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Abstract 

This paper proposes a probabilistic framework 

for spoken dialog management using dialog 

examples. To overcome the complexity prob-

lems of the classic partially observable Mar-

kov decision processes (POMDPs) based 

dialog manager, we use a frame-based belief 
state representation that reduces the complexi-

ty of belief update. We also used dialog ex-

amples to maintain a reasonable number of 

system actions to reduce the complexity of the 

optimizing policy. We developed weather in-

formation and car navigation dialog system 

that employed a frame-based probabilistic 

framework. This framework enables people to 
develop a spoken dialog system using a prob-

abilistic approach without complexity prob-

lem of POMDP. 

1 Introduction 

A robust dialog manager is an essential part of 
spoken dialog systems, because many such sys-

tems have failed in practice due to errors in speech 

recognition. Speech recognition errors can be 
propagated to spoken language understanding 

(SLU), so the speech input must be considered er-

ror-prone from a standpoint of dialog management. 
Therefore robust dialog managers are necessary to 

develop practical spoken dialog systems. 

One approach to dialog management uses the 
partially observable Markov decision process 

(POMDP) as a statistical framework, because this 

approach can model the uncertainty inherent in 
human-machine dialog (Doshi and Roy, 2007). 

The dialog manager uses a probabilistic, rather 

than deterministic, approach to manage dialog. As 
more information becomes available, the dialog 

manager updates its belief states. A POMDP-based 

dialog manager can learn the optimized policy that 
maximizes expected rewards by reinforcement 

learning. 

But applying classic POMDP to a practical di-
alog system incurs a scalability problem. The com-

putational complexity of updating belief states and 

optimizing the policy increases rapidly with the 
size of the state space in a slot-filling dialog task. 

To solve this scalability problem, the method of 

compressing states or mapping the original state 
space to summarized space can be used (Williams 

and Young, 2006; Roy et al.,2005), but these algo-

rithms tend to approximate the state space exces-
sively. The complexity problem of POMDP comes 

from updating beliefs that are out of the user’s in-

tention, and from calculating the reward of system 
actions that do not satisfy user’s objective. 

In this paper, we propose a new probabilistic 

framework for spoken dialog management using 
dialog examples. We adopted a frame-based belief 

state representation to reduce the complexity of 

belief update. Furthermore, we used an example-
based approach to generate only a reasonable 

number of system action hypotheses in a new 

framework. We developed a dialog system by us-
ing our new framework in weather information 

service and car navigation service. 
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2 Overview 

We try to address two problems of applying 

POMDP to slot-filling dialog management. 1) 
Computational complexity of belief update: it is 

difficult to maintain and update all belief states at 

every turn of dialog since there are too many di-
alog states in slot-filling dialog tasks. 2) Computa-

tional complexity of policy optimizing: optimizing 

complexity depends on both the space size of di-
alog states, and the number of available machine 

actions. In slot-filling dialog tasks, a system action 

can have various slot values so that the system 
needs to choose an action among a large number of 

action hypotheses. 

In our new probabilistic framework (Figure 1), 
we try to solve these problems. Our approach uses 

1) the frame-based belief state representation to 

solve the computational complexity problem of 
belief update and 2) the dialog examples to gener-

ate action hypotheses to solve the computational 

complexity of policy optimizing by reducing the 
number of system action hypotheses. First, the sys-

tem groups belief states dynamically using frame-

based belief state representation according to us-
er’s utterance and its SLU result. Then the system 

uses an example-based approach to generate only 

system action hypotheses that are suitable for cur-
rent belief states. If there are too many hypotheses 

for calculating expected utility, the system prunes 

them away until only a reasonable number of hy-
potheses remains. The following describes the de-

tails of each system’s component and the dialog 

managing process. 

User’s Utterance

SLU Result

Frame-based Belief 

State Representation

Dialog 

Example DB

Calculating

Utilities

System action

User’s Intention,

Semantic Frame,

Dialog History

Pruning 

Hypotheses

Lexico-semantic 

Similarity

Generating

Hypotheses

 
Figure 1. Overview of the system operation. Bold ar-

rows indicate the control flow. Thin arrows indicate the 

data flow.  

3 Frame-based Belief State Representation 

We assumed that the machine’s internal represen-

tation of the dialog state sm consists of three com-
ponents: user’s goal su, user’s last action au and 

dialog history sd. This section briefly describes the 

basic introduction of POMDP framework and ex-
plains each component of machine’s internal state 

in the standpoint of our frame-based probabilistic 

framework. 

3.1 POMDP for spoken dialog management 

A POMDP is defined as a tuple that consists of six 

substates: (S, A, P, R, Ω, O) where S is a set of 

state, A is a set of action, P is a transition proba-
bility P(s

’
|s,a), R is a reward function R(s,a,s’), Ω 

is a set of observation and O is an observation 

model P(o|s,a). The current state is not determinis-
tic in a POMDP framework while it is determined 

as a specific state in a Markov decision process 

(MDP) framework. In a POMDP, the probability 

distribution over all states s∈S, which is referred 

as a belief state b(s), is maintained instead of de-

terministic state. At each time instant t, the system 

chooses an action a∈A, and this causes the system 

to move from current state s to next state s’ with 

the transition probability P(s’ |s,a). Then, the sys-
tem is granted a reward R(s,a) while the system 

receives an observation o with probability of 

P(o|s’,a). The system computes the belief state in 
the next time instance b’(s’) as a following: 

 

 
s

sbassPasoPksb )(),|(),|()(  

 

where k is a normalizing factor. This process is 

referred as belief update. 
Optimizing a POMDP policy is a process of 

finding a mapping function from belief states to 

actions that maximizes the expected reward. The 
system should compute a value function over be-

lief spaces to find optimized actions. However, 

unlike as in a MDP, each value in a POMDP is a 
function of an entire probability distribution and 

belief spaces are very complex, so that a POMDP 
has a scale problem of computing the exact value 

function. 

A POMDP for spoken dialog system is well 
formulated in (Williams and Young, 2007). First, a 

state s can be factored to three substates: (su, au, sd) 
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where su is a user goal state, au is a user action, and 

sd is a dialog history. A system action am and user 
action au can be cast as action a and observation o 

respectively. With some independence assumption 

between variables, the belief update equation can 
be rewritten as following: 
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where ua~  is an automatic speech recognizer (ASR) 

and SLU recognition result of user action. In our 
framework, belief update is done based on this eq-

uation. But applying this directly to a spoken di-

alog system can have a problem because the 
probabilities used in the equation are hard to esti-

mate from the corpus due to the data sparseness. 
Therefore, we adopted Young’s (2007) belief up-

date formula that is simplified from the original 

equation. 

3.2 User goal state 

In a slot-filling dialog system, the user’s goal can 

be represented as a fully-filled frame in which all 

slots of the frame contain values specified by the 
user’s intention. Therefore, if a dialog system has 

W slots and each slot can have a value among V 

candidates, then V
W

 user goals can be represented 
as frames. This means that the number of user 

goals is related exponentially to the number of 

slots. This number of user goals is intractable in 
practical dialog systems. 

Therefore, a method is needed to reduce the size 

of the state space rather than maintaining all belief 
states. To do this, we developed a frame-based be-

lief state representation in which the system dy-

namically groups set of equivalent states to a high-
level frame state. Frame state, which is a similar 

concept to the partition in the hidden information 

state (HIS) approach (Young et al, 2007) 
represents the indistinguishable classes of user’s 

goals. The biggest difference between frame-based 

representation and partition-based representation is 
that the former uses only user input to split the 

frame state, whereas the latter uses the user input 

and external ontology rules such as a prior proba-

bility for belief of split partition. Therefore, the 
frame-based representation has relatively high do-

main portability because it does not need that kind 

of external domain dependent information. 
In the frame-based belief state representation, a 

partially-filled frame state represents the current 

user’s goal state for which the unfilled slot can be 
filled in the future, while a fully-filled frame state 

represents a complete user’s goal state. Figure 2 

describes an example of the subsumption relation-
ship between partially filled frames and fully filled 

frames.  

 
Figure 2. Subsumption relationship between partially 

filled frame and fully filled frame. The left frame is par-

tially filled and three frames in the right side are fully 

filled. 

 

At the start of a dialog, all states belong to the 
root frame state f0. As the dialog progresses, this 

root frame state is split into smaller frame states 

whenever the value of a slot is filled by the user’s 
input (Figure 3). First, if the user’s input [A=a] 

fills the slot of the root frame state f0, then it splits 

into two frame states: f1, which includes all user 
goal states with the slot A having ‘a’ as a value; 

and {f0-f1}, which is the relative complement of f1. 

Next, if the user’s input [B=b] is entered to the 
system, each frame f1 and {f0-f1} is split into small-

er frame states. The system updates not all belief 

states but only the beliefs of the frame states, so 
that the computational complexity remains rela-

tively small.  

If each user’s goal has uniform distribution, the 
belief of frame state b(f) can be calculated as fol-

lows:  

# of user goals contained in frame 
( )

# of all user goals

f
b f   

This can be computed as follows:  
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Figure 3. Splitting frame states and their beliefs with three user’s inputs. f0, f1, f2, … denote frame states and b(f) 

means the belief of frame state f. A, B, C are the slot labels and a, b, c are the respective values of these slots. 

 

 
where Sfilled means the set of slots that are filled by 

the user’s input in frame state f, and SnotFilled means 

the set of empty slots. Vs denotes the set of availa-
ble values for slot s, and Vs’ stands for the set of 

values for slot s that were specified by the user in 

other frame states. 

3.3 User action 

The SLU result of current user's utterance is used 

for the user action. The result frame of SLU con-

sists of a speech act, a main goal, and several 
named-entity component slots for each user's utter-

ance. The speech act stands for the surface-level 

speech act per single utterance and the main goal 
slot is assigned from one of the predefined classes 

which classify the main application actions in a 

specific domain such as “search the weather 
(SEARCH_WEATHER)” or “search the tempera-

ture (SEARCH_TEMPERATURE)” in the weather 

information service domain. The tasks for filling 
the named-entity component slots, such as, name 

of the city, name of the state, are viewed as a se-

quence labeling task. The Figure 4 shows some 
examples of predefined classes for SLU semantic 

frame in weather information service dialog system 
Our SLU module was developed based on the 

concept spotting approach, which aims to extract 

only the essential information for predefined mean-

ing representation slots, and was implemented by 

applying a conditional random field model (Lee et 

al., 2007).  
 

 
Figure 4 Example predefined classes for semantic frame 

of SLU in weather information service dialog system. 

 

3.4 Dialog history 

Similar to the traditional frame-based dialog 

management approach, a frame can represent the 

history of the dialog. The difference between the 
traditional frame-based dialog manager and our 

framework is that traditional frame-based dialog 
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manager maintains only one frame while our 

framework can maintain multiple dialog hypothes-
es. Moreover, each hypothesis in our framework 

can have a probability as in the belief state of the 

classic POMDP.  

4 Example-based System Action Genera-

tion 

4.1 Example-based system action hypothesis 

generation 

It is impossible to consider all of the system ac-

tions as hypotheses because the number of possible 

actions is so large. We used an example-based ap-
proach to generate a reasonable number of system 

action hypotheses as hinted in (Lee et al., 2006). In 

this approach, the system retrieves the best dialog 
example from dialog example database (DEDB) 

which is semantically indexed from a dialog cor-
pus. To query a semantically close example for the 

current situation, the system uses the user’s inten-

tion (speech act and main goal), semantic frame 
(component slots) and discourse history as search 

key constraints (Lee et al., 2006). These search 

keys can be collected with SLU output (e.g., user 
intention and semantic frame) and discourse histo-

ry in a dialog manager. Figure 5 describes an ex-

ample of search key for DEDB on a weather 
information service system.  

 

User’s utterance  What will the temperature be tomorrow?  

                     Weather_Type  Time_Date  

Search key 

constraints  

Speech Act = wh_question  

Main Goal = search_temperature  

WEATHER_TYPE = 1 (filled) 

TIME_DATE = 1 (filled) 

LOC_CITY = 0 (unfilled) 

LOC_STATE = 0 (unfilled) 

Lexico-semantic  

Input 

What will the [WEATHER_TYPE] be 

[TIME_DATE]? 

Figure 5. Example search key constraints for dialog 

example database.  

 

For each frame state f1, …, fn, the system gene-

rates one or more system action hypotheses by 
querying the DEDB respectively. Queried actions 

may inconsistent with the current frame state be-

cause the situation of indexed dialog examples 

may different from current dialog situation. There-

fore, the system maps the contents of dialog exam-
ple to information of current frame state. Slot 

values of frame state and information from content 

database (e.g., weather information database) are 
used for making the action consistent. If the system 

retrieves more than a threshold number of system 

action hypotheses using the search key constrains, 
then the system should prune away dialog exam-

ples to maintain only a reasonable number of hypo-

theses. We used lexico-semantic similarity 
between the user utterance and the retrieved exam-

ples to limit the number of hypotheses. To measure 

the lexico-semantic similarity, we first replace the 
slot values in the user utterance by its slot names to 

generate lexico-semantic input, and calculate the 

normalized edit distance between that input and 
retrieved examples (Figure 5). In the normalized 

edit distance, we defined following cost function 

C(i,j) to give a weight to the term which is re-
placed by its slot name. 

 

1, 2,

1, 2, 1, 2, _

1, 2, 1, 2, _

0  if                                       

( , ) 1  if  and ,  

1.5  if  and ,

i j

i j i j slot name

i j i j slot name

w w

C i j w w w w S

w w w w S

 


  
  

 

 
where w1,i is ith word of user’s utterance, w2,j is jth 

word of dialog example’s utterance, and Sslot_name is 

the set of slot names. According to the lexico-
semantic similarity, the system appends the top Nh-

ranked hypotheses to the final action hypotheses 

(where Nh is the rank threshold). 
Many existing systems used heuristics or rule-

based approaches to reduce the number of system 

action hypotheses (Young et al., 2007). But these 
methods are not flexible enough to handle all di-

alog flows because a system developer should de-

sign new heuristics or rules whenever the system 
needs to support a new kind of dialog flow. The 

example-based approach, on the contrary, can in-

stantly refine the control of dialog flows by adding 
new dialog examples. This is a great advantage 

when a system developer wants to change or refine 

a dialog control flow. 

4.2 Calculating Expected Utilities 

We adopted the principle of maximum expected 

utility to determine the optimized system actions 

among the hypotheses (Paek and Horvitz, 2004). 
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where ξ denotes all information about the envi-

ronment, u(a,h) means the utility of taking an ac-

tion when the internal state of the machine is h, 
which consists of three substates, (f, au, sd) : f is a 

frame state, au is a user’s last action, and sd is a 

dialog history. The utility function u(a,h) can be 
specific to each application. We defined a 

handcrafted utility function to calculate the ex-

pected utility. 

5 Experiments 

We performed two evaluations. 1) Real user evalu-

ation: we measured the user satisfaction with vari-
ous factors by human. 2) Simulated user 

evaluation: we implemented user simulator to 

measure the system performance with a large 
number of dialogs. We built dialog corpora in two 

domains: weather information service and car na-

vigation.  

5.1 Real user evaluation 

We built a dialog corpus in weather information 

service to measure the performance of the dialog 

system using our approach by real user evaluation. 
This corpus consists of 99 dialogs with 503 user 

utterances (turns). User’s utterances were anno-

tated with the semantic frame including speech 
acts, main goal and component slots for training 

the SLU module and indexing the DEDB. 

To evaluate the preliminary performance, four 
test volunteers among computer science people 

evaluated our dialog system with five different 

weather information-seeking tasks. The volunteers 
typed their utterances with a keyboard rather than 

using a real ASR because it is hard to control the 

WER. We employed a simulated ASR error chan-
nel by generating random errors to evaluate the 

performance of dialog management under various 

levels of WER. We will explain the details of our 
ASR channel simulator in Section 5.2. The WER is 

controlled by this ASR channel simulator while the 

volunteers were interacting with computer. To 

measure the user perception of task completion 

rate (TCR), the volunteers evaluated the system’s 
response in each dialog to measure the success turn 

rate (STR) and decided whether the entire dialog 

was successful or not. We evaluated the perfor-
mance of our dialog system based on criteria out-

lined in (Litman and Pan, 2004) by measuring user 

satisfaction, which is defined with a linear combi-
nation of three measures: TCR, Mean Recognition 

Accuracy (MRA), and STR. 

 
User Satisfaction = αTCR +βSTR + γMRA 

 

In our evaluation, we set α, β and γ to 1/3, so 
that the maximum value of the user satisfaction is 

one.  
 

 
Figure 6 Dialog system performance with various word 

error rates in weather information seeking tasks. Dotted 

line is TCR; dashed line is STR; solid line is user satis-

faction. 

 

TCR, STR and user satisfaction decreased with 
WER. User satisfaction has relatively high value 

when the WER is smaller than 20% (Figure 6). If 

the WER is equal or over 20%, user satisfaction 
has small value because the TCR decreases rapidly 

in this range. 

Generally, TCR has a higher value than STR, 
because although a dialog turn may fail, users still 

have a chance to use other expressions which can 

be well recognized by the system. As a result of 
this, even when some dialog turns fail, the task can 

be completed successfully. 

TCR decreases rapidly when WER ≥20%. 

When WER is high, the probability of losing the 
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information in a user utterance is also large. Espe-

cially, if words contain important meaning, i.e., 
values of component slots in SLU, it is difficult for 

the system to generate a proper response. 

STR is 0.83 when WER is zero, i.e., although all 
user inputs are correctly recognized, the system 

sometimes didn’t generate proper outputs. This 

failure can be caused by SLU errors or malfunction 
of the dialog manager. SLU errors can be propa-

gated to the dialog manager, and this leads the sys-

tem to generate a wrong response because SLU 
results are inputs of dialog manger. 

If the WER is 20%, user satisfaction is relatively 

small because TCR decreases rapidly in this range. 
This means that our approach is useful in a system 

devoted to providing weather information, and is 

relatively robust to speech errors if the WER is less 
than 20%. 

5.2 Simulated user evaluation 

We built another dialog corpus in car navigation 

service to measure the performance of the dialog 
system by simulated user evaluation. This corpus 

consists of 123 dialogs with 510 user utterances 

(turns). The SLU result frame of this corpus has 7 
types of speech acts, 8 types of main goals, and 5 

different component slots. 

The user simulator and ASR channel simulator has 
been used for evaluating the proposed dialog man-

agement framework. The user simulator has two 

components: an Intention Simulator and a Surface 
Simulator. The Intention Simulator generates the 

next user intention given current discourse context, 

and the Surface Simulator generates user sentence 
to express the generated intention.  

ASR channel simulator simulates the speech 

recognition errors including substitution, deletion, 
and insertions errors. It uses the phoneme confu-

sion matrix to estimate the probability distribution 
for error simulation. ASR channel simulator dis-

torts the generated user utterance from Surface Si-

mulator. By simulating user intentions, surface 
form of user sentence and ASR channel, we can 

test the robustness of the proposed dialog system in 

both speech recognition and speech understanding 
errors. 

We defined a final state of dialog to automati-

cally measure TCR of a simulated dialog. If a di-
alog flow reaches the final state, the evaluator 

regards that the dialog was successfully completed. 

TCRs and average dialog lengths were measured 

under various WER conditions that were generated 
by ASR channel simulator. Until the SLU result is 

an actual input of the dialog manager, we also 

measured the SLU accuracy. If a SLU result is 
same as a user’s intention of the Intention Simula-

tor, then the evaluator considers that the result is 

correct. Unlike in the real user evaluation, the di-
alog system could be evaluated with relatively 

large amount of simulated dialogs in the simulated 

user evaluation. 5000 simulated dialogs were gen-
erated for each WER condition. 

 

 
Figure 7 TCR, SLU accuracy, and average dialog length 
of the dialog system under various WER conditions. 

 

We found that the SLU accuracy and TCR li-

nearly decreased with the WER. Similar in the 
human evaluation, TCR is about 0.9 when WER is 

zero, and it becomes below 0.7 when WER is 

higher than 20%. Average dialog length, on con-
trary, increased with WER, and it has similar val-

ues when WER is less than 10% although it 

increased relatively rapidly when WER is higher 
than 15%. 
 

6 Conclusions 

This paper proposed a new probabilistic method to 
manage the human-machine dialog by using the 

frame-state belief state representation and the ex-

ample-based system action hypothesis generation. 
The frame-based state representation reduces the 

computational complexity of belief update by 

grouping the indistinguishable user goal states. 
And the system generates the system action hypo-
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theses with the example-based approach in order to 

refine the dialog flows easily. In addition, this ap-
proach employed the POMDP formalism to main-

tain belief distribution over dialog states so that the 

system can be robust to speech recognition errors 
by considering the uncertainty of user’s input. 

A prototype system using our approach has been 

implemented and evaluated by real and simulated 
user. According to the preliminary evaluation, our 

framework can be a useful approach to manage a 

spoken dialog system. 
We plan to progress the research on adopting a 

formalized online search to determine the optimal 

system action (Ross and Chaib-draa, 2007). With 
the online searching, system doesn’t need to be-

have the useless computation because this ap-

proach searches only possible path. We expect that 
this property of the online searching show the syn-

ergetic effect on dialog management if it combines 

with example-based approach. 
Similar to example-based approach, the case-

based reasoning approach (Eliasson, 2006) can be 

helpful for our future research. Some properties 
such as using previous cases to process current 

case can be shared with our approach. We think 

that some other properties including the concept of 
online learning can be useful for making our ap-

proach concrete 
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