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Abstract

Spoken and multimodal dialogue systems typ-
ically make use of confidence scores to choose
among (or reject) a speech recognizer’s N-
best hypotheses for a particular utterance. We
argue that it is beneficial to instead choose
among a list of candidate systemresponses.
We propose a novel method in which a con-
fidence score for each response is derived
from a classifier trained on acoustic and lex-
ical features emitted by the recognizer, as
well as features culled from the generation of
the candidate response itself. Our response-
based method yields statistically significant
improvements in F-measure over a baseline in
which hypotheses are chosen based on recog-
nition confidence scores only.

1 Introduction

The fundamental task for any spoken dialogue sys-
tem is to determine how to respond at any given time
to a user’s utterance. The challenge of understand-
ing and correctly responding to a user’s natural lan-
guage utterance is formidable even when the words
have been perfectly transcribed. However, dialogue
system designers face a greater challenge because
the speech recognition hypotheses which serve as
input to the natural language understanding compo-
nents of a system are often quite errorful; indeed, it
is not uncommon to find word error rates of 20-30%
for many dialogue systems under development in re-
search labs. Such high error rates often arise due to
the use of out-of-vocabulary words, noise, and the
increasingly large vocabularies of more capable sys-

tems which try to allow for greater naturalness and
variation in user input.

Traditionally, dialogue systems have relied on
confidence scores assigned by the speech recognizer
to detect speech recognition errors. In a typical
setup, the dialogue system will choose to either ac-
cept (that is, attempt to understand and respond to)
or reject (that is, respond to the user with an indica-
tion of non-understanding) an utterance by thresh-
olding this confidence score.

Stating the problem in terms of choosing whether
or not to accept a particular utterance for process-
ing, however, misses the larger picture. From the
user’s perspective, what is truly important is whether
or not the system’s response to the utterance is cor-
rect. Sometimes, an errorful recognition hypothe-
sis may result in a correct response if, for example,
proper names are correctly recognized; conversely,
a near-perfect hypothesis may evoke an incorrect re-
sponse. In light of this, the problem at hand is better
formulated as one of assigning a confidence score
to a system’s candidate response which reflects the
probability that the response is an acceptable one.
If the system can’t formulate a response in which it
has high confidence, then it should clarify, indicate
non-understanding, and/or provide appropriate help.

In this paper, we present a method for assign-
ing confidence scores to candidate system responses
by making use not only of features obtained from
the speech recognizer, but also of features culled
from the process of generating a candidate system
response, and derived from the distribution of can-
didate responses themselves. We first compile a list
of unique candidate system responses by processing
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each hypothesis on the recognizer’s N-best list. We
then train a Support Vector Machine (SVM) to iden-
tify acceptable responses. When given a novel ut-
terance, candidate responses are ranked with scores
output from the SVM. Based on the scores, the sys-
tem can then either respond with the highest-scoring
candidate, or reject all of the candidate responses
and respond by indicating non-understanding.

Part of the motivation for focusing our efforts on
selecting a system response, rather than a recogni-
tion hypothesis, can be demonstrated by counting
the number of unique responses which can be de-
rived from an N-best list. Figure 1 plots the mean
number of unique system responses, parses, and
recognition hypotheses given a particular maximum
N-best list length; it was generated using the data
described in section 3. Generally, we observe that
about half as many unique parses are generated as
recognition hypotheses, and then half again as many
unique responses. Since many hypotheses evoke the
same response, there is no value in discriminating
among these hypotheses. Instead, we should aim
to gain information about the quality of a response
by pooling knowledge gleaned from each hypothesis
evoking that response.

We expect a similar trend of multiple hypothe-
ses mapping to a single parse in any dialogue sys-
tem where parses contain a mixture of key syntac-
tic and semantic structure—as is the case here—or
where they contain only semantic information (e.g.,
slot/value pairs). Parsers which retain more syn-
tactic structure would likely generate more unique
parses, however many of these parses would prob-
ably map to the same system response since a re-
sponse doesn’t typically hinge on every syntactic de-
tail of an input utterance.

The remainder of our discussion proceeds as fol-
lows. In section 2 we place the method presented
here in context in relation to other research. In sec-
tion 3, we describe the City Browser multimodal di-
alogue system, and the process used to collect data
from users’ interactions with the system. We then
turn to our techniques for annotating the data in
section 4 and describe the features which are ex-
tracted from the labeled data in section 5. Finally,
we demonstrate how to build a classifier to rank can-
didate system responses in section 6, which we eval-
uate in section 7.
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Figure 1: The mean N-best recognition hypothesis list
length, mean number of unique parses derived from the
N-best list of recognition hypotheses, and mean number
of unique system responses derived from those parses,
given a maximum recognition N-best list length.

2 Related Work

There has been much research into deriving
utterance-level confidence scores based on features
derived from the process of speech recognition. The
baseline utterance-level confidence module we make
use of in this paper was introduced in (Hazen et al.,
2002); we use a subset of the recognizer-derived fea-
tures used by this module. In it, confidence scores
are derived by training a linear projection model to
differentiate utterances with high word error rates.
The utterance-level confidence scores are used to de-
cide whether or not the entire utterance should be
accepted or rejected, while the decision as to how
to respond is left out of the classification process.
Of course, most other recognizers make use of utter-
ance or hypothesis level confidence scores as well;
see, for example (San-Segundo et al., 2000; Chase,
1997).

(Litman et al., 2000) demonstrate the additional
use of prosodic features in deriving confidence
scores, and transition the problem from one of word
error rate to one involving concept error rate, which
is more appropriate in the context of spoken dia-
logue systems. However, they consider only the top
recognition hypothesis.

Our work has been heavily influenced by (Gabs-
dil and Lemon, 2004), (Bohus and Rudnicky, 2002),
(Walker et al., 2000), and (Chotimongkol and Rud-
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nicky, 2001) all of which demonstrate the utility of
training a classifier with features derived from the
natural language and dialogue management compo-
nents of a spoken dialogue system to better predict
the quality of speech recognition results. The work
described in (Gabsdil and Lemon, 2004) is espe-
cially relevant, because, as in our experiments, the
dialogue system of interest provides for map-based
multimodal dialogue. Indeed, we view the exper-
iments presented here as extending and validating
the techniques developed by Gabsdil and Lemon.
Our work is novel, however, in that we reframe
the problem as choosing among system responses,
rather than among recognizer hypotheses. By re-
casting the problem in these terms, we are able to
integrate information from all recognition hypothe-
ses which contribute to a single response, and to ex-
tract distributional features from the set of candi-
date responses. Another key difference is that our
method produces confidence scores for the candi-
date responses themselves, while the cited methods
produce a decision as to whether an utterance, or
a particular recognition hypothesis, should be ac-
cepted, rejected, or (in some cases), ignored by the
dialogue system.

In addition, because of the small size of the
dataset used in (Gabsdil and Lemon, 2004), the au-
thors were limited to testing their approach with
leave-one-out cross validation, which means that,
when testing a particular user’s utterance, other ut-
terances from the same user also contributed to
the training set. Their method also does not pro-
vide for optimizing a particular metric—such as F-
measure—although, it does solve a more difficult
3-class decision problem. Finally, another key dif-
ference is that we make use of ann-gram language
model with a large vocabulary of proper names,
whereas theirs is a context-free grammar with a
smaller vocabulary.

(Niemann et al., 2005) create a dialogue sys-
tem architecture in which uncertainty is propagated
across each layer of processing through the use of
probabilities, eventually leading to posterior proba-
bilities being assigned to candidate utterance inter-
pretations. Unlike our system, in which we train a
single classifier using arbitrary features derived from
each stage of processing, each component (recog-
nizer, parser,etc) is trained separately and must be

capable of assigning conditional probabilities to its
output given its input. The method hinges on proba-
bilistic inference, yet it is often problematic to map
a speech recognizer’s score to a probability as their
approach requires. In addition, the method is evalu-
ated only in a toy domain, using a few sample utter-
ances.

3 Experimental Data

The data used for the experiments which follow
were collected from user interactions with City
Browser, a web-based, multimodal dialogue system.
A thorough description of the architecture and ca-
pabilities can be found in (Gruenstein et al., 2006;
Gruenstein and Seneff, 2007). Briefly, the version
of City Browser used for the experiments in this pa-
per allows users to access information about restau-
rants, museums, and subway stations by navigating
to a web page on their own computers. They can
also locate addresses on the map, and obtain driving
directions. Users can interact with City Browser’s
map-based graphical user interface by clicking and
drawing; and they can speak with it by talking into
their computer microphone and listening to a re-
sponse from their speakers. Speech recognition is
performed via the SUMMIT recognizer, using a tri-
gram language model with dynamically updatable
classes for proper nouns such as city, street, and
restaurant names—see (Chung et al., 2004) for a de-
scription of this capability. Speech recognition re-
sults were parsed by the TINA parser (Seneff, 1992)
using a hand-crafted grammar. A discourse mod-
ule (Filisko and Seneff, 2003) then integrates con-
textual knowledge. The fully formed request is sent
to the dialogue manager, which attempts to craft
an appropriate system response—both in terms of
a verbal and graphical response. The GENESIS
system (Seneff, 2002) uses hand-crafted generation
rules to produce a natural language string, which is
sent to an off-the-shelf text-to-speech synthesizer.
Finally, the user hears the response, and the graphi-
cal user interface is updated to show, for example, a
set of search results on the map.

3.1 Data Collection

The set of data used in this paper was collected
as part of a controlled experiment in which users
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worked through a set of scenarios by accessing the
City Browser web page from their own computers,
whenever and from wherever they liked. Interested
readers may refer to (Gruenstein and Seneff, 2007)
for more information on the experimental setup, as
well as for an initial analysis of a subset of the data
used here. Users completed a warmup scenario in
which they were simply told to utter “Hello City
Browser” to ensure that their audio setup and web
browser were working properly. They then worked
through ten scenarios presented sequentially, fol-
lowed by time for “free play” in which they could
use the system however they pleased.

As users interact with City Browser, logs are
made recording their interactions. In addition to
recording each utterance, every time a user clicks
or draws with the mouse, these actions are recorded
and time-stamped. The outputs of the various stages
of natural language processing are also logged, so
that the “dialogue state” of the system is tracked.
This means that, associated with each utterance in
the dataset is, among other things, the following in-
formation:

• a recording of the utterance;
• the current dialogue state, which includes in-

formation such as recently referred to entities
for anaphora resolution;

• the state of the GUI, including: the current po-
sition and bounds of the map, any points of in-
terest (POIs) displayed on the map,etc.;

• the contents of any dynamically updatable lan-
guage model classes; and

• time-stamped clicks, gestures, and other user
interface interaction performed by the user be-
fore and during speech.

The utterances of 38 users who attempted most
or all of the scenarios were transcribed, providing
1,912 utterances used in this study. The utterances
were drawn only from the 10 “real” scenarios; ut-
terances from the initial warmup and final free play
tasks were discarded. In addition, a small number of
utterances were eliminated because logging glitches
made it impossible to accurately recover the dia-
logue system’s state at the time of the utterance.

The classn-gram language model used for data
collection has a vocabulary of approximately 1,200
words, plus about 25,000 proper nouns.

4 Data Annotation

Given the information associated with each utter-
ance in the dataset, it is possible to “replay” an ut-
terance to the dialogue system and obtain the same
response—both the spoken response and any up-
dates made to the GUI—which was originally pro-
vided to the user in response to the utterance. In
particular, we can replicate thereply frame which
is passed to GENESIS in order to produce a nat-
ural language response; and we can replicate the
gui reply framewhich is sent to the GUI so that it
can be properly updated (e.g., to show the results of
a search on the map).

The ability to replicate the system’s response to
each utterance also gives us the flexibility to try out
alternative inputs to the dialogue system, given the
dialogue state at the time of the utterance. So, in ad-
dition to transcribing each utterance, we also passed
each transcript through the dialogue system, yield-
ing a system response. In the experiments that fol-
low, we considered the system’s response to the tran-
scribed utterance to be thecorrect response for that
utterance. It should be noted that in some cases,
even given the transcript, the dialogue system may
rejectand respond by signally non-understanding—
if, for example, the utterance can’t be parsed. In
these cases, we take the responsereject to be the
correct response.

We note that labeling the data in this fashion
has limitations. Most importantly, the system may
respond inappropriately even to a perfectly tran-
scribed utterance. Such responses, given our label-
ing methodology, would incorrectly be labeled as
correct. In addition, sometimes it may be the case
that there are actually several acceptable responses
to a particular utterances.

5 Feature Extraction

For each utterance, our goal is to produce a set of
candidate system responses, where each response is
also associated with a vector of feature values to be
used to classify it asacceptableor unacceptable.
Responses are labeled asacceptableif they match
the system response produced from the transcrip-
tion, and asunacceptableotherwise.

We start with the N-best list output by the speech
recognizer. For each hypothesis, we extract a set
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Recognition Distributional Response
(a) Best across hyps: (b) Drop: (c) Other: percenttop 3 responsetype
total scoreper word total drop meanwords percenttop 5 num found

acousticscoreper bound acousticdrop top rank percenttop 10 POI type
lexical scoreper word lexical drop n-bestlength percentnbest is subset

top responsetype parsestatus
responserank geographicalfilter
num distinct

Table 1: Features used to train the acceptability classifier. Nine features are derived from the recognizer; seven have
to do with the distribution of responses; and six come from the process of generating the candidate response.

of acoustic, lexical, and total scores from the recog-
nizer. These scores are easily obtained, as they com-
prise a subset of the features used to train the rec-
ognizer’s existing confidence module; see (Hazen et
al., 2002). The features used are shown in Table 1a.

We then map each hypothesis to a candidate sys-
tem response, by running it through the dialogue
system given the original dialogue state. From these
outputs, we collect a list ofuniqueresponses, which
is typically shorter than the recognizer’s N-best list,
as multiple hypotheses typically map to the same re-
sponse.

We now derive a set of features for each unique
response. First, each response inherits the best value
for each recognizer score associated with a hypoth-
esis which evoked that response (see Table 1a). In
addition, the drop in score between the response’s
score for each recognition feature and the top value
occurring in the N-best list is used as a feature (see
Table 1b). Finally, the rank of the highest hypothe-
sis on the N-best list which evoked the response, the
mean number of words per hypothesis evoking the
responses, and the length of the recognizer’s N-best
list are used as features (see Table 1c).

Distributional features are also generated based
on the distribution of hypotheses on the N-best list
which evoked the same response. The percent of
times a particular response is evoked by the top 3,
top 5, top 10, and by all hypotheses on the N-best
list are used as features. Features are generated, as
well, based on the distribution of responses on the
list of unique responses. These features are: the ini-
tial ranking of this response on the list, the number
of distinct responses on the list, and the type of re-
sponse that was evoked by the top hypothesis on the
recognizer N-best list.

Finally, features derived from the response itself,
and natural language processing performed to de-
rive that response, are also calculated. The high-
level type of the response, as well as the type and
number of any POIs returned by a database query
are used as features if they exist, as is a boolean
indicator as to whether or not these results are a
subset of the results currently shown on the dis-
play. If any sort of “geographical filter”, such as
an address or circled region, is used to constrain the
search, then the type of this filter is also used as a
feature. Finally, the “best” parse status of any hy-
potheses leading to this response is also used, where
full parse � robust parse � no parse.

Table 1 lists all of the features used to train the
classifier, while Table 3 (in the appendix) lists the
possible values for the non-numerical features. Fig-
ure 3 (in the appendix) gives an overview of the fea-
ture extraction process, as well as the classification
method described in the next section.

6 Classifier Training and Scoring

For a given utterance, we now have a candidate list
of responses derived from the speech recognizer’s
N-best list, a feature vector associated with each re-
sponse, and a label telling us the “correct” response,
as derived from the transcript. In order to build a
classifier, we first label each response as eitherac-
ceptableor unacceptableby comparing it to the sys-
tem’s response to the transcribed utterance. If the
two responses are identical, then the response is la-
beled asacceptable; otherwise, it is labeled asun-
acceptable. This yields a binary decision problem
for each response, given a set of features. We train
a Support Vector Machine (SVM) to make this deci-
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sion, using the Weka toolkit, version 3.4.12 (Witten
and Frank, 2005).

Given a trained SVM model, the procedure for
processing a novel utterance is as follows. First,
classify each response (and its associated feature
vector) on the response list for that utterance using
the SVM. By using a logistic regression model fit on
the training data, an SVM score between−1 and1
for each response is yielded, where responses with
positive scores are more likely to beacceptable, and
those with negative scores are more likely to beun-
acceptable.

Next, the SVM scores are used to rank the list of
responses. Given a ranked list of such responses, the
dialogue system has two options: it can choose the
top scoring response, or it canabstainfrom choos-
ing any response. The most straightforward method
for making such a decision is via a threshold: if the
score of the top response is above a certain thresh-
old, this response is accepted; otherwise, the system
abstains from choosing a response, and instead re-
sponds by indicating non-understanding. Figure 3
(in the appendix) provides a graphical overview of
the response confidence scoring process.

At first blush, a natural threshold to choose is 0,
as this marks the boundary betweenacceptableand
unacceptable. However, it may be desirable to opti-
mize this threshold based on the desired characteris-
tics of the dialogue system—in a mission-critical ap-
plication, for example, it may be preferable to accept
only high-confidence responses, and to clarify other-
wise. We can optimize the threshold as we like using
either the same training data, or a held-out develop-
ment set, so long as we have an objective function
with which to optimize. In the evaluation that fol-
lows, we optimize the threshold using the F-measure
on the training data as the objective function. It
would also be interesting to optimize the threshold
in a more sophisticated manner, such as that devel-
oped in (Bohus and Rudnicky, 2005) where task suc-
cess is used to derive the cost of misunderstandings
and false rejections, which in turn are used to set a
rejection threshold.

While a thresholding approach makes sense, other
approaches are feasible as well. For instance, a sec-
ond classifier could be used to decide whether or not
to accept the top ranking response. The classifier
could take into account such features as the spread

in scores among the responses, the number classi-
fied asacceptable, the drop between the top score
and the second-ranked score,etc.

7 Evaluation

We evaluated the response-based method using the
data described in section 3, N-best lists with a maxi-
mum length of 10, and an SVM with a linear kernel.
We note that, in the live system, two-pass recogni-
tion is performed for some utterances, in which a
key concept recognized in the first pass (e.g., a city
name) causes a dynamic update to the contents of
a class in then-gram language model (e.g., a set
of street names) for the second pass—as in the ut-
teranceShow me thirty two Vassar Street in Cam-
bridge where the city name (Cambridge) triggers
a second pass in which the streets in that city are
given a higher weight. This two-pass approach has
been shown previously to decrease word and con-
cept error rates (Gruenstein and Seneff, 2006), even
though it can be susceptible to errors in understand-
ing. However, since all street names, for example,
are active in the vocabulary at all times, the two-
pass approach is not strictly necessary to arrive at
the correct hypotheses. Hence, for simplicity, in the
experiments reported here, we do not integrate the
two-pass approach—as this would require us to po-
tentially do a second recognition pass for every can-
didate response. In a live system, a good strategy
might be to consider a second recognition pass based
on the top few candidate responses alone, which
would produce a new set of candidates to be scored.

We performed 38-fold cross validation, where in
each case the held-out test set was comprised of all
the utterances of a single user. This ensured that we
obtained an accurate prediction of a novel user’s ex-
perience, although it meant that the test sets were not
of equal size. We calculated F-measure for each test
set, using the methodology described in figure 4 (in
the appendix).

7.1 Baseline

As a baseline, we made use of the existing confi-
dence module in the SUMMIT recognizer (Hazen
et al., 2002). The module uses a linear projection
model to produce an utterance level confidence score
based on 15 features derived from recognizer scores,
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Method F
Recognition Confidence (Baseline) .62
Recog Features Only .62
Recog + Distributional .67
Recog + Response .71*
Recog + Response + Distributional .72**

Table 2: Average F-measures obtained via per-user
cross-validation of the response-based confidence scor-
ing method using the feature sets described in Section 5,
as compared to a baseline system which chooses the top
hypothesis if the recognizer confidence score exceeds an
optimized rejection threshold. The starred scores are a
statistically significant (* indicatesp < .05, ** indicates
p < .01) improvement over the baseline, as determined
by a pairedt-test.

and from comparing hypotheses on the N-best list.
In our evaluation, the module was trained and tested
on the same data as the SVM model using cross-
validation.

An optimal rejection threshold was determined,
as for the SVM method, using the training data with
F-measure as the objective function. For each utter-
ance, if the confidence score exceeded the threshold,
then the response evoked from the top hypothesis on
the N-best list was chosen.

7.2 Results

Table 2 compares the baseline recognizer confidence
module to our response-based confidence annotator.
The method was evaluated using several subsets of
the features listed in Table 1. Using features derived
from the recognizer only, we obtain results compa-
rable to the baseline. Adding the response and dis-
tributional features yields a 16% improvement over
the baseline system, which is statistically significant
with p < .01 according to a pairedt-test. While the
distributional features appear to be helpful, the fea-
ture values derived from the response itself are the
most beneficial, as they allow for a statistically sig-
nificant improvement over the baseline when paired
on their own with the recognizer-derived features.

Figure 2 plots ROC curves comparing the perfor-
mance of the baseline model to the best response-
based model. The curves were obtained by varying
the value of the rejection threshold. We observe that
the response-based model outperforms the baseline
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Figure 2: Receiver Operator Characteristic (ROC) curves
(averaged across each cross-validation fold) comparing
the baseline to the best response-based model.

no matter what we set our tolerance for false posi-
tives to be.

The above results were obtained by using an SVM
with a linear kernel, where feature values were nor-
malized to be on the unit interval. We also tried
using a quadratic kernel, retaining the raw feature
values, and reducing the number of binary features
by manually binning the non-numeric feature val-
ues. Each change resulted in a slight decrease in
F-measure.

8 Conclusion and Future Work

We recast the problem of choosing among an N-best
list of recognition hypotheses as one of choosing the
best candidate system response which can be gen-
erated from the recognition hypotheses on that list.
We then demonstrated a framework for assigning
confidence scores to those responses, by using the
scores output by an SVM trained to discriminate be-
tween acceptable and unacceptable responses. The
classifier was trained using a set of features derived
from the speech recognizer, culled from the genera-
tion of each response, and calculated based on each
response’s distribution. We tested our methods us-
ing data collected by users interacting with the City
Browser multimodal dialogue system, and showed
that they lead to a significant improvement over a
baseline which makes an acceptance decision based
on an utterance-level recognizer confidence score.

The technique developed herein could be refined
in several ways. First and foremost, it may well be
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possible to find additional features with discrimina-
tory power. Also, the decision as to whether or not
to choose the top-scoring response could potentially
be improved by choosing a more appropriate metric
than F-measure as the objective function, or perhaps
by using a second classifier at this stage.

Finally, our experiments were performed off-line.
In order to better test the approach, we plan to de-
ploy the classifier as a component in the running di-
alogue system. This presents some processing time
constraints (as multiple candidate responses must be
generated); and it introduces the confounding factor
of working with a recognizer that can make multi-
ple recognition passes after language model recon-
figuration. These challenges should be tractable for
N-best lists of modest length.
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Recognition N-best

Hypothesis Rank St Sa Sl … DS Response Parse …

thirty two vassal street in cambridge 0 45.3 28.5 26.5 R0 FULL

thirty two vassar street in cambridge 1 45.0 27.1 30.5 R1 FULL

thirty two vassar street in in cambridge 2 44.2 26.0 30.4 R1 ROBUST

at thirty two vassar street <noise> 3 40.1 26.5 29.4 R1 FULL

at thirty two vassal street in cambridge 4 39.5 26.3 29.0 R1 FULL

thirty two vassar street cambridge <noise> 5 38.4 25.8 28.4 R1 FULL

thirty two vassar street in canton 6 38.0 25.8 28.3 R2 FULL

thirty two vassal street in in canton 7 33.5 22.5 27.5 R3 ROBUST

twenty vassar in street in zoom 8 32.4 22.3 26.3 R4 NONE

thirty two vassar street in cambridge <noise> 9 32.0 19.5 26.7 R1 FULL

Response List

Response Rank St Sa Sl %Top3 %Top5 Dist. Parse … SVM Score

R0 0 45.3 28.5 26.5 .33 .8 5 FULL .42

R1 1 45.0 27.1 30.5 .66 .2 5 FULL .73 R1

R2 6 38.0 25.8 28.3 0.0 0.0 5 FULL -.32

R3 7 33.5 22.5 27.5 0.0 0.0 5 ROBUST -.55

R4 8 32.4 22.3 36.3 0.0 0.0 5 NONE -.92

Figure 3: The feature extraction and classification process. The top half of the digram shows how an N-best list
of recognizer hypotheses, with associated scores from the recognizer, are processed by the dialogue system (DS) to
produce a list of responses. Associated with each response is a set of feature values derived from the response itself,
as well as the process of evoking the response (e.g. the parse status). The bottom half of the figure shows how the
unique responses are collapsed into a list. Each response in the list inherits the best recognition scores available from
hypotheses evoking that response; each also has feature values associated with it derived from the distribution of that
response on the recognizer N-best list. Each set of feature values is classified by a Support Vector Machine, and the
resulting score is used to rank the responses. If the highest scoring response exceeds the rejection threshold, then it is
chosen as the system’s response.
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Feature Possible Values

responsetype
top responsetype

geography, givedirections, goodbye, greetings, helpdirectionsdid not understandfrom place,

help directionsdid not understandto place, helpdirectionsno to or from place,

help directionssubway, hidesubwaymap, historycleared, listcuisine, listname, liststreet,

no circled data, nodata, nomatchnear, nonuniquenear, ok, panningdown, panningeast,

panningsouth, panningup, panningwest, presuppfailure, providecity for address, refinedresult,

rejector give help, showaddress, showsubwaymap, speakproperties, speakproperty,

speakverify false, speakverify true, welcomegui, zooming, zoomingin, zoomingout

POI type none, city, museum, neighborhood, restaurant, subwaystation

parsestatus no parse, robustparse, fullparse

geographicalfilter none, address, circle, line, listitem, mapbounds, museum, neighborhood, point, polygon, restaurant,

subwaystation, city

Table 3: The set of possible values for non-numerical features, which are converted to sets of binary features.

Response Score Type Label

R0 S0 speak_property acceptable

R1 S1 list_cuisine unacceptable

R2 S2 speak_property unacceptable

Case I: Example Ranked Response List

Case I
R0 is acceptable and is not reject

S0 ≥ T T.P.
S0 < T F.N.

Response Score Type Label

R0 S0 speak_property unacceptable

R1 S1 list_cuisine unacceptable

R2 S2 speak_property unacceptable

R3 S3 reject unacceptable

R4 S4 zooming_out unacceptable

Case II: Example Ranked Response List

Case II
No candidate responses acceptable, 

or acceptable response is reject

(a) 
R0 is not reject
S0 ≥ T F.P.
S0 < T T.N.

(b) 
R0 is reject

S0 ≥ T T.N.
S0 < T T.N.

Response Score Type Label

R0 S0 speak_property unacceptable

R1 S1 list_cuisine acceptable

R2 S2 speak_property unacceptable

R3 S3 reject unacceptable

R4 S4 zooming_out unacceptable

Case III: Example Ranked Response List

Case III
Rn (with n > 0)  is acceptable

and is not reject

(a) 
R0 is not reject
S0 ≥ T F.P.
S0 < T F.N.

(b) 
R0 is reject

S0 ≥ T F.N.
S0 < T F.N.

Figure 4: Algorithm for calculating the F-measure confusion matrix of True Positives (T.P.), False Positives (F.P.),
True Negatives (T.N.), and False Negatives (F.N.). The ranking technique described in this paper creates a list of
candidate system responses ranked by their scores. The top scoring response is thenacceptedif its score exceeds a
thresholdT, otherwise all candidate responses arerejected. As such, the problem is not a standard binary decision.
We show all possible outcomes from the ranking process, and note whether each case is counted as a T.P., F.P., T.N.,
or F.N. We note that given this algorithm for calculating the confusion matrix, no matter how we set the thresholdT,
F-measure will always be penalized if Case III occurs.

20


