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Abstract tems which try to allow for greater naturalness and
variation in user input.
Spoken and multimodal dialogue systems typ- Traditionally, dialogue systems have relied on

ically make use of confidence scores to choose
among (or reject) a speech recognizer’s N-
best hypotheses for a particular utterance. We
argue that it is beneficial to instead choose

confidence scores assigned by the speech recognizer
to detect speech recognition errors. In a typical
setup, the dialogue system will choose to either ac-

among a list of candidate systemsponses cept (that is, attempt to understand and respond to)
We propose a novel method in which a con- or reject (that is, respond to the user with an indica-
fidence score for each response is derived tion of non-understanding) an utterance by thresh-
from a classifier trained on acoustic and lex- olding this confidence score.

ical features emitted by the recognizer, as Stating the problem in terms of choosing whether
well as features culled from the generation of

the candidate response itself. Our response- or not to accept_a particular uttera_mce for process-
based method yields statistically significant ~ iNg, however, misses the larger picture. From the
improvements in F-measure over a baselinein ~ USer’s perspective, what is truly important is whether
which hypotheses are chosen based on recog-  or not the system’s response to the utterance is cor-
nition confidence scores only. rect. Sometimes, an errorful recognition hypothe-
sis may result in a correct response if, for example,
proper names are correctly recognized; conversely,
a near-perfect hypothesis may evoke an incorrect re-
The fundamental task for any Spoken dia|ogue sysponse. In |Ight of this, the problem at hand is better
tem is to determine how to respond at any given timtrmulated as one of assigning a confidence score
to a user's utterance. The challenge of understantP a system’s candidate response which reflects the
ing and correctly responding to a user’s natural larProbability that the response is an acceptable one.
guage utterance is formidable even when the wordbthe system can't formulate a response in which it
have been perfectly transcribed. However, dialogugas high confidence, then it should clarify, indicate
system designers face a greater challenge becadis#-understanding, and/or provide appropriate help.
the speech recognition hypotheses which serve asln this paper, we present a method for assign-
input to the natural language understanding compdag confidence scores to candidate system responses
nents of a system are often quite errorful; indeed, by making use not only of features obtained from
is not uncommon to find word error rates of 20-30%he speech recognizer, but also of features culled
for many dialogue systems under development in rérom the process of generating a candidate system
search labs. Such high error rates often arise dueitesponse, and derived from the distribution of can-
the use of out-of-vocabulary words, noise, and thdidate responses themselves. We first compile a list
increasingly large vocabularies of more capable sysf unique candidate system responses by processing
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each hypothesis on the recognizer’s N-best list. Weso
then train a Support Vector Machine (SVM) to iden-
tify acceptable responses. When given a novel ut4o}
terance, candidate responses are ranked with scores
output from the SVM. Based on the scores, the sysso}
tem can then either respond with the highest-scoring
candidate, or reject all of the candidate responsespt
and respond by indicating non-understanding.
Part of the motivation for focusing our efforts on 1o}
selecting a system response, rather than a recogni-
tion hypothesis, can be demonstrated by counting o
the number of unique responses which can be de- 0
rived from an N-best list. Figure 1 plots the mean
number of unique system responses, parses, ap@ure 1: The mean N-best recognition hypothesis list
recognition hypotheses given a particular maximuriength, mean number of unique parses derived from the
N-best list length; it was generated using the dath-best list of recognition hypotheses, and mean number
described in section 3. Generally, we observe th&f unique system responses derived from those parses,
about half as many unique parses are generated B¢" & maximum recognition N-best list length.
recognition hypotheses, and then half again as many
unique responses. Since many hypotheses evoke the Related Work
same response, there is no value in discriminating
among these hypotheses. Instead, we should aifhere has been much research into deriving
to gain information about the quality of a responseltterance-level confidence scores based on features
by pooling knowledge gleaned from each hypothesigerived from the process of speech recognition. The
evoking that response. baseline utterance-level confidence module we make
We expect a similar trend of multiple hypothe-use of in this paper was introduced in (Hazen et al.,
ses mapping to a single parse in any dialogue syg002); we use a subset of the recognizer-derived fea-
tem where parses contain a mixture of key syntadures used by this module. In it, confidence scores
tic and semantic structure—as is the case here—are derived by training a linear projection model to
where they contain only semantic informatiang, differentiate utterances with high word error rates.
slot/value pairs). Parsers which retain more synThe utterance-level confidence scores are used to de-
tactic structure would likely generate more uniqué&ide whether or not the entire utterance should be
parses, however many of these parses would pro@ccepted or rejected, while the decision as to how
ably map to the same system response since a te-respond is left out of the classification process.
sponse doesn't typically hinge on every syntactic deQf course, most other recognizers make use of utter-
tail of an input utterance. ance or hypothesis level confidence scores as well;
The remainder of our discussion proceeds as fosee, for example (San-Segundo et al., 2000; Chase,
lows. In section 2 we place the method presentet®97).
here in context in relation to other research. In sec- (Litman et al., 2000) demonstrate the additional
tion 3, we describe the City Browser multimodal di-use of prosodic features in deriving confidence
alogue system, and the process used to collect dat@ores, and transition the problem from one of word
from users’ interactions with the system. We themrror rate to one involving concept error rate, which
turn to our techniques for annotating the data iis more appropriate in the context of spoken dia-
section 4 and describe the features which are ejegue systems. However, they consider only the top
tracted from the labeled data in section 5. Finallyrecognition hypothesis.
we demonstrate how to build a classifier to rank can- Our work has been heavily influenced by (Gabs-
didate system responses in section 6, which we evald and Lemon, 2004), (Bohus and Rudnicky, 2002),
uate in section 7. (Walker et al., 2000), and (Chotimongkol and Rud-
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nicky, 2001) all of which demonstrate the utility of capable of assigning conditional probabilities to its
training a classifier with features derived from theoutput given its input. The method hinges on proba-
natural language and dialogue management complaifistic inference, yet it is often problematic to map
nents of a spoken dialogue system to better prediatspeech recognizer’s score to a probability as their
the quality of speech recognition results. The worlapproach requires. In addition, the method is evalu-
described in (Gabsdil and Lemon, 2004) is espeted only in a toy domain, using a few sample utter-
cially relevant, because, as in our experiments, thences.

dialogue system of interest provides for map-based

multimodal dialogue. Indeed, we view the exper3 Experimental Data

iments presented here as extending and validatin

the techniques developed by Gabsdil and Lemoﬂ%e data used for the experiments which follow

Our work is novel. however. in that we reframeere collected from user interactions with City

the problem as choosing among system respons€§OWSer, @ web-based, multimodal dialogue system.
rather than among recognizer hypotheses. By ré: th_c_)r_ough description _of the archlt(_acture and ca-
casting the problem in these terms, we are able Rebilities _can be found in (Gruens'Feln et al., 2096;
integrate information from all recognition hypothe-Gruenstein and Seneff, 2007). Briefly, the version
ses which contribute to a single response, and to eRt City Browser used for the experiments in this pa-
tract distributional features from the set of candiPer allows users to access information about restau-
date responses. Another key difference is that offfts, museums, and subway stations by navigating
method produces confidence scores for the candf @ Web page on their own computers. They can
date responses themselves, while the cited metho@iSC locate addresses on the map, and obtain driving
produce a decision as to whether an utterance, giréctions. Users can interact with City Browser's
a particular recognition hypothesis, should be adh@p-based graphical user interface by clicking and

cepted, rejected, or (in some cases), ignored by tif@wing; and they can speak with it by talking into
dialogue system. their computer microphone and listening to a re-

In addition, because of the small size of theponse from their speakers. Speech recognition is

dataset used in (Gabsdil and Lemon, 2004), the aR€rformed via the SUMMIT recognizer, using a tri-
thors were limited to testing their approach withdram language model with dynamically updatable

leave-one-out cross validation, which means thaf!@sses for proper nouns such as city, street, and
when testing a particular user’s utterance, other uféstaurant names—see (Chung et al., 2004) for a de-

terances from the same user also contributed &§'iPtion of this capability. Speech recognition re-
the training set. Their method also does not pro3ults were parsed by the TINA parser (Seneff, 1992)
vide for optimizing a particular metric—such as F-USing a hand-crafted grammar. A discourse mod-
measure—although, it does solve a more difficult!® (Filisko and Seneff, 2003) then Integrates con-
3-class decision problem. Finally, another key girtextual k_nowledge. The fully fo_rmed request is sent
ference is that we make use of argram language to the dlalqgue manager, which attempts to craft
model with a large vocabulary of proper names®" appropriate systgm response—both in terms of
whereas theirs is a context-free grammar with & verbal and graphical response. The GENESIS
smaller vocabulary. system (Seneff, 2002) uses hand-crafted generation

(Niemann et al., 2005) create a dialogue Syg_ules to produce a natural language string, whigh is
tem architecture in which uncertainty is propagateg€nt t©© an off-the-shelf text-to-speech synthesizer.
across each layer of processing through the use Bn2lly, the user hears the response, and the graphi-
probabilities, eventually leading to posterior probaC@! User interface is updated to show, for example, a
bilities being assigned to candidate utterance intef€t Of s€arch results on the map.

retations. Unlike our system, in which we train g _
Eingle classifier using art))/itrary features derived fron%'1 Data Collection
each stage of processing, each component (recobhe set of data used in this paper was collected
nizer, parseretg is trained separately and must beas part of a controlled experiment in which users
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worked through a set of scenarios by accessing tfe Data Annotation

City Browser web page from their own computers,_. the inf i iated with h utt
whenever and from wherever they liked. Interestetdﬂ"'ven € Information assoclated with each utter-

readers may refer to (Gruenstein and Seneff, 200?2‘09 n tth(%[r:ia?s?t, itis potssmle t(;) Ir;p!a;zhan ut-
for more information on the experimental setup, aifrance to the dialogue system and obtain the same

well as for an initial analysis of a subset of the dat esponse—both the spoken response and any up-

used here. Users completed a warmup scenario _dtej [nat(:]e o the.GUI_WhIChtW?E orlg;]tlnally pro-l
which they were simply told to utter “Hello City vided 1o he user in response fo the utierance. in

Browser” to ensure that their audio setup and weBart'CUIar’ we can replicate threply_frame which

browser were working properly. They then worked® passed to GENESIS in order 1o produce a nat-

through ten scenarios presented sequentially, folll-ral language response; and we can replicate the

lowed by time for “free play” in which they could gui_reply_framewhich is sent to the GUI so that it

use the system however they pleased. can be properly updatee.g, to show the results of
a search on the map).

As users interact with City Browser, logs are The ability t licate th tom’ )
made recording their interactions. In addition to € ability {0 replicate the systems response 1o

recording each utterance, every time a user CIiCkesach utt'era'nce also gives'us the flexibility tq try out
or draws with the mouse, these actions are recordggemat've inputs to the dialogue system, given the

and time-stamped. The outputs of the various staggglogue state q’ghe tlmehof the utterance.l S0, in ad(—j
of natural language processing are also logged, ifion to transcribing each utterance, we also passe

that the “dialogue state” of the system is trackeof.aaCh transcript through the dialogue system, yield-

This means that, associated with each utterance i & SyStém response. In the1 experiments that fol-
low, we considered the system’s response to the tran-

]E(r;rer:;;gfl:et 's, among other things, the following Inscribed utterance to be tleerrectresponse for that
utterance. It should be noted that in some cases,
e arecording of the utterance; even given the transcript, the dialogue system may
e the current dialogue state, which includes inrejectand respond by signally non-understanding—
formation such as recently referred to entities, for example, the utterance can’t be parsed. In
for anaphora resolution; these cases, we take the resporgject to be the
e the state of the GUI, including: the current po-correct response.

sition and bounds of the map, any points of in- We note that labeling the data in this fashion

terest (POIs) displayed on the mac; has limitations. Most importantly, the system may
¢ the contents of any dynamically updatable lanrespond inappropriately even to a perfectly tran-
guage model classes; and scribed utterance. Such responses, given our label-

e time-stamped clicks, gestures, and other usémg methodology, would incorrectly be labeled as
interface interaction performed by the user beeorrect In addition, sometimes it may be the case
fore and during speech. that there are actually several acceptable responses

The utterances of 38 users who attempted motsq a particular utterances.
or all of the scenarios \_/vere_ transcribed, providin% Feature Extraction
1,912 utterances used in this study. The utterances
were drawn only from the 10 “real” scenarios; ut-For each utterance, our goal is to produce a set of
terances from the initial warmup and final free playcandidate system responses, where each response is
tasks were discarded. In addition, a small number @flso associated with a vector of feature values to be
utterances were eliminated because logging glitchesed to classify it asicceptableor unacceptable
made it impossible to accurately recover the diaResponses are labeled asceptableif they match
logue system’s state at the time of the utterance. the system response produced from the transcrip-
The classn-gram language model used for datdion, and asinacceptabl®therwise.
collection has a vocabulary of approximately 1,200 We start with the N-best list output by the speech
words, plus about 25,000 proper nouns. recognizer. For each hypothesis, we extract a set
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Recognition Distributional Response
(a) Best across hyps: (b) Drop: (c) Other: percenttop_3 responsdype
total_scoreperword total.drop meanwords percenttop.5 numfound
acousticscoreperbound| acousticdrop top_rank percenttop.10 POl.type
lexical scoreperword lexical.drop | n-bestlength percentnbest is_subset
top_responseaype parsestatus
responsgank | geographicafilter
num.distinct

Table 1: Features used to train the acceptability classifier. Nine features are derived from the recognizer; seven have
to do with the distribution of responses; and six come from the process of generating the candidate response.

of acoustic, lexical, and total scores from the recog- Finally, features derived from the response itself,
nizer. These scores are easily obtained, as they coand natural language processing performed to de-
prise a subset of the features used to train the regve that response, are also calculated. The high-
ognizer’s existing confidence module; see (Hazen &vel type of the response, as well as the type and
al., 2002). The features used are shown in Table Llaumber of any POls returned by a database query
We then map each hypothesis to a candidate syare used as features if they exist, as is a boolean
tem response, by running it through the dialoguédicator as to whether or not these results are a
system given the original dialogue state. From thessubset of the results currently shown on the dis-
outputs, we collect a list afniqueresponses, which play. [If any sort of “geographical filter”, such as
is typically shorter than the recognizer's N-best listan address or circled region, is used to constrain the
as multiple hypotheses typically map to the same reearch, then the type of this filter is also used as a
sponse. feature. Finally, the “best” parse status of any hy-
We now derive a set of features for each uniqupotheses leading to this response is also used, where
response. First, each response inherits the best valfm!_parse = robust_parse = no_parse.
for each recognizer score associated with a hypoth- Table 1 lists all of the features used to train the
esis which evoked that response (see Table 1a). ttassifier, while Table 3 (in the appendix) lists the
addition, the drop in score between the responsgmssible values for the non-numerical features. Fig-
score for each recognition feature and the top valugre 3 (in the appendix) gives an overview of the fea-
occurring in the N-best list is used as a feature (seare extraction process, as well as the classification
Table 1b). Finally, the rank of the highest hypothemethod described in the next section.
sis on the N-best list which evoked the response, the
mean number of words per hypothesis evoking thg Classifier Training and Scoring
responses, and the length of the recognizer’'s N-best
list are used as features (see Table 1c). For a given utterance, we now have a candidate list
Distributional features are also generated baseaf responses derived from the speech recognizer’s
on the distribution of hypotheses on the N-best ligN-best list, a feature vector associated with each re-
which evoked the same response. The percent gponse, and a label telling us the “correct” response,
times a particular response is evoked by the top 3s derived from the transcript. In order to build a
top 5, top 10, and by all hypotheses on the N-beslassifier, we first label each response as eittter
list are used as features. Features are generatedcaptableor unacceptabldy comparing it to the sys-
well, based on the distribution of responses on thiem’s response to the transcribed utterance. If the
list of unique responses. These features are: the iniwo responses are identical, then the response is la-
tial ranking of this response on the list, the numbebeled asacceptable otherwise, it is labeled asn-
of distinct responses on the list, and the type of reacceptable This yields a binary decision problem
sponse that was evoked by the top hypothesis on tfa each response, given a set of features. We train
recognizer N-best list. a Support Vector Machine (SVM) to make this deci-
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sion, using the Weka toolkit, version 3.4.12 (Witterin scores among the responses, the number classi-

and Frank, 2005). fied asacceptable the drop between the top score
Given a trained SVM model, the procedure forand the second-ranked scoeé:

processing a novel utterance is as follows. First,

classify each response (and its associated featufe Evaluation

vector) on the response list for that utterance usin\% )
the SVM. By using a logistic regression model fit onV/e €valuated the response-based method using the
the training data, an SVM score betweet and 1 data described in section 3, N-best lists with a maxi-

for each response is yielded, where responses wifium length of 10, and an SVM with a linear kernel.
positive scores are more likely to heceptableand Ve Nnote that, in the live system, two-pass recogni-

those with negative scores are more likely taupe 10N IS performed for some utterances, in which a
acceptable key concept recognized in the first pasgy( a city

Next, the SVM scores are used to rank the list of@Me) causes a dynamic update to the contents of

responses. Given a ranked list of such responses, fé&!2ss In then-gram language modek(g, a set
dialogue system has two options: it can choose tHY Stréét names) for the second pass—as in the ut-
top scoring response, or it castainfrom choos- €ranceShow me thirty two Vassar Street in Cam-
ing any response. The most straightforward methdgfid9€ where the city nameGambridg¢ triggers

for making such a decision is via a threshold: if thé Sécond pass in which the streets in that city are
score of the top response is above a certain thres§YeN a higher weight. This two-pass approach has
old, this response is accepted: otherwise, the systetfi€n shown previously to decrease word and con-
abstains from choosing a response, and instead GEPt €rror rates (Gruenstein and Seneff, 2006), even
sponds by indicating non-understanding. Figure though it can be susceptible to errors in understand-

(in the appendix) provides a graphical overview of"d: However, since all street names, for example,
the response confidence scoring process. are active in the vocabulary at all times, the two-

At first blush, a natural threshold to choose is 0P@SS approach is not strictly necessary to arrive at

as this marks the boundary betwesteptableand the cqrrect hypotheses. Hence, for simplicity, in the
unacceptableHowever, it may be desirable to Opti_experlments reported here, we do not integrate the

mize this threshold based on the desired characterf¥/0-Pass approach—as this would require us to po-
tics of the dialogue system—in a mission-critical apIen“a”y do a second recognition pass for every can-

plication, for example, it may be preferable to accepfidate response. In a live system, a good strategy
only high-confidence responses, and to clarify othefight be to consider a second recognition pass based
wise. We can optimize the threshold as we like using" the top few candidate responses alone, which

either the same training data, or a held-out develogrould produce a new set of candidates to be scored.

ment set, so long as we have an objective function Ye performed 38-fold cross validation, where in
with which to optimize. In the evaluation that fol- €ach case the held-out test set was comprised of all

lows, we optimize the threshold using the F-measuf@€ utterances of a single user. This ensured that we
on the training data as the objective function. |pbtained an accurate prediction of a novel user’s ex-

would also be interesting to optimize the thresholderience, glthough it meant that the test sets were not
in a more sophisticated manner, such as that dev&f equal size. We calculated F-measure for each test
oped in (Bohus and Rudnicky, 2005) where task suset, using the methodology described in figure 4 (in
cess is used to derive the cost of misunderstandingi€ appendix).
and false rejections, which in turn are used to set a i
rejection threshold. /.1 Baseline

While a thresholding approach makes sense, oth8s a baseline, we made use of the existing confi-
approaches are feasible as well. For instance, a sefence module in the SUMMIT recognizer (Hazen
ond classifier could be used to decide whether or net al., 2002). The module uses a linear projection
to accept the top ranking response. The classifienodel to produce an utterance level confidence score
could take into account such features as the sprebdsed on 15 features derived from recognizer scores,
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Method F

Recognition Confidence (Baseline) .62 1
Recog Features Only .62 1
Recog + Distributional .67 . 1
Recog + Response 71* £ 1
Recog + Response + Distributional 2% g 1

Table 2: Average F-measures obtained via per-user
cross-validation of the response-based confidence scor-

ing method using the feature sets described in Section 5, .| ——Recognition + Response + DistributionalT
as compared to a baseline system which chooses the top , .. L=~ Recognition Confidence (Baseline)
hypothesis if the recognizer confidence score exceeds an oMY sepostve rate ]

optimized rejection threshold. The starred scores are a

statistically significant (* indicategs < .05, ** indicates  Figure 2: Receiver Operator Characteristic (ROC) curves
p < .01) improvement over the baseline, as determine¢averaged across each cross-validation fold) comparing
by a paired-test. the baseline to the best response-based model.

and from comparing hypotheses on the N-best lisno matter what we set our tolerance for false posi-
In our evaluation, the module was trained and testdiyes to be.
on the same data as the SVM model using cross- The above results were obtained by using an SVM
validation. with a linear kernel, where feature values were nor-
An optimal rejection threshold was determinedmalized to be on the unit interval. We also tried
as for the SVM method, using the training data wittusing a quadratic kernel, retaining the raw feature
F-measure as the objective function. For each uttevalues, and reducing the number of binary features
ance, if the confidence score exceeded the thresholty, manually binning the non-numeric feature val-
then the response evoked from the top hypothesis ¢#s. Each change resulted in a slight decrease in
the N-best list was chosen. F-measure.

7.2 Results 8 Conclusion and Future Work

Table 2 compares the baseline recognizer confiden@¢e recast the problem of choosing among an N-best
module to our response-based confidence annotatist of recognition hypotheses as one of choosing the
The method was evaluated using several subsetshdst candidate system response which can be gen-
the features listed in Table 1. Using features deriveerated from the recognition hypotheses on that list.
from the recognizer only, we obtain results compawe then demonstrated a framework for assigning
rable to the baseline. Adding the response and disenfidence scores to those responses, by using the
tributional features yields a 16% improvement ovescores output by an SVM trained to discriminate be-
the baseline system, which is statistically significanfween acceptable and unacceptable responses. The
with p < .01 according to a pairetitest. While the classifier was trained using a set of features derived
distributional features appear to be helpful, the fegrom the speech recognizer, culled from the genera-
ture values derived from the response itself are th#on of each response, and calculated based on each
most beneficial, as they allow for a statistically sigresponse’s distribution. We tested our methods us-
nificant improvement over the baseline when pairethg data collected by users interacting with the City
on their own with the recognizer-derived features. Browser multimodal dialogue system, and showed
Figure 2 plots ROC curves comparing the perforthat they lead to a significant improvement over a
mance of the baseline model to the best respongdeaseline which makes an acceptance decision based
based model. The curves were obtained by varyingn an utterance-level recognizer confidence score.
the value of the rejection threshold. We observe that The technique developed herein could be refined
the response-based model outperforms the baselimeseveral ways. First and foremost, it may well be
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possible to find additional features with discrimina-£d Filisko and Stephanie Seneff. 2003. A context res-
tory power. Also, the decision as to whether or not olution server for the Galaxy conversational systems.

to choose the top-scoring response could potentially In Proc. of EUROSPEECH
. P . gresp 'p .I\>I/alte Gabsdil and Oliver Lemon. 2004. Combining
be improved by choosing a more appropriate metric . ; : .
acoustic and pragmatic features to predict recognition

than F-measure as the objective function, or perhapspencoIrmance in spoken dialogue systems Ptac. of

by using a second classifier at this stage. Association for Computational Linguistics
Finally, our experiments were performed off-line. Alexander Gruenstein and Stephanie Seneff.  2006.

In order to better test the approach, we plan to de- Context-sensitive language modeling for large sets of
ploy the classifier as a component in the running di- ProPer nouns in muitimodal dialogue systems. In

alogue system. This presents some processing timeproc' of IEEE/ACL 2006 Workshop on Spoken Lan-
guage Technology

constraints (as multiple candidate responses must Rfgxander Gruensteéin and Stephanie Seneff. 2007. Re-
generated); and it introduces the confounding factor |easing a multimodal dialogue system into the wild:

of working with a recognizer that can make multi- User support mechanisms. Proc. of the 8th SIGdial
ple recognition passes after language model recon-Workshop on Discourse and Dialogyeages 111-119.

figuration. These challenges should be tractable féiexander Gruenstein, Stephanie Seneff, and Chao
N-best lists of modest length. Wang. 2006. Scalable and portable web-based

multimodal dialogue interaction with geographical
K led databases. IRroc. of INTERSPEECH
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Recognition N-best

Hypothesis Rank S S, S, . i DS Response Parse . i
thirty two vassal street in cambridge 0 453 | 285 26.5 P> R, FULL |
thirty two vassar street in cambridge 1 45.0 27.1 30.5 : > R, FULL :
thirty two vassar street in in cambridge 2 44.2 26.0 30.4 : > R, ROBUST :
at thirty two vassar street <noise> 3 40.1 26.5 29.4 : > R, FULL :
at thirty two vassal street in cambridge 4 39.5 26.3 29.0 i > R, FULL i
thirty two vassar street cambridge <noise> 5 384 | 258 28.4 P> R, FULL |
thirty two vassar street in canton 6 38.0 25.8 28.3 : > R, FULL :
thirty two vassal street in in canton 7 335 225 275 : > R, ROBUST :
twenty vassar in street in zoom 8 324 22.3 26.3 : > R, NONE :
thirty two vassar street in cambridge <noise> 9 32.0 19.5 26.7 i > R, FULL i

Response List
Response Rank S S, S, %Top3 %Top5 Dist. Parse . i SVM Score
R, 0 453 28.5 26.5 .33 8 5 FULL : > 42
R, 1 45.0 27.1 30.5 .66 2 5 FULL : > 73 >R,
R, 6 38.0 25.8 28.3 0.0 0.0 5 FULL : > -.32
R, 7 335 225 275 0.0 0.0 5 ROBUST : > -.55
R, 8 324 223 36.3 0.0 0.0 5 NONE i > -.92

Figure 3: The feature extraction and classification process. The top half of the digram shows how an N-best list
of recognizer hypotheses, with associated scores from the recognizer, are processed by the dialoguBSystem (
produce a list of responses. Associated with each response is a set of feature values derived from the response itself,
as well as the process of evoking the resporsg. the parse status). The bottom half of the figure shows how the
unique responses are collapsed into a list. Each response in the list inherits the best recognition scores available from
hypotheses evoking that response; each also has feature values associated with it derived from the distribution of that
response on the recognizer N-best list. Each set of feature values is classified by a Support Vector Machine, and the
resulting score is used to rank the responses. If the highest scoring response exceeds the rejection threshold, then it is
chosen as the system’s response.
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Feature Possible Values

geography, givalirections, goodbye, greetings, halpectionsdid_notunderstandrom_place,

help.directionsdid_not.understando_place, helpdirectionsno_to_or_from_place,
responseype help.directionssubway, hidesubwaymap, historycleared, listcuisine, listname, liststreet,

top_responseype | nocircleddata, nadata, nomatchnear, nonuniguenear, ok, panninglown, panningeast,

panningsouth, panningip, panningwest, presupgailure, providecity_for_address, refinedesult,

rejector_give_help, showaddress, showubwaymap, spealproperties, speagroperty,

speakverify_false, speakverify_true, welcomegui, zooming, zoomingn, zoomingout

POltype none, city, museum, neighborhood, restaurant, substatyon

parsestatus no_parse, robusparse, fullparse

geographicafilter none, address, circle, line, ligtem, mapbounds, museum, neighborhood, point, polygon, restaurant,
subwaystation, city

Table 3: The set of possible values for non-numerical features, which are converted to sets of binary features.

Casel Response Score Type Label
R, is acceptable and is not reject
0 P J R, Sy speak_property acceptable
SO >T- T.P. R, S, list_cuisine unacceptable
So <T->FN. R, S, speak_property unacceptable
Case I: Example Ranked Response List
Case II Response Score Type Label
ndidate r n
No cand dj eb leSpo 3¢S a?cepljabtle’ R, Sy speak_property unacceptable
or acceptable response is rejec
R, S, list_cuisine unacceptable
. (a) (b) R S speak_propert unacceptable
R . R . 2 2 peak_property P
¢ 18 not reject o 1s reject :
So >T->FP. SO >T7T-> TN. R, S5 reject unacceptable
SO <T->TN. SO <T->TN. R, S, zooming_out unacceptable
Case I1: Example Ranked Response List
Case 11 Response Score Type Label
R, (with n > 0) is acceptable
"( di ) ¢ rei tp R, So speak_property unacceptable
and 18 not rejec
R, S, list_cuisine acceptable
. (a) (b) R S speak_propert unacceptable
R . R . 2 2 peak_property P
0 18 not reject 018 reject :
SO >T- F.P. SO >T->FN. R, S5 reject unacceptable
S() <T->FN. S() <T->FN. R, S, zooming_out unacceptable

Case II1: Example Ranked Response List

Figure 4: Algorithm for calculating the F-measure confusion matrix of True Positives (T.P.), False Positives (F.P.),
True Negatives (T.N.), and False Negatives (F.N.). The ranking technique described in this paper creates a list of
candidate system responses ranked by their scores. The top scoring responsadsapaadf its score exceeds a
thresholdT, otherwise all candidate responses &jected As such, the problem is not a standard binary decision.

We show all possible outcomes from the ranking process, and note whether each case is counted as a T.P., F.P.,, T.N.,
or F.N. We note that given this algorithm for calculating the confusion matrix, no matter how we set the thiigshold
F-measure will always be penalized if Case Il occurs.
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