
Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 120–127,
Columbus, June 2008. c©2008 Association for Computational Linguistics

A Frame-Based Probabilistic Framework for Spoken Dialog Manage-

ment Using Dialog Examples

Kyungduk Kim, Cheongjae Lee, Sangkeun Jung and Gary Geunbae Lee

Department of Computer Science and Engineering

Pohang University of Science & Technology (POSTECH)

San 31, Hyoja-Dong, Pohang, 790-784, Republic of Korea
{getta, lcj80, hugman, gblee}@postech.ac.kr

Abstract

This paper proposes a probabilistic framework

for spoken dialog management using dialog

examples. To overcome the complexity prob-

lems of the classic partially observable Mar-

kov decision processes (POMDPs) based

dialog manager, we use a frame-based belief
state representation that reduces the complexi-

ty of belief update. We also used dialog ex-

amples to maintain a reasonable number of

system actions to reduce the complexity of the

optimizing policy. We developed weather in-

formation and car navigation dialog system

that employed a frame-based probabilistic

framework. This framework enables people to
develop a spoken dialog system using a prob-

abilistic approach without complexity prob-

lem of POMDP.

1 Introduction

A robust dialog manager is an essential part of
spoken dialog systems, because many such sys-

tems have failed in practice due to errors in speech

recognition. Speech recognition errors can be
propagated to spoken language understanding

(SLU), so the speech input must be considered er-

ror-prone from a standpoint of dialog management.
Therefore robust dialog managers are necessary to

develop practical spoken dialog systems.

One approach to dialog management uses the
partially observable Markov decision process

(POMDP) as a statistical framework, because this

approach can model the uncertainty inherent in
human-machine dialog (Doshi and Roy, 2007).

The dialog manager uses a probabilistic, rather

than deterministic, approach to manage dialog. As
more information becomes available, the dialog

manager updates its belief states. A POMDP-based

dialog manager can learn the optimized policy that
maximizes expected rewards by reinforcement

learning.

But applying classic POMDP to a practical di-
alog system incurs a scalability problem. The com-

putational complexity of updating belief states and

optimizing the policy increases rapidly with the
size of the state space in a slot-filling dialog task.

To solve this scalability problem, the method of

compressing states or mapping the original state
space to summarized space can be used (Williams

and Young, 2006; Roy et al.,2005), but these algo-

rithms tend to approximate the state space exces-
sively. The complexity problem of POMDP comes

from updating beliefs that are out of the user’s in-

tention, and from calculating the reward of system
actions that do not satisfy user’s objective.

In this paper, we propose a new probabilistic

framework for spoken dialog management using
dialog examples. We adopted a frame-based belief

state representation to reduce the complexity of

belief update. Furthermore, we used an example-
based approach to generate only a reasonable

number of system action hypotheses in a new

framework. We developed a dialog system by us-
ing our new framework in weather information

service and car navigation service.

120

2 Overview

We try to address two problems of applying

POMDP to slot-filling dialog management. 1)
Computational complexity of belief update: it is

difficult to maintain and update all belief states at

every turn of dialog since there are too many di-
alog states in slot-filling dialog tasks. 2) Computa-

tional complexity of policy optimizing: optimizing

complexity depends on both the space size of di-
alog states, and the number of available machine

actions. In slot-filling dialog tasks, a system action

can have various slot values so that the system
needs to choose an action among a large number of

action hypotheses.

In our new probabilistic framework (Figure 1),
we try to solve these problems. Our approach uses

1) the frame-based belief state representation to

solve the computational complexity problem of
belief update and 2) the dialog examples to gener-

ate action hypotheses to solve the computational

complexity of policy optimizing by reducing the
number of system action hypotheses. First, the sys-

tem groups belief states dynamically using frame-

based belief state representation according to us-
er’s utterance and its SLU result. Then the system

uses an example-based approach to generate only

system action hypotheses that are suitable for cur-
rent belief states. If there are too many hypotheses

for calculating expected utility, the system prunes

them away until only a reasonable number of hy-
potheses remains. The following describes the de-

tails of each system’s component and the dialog

managing process.

User’s Utterance

SLU Result

Frame-based Belief

State Representation

Dialog

Example DB

Calculating

Utilities

System action

User’s Intention,

Semantic Frame,

Dialog History

Pruning

Hypotheses

Lexico-semantic

Similarity

Generating

Hypotheses

Figure 1. Overview of the system operation. Bold ar-

rows indicate the control flow. Thin arrows indicate the

data flow.

3 Frame-based Belief State Representation

We assumed that the machine’s internal represen-

tation of the dialog state sm consists of three com-
ponents: user’s goal su, user’s last action au and

dialog history sd. This section briefly describes the

basic introduction of POMDP framework and ex-
plains each component of machine’s internal state

in the standpoint of our frame-based probabilistic

framework.

3.1 POMDP for spoken dialog management

A POMDP is defined as a tuple that consists of six

substates: (S, A, P, R, Ω, O) where S is a set of

state, A is a set of action, P is a transition proba-
bility P(s

’
|s,a), R is a reward function R(s,a,s’), Ω

is a set of observation and O is an observation

model P(o|s,a). The current state is not determinis-
tic in a POMDP framework while it is determined

as a specific state in a Markov decision process

(MDP) framework. In a POMDP, the probability

distribution over all states s∈S, which is referred

as a belief state b(s), is maintained instead of de-

terministic state. At each time instant t, the system

chooses an action a∈A, and this causes the system

to move from current state s to next state s’ with

the transition probability P(s’ |s,a). Then, the sys-
tem is granted a reward R(s,a) while the system

receives an observation o with probability of

P(o|s’,a). The system computes the belief state in
the next time instance b’(s’) as a following:

 
s

sbassPasoPksb)(),|(),|()(

where k is a normalizing factor. This process is

referred as belief update.
Optimizing a POMDP policy is a process of

finding a mapping function from belief states to

actions that maximizes the expected reward. The
system should compute a value function over be-

lief spaces to find optimized actions. However,

unlike as in a MDP, each value in a POMDP is a
function of an entire probability distribution and

belief spaces are very complex, so that a POMDP
has a scale problem of computing the exact value

function.

A POMDP for spoken dialog system is well
formulated in (Williams and Young, 2007). First, a

state s can be factored to three substates: (su, au, sd)

121

where su is a user goal state, au is a user action, and

sd is a dialog history. A system action am and user
action au can be cast as action a and observation o

respectively. With some independence assumption

between variables, the belief update equation can
be rewritten as following:

,),,(

),,|(),|(

),|()|~(

),,()(



 









u

u d

a
duu

s s
mdudmuu

muuuu

duu

sasb

asasPassP

asaPaaPk

sasbsb

where ua~ is an automatic speech recognizer (ASR)

and SLU recognition result of user action. In our
framework, belief update is done based on this eq-

uation. But applying this directly to a spoken di-

alog system can have a problem because the
probabilities used in the equation are hard to esti-

mate from the corpus due to the data sparseness.
Therefore, we adopted Young’s (2007) belief up-

date formula that is simplified from the original

equation.

3.2 User goal state

In a slot-filling dialog system, the user’s goal can

be represented as a fully-filled frame in which all

slots of the frame contain values specified by the
user’s intention. Therefore, if a dialog system has

W slots and each slot can have a value among V

candidates, then V
W

 user goals can be represented
as frames. This means that the number of user

goals is related exponentially to the number of

slots. This number of user goals is intractable in
practical dialog systems.

Therefore, a method is needed to reduce the size

of the state space rather than maintaining all belief
states. To do this, we developed a frame-based be-

lief state representation in which the system dy-

namically groups set of equivalent states to a high-
level frame state. Frame state, which is a similar

concept to the partition in the hidden information

state (HIS) approach (Young et al, 2007)
represents the indistinguishable classes of user’s

goals. The biggest difference between frame-based

representation and partition-based representation is
that the former uses only user input to split the

frame state, whereas the latter uses the user input

and external ontology rules such as a prior proba-

bility for belief of split partition. Therefore, the
frame-based representation has relatively high do-

main portability because it does not need that kind

of external domain dependent information.
In the frame-based belief state representation, a

partially-filled frame state represents the current

user’s goal state for which the unfilled slot can be
filled in the future, while a fully-filled frame state

represents a complete user’s goal state. Figure 2

describes an example of the subsumption relation-
ship between partially filled frames and fully filled

frames.

Figure 2. Subsumption relationship between partially

filled frame and fully filled frame. The left frame is par-

tially filled and three frames in the right side are fully

filled.

At the start of a dialog, all states belong to the
root frame state f0. As the dialog progresses, this

root frame state is split into smaller frame states

whenever the value of a slot is filled by the user’s
input (Figure 3). First, if the user’s input [A=a]

fills the slot of the root frame state f0, then it splits

into two frame states: f1, which includes all user
goal states with the slot A having ‘a’ as a value;

and {f0-f1}, which is the relative complement of f1.

Next, if the user’s input [B=b] is entered to the
system, each frame f1 and {f0-f1} is split into small-

er frame states. The system updates not all belief

states but only the beliefs of the frame states, so
that the computational complexity remains rela-

tively small.

If each user’s goal has uniform distribution, the
belief of frame state b(f) can be calculated as fol-

lows:

of user goals contained in frame
()

of all user goals

f
b f 

This can be computed as follows:

122

t0

t1

t2

...

Root
Frame State

f0

0() 1b f 

{f0 - f1} 0 1

49
({ })

50
b f f 

f1

(A = a) 1

1
()

50
b f 

 f3

(A = a)

(B = b)

3 2

1
()

50
b f 

{f1 – f3}

(A = a)

1 3 2

49
({ })

50
b f f 

 f2

(B = b)

2 2

49
()

50
b f 

{{f0 - f1} - f2}

2

0 1 2 2

49
({{ } })

50
b f f f  

A = a A != a

f1 { f0 - f1}

f0

A = a

B = b

A = a

B != b

A != a

B = b

A != a

B != b

f3

{f1 – f3}

 f2

{{f0 - f1} - f2}

User Input

A = a

User Input

B = b

User Input

C = c

Frame Splitting State Space

Figure 3. Splitting frame states and their beliefs with three user’s inputs. f0, f1, f2, … denote frame states and b(f)

means the belief of frame state f. A, B, C are the slot labels and a, b, c are the respective values of these slots.

where Sfilled means the set of slots that are filled by

the user’s input in frame state f, and SnotFilled means

the set of empty slots. Vs denotes the set of availa-
ble values for slot s, and Vs’ stands for the set of

values for slot s that were specified by the user in

other frame states.

3.3 User action

The SLU result of current user's utterance is used

for the user action. The result frame of SLU con-

sists of a speech act, a main goal, and several
named-entity component slots for each user's utter-

ance. The speech act stands for the surface-level

speech act per single utterance and the main goal
slot is assigned from one of the predefined classes

which classify the main application actions in a

specific domain such as “search the weather
(SEARCH_WEATHER)” or “search the tempera-

ture (SEARCH_TEMPERATURE)” in the weather

information service domain. The tasks for filling
the named-entity component slots, such as, name

of the city, name of the state, are viewed as a se-

quence labeling task. The Figure 4 shows some
examples of predefined classes for SLU semantic

frame in weather information service dialog system
Our SLU module was developed based on the

concept spotting approach, which aims to extract

only the essential information for predefined mean-

ing representation slots, and was implemented by

applying a conditional random field model (Lee et

al., 2007).

Figure 4 Example predefined classes for semantic frame

of SLU in weather information service dialog system.

3.4 Dialog history

Similar to the traditional frame-based dialog

management approach, a frame can represent the

history of the dialog. The difference between the
traditional frame-based dialog manager and our

framework is that traditional frame-based dialog

123

manager maintains only one frame while our

framework can maintain multiple dialog hypothes-
es. Moreover, each hypothesis in our framework

can have a probability as in the belief state of the

classic POMDP.

4 Example-based System Action Genera-

tion

4.1 Example-based system action hypothesis

generation

It is impossible to consider all of the system ac-

tions as hypotheses because the number of possible

actions is so large. We used an example-based ap-
proach to generate a reasonable number of system

action hypotheses as hinted in (Lee et al., 2006). In

this approach, the system retrieves the best dialog
example from dialog example database (DEDB)

which is semantically indexed from a dialog cor-
pus. To query a semantically close example for the

current situation, the system uses the user’s inten-

tion (speech act and main goal), semantic frame
(component slots) and discourse history as search

key constraints (Lee et al., 2006). These search

keys can be collected with SLU output (e.g., user
intention and semantic frame) and discourse histo-

ry in a dialog manager. Figure 5 describes an ex-

ample of search key for DEDB on a weather
information service system.

User’s utterance What will the temperature be tomorrow?

 Weather_Type Time_Date

Search key

constraints

Speech Act = wh_question

Main Goal = search_temperature

WEATHER_TYPE = 1 (filled)

TIME_DATE = 1 (filled)

LOC_CITY = 0 (unfilled)

LOC_STATE = 0 (unfilled)

Lexico-semantic

Input

What will the [WEATHER_TYPE] be

[TIME_DATE]?

Figure 5. Example search key constraints for dialog

example database.

For each frame state f1, …, fn, the system gene-

rates one or more system action hypotheses by
querying the DEDB respectively. Queried actions

may inconsistent with the current frame state be-

cause the situation of indexed dialog examples

may different from current dialog situation. There-

fore, the system maps the contents of dialog exam-
ple to information of current frame state. Slot

values of frame state and information from content

database (e.g., weather information database) are
used for making the action consistent. If the system

retrieves more than a threshold number of system

action hypotheses using the search key constrains,
then the system should prune away dialog exam-

ples to maintain only a reasonable number of hypo-

theses. We used lexico-semantic similarity
between the user utterance and the retrieved exam-

ples to limit the number of hypotheses. To measure

the lexico-semantic similarity, we first replace the
slot values in the user utterance by its slot names to

generate lexico-semantic input, and calculate the

normalized edit distance between that input and
retrieved examples (Figure 5). In the normalized

edit distance, we defined following cost function

C(i,j) to give a weight to the term which is re-
placed by its slot name.

1, 2,

1, 2, 1, 2, _

1, 2, 1, 2, _

0 if

(,) 1 if and ,

1.5 if and ,

i j

i j i j slot name

i j i j slot name

w w

C i j w w w w S

w w w w S

 


  
  

where w1,i is ith word of user’s utterance, w2,j is jth

word of dialog example’s utterance, and Sslot_name is

the set of slot names. According to the lexico-
semantic similarity, the system appends the top Nh-

ranked hypotheses to the final action hypotheses

(where Nh is the rank threshold).
Many existing systems used heuristics or rule-

based approaches to reduce the number of system

action hypotheses (Young et al., 2007). But these
methods are not flexible enough to handle all di-

alog flows because a system developer should de-

sign new heuristics or rules whenever the system
needs to support a new kind of dialog flow. The

example-based approach, on the contrary, can in-

stantly refine the control of dialog flows by adding
new dialog examples. This is a great advantage

when a system developer wants to change or refine

a dialog control flow.

4.2 Calculating Expected Utilities

We adopted the principle of maximum expected

utility to determine the optimized system actions

among the hypotheses (Paek and Horvitz, 2004).

124

* argmax (|)

argmax (|) (,)

argmax () (,)

m
a

a h

h

a EU a

P H h u a h

b h u a h







 









where ξ denotes all information about the envi-

ronment, u(a,h) means the utility of taking an ac-

tion when the internal state of the machine is h,
which consists of three substates, (f, au, sd) : f is a

frame state, au is a user’s last action, and sd is a

dialog history. The utility function u(a,h) can be
specific to each application. We defined a

handcrafted utility function to calculate the ex-

pected utility.

5 Experiments

We performed two evaluations. 1) Real user evalu-

ation: we measured the user satisfaction with vari-
ous factors by human. 2) Simulated user

evaluation: we implemented user simulator to

measure the system performance with a large
number of dialogs. We built dialog corpora in two

domains: weather information service and car na-

vigation.

5.1 Real user evaluation

We built a dialog corpus in weather information

service to measure the performance of the dialog

system using our approach by real user evaluation.
This corpus consists of 99 dialogs with 503 user

utterances (turns). User’s utterances were anno-

tated with the semantic frame including speech
acts, main goal and component slots for training

the SLU module and indexing the DEDB.

To evaluate the preliminary performance, four
test volunteers among computer science people

evaluated our dialog system with five different

weather information-seeking tasks. The volunteers
typed their utterances with a keyboard rather than

using a real ASR because it is hard to control the

WER. We employed a simulated ASR error chan-
nel by generating random errors to evaluate the

performance of dialog management under various

levels of WER. We will explain the details of our
ASR channel simulator in Section 5.2. The WER is

controlled by this ASR channel simulator while the

volunteers were interacting with computer. To

measure the user perception of task completion

rate (TCR), the volunteers evaluated the system’s
response in each dialog to measure the success turn

rate (STR) and decided whether the entire dialog

was successful or not. We evaluated the perfor-
mance of our dialog system based on criteria out-

lined in (Litman and Pan, 2004) by measuring user

satisfaction, which is defined with a linear combi-
nation of three measures: TCR, Mean Recognition

Accuracy (MRA), and STR.

User Satisfaction = αTCR +βSTR + γMRA

In our evaluation, we set α, β and γ to 1/3, so
that the maximum value of the user satisfaction is

one.

Figure 6 Dialog system performance with various word

error rates in weather information seeking tasks. Dotted

line is TCR; dashed line is STR; solid line is user satis-

faction.

TCR, STR and user satisfaction decreased with
WER. User satisfaction has relatively high value

when the WER is smaller than 20% (Figure 6). If

the WER is equal or over 20%, user satisfaction
has small value because the TCR decreases rapidly

in this range.

Generally, TCR has a higher value than STR,
because although a dialog turn may fail, users still

have a chance to use other expressions which can

be well recognized by the system. As a result of
this, even when some dialog turns fail, the task can

be completed successfully.

TCR decreases rapidly when WER ≥20%.

When WER is high, the probability of losing the

125

information in a user utterance is also large. Espe-

cially, if words contain important meaning, i.e.,
values of component slots in SLU, it is difficult for

the system to generate a proper response.

STR is 0.83 when WER is zero, i.e., although all
user inputs are correctly recognized, the system

sometimes didn’t generate proper outputs. This

failure can be caused by SLU errors or malfunction
of the dialog manager. SLU errors can be propa-

gated to the dialog manager, and this leads the sys-

tem to generate a wrong response because SLU
results are inputs of dialog manger.

If the WER is 20%, user satisfaction is relatively

small because TCR decreases rapidly in this range.
This means that our approach is useful in a system

devoted to providing weather information, and is

relatively robust to speech errors if the WER is less
than 20%.

5.2 Simulated user evaluation

We built another dialog corpus in car navigation

service to measure the performance of the dialog
system by simulated user evaluation. This corpus

consists of 123 dialogs with 510 user utterances

(turns). The SLU result frame of this corpus has 7
types of speech acts, 8 types of main goals, and 5

different component slots.

The user simulator and ASR channel simulator has
been used for evaluating the proposed dialog man-

agement framework. The user simulator has two

components: an Intention Simulator and a Surface
Simulator. The Intention Simulator generates the

next user intention given current discourse context,

and the Surface Simulator generates user sentence
to express the generated intention.

ASR channel simulator simulates the speech

recognition errors including substitution, deletion,
and insertions errors. It uses the phoneme confu-

sion matrix to estimate the probability distribution
for error simulation. ASR channel simulator dis-

torts the generated user utterance from Surface Si-

mulator. By simulating user intentions, surface
form of user sentence and ASR channel, we can

test the robustness of the proposed dialog system in

both speech recognition and speech understanding
errors.

We defined a final state of dialog to automati-

cally measure TCR of a simulated dialog. If a di-
alog flow reaches the final state, the evaluator

regards that the dialog was successfully completed.

TCRs and average dialog lengths were measured

under various WER conditions that were generated
by ASR channel simulator. Until the SLU result is

an actual input of the dialog manager, we also

measured the SLU accuracy. If a SLU result is
same as a user’s intention of the Intention Simula-

tor, then the evaluator considers that the result is

correct. Unlike in the real user evaluation, the di-
alog system could be evaluated with relatively

large amount of simulated dialogs in the simulated

user evaluation. 5000 simulated dialogs were gen-
erated for each WER condition.

Figure 7 TCR, SLU accuracy, and average dialog length
of the dialog system under various WER conditions.

We found that the SLU accuracy and TCR li-

nearly decreased with the WER. Similar in the
human evaluation, TCR is about 0.9 when WER is

zero, and it becomes below 0.7 when WER is

higher than 20%. Average dialog length, on con-
trary, increased with WER, and it has similar val-

ues when WER is less than 10% although it

increased relatively rapidly when WER is higher
than 15%.

6 Conclusions

This paper proposed a new probabilistic method to
manage the human-machine dialog by using the

frame-state belief state representation and the ex-

ample-based system action hypothesis generation.
The frame-based state representation reduces the

computational complexity of belief update by

grouping the indistinguishable user goal states.
And the system generates the system action hypo-

126

theses with the example-based approach in order to

refine the dialog flows easily. In addition, this ap-
proach employed the POMDP formalism to main-

tain belief distribution over dialog states so that the

system can be robust to speech recognition errors
by considering the uncertainty of user’s input.

A prototype system using our approach has been

implemented and evaluated by real and simulated
user. According to the preliminary evaluation, our

framework can be a useful approach to manage a

spoken dialog system.
We plan to progress the research on adopting a

formalized online search to determine the optimal

system action (Ross and Chaib-draa, 2007). With
the online searching, system doesn’t need to be-

have the useless computation because this ap-

proach searches only possible path. We expect that
this property of the online searching show the syn-

ergetic effect on dialog management if it combines

with example-based approach.
Similar to example-based approach, the case-

based reasoning approach (Eliasson, 2006) can be

helpful for our future research. Some properties
such as using previous cases to process current

case can be shared with our approach. We think

that some other properties including the concept of
online learning can be useful for making our ap-

proach concrete

Acknowledgments

This research was supported by the MKE (Min-

istry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center)

support program supervised by the IITA (Institute

for Information Technology Advancement) (IITA-
2008-C1090-0801-0045)

References

Changki Lee, Jihyun Eun, Minwoo Jeong, and Gary

Geunbae Lee, Y. Hwang, M. Jang, “A multi-strategic

concept-spotting approach for robust understanding

of spoken Korean,” ETRI Journal, vol. 29, No.2, pp.

179-188, 2007.

Cheongjae Lee, Sangkeun Jung, Jihyun Eun, Minwoo

Jeong and Gary Geunbae Lee, “A situation-based di-
alogue management using dialogue examples,” in

Proceedings of International conference on Acoustics,

Speech, and Signal Processing, Toulouse, 2006.

Diane J. Litman and Shimei Pan, “Empirically evaluat-

ing an adaptable spoken dialogue system,” in Pro-

ceedings of the 8th International Conference on

Spoken Language Processing, pp. 2145-2148, 2004.

Finale Doshi and Nicholas Roy, “Efficient Model

Learning for Dialog Management,” in Proceeding of

the ACM/IEEE international conference on Human-

robot interaction, Washington DC, 2007.

Jason D. Williams and Steve Young, "Scaling POMDPs

for dialog management with composite summary
point-based value iteration (CSPBVI)," in Proceed-

ings of AAAI Workshop on Statistical and Empirical

Approaches for Spoken Dialogue Systems, Boston,

2006.

Jason D. Williams and Steve Young, " Partially Observ-

able Markov Decision Processes for Spoken Dialog

Systems." Computer Speech and Language 21(2):
231-422, 2007

Karolina Eliasson, “The Use of Case-Based Reasoning

in a Human-Robot Dialog System”, Licentiate of

Engineering Thesis of Linköping Institute of Tech-

nology at Linköping University, 2006

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun,
“Finding approximate pomdp solutions through be-

lief compression,” Journal of Artificial Intelligence

Research, vol. 23, pp.1–40, 2005.

Sptéphane Ross, Brahim Chaib-draa, “AEMS: An Any-

time Online Search Algorithm for Approximate Poli-

cy Refinement in Large POMDPs”, in Proceedings

of the 20th International Joint Conference on Artifi-
cial Intelligence, 2007

Steve Young, Jost Schatzmann, Karl Weilhammer and

Hui Ye, "The hidden information state approach to

dialog management," in Proceedings of International

Conference on Acoustics, Speech, and Signal

Processing, Honolulu, 2007.

Tim Paek and Eric Horvitz, “Optimizing automated call

routing by integrating spoken dialog models with

queuing models,” in Proceedings of HLT-NAACL, pp.

41-48, Boston, 2004.

127

