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Abstract 

We describe a novel n-best correction model 

that can leverage implicit user feedback (in 

the form of clicks) to improve performance in 

a multi-modal speech-search application. The 

proposed model works in two stages. First, the 

n-best list generated by the speech recognizer 

is expanded with additional candidates, based 

on confusability information captured via user 

click statistics. In the second stage, this ex-

panded list is rescored and pruned to produce 

a more accurate and compact n-best list. Re-

sults indicate that the proposed n-best correc-

tion model leads to significant improvements 

over the existing baseline, as well as other tra-

ditional n-best rescoring approaches.  

1 Introduction 

Supported by years of research in speech recogni-

tion and related technologies, as well as advances 

in mobile devices, speech-enabled mobile applica-

tions are finally transitioning into day-to-day use. 

One example is Live Search for Windows Mobile 

(2008), a speech-enabled application that allows 

users to get access to local information by speaking 

a query into their device. Several other systems 

operating in similar domains have recently become 

available (TellMeByMobile, 2008; Nuance Mobile 

Search, 2008; V-Lingo Mobile, 2008; VoiceSignal 

Search, 2008.) 

Traditionally, multi-modal systems leverage the 

additional input channels such as text or buttons to 

compensate for the current shortcomings of speech 

recognition technology. For instance, after the user 

speaks a query, the Live Search for Windows Mo-

bile application displays a confirmation screen that 

contains the n-best recognition results. The user 

selects the correct hypothesis using the buttons on 

the device, and only then the system displays the 

corresponding search results (see Figure 1.) 

We argue that ideally multi-modal systems 

could use the additional, more accurate input chan-

nels not only for confirmation or immediate cor-

rection, but also to learn from the interaction and 

improve their performance over time, without ex-

plicit human supervision. For example, in the inte-

raction paradigm described above, apart from 

providing the means for selecting the correct rec-

ognition result from an n-best list, the user click on 

a hypothesis can provide valuable information 

about the errors made by system, which could be 

exploited to further improve performance.  

Consider for instance the following numbers 

from an analysis of logged click data in the Live 

Search for Windows Mobile system. Over a certain 

period of time, the results Beer and Gear were dis-

played together in an n-best list 122 times. Out of 

these cases, Beer was clicked 67% of the time, and 

Gear was never clicked. In 25% of the cases when 

Beer was selected, Gear was incorrectly presented 

above (i.e. higher than) Beer in the n-best list. 

More importantly, there are also 82 cases in which 

Gear appears in an n-best list, but Beer does not. A 

manual inspection reveals that, in 22% of these 

cases, the actual spoken utterance was indeed Beer. 

The clicks therefore indicate that the engine often 

misrecognizes Gear instead of Beer.  
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Ideally, the system should be able to take advan-

tage of this information and use the clicks to create 

an automatic positive feedback loop. We can envi-

sion several ways in which this could be accom-

plished. A possible approach would be to use all 

the clicked results to adapt the existing language or 

acoustic models. Another, higher-level approach is 

to treat the recognition process as a black-box, and 

use the click feedback (perhaps also in conjunction 

with other high-level information) to post-process 

the results recognition results. 

While both approaches have their merits, in this 

work we concentrate on the latter paradigm. We 

introduce a novel n-best correction model that le-

verages the click data to improve performance in a 

speech-enabled multi-modal application. The pro-

posed model works in two stages. First, the n-best 

list generated by the speech recognizer is expanded 

with additional candidates, based on results confu-

sability information captured by the click statistics. 

For instance, in the 82 cases we mentioned above 

when Gear was present in the n-best list but Beer 

was not, Beer (as well as potentially other results) 

would also be added to form an expanded n-best 

list. The expanded list is then rescored and pruned 

to construct a corrected, more accurate n-best list.  

The proposed approach, described in detail in 

Section 3, draws inspiration from earlier work in 

post-recognition error-correction models (Ringger 

and Allen, 1996; Ringger and Allen, 1997) and n-

best rescoring (Chotimongkol and Rudnicky, 2001; 

Birkenes et al., 2007). The novelty of our approach 

lies in: (1) the use of user click data in a deployed 

multi-modal system for creating a positive feed-

back loop, and (2) the development of an n-best 

correction model based on implicit feedback that 

outperforms traditional rescoring-only approaches. 

Later on, in Section 5, we will discuss in more de-

tail the relationship of the proposed approach to 

these and other works previously reported in the 

literature.  

Before moving on to describe the n-best correc-

tion model in more detail, we give a high-level 

overview of Live Search for Windows Mobile, the 

multi-modal, mobile local search application that 

provided the test-bed for evaluating this work.  

2 Live Search for Windows Mobile  

Live Search for Windows Mobile is an application 

that enables local web-search on mobile devices. In 

its current version, it allows users to find informa-

tion about local businesses and restaurants, to ob-

tain driving directions, explore maps, view current 

traffic, get movie show-times, etc. A number of 

screen-shots are illustrated in Figure 1. 

Recently, Live Search for Windows Mobile has 

been extended with a speech interface (notice the 

Speak button assigned to the left soft-key in Figure 

1.a.) The speech-based interaction with the system 

proceeds as follows: the user clicks the Speak but-

ton and speaks the name of a local business, for 

instance A-B-C Hauling, or a general category such 

as Vietnamese Restaurants. The application end-

points the audio and forwards it over the data 

channel to a server (Figure 1.b.) Recognition is 

performed on the server side, and the resulting n-

best list is sent back to the client application, where 

it is displayed to the user (Figure 1.c.) The user can 

select the correct item from the n-best list, re-speak 

the request, or abandon the interaction altogether 

by pressing Cancel. Once the user selects an item in 

the n-best list, the corresponding search results are 

displayed (Figure 1.d.) 

(a) (b) (c) (d) 

Figure 1. Windows Live Search for Mobile. (a) initial screen; (b) user is speaking a request; (c) n-best list 

is presented; (d) final search results are displayed 
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Apart from business names, the system also 

handles speech input for addresses, as well as 

compound requests, such as Shamiana Restaurant 

in Kirkland, Washington. For the latter cases, a 

two-tier recognition and confirmation process is 

used. In the first stage a location n-best list is gen-

erated and sent to the client for confirmation. After 

the user selects the location, a second recognition 

stage uses a grammar tailored to that specific loca-

tion to re-recognize the utterance. The client then 

displays the final n-best list from which the user 

can select the correct result. 

Several details about the system architecture and 

the structure of the recognition process have been 

omitted here due to space considerations. For the 

interested reader, a more in-depth description of 

this system is available in (Acero et al., 2008).  

3 Approach 

We now turn our attention to the proposed n-best 

correction model 

3.1 Overview 

The model works in two stages, illustrated in Fig-

ure 2. In the first stage the n-best list produced by 

the speech recognizer is expanded with several 

alternative hypotheses. In the second stage, the 

expanded n-best list is rescored to construct the 

final, corrected n-best list.  

The n-best expansion step relies on a result con-

fusion matrix, constructed from click information. 

The matrix, which we will describe in more detail 

in the following subsection, contains information 

about which result was selected (clicked) by the 

user when a certain result was displayed. For in-

stance, in the example from Figure 2, the matrix 

indicates that when Burlington appeared in the n-

best list, Bar was clicked once, Bowling was 

clicked 13 times, Burger King was clicked twice, 

and Burlington was clicked 15 times (see hashed 

row in matrix.) The last element in the row indi-

cates that there were 7 cases in which Burlington 

was decoded, but nothing (∅) was clicked. Essen-

tially, the matrix captures information about the 

confusability of different recognition results.  

The expansion step adds to an n-best list gener-

ated by the recognizer all the results that were pre-

viously clicked in conjunction with any one of the 

items in the given n-best list. For instance, in the 

example from Figure 2, the n-best list contains 

Sterling, Stirling, Burlington and Cooling. Based 

on the confusion matrix, this list will be expanded 

to also include Bar, Bowling, Burger King, Tow-

ing, and Turley. In this particular case, the correct 

recognition result, Bowling, is added in the ex-

panded n-best list.  

In the final step, the expanded list is rescored. In 

the previous example, for simplicity of explana-

tion, a simple heuristic for re-scoring was used: 

add all the counts on the columns corresponding to 

each expanded result. As a consequence, the cor-
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rect recognition result, Bowling, was pushed to the 

top of the n-best list.  

We begin by formally describing the construc-

tion of the results confusability matrix and the ex-

pansion process in the next two sub-sections. Then, 

we describe three rescoring approaches. The first 

one is based on an error-correction model con-

structed from the confusion matrix. The other two, 

are more traditional rescoring approaches, based 

on language model adaptation.  

3.2 The Result Confusion Matrix 

The result confusion matrix is computed in a sim-

ple traversal of the click logs. The rows in the ma-

trix correspond to decoded results, i.e. results that 

have appeared in an n-best list. The columns in the 

matrix correspond to clicked (or intended) results, 

i.e. results that the user has clicked on in the n-best 

list. The entries at the intersection of row 𝑑 and 

column 𝑐 correspond to the number of times result 

𝑐 was clicked when result 𝑑 was decoded: 
 

𝑚𝑑 ,𝑐 = #(𝑑𝑒𝑐𝑜𝑑𝑒𝑑 = 𝑑, 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = 𝑐). 
 

In addition, the last column in the matrix, de-

noted ∅ contains the number of times no result was 

clicked when result 𝑑 was displayed: 
 

𝑚𝑑 ,∅ = #(𝑑𝑒𝑐𝑜𝑑𝑒𝑑 = 𝑑, 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 = ∅). 
 

The rows in the matrix can therefore be used to 

compute the maximum likelihood estimate for the 

conditional probability distribution: 
 

𝑃𝑀𝐿(𝑐|𝑑) =
𝑚𝑑 ,𝑐

 𝑚𝑑 ,𝑐𝑐
 . 

 

The full dimensions of the result confusion ma-

trix can grow very large since the matrix is con-

structed at the result level (the average number of 

words per displayed result is 2.01). The number of 

rows equals the number of previously decoded re-

sults, and the number of columns equals the num-

ber of previously clicked results. However, the 

matrix is very sparse and can be stored efficiently 

using a sparse matrix representation. 

3.3 N-Best Expansion 

The first step in the proposed n-best correction 

model is to expand the initial n-best list with all 

results that have been previously clicked in con-

junction with the items in the current n-best list. 

Let’s denote by 𝑁 = {𝑑𝑟}𝑟=1..𝑛  the initial n-best 

list produced by the speech recognizer. Then, the 

expanded n-best list 𝐸𝑁 will contain all 𝑑𝑟 , as well 

as all previously clicked results 𝑐 such that there 

exists 𝑟 with 𝑚𝑑𝑟 ,𝑐 > 0. 

3.4 Confusion Matrix Based Rescoring  

Ideally, we would like to rank the hypotheses in 

the expanded list 𝐸𝑁 according to 𝑃(𝑖|𝑎), where 𝑖 
represents the intended result and 𝑎 represents the 

acoustics of the spoken utterance. This can be re-

written as follows: 
 

                       𝑃 𝑖 𝑎 =  𝑃(𝑖|𝑑) ∙ 𝑃(𝑑|𝑎)𝑑 .             [1] 
 

The first component in this model is an error-

correction model 𝑃(𝑖|𝑑). This model describes the 

conditional probability that the correct (or in-

tended) result is 𝑖 given that result 𝑑 has been de-

coded. While this conditional model cannot be 

constructed directly, we can replace it by a proxy - 

𝑃(𝑐|𝑑), which models the probability that the re-

sult 𝑐 will be clicked, given that result 𝑑 was de-

coded. As mentioned earlier in subsection 3.2, this 

conditional probability distribution can be com-

puted from the result confusion matrix. In replac-

ing 𝑃 𝑖 𝑑  with 𝑃(𝑐|𝑑), we are making the 

assumption that the clicks correspond indeed to the 

correct, intended results, and to nothing else
1
. 

Notice that the result confusion matrix is gener-

ally very sparse. The maximum likelihood estima-

tor 𝑃𝑀𝐿(𝑐|𝑑) will therefore often be inappropriate. 

To address this data sparsity issue, we linearly in-

terpolate the maximum likelihood estimator with 

an overall model 𝑃𝑂(𝑐|𝑑): 
 

𝑃 𝑐 𝑑 =  𝜆𝑃𝑀𝐿 𝑐 𝑑 + (1 − 𝜆)𝑃𝑂 𝑐 𝑑 . 
 

The overall model is defined in terms of two 

constants, 𝛼 and 𝛽, as follows: 
 

𝑃𝑂 𝑐 𝑑 =  
𝛼, 𝑖𝑓 𝑐 = 𝑑

𝛽, 𝑖𝑓 𝑐 ≠ 𝑑
  

 

where 𝛼 is the overall probability in the whole 

dataset of clicking on a given decoded result, and 

𝛽 is computed such that 𝑃𝑂 𝑐 𝑑  normalizes to 1. 

                                                           
1 While this assumption generally holds, we have also ob-

served cases where it is violated: sometimes users (perhaps 

accidentally) click on an incorrect result; other times the cor-

rect result is in the list but nothing is clicked (perhaps the user 

was simply testing out the recognition capabilities of the sys-

tem, without having an actual information need) 
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Finally, the 𝜆 interpolation parameter is determined 

empirically on the development set.  

The second component in the confusion based 

rescoring model from equation [1] is 𝑃(𝑑|𝑎). This 

is the recognition score for hypothesis 𝑑. The n-

best rescoring model from [1] becomes: 
 

𝑃 𝑐 𝑎 =   𝜆𝑃𝑀𝐿 𝑐 𝑑𝑟 + (1 − 𝜆)𝑃𝑂 𝑐 𝑑𝑟  ∙ 𝑃(𝑑𝑟 |𝑎)

𝑑𝑟∈𝑁

 

3.5 Language Model Based Rescoring 

A more traditional alternative for n-best rescoring 

is to adapt the bigram language model used by the 

system in light of the user click data, and re-rank 

the decoded results by: 
 

𝑃 𝑖 𝑎 ∝ 𝑃 𝑑𝑟  𝑎 ∝ 𝑃 𝑎 𝑑𝑟 𝑃(𝑑𝑟) 
 

Here 𝑃 𝑎 𝑑𝑟  is the acoustic score assigned by 

the recognizer to hypothesis 𝑑𝑟 , and 𝑃(𝑑𝑟) is the 

adapted language model score for this hypothesis.  

A simple approach for adapting the system’s 

language model is to add the word sequences of 

the user-clicked results to the original training sen-

tences and to re-estimate the language model 𝑃(𝑑). 

We will refer to this method as maximum likelih-

ood (ML) estimation. A second approach, referred 

to as conditional maximum likelihood (CML) es-

timation, is to adapt the language model such as to 

directly maximize the conditional likelihood of the 

correct result given acoustics, i.e., 

 

𝑃 𝑖 𝑎 =
𝑃 𝑎 𝑖 𝑃(𝑖)

 𝑃 𝑎 𝑑𝑟 𝑃(𝑑𝑟)𝑑𝑟∈𝑁

 

 

Note that this is the same objective function as 

the one used in Section 3.4, except that here the 

click data is used to estimate the language model 

instead of the error correction model. Again, in 

practice we assume that users click on correct re-

sults, i.e. 𝑖 = 𝑐. 

4 Experiments  

We now discuss a number of experiments and the 

results obtained using the proposed n-best correc-

tion approach.  

4.1 Data 

For the purposes of the experiments described be-

low we extracted just over 800,000 queries from 

the server logs in which the recognizer had gener-

ated a simple n-best list
2
. For each recognition 

event, we collected from the system logs the n-best 

list, and the result clicked by the user (if the user 

clicked on any result).  

In addition, for testing purposes, we also make 

use of 11529 orthographically transcribed user re-

quests. The transcribed set was further divided into 

a development set containing 5680 utterances and 

a test set containing 5849 utterances.  

4.2 Initial N-Best Rescoring 

To tease apart the effects of expansion and rescor-

ing in the proposed n-best correction model, we 

began by using the rescoring techniques on the 

initial n-best lists, without first expanding them. 

Since the actual recognition confidence scores 

𝑃(𝑑𝑟 |𝑎) were not available in the system logs, we 

replaced them with an exponential probability den-

sity function based on the rank of the hypothesis:  
 

𝑃 𝑑𝑟  𝑎 = 2−𝑟  
 

We then rescored the n-best lists from the test 

set according to the three rescoring models de-

scribed earlier: confusion matrix, maximum like-

lihood (ML), and conditional maximum likelihood 

(CML). We computed the sentence level accuracy 

for the rescored n-best list, at different cutoffs. The 

accuracy was measured by comparing the rescored 

hypotheses against the available transcripts. 

Note that the maximum depth of the n-best lists 

generated by the recognizer is 10; this is the max-

imum number of hypotheses that can be displayed 

on the mobile device. However, the system may 

generate fewer than 10 hypotheses. The observed 

average n-best list size in the test set was 4.2.  

The rescoring results are illustrated in Figure 3 

and reported in Table 1. The X axis in Figure 3 

shows the cutoff at which the n-best accuracy was 

computed. For instance in the baseline system, the 

correct hypothesis was contained in the top result 

in 46.2% of cases, in the top-2 results in 50.5% of 

the cases and in the top-3 results in 51.5% of the 

cases. The results indicate that all the rescoring 

models improve performance relative to the base-

                                                           
2 We did not consider cases where a false-recognition event 

was fired (e.g. if no speech was detected in the audio signal) – 

in these cases no n-best list is generated. We also did not con-

sider cases where a compound n-best was generated (e.g. for 

compound requests like Shamiana in Kirkland, Washington) 
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line. The improvement is smallest for the maxi-

mum likelihood (ML) language model rescoring 

approach, but is still statistically significant 

(𝑝 = 0.008 in a Wilcoxon sign-rank test.) The con-

fusion-matrix based rescoring and the CML rescor-

ing models perform similarly well, leading to a 1% 

absolute improvement in 1-best and 2-best sen-

tence-level accuracy from the baseline (𝑝 < 10−5). 

No statistically significant difference can be de-

tected between these two models. At the same 

time, they both outperform the maximum likelih-

ood rescoring model (𝑝 < 0.03). 

4.3 N-Best Correction 

Next, we evaluated the end-to-end n-best correc-

tion approach. The n-best lists were first expanded, 

as described in section 3.3, and the expanded lists 

were ranked using the confusion matrix based res-

coring model described in Section 3.4.  

The expansion process enlarges the original n-

best lists. Immediately after expansion, the average 

n-best size grows from 4.2 to 96.9. The oracle per-

formance for the expanded n-best lists increases to 

59.8% (versus 53.5% in the initial n-best lists.) 

After rescoring, we trimmed the expanded n-best 

lists to a maximum of 10 hypotheses: we still want 

to obey the mobile device display constraint. The 

resulting average n-best size was 7.09 (this is low-

er than 10 since there are cases when the system 

cannot generate enough expansion hypotheses.) 

The sentence-level accuracy of the corrected n-

best lists is displayed in line 4 from Table 1. A di-

rect comparison with the rescoring-only models or 

with the baseline is however unfair, due to the 

larger average size of the corrected n-best lists. To 

create a fair comparison and to better understand 

the performance of the n-best correction process, 

we pruned the corrected n-best lists by eliminating 

all hypotheses with a score below a certain thre-

shold. By varying this rejection threshold, we can 

therefore control the average depth of the resulting 

corrected n-best lists. At a rejection threshold of 

0.004, the average corrected n-best size is 4.15, 

comparable to the baseline of 4.2 .  

The performance for the corresponding cor-

rected (and pruned) n-best lists is shown in line 5 

from Table 1 and illustrated in Figure 4. In contrast 

to a rescoring-only approach, the expansion pro-

cess allows for improved performance at higher 

depths in the n-best list. The maximum n-best per-

formance (while keeping the average n-best size at 

4.15), is 56.5%, a 3% absolute improvement over 

the baseline (𝑝 < 10−5).  

Figure 5 provides more insight into the relation-

ship between the sentence-level accuracy of the 

corrected (and pruned) n-best lists and the average 

n-best size (the plot was generated by varying the 

rejection threshold.) The result we discussed above 

can also be observed here: at the same average n-

best size, the n-best correction model significantly 

outperforms the baseline. Furthermore, we can see 

that we can attain the same level of accuracy as the 

baseline system while cutting the average n-best 

size by more than 50%, from 4.22 to 2. In the op-

posite direction, if we are less sensitive to the 

number of items displayed in the n-best list (except 

for the 10-maximum constraint we already obey), 

we can further increase the overall performance by 

another 0.8% absolute to 57.3%; this overall accu-

racy is attained at an average n-best size of 7.09.  

Figure 3. Initial n-best rescoring (test-set) 

Table 1. Test-set sentence-level n-best accuracy; 

(0) baseline; (1)-(3) initial n-best rescoring;  

(4)-(5) expansion + rescoring 

 Model 1-
Best 

2-
Best 

3-
Best 

10-
Best 

0 Baseline 46.2 50.5 51.5 53.5 

1 ML Rescoring  46.8 50.9 52.1 53.5 

2 CML Rescoring 47.4 51.4 52.6 53.5 

3 Confusion Matrix Resc. 47.3 51.5 52.5 53.5 

4 Expansion + Rescoring 
(size=7.09) 

46.8 52.3 54.5 57.3 

5 Expansion + Rescoring 
(size=4.15) 

46.8 52.3 54.4 56.5 
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Finally, we also investigated rescoring the ex-

panded n-best lists using the CML approach. To 

apply CML, an initial ranking of the expanded n-

best lists is however needed. If we use the ranking 

produced by the confusion-matrix based model 

discussed above, no further performance improve-

ments can be observed.  

5 Related work 

The n-best correction model we have described in 

this paper draws inspiration from earlier works on 

post-recognition error correction models, n-best 

rescoring and implicitly supervised learning. In 

this section we discuss some of the similarities and 

differences between the proposed approach and 

previous work. 

The idea of correcting speech recognition errors 

in a post-processing step has been proposed earlier 

by (Ringger and Allen, 1996; Ringger and Allen, 

1997). The authors showed that, in the presence of 

transcribed data, a translation-based post-processor 

can be trained to correct the results of a speech 

recognizer, leading to a 15% relative WER im-

provement in a corpus of TRAINS-95 dialogues.  

The n-best correction approach described here is 

different in two important aspects. First, instead of 

making use of transcripts, the proposed error-

correction model is trained using implicit user 

feedback obtained in a multi-modal interface (in 

this case user clicks in the n-best list.) This is a less 

costly endeavor, as the system automatically ob-

tains the supervision signal directly from the inte-

raction; no transcripts are necessary. Second, the 

approach operates on the entire n-best list, rather 

than only on the top hypothesis; as such, it has ad-

ditional information that can be helpful in making 

corrections. At Figure 2 illustrates, there is a poten-

tial for multiple incorrect hypotheses to point to-

wards and reinforce the same correction 

hypothesis, leading to improved performance (in 

this example, Burlington, Cooling, Sterling and 

Stirling were all highly confusable with Bowling, 

which was the correct hypothesis). 

The n-best correction model we have described 

includes a rescoring step. N-best rescoring ap-

proaches have been investigated extensively in the 

speech recognition community. In the dialog 

community, n-best rescoring techniques that use 

higher-level, dialog features have also been pro-

posed and evaluated (Chotimongkol and Rudnicky, 

2001). Apart from using the click feedback, the 

novelty in our approach lies in the added expansion 

step and in the use of an error-correction model for 

rescoring. We have seen that the confusability-

based n-best expansion process leads to signifi-

cantly improved performance, even if we force the 

model to keep the same average n-best size. 

Finally, the work discussed in this paper has 

commonalities with previous works on lightly su-

pervised learning in the speech community, e.g. 

(Lamel and Gauvain, 2002) and leveraging implicit 

feedback for learning from interaction, e.g. (Baner-

jee and Rudnicky, 2007; Bohus and Rudnicky, 

2007). In all these cases, the goal is to minimize 

the need for manually-labeled data, and learn di-

Figure 5. Overall n-best accuracy as a function of 

the average n-best size  

53.5% 

56.5% 

57.3% 

Figure 4. N-Best correction (test-set) 
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rectly from the interaction. We believe that in the 

long term this family of learning techniques will 

play a key role towards building autonomous, self-

improving systems. 

6 Conclusion and future work 

We have proposed and evaluated a novel n-best 

correction model that leverages implicit user feed-

back in a multi-modal interface to create a positive 

feedback loop. While the experiments reported 

here were conducted in the context of a local 

search application, the approach is applicable in 

any multi-modal interface that elicits selection in 

an n-best list from the user.  

The proposed n-best correction model works in 

two stages. First, the n-best list generated by the 

speech recognizer is expanded with additional hy-

potheses based on confusability information cap-

tured from previous user clicks. This expanded list 

is then rescored and pruned to create a more accu-

rate and more compact n-best list. Our experiments 

show that the proposed n-best correction approach 

significantly outperforms both the baseline and 

other traditional n-best rescoring approaches, with-

out increasing the average length of the n-best lists.  

Several issues remain to be investigated. The 

models discussed in this paper focus on post-

recognition processing. Other ways of using the 

click data can also be envisioned. For instance, one 

approach would be to add all the clicked results to 

the existing language model training data and 

create an updated recognition language model. In 

the future, we plan to investigate the relationship 

between these two approaches, and to whether they 

can be used in conjunction. Earlier related work 

(Ringger and Allen, 1997) suggests that this should 

indeed be the case. 

Second, the click-based error-correction model 

we have described in section 3.4 operates at the 

result level. The proposed model is essentially a 

sentence level, memory-based translation model. 

In the future, we also plan to investigate word-

level error-correction models, using machine trans-

lation techniques like the ones discussed in (Ring-

ger and Allen, 1997; Li et al., 2008). 

Finally, we plan to investigate how this process 

of learning from implicit feedback in a multi-

modal interface can be streamlined, such that the 

system continuously learns online, with a minimal 

amount of human intervention.  
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