and the number of turns in 
practice (efficiencyRatio) to measure the system 
efficiency. The larger the efficiencyRatio is, the 
closer the actual number of turns is to the perfect 
understanding situation. In the example in Table 2, 
because the user chose to specify all the constraints 
in one utterance, the dialog length would be 2 turns 
in perfect understanding situation (excluding the 
last user turn which is always "I'm done"). How-
ever, the actual dialog length is 6 turns. Thus, the 
efficiencyRatio is 2/6. 

Since our task scenarios always contain three 
constraints, we can calculate the length of the er-
ror-free dialogs based on the user’s strategy. When 
the user specifies all constraints in the first utter-
ance, the ideal dialog will have only 2 turns; when 
the user specifies two constraints in one utterance 
and the other constraints in a separate utterance, 
the ideal dialog will have 4 turns; when the user 
specifies all constraints one by one, the ideal dia-
log will have 6 turns. Thus, in the simulation envi-
ronment, the length of the ideal dialog can be 
calculated from the simulated users’ agenda. Then, 
the efficiencyRatio can be calculated automati-
cally. We manually computed this measure for the 
real users’ dialogs. 
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Similarly, in order to compare with previous 
studies, we also investigate the total number of 
dialog turns (dialogTurns) proposed as the effi-
ciency measure (E.g., Möller et al., 2007).  

4.3 Action Appropriateness Measure  

This measure aims to evaluate the appropriateness 
of the system actions. The definition of appropri-
ateness can vary on different tasks and different 
system design requirements. For example, some 
systems always ask users to explicitly confirm 
their utterances due to high security needs. In this 
case, an explicit confirmation after each user utter-
ance is an appropriate system action. However, in 
other cases, frequent explicit confirmations may be 
considered as inappropriate because they may irri-
tate the users. In our task domain, we define the 
only inappropriate system action to be providing 
information based on misunderstood user require-
ments. In this situation, the system is not aware of 
its misunderstanding error. Instead of conducting 
an appropriate error-recovering dialog, the system 
provides wrong information to the user which we 
hypothesize will decrease the user’s satisfaction.  

We use the percentage of appropriate system ac-
tions out of the total number of system actions 
(percentAppropriate) to measure the appropriate-
ness of system actions. In the example in Table 2, 
only the first system action is inappropriate in all 3 
system actions. Thus, the percent system action 
appropriateness is 2/3. Since we can detect the sys-
tem’s misunderstanding and the system’s action in 
the simulated dialog environment, this measure can 
be calculated automatically for the simulated dia-
logs. For the real user corpus, we manually coded 
the inappropriate system utterances.  

Note that the definition of appropriate action we 
use here is fairly loose. This is partly due to the 
simplicity of our task domain and the limited pos-
sible system/user actions. Nevertheless, there is 
also an advantage of the loose definition: we do 
not bias towards one particular dialog strategy 
since our goal here is to find some general and eas-
ily measurable system performance factors that are 
correlated with the user satisfaction. 

5 Investigating Evaluation Measures on 
the Real User Corpus  

In this section, we first validate the proposed 
measures using real users’ satisfaction scores, and 
then show the differentiating power of these meas-
ures through the improvement curves plotted on 
the dry-run data. 

5.1 Validating Evaluation Measures 

To validate the evaluation measures introduced in 
Section 4, we use Pearson’s correlation to examine 
how well these evaluation measures can predict the 
user satisfaction scores. Here, we only look at the 
dialog corpus in final evaluation because only 
these users filled out the user satisfaction surveys. 
For each user, we compute the average value of the 
evaluation measures across all dialogs generated 
by that user. 

 
Table 3 lists the correlation between the evalua-

tion measures and the user satisfaction scores, as 
well as the p-value for each correlation. The corre-
lation describes a linear relationship between these 
measures and the user satisfaction scores. For the 
measures that describe the system’s understanding 
abilities and the measures that describe the sys-
tem’s efficiency, our newly proposed measures 
show higher correlations with the user satisfaction 
scores than their counterparts. Therefore, in the 
rest of the study, we drop the two measures used 
by the previous studies, i.e., semanticAccuracy and 
dialogTurns.  

We observe that the user satisfaction scores are 
significantly positively correlated with all the three 
proposed measures. These correlations confirms 
our expectations: user satisfaction is higher when 
the system’s understanding matches better with the 
users’ requirements; when the dialog efficiency is 
closer to the situation of perfect understanding; or 
when the system's actions are mostly appropriate. 
We suggest that these measures can serve as indi-
cators for user satisfaction.  
    We further use all the measures to build a re-
gression model to predict the user satisfaction 
score. The prediction model is: 

Evaluation Measure Correlation P-value 
understandingAgreement 0.354 0.05 

semanticAccuracy 0.304 0.08 
efficiencyRatio 0.406 0.02 

dialogTurns -0.321 0.05 
percentAppropriate 0.454 0.01 

Table3: Correlations with User Satisfaction Scores. 
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User Satisfaction  
   = 6.123*percentAppropriate 

  +2.854*efficiencyRatio                         --- (1) 
      +0.864*understandingAgreement - 4.67 
 

The R-square is 0.655, which indicates that 
65.5% of the user satisfaction scores can be ex-
plained by this model. While this prediction model 
has much room for improvement, we suggest that 
it can be used to estimate the users’ satisfaction 
scores for simulated users in the early system test-
ing stage to quickly assess the system's perform-
ance. Since the weights are tuned based on the data 
from this specific application, the prediction model 
may not be used directly for other domains.  

5.2 Assessing the Differentiating Power of the 
Evaluation Measures 

Since this set of evaluation measures intends to 
evaluate the system's performance in the develop-
ment stage, we would like the measures to be able 
to reflect small changes made in the system and to 
indicate whether these changes show the right 
trend of increased user satisfaction in reality. A set 
of good evaluation measures should be sensible to 
subtle system changes. 

We assess the differentiating power of the eval-
uation measures using the dialog corpus collected 
during the dry-runs. The system was tested on a 
weekly basis as explained in Table 1. For each im-
provement stage, we compute the values for the 
three evaluation measures averaging across all dia-
logs from all users. Figure 1 shows the three im-
provement curves based on these three measures. 
The x-axis shows the first date of each improve-
ment stage; the y-axis shows the value of the eval-
uation measures. We observe that all three curves 
show the right trends that indicate the system’s 
improvements over the development stages.  

6 Applying the Evaluation Measures on 
the Simulated Corpus  

We train a goal and agenda driven user simulation 
model from the final evaluation dialog corpus with 
the real users. The simulation model interacts with 
the dialog system 20 times (each time the simula-
tion model represents a different simulated user), 
generating nine dialogs on all of the nine tasks 
each time. In each interaction, the simulated users 
generate their agenda randomly based on a uniform 
distribution. The simulated corpus consists of 180 
dialogs from 20 simulated users, which is of the 
same size as the real user corpus. The values of the 
evaluation measures are computed automatically at 
the end of each simulated dialog. 
   We compute the estimated user satisfaction score 
using Equation 1 for each simulated user. We then 
compare the user satisfaction scores of the 20 si-
mulated users with the satisfaction scores of the 20 
real users. The average and the standard deviation 
of the user satisfaction scores for real users are 
(3.79, 0.72), and the ones for simulated users are 
(3.77, 1.34). Using two-tailed t-test at significance 
level p<0.05, we observe that there are no statisti-
cally significant differences between the two pools 
of scores. Therefore, we suggest that the user satis-
faction estimated from the simulated dialog corpus 
can be used to assess the system performance. 
However, these average scores only offer us one 
perspective in comparing the real with the simu-
lated user satisfaction. In the future, we would like 
to look further into the differences between the 
distributions of these user satisfaction scores. 

7 Conclusions and Future Work  

User simulation has been increasingly used in gen-
erating large corpora for using machine learning 
techniques to automate dialog system design. 
However, user simulation has not been used much 
in testing dialog systems. There are two major con-
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Figure 1: The Improvement Curves on Dry-run Data 
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cerns: 1. we are not sure how well the state-of-the-
art user simulation can mimic realistic user behav-
iors; 2. we do not get important feedback on user 
satisfaction when replacing human users with 
simulated users. In this study, we suggest that 
while the simulated users might not be mature to 
use in the final system evaluation stage, they can 
be used in the early testing stages of the system 
development cycle to make sure that the system is 
functioning in the desired way. We further propose 
a set of evaluation measures that can be extracted 
from the simulation logs to assess the system per-
formance. We validate these evaluation measures 
on human user dialogs and examine the differenti-
ating power of these measures. We suggest that 
these measures can be used to guide the develop-
ment of the system towards improving user satis-
faction. We also apply the evaluation measures on 
a simulation corpus trained from the real user dia-
logs. We show that the user satisfaction scores es-
timated on the simulated dialogs do not 
significantly differ statistically from the real users’ 
satisfaction scores. Therefore, we suggest that the 
estimated user satisfaction can be used to assess 
the system performance while testing with simu-
lated users.  

In the future, we would like to confirm our pro-
posed evaluation measures by testing them on dia-
log systems that allows more complicated dialog 
structures and systems on other domains.  
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