
Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 64–67,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Rapidly Deploying Grammar-Based Speech Applications

with Active Learning and Back-off Grammars

Tim Paek
1
, Sudeep Gandhe

2
, David Maxwel Chickering

1

1
Microsoft Research, One Microsoft Way, Redmond, WA 98052

2
 USC Institute for Creative Technologies, 13274 Fiji Way, Marina del Rey, CA 90292

{timpaek|dmax}@microsoft.com, gandhe@usc.edu

2 Second author was partly sponsored by the U.S. Army Research, Development, and Engineering Command (RDECOM). Statements and opi-

nions expressed do not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred.

Abstract

Grammar-based approaches to spoken lan-

guage understanding are utilized to a great ex-

tent in industry, particularly when developers

are confronted with data sparsity. In order to

ensure wide grammar coverage, developers

typically modify their grammars in an itera-

tive process of deploying the application, col-

lecting and transcribing user utterances, and

adjusting the grammar. In this paper, we ex-

plore enhancing this iterative process by leve-

raging active learning with back-off

grammars. Because the back-off grammars

expand coverage of user utterances, develop-

ers have a safety net for deploying applica-

tions earlier. Furthermore, the statistics related

to the back-off can be used for active learning,

thus reducing the effort and cost of data tran-

scription. In experiments conducted on a

commercially deployed application, the ap-

proach achieved levels of semantic accuracy

comparable to transcribing all failed utter-

ances with 87% less transcriptions.

1 Introduction

Although research in spoken language understand-

ing is typically pursued from a statistical perspec-

tive, grammar-based approaches are utilized to a

great extent in industry (Knight et al., 2001).

Speech recognition grammars are often manually

authored and iteratively modified as follows: Typi-

cally, context-free grammars (CFG) are written in

a format such as Speech Recognition Grammar

Specification (SRGS) (W3C, 2004) and deployed.

Once user utterances are collected and transcribed,

the grammars are then adjusted to improve their

coverage. This process continues until minimal

OOG utterances are observed. In this paper, we

explore enhancing this iterative process of gram-

mar modification by combining back-off gram-

mars, which expand coverage of user utterances,

with active learning, which reduces “the number of

training examples to be labeled by automatically

processing unlabeled examples, and then selecting

the most informative ones with respect to a speci-

fied cost function for a human to label” (Hakkani-

Tur et al., 2002). This paper comprises three sec-

tions. In Section 2, we describe our overall ap-

proach to rapid application development (RAD). In

Section 3, we explain how data transcription can

be reduced by leveraging active learning based on

statistics related to the usage of back-off gram-

mars. Finally, in Section 4, we evaluate the active

learning approach with simulation experiments

conducted on data collected from a commercial

grammar-based speech application.

2 RAD Approach & Related Work

Working under the assumption that developers in

industry will continue to use CFGs for rapid appli-

cation development, our approach to grammar

modification is as follows:

1. Create a CFG (either manually or automatically).

1.1 Generate a back-off grammar from the CFG.

2. Deploy the application.

2.1 Use the back-off grammar for OOG utterances.

3. Gather data from users.

4. Selectively transcribe data by using statistics re-

lated to the back-off for active learning; i.e., transcribe

only those utterances that satisfy the active learning

criterion.

5. Modify CFG either manually or automatically and

go to step 1.1.

To begin with, developers start with a CFG in Step

1. If they had access to a grammatical platform

64

such as Regulus (Rayner et al., 2006), they could

in principle construct a CFG automatically for any

new domain, though most developers will probably

manually author the grammar. Two steps are added

to the typical iterative process. In Step 1.1, we

generate a back-off grammar from the CFG. One

way to accomplish this is by constructing a back-

off CFG using filler models (Paek et al., 2007),

which when applied to the same command-and-

control task in Section 4 can result in a 35% rela-

tive reduction in semantic error rate for OOG ut-

terances. However, the back-off grammar could

also be a SLM trained on artificial data created

from the CFG (Galescu et al., 1998). Whatever

back-off mechanism is employed, its coverage

should be wider than the original CFG so that ut-

terances that fail to be recognized by the CFG, or

fall below an acceptable confidence threshold, can

be handled by the back-off in a second or simulta-

neous pass. That is the gist of Step 2.1, the second

additional step. It is not only important to generate

a back-off grammar, but it must be utilized for

handling possible OOG utterances.

Our approach attempts to reduce the usual cost

associated with grammar modification after the

application has been deployed and data collected in

Step 4. The idea is simple: Exploit the fast and ac-

curate CFG recognition of in-grammar (ING) ut-

terances by making OOG utterances handled by

the back-off grammar ING. In other words, expand

CFG coverage to include whatever gets handled by

the back-off grammar. This idea is very comple-

mentary with a two-pass recognition approach

where the goal is to get utterances correctly recog-

nized by a CFG on the first pass so as to minimize

computational expenses (Paek et al., 2007).

All of this can be accomplished with reduced

transcription effort by keeping track of and leve-

raging back-off statistics for active learning. If the

back-off is a CFG, we keep track of statistics re-

lated to which CFG rules were utilized the most,

whether they allowed the task to be successfully

completed, etc. If the back-off is a SLM, we keep

track of similar statistics related to the semantic

alignment and mapping in spoken language under-

standing. Given an active learning criterion, these

statistics can be used to selectively transcribe ut-

terances which can then be used to modify the

CFG in Step 5 so that OOG utterances become

ING. Section 3 covers this in more detail.

Finally, in Step 5, the CFG grammar is mod-

ified using the selectively transcribed utterances.

Although developers will probably want to do this

manually, it is possible to automate much of this

step by making grammar changes with minimal

edit distance or Levenshtein distance.

Leveraging a wider coverage back-off grammar

is of course not new. For grammar-based applica-

tions, several researchers have investigated using a

CFG along with a back-off grammar either simul-

taneously via a domain-trained SLM (Gorrell et

a1., 2002), or in two-pass recognition using either

an SLM trained on CFG data (Gorrell, 2003) or a

dictation n-gram (Dusan & Flanagan, 2002). To

our knowledge however, no prior research has con-

sidered leveraging statistics related to the back-off

grammar for active learning, especially as part of a

RAD approach.

3 Active Learning

Our overall approach utilizes back-off grammars to

provide developers with a safety net for deploying

applications earlier, and active learning to reduce

transcription effort and cost. We now elaborate on

active learning, demonstrate the concept with re-

spect to a CFG back-off.

Active learning aims at reducing transcription

of training examples by selecting utterances that

are most likely to be informative according to a

specified cost function (Hakkani-Tur et al., 2002).

In the speech community, active learning has been

successfully applied to reducing the transcription

effort for ASR (Hakkani-Tur et al., 2002), SLU

(Tur et al., 2003b), as well as finding labeling er-

rors (Tur et al., 2003). In our case, the examples

are user utterances that need to be transcribed, and

the learning involves modifying a CFG to achieve

wider coverage of user expressions. Instead of pas-

sively transcribing everything and modifying the

CFG as such, the grammar can “actively” partici-

pate in which utterances are transcribed.

The usual procedure for selecting utterances for

grammar modification is to transcribe at least all

failed utterances, such as those that fall below a

rejection threshold. By leveraging a back-off

grammar, developers have more information with

which to select utterances for transcription. For a

CFG back-off, how frequently a back-off rule fired

can serve as an active learning criterion because

that is where OOG utterances are handled. Given

65

this active learning criterion, the algorithm would

proceed as follows (where i denotes iteration, St

denotes the set of transcribed utterances, and Su

denotes the set of all utterances):

[1] Modify CFGi using St and generate corresponding

back-offi from the CFGi.

[2] Recognize utterances in set Su using CFGi + back-

offi.

[3] Compute statistics on what back-off rules fired

when and how frequently.

[4] Select the k utterances that were handled by the

most frequently occurring back-off rule and tran-

scribe them. Call the new transcribed set as Si.

[5] ;t t i u u iS S S S S S  

[6] Stop when CFGi achieves a desired level of seman-

tic accuracy, or alternatively when back-off rules

only handle a desired percentage of Su, otherwise

go to Step 1.

Note that the set Su grows with each iteration and

follows as a result of deploying an application with

a CFGi + back-offi. Step [1] corresponds to Step 5,

1.1, and 2.1 of our approach. Steps [2-4] above

constitute the active learning criterion and can be

adjusted depending on what developers want to

optimize. This algorithm currently assumes that

runtime efficiency is the main objective (e.g., on a

mobile device); hence, it is critical to move utter-

ances recognized in the second pass to the first

pass. If developers are more interested in learning

new semantics, in Step [4] above they could tran-

scribe utterances that failed in the back-off. With

an active learning criterion in place, Step [6] pro-

vides a stopping criterion. This too can be adjusted,

and may even target budgetary objectives.

4 Evaluation

For evaluation, we used utterances collected from

204 users of Microsoft Voice Command, a gram-

mar-based command-and-control (C&C) applica-

tion for high-end mobile devices (see Paek et al.,

2007 for details). We partitioned 5061 transcribed

utterances into five sets, one of which was used

exclusively for testing. The remaining four were

used for iterative CFG modification. For the first

iteration, we started with a CFG which was a de-

graded version of the grammar currently shipped

with the Voice Command product. It was obtained

by using the mode, or the most frequent user utter-

ance, for each CFG rule. We compared two ap-

proaches: CFG_Full, where each iterative CFG

was modified using the full set of transcribed utter-

ances that resulted in a failure state (i.e., when a

false recognition event occurred or the phrase con-

fidence score fell below 45%, which was set by a

proprietary tuning procedure for optimizing word-

error rate), and CFG_Active, where each iterative

CFG was modified using only those transcribed

utterances corresponding to the most frequently

occurring CFG back-off rules. For both CFG_Full

and CFG_Active, CFGi was modified using the

same set of heuristics akin to minimal edit dis-

tance. In order to assess the value of using the

back-off grammar as a safety net, we also com-

pared CFG_Full+Back-off, where a derived CFG

back-off was utilized whenever a failure state oc-

curred with CFG_Full, and CFG_Active+Back-off,

where again a CFG back-off was utilized, this time

with the back-off derived from the CFG trained on

selective utterances.

As our metric, we evaluated semantic accuracy

since that is what matters most in C&C settings.

Furthermore, because recognition of part of an ut-

terance can increase the odds of ultimately achiev-

ing task completion (Paek et al., 2007), we carried

out separate evaluations for the functional consti-

tuents of a C&C utterance (i.e., keyword and slot)

as well as the complete phrase (keyword + slot).

We computed accuracy as follows: For any single

utterance, the recognizer can either accept or reject

it. If it is accepted, then the semantics of the utter-

ance can either be correct (i.e., it matches what the

user intended) or incorrect, hence:

accuracy = CA / (CA + IA + R) (1)

where CA denotes accepted commands that are

correct, IA denotes accepted commands that are

incorrect, and R denotes the number of rejections.

Table 2 displays semantic accuracies for both

CFG_Full and CFG_Active. Standard errors about

the mean were computed using the jacknife proce-

dure with 10 re-samples. Notice that both

CFG_Full and CFG_Active initially have the same

accuracy levels because they start off with the

same degraded CFG. The highest accuracies ob-

tained almost always occurred in the second itera-

tion after modifying the CFG with the first batch of

transcriptions. Thereafter, all accuracies seem to

decrease. In order to understand why this would be

case, we computed the coverage of the i
th

CFG on

the holdout set. This is reported in the „OOG%‟

column. Comparing CFG_Full to CFG_Active on

66

keyword + slot accuracy, CFG_Full decreases in

accuracy after the second iteration as does

CFG_Active. However, the OOG% of CFG_Full is

much lower than CFG_Active. In fact, it seems to

level off after the second iteration, suggesting that

perhaps the decrease in accuracies reflects the in-

crease in grammar perplexity; that is, as the gram-

mar covers more of the utterances, it has more

hypotheses to consider, and as a result, performs

slightly worse. Interestingly, after the last iteration,

CFG_Active for keyword + slot and slot accuracies

was slightly higher (69.06%) than CFG_Full

(66.88%) (p = .05). Furthermore, this was done

with 193 utterances as opposed to 1393, or 87%

less transcriptions. For keyword accuracy,

CFG_Active (64.09%) was slightly worse than

CFG_Full (66.10%) (p < .05).

With respect to the value of having a back-off

grammar as a safety net, we found that both

CFG_Full and CFG_Active achieved much higher

accuracies with the back-off for keyword, slot, and

keyword + slot accuracies. Notice also that the dif-

ferences between CFG_Full and CFG_Active after

the last iteration were much closer to each other

than without the back-off, suggesting applications

should always be deployed with a back-off.

5 Conclusion

In this paper, we explored enhancing the usual

iterative process of grammar modification by leve-

raging active learning with back-off grammars.

Because the back-off grammars expand coverage

of user utterances to handle OOG occurrences, de-

velopers have a safety net for deploying applica-

tions earlier. Furthermore, because statistics related

to the back-off can be used for active learning, de-

velopers can reduce the effort and cost of data

transcription. In our simulation experiments, leve-

raging active learning achieved levels of semantic

accuracy comparable to transcribing all failed ut-

terances with 87% less transcriptions.

References

S. Dusan & J. Flanagan. 2002. Adaptive dialog based upon multimod-

al language acquisition. In Proc. of ICMI.

L. Galescu, E. Ringger, & J. Allen. 1998. Rapid language model de-
velopment for new task domains. In Proc. of LREC.

G. Gorrell, I. Lewin, & M. Rayner. 2002. Adding intelligent help to
mixed initiative spoken dialogue systems. In Proc. of ICSLP.

G.. Gorrell. 2003. Using statistical language modeling to identify new

vocabulary in a grammar-based speech recognition system. In
Proc. of Eurospeech.

D. Hakkani-Tur, G. Riccardi & A. Gorin. 2002. Active learning for
automatic speech recognition. In Proc. of ICASSP.

S. Knight, G. Gorrell, M. Rayner, D. Milward, R. Koel-ing, & I. Le-

win. 2001. Comparing grammar-based and robust approaches to
speech understanding: A case study. In Proc. of Eurospeech.

T. Paek, S. Gandhe, D. Chickering & Y. Ju. 2007. Handling out-of-
grammar commands in mobile speech interaction using back-off

filler models. In Proc. of ACL Workshop on Grammar-Based Ap-

proaches to Spoken Language Processing (SPEECHGRAM).
M. Rayner, B.A. Hockey, & P. Bouillon. 2006. Putting Linguistics

into Speech Recognition: The Regulus Grammar Compiler. CSLI.

G. Tur, M. Rahim & D. Hakkani-Tur. 2003. Active labeling for spo-

ken language understanding. In Proc. of Eurospeech.

G. Tur, R. Schapire, & D. Hakkani-Tur. 2003b. Active learning for
spoken language understanding. In Proc. of ICASSP.

W3C. 2004. Speech Recognition Grammar Specification Version 1.0.
http://www.w3.org/TR/speech-grammar

Approach i
Utterances

Transcribed

Keyword

Accuracy

Slot

Accuracy

Keyword + Slot

Accuracy

Processing

Time (ms)
OOG%

CFG_Full

1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10%

2 590 66.20% (0.12%) 71.02% (0.23%) 70.59% (0.23%) 401 (4.0586) 31.92%

3 1000 65.80% (0.15%) 69.72% (0.19%) 69.06% (0.19%) 422 (4.5804) 31.30%

4 1393 66.10% (0.13%) 67.54% (0.22%) 66.88% (0.21%) 433 (4.7061) 30.95%

CFG_Full +

Back-off

1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10%

2 590 73.32% (0.11%) 72.11% (0.22%) 71.68% (0.23%) 562 (10.4696) 31.92%

3 1000 72.52% (0.12%) 72.11% (0.21%) 71.46% (0.22%) 584 (10.4985) 31.30%

4 1393 73.02% (0.10%) 71.02% (0.23%) 70.37% (0.23%) 592 (10.6805) 30.95%

CFG_Active

1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10%

2 87 64.09% (0.13%) 74.29% (0.21%) 74.07% (0.22%) 395 (4.1469) 42.09%

3 138 64.29% (0.15%) 70.15% (0.22%) 69.50% (0.24%) 409 (4.3375) 38.02%

4 193 64.09% (0.15%) 69.72% (0.23%) 69.06% (0.24%) 413 (4.4015) 37.93%

CFG_Active

+ Back-off

1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10%

2 87 72.52% (0.10%) 76.91% (0.19%) 76.47% (0.21%) 568 (10.3494) 42.09%

3 138 71.72% (0.14%) 71.90% (0.24%) 71.24% (0.27%) 581 (10.6330) 38.02%

4 193 71.21% (0.15%) 71.90% (0.25%) 71.24% (0.26%) 580 (10.5266) 37.93%

Table 2. Semantic accuracies for partial (keyword or slot) and full phrase recognitions (keyword + slot) using a CFG trained on either

“Full” or “Active” transcriptions (i.e., selective transcriptions based on active learning). Parentheses indicate standard error about the mean.
The „i‟ column represents iteration. The „Utterances Transcribed‟ column is cumulative. The „OOG%‟ column represents coverage of the

ith CFG on the hold-out set. Rows containing “Back-off” evaluate 2-pass recognition using both the CFG and a derived CFG back-off.

67

