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Introduction

We are pleased to present in this volume, the Proceedings of the 9th SIGdial Workshop on Discourse
and Dialogue. These proceedings could not have been produced without the assistance of this year’s
excellent program committee. The quality of the collection is a result of their efforts and we are
indebted to them for donating their time and expertise. 19 of the 46 submissions were accepted as
long papers and another 10 were accepted as short papers. This selection of papers follows the SIGdial
tradition of providing a venue for work on theory, implemented systems, developed work and new
approaches. The topics covered include generation for dialogue systems, dialogue system evaluation,
opinions, persuasion, multi-party dialogue, probabilistic methods for dialogue, grounding and the use
of dialogue features for improving speech processing. We are optimistic that the breadth and quality of
the selected papers will contribute to a lively and interesting workshop event and will prove a valuable
resource for the SIGdial readership.

There are many to thank for their assistance with the organization of the 2008 SIGdial event; we
mention a few of them here. We would like to thank ACL for providing workshop support, and Priscilla
Rasmussen for handling the financial transactions and providing us with valuable information about the
mysteries of matters budgetary. The SIGdial Board was very supportive and provided sage advice to us
on a number of questions that arose in the course of organizing the event. David Traum gave us extra
assistance on several issues and was very responsive to our numerous questions. Additional thanks
go to Harry Bunt, Tim Paek and Livia Polyani for helping us secure sponsorship, to Crystal Nakatsu
for giving us excellent advice on potential reception locations, and to the SIGdial webmaster, Torben
Madsen, for putting up the website.

We also thank Prof. Julia Hirschberg of Columbia University for giving the 2008 SIGdial keynote
address on “Lexical, Acoustic/Prosodic, and Discourse Entrainment in Spoken Dialogue Systems”.

And finally, thank you, the SIGdial audience, for your continued support in making SIGdial a premier
venue for work in Discourse and Dialogue.

Beth Ann Hockey & David Schlangen
SIGdial 2008 Co-Chairs

iii






Organizers:

Beth Ann Hockey, UC Santa Cruz (USA)

David Schlangen, University of Potsdam (Germany)

Program Committee:

Jan Alexandersson, DFKI GmbH (Germany)
Masahiro Araki, Kyoto Institute of Technol-
ogy (Japan)

Srinivas Bangalore, ATT Research, (USA)
Robbert-Jan Beun, Universiteit Utrecht
(Netherlands)

Nate Blaylock, IHMC (USA)

Dan Bohus, Microsoft Research (USA)

Johan Bos, La Sapienza (Italy)

Pierrette Bouillon, University of Geneva
(Switzerland)

Johan Boye, Telia Research (Sweden)

Harry Bunt, Tilburg University (Netherlands)
Donna Byron, Ohio State University (USA)
Sandra Carberry, University of Delaware
(USA)

Rolf Carlson, KTH (Sweden)

Justine Cassell, Northwestern University
(USA)

Christine Doran, MITRE (USA)

Laila Dybkjaer, University of Southern Den-
mark (Denmark)

Myroslava Dzikovska, University of Edin-

burgh (UK)

Jens Edlund, KTH (Sweden)

Stephanie Elzer, Millersville University
(USA)

Raquel Fernandez, Stanford (USA)

Mary Ellen Foster, Technical University Mu-
nich (Germany)

Reva Freedman, Northern Illinois University
(USA)

Kallirroi Georgila, University of Edinburgh
(UK)

Jonathan Ginzburg, King’s College (UK)

Genevieve Gorrell, Sheffield University (UK)
Nancy Green, University of North Carolina at
Greensboro (USA)

Alexander Gruenstein, MIT (USA)

Joakim Gustafson, Teliasonera Sweden (Swe-
den)

Patrick Healey, Queen Mary University Lon-
don (UK)

Mattias Heldner, KTH (Sweden)

Kristiina Jokinen, University of Helsinki (Fin-
land)

Arne Jonsson, University of Linkoping (Swe-
den)

Pamela Jordan,
(USA)

Simon Keizer, Cambridge University (UK)
Alistair Knott, Otago University (NewZealand)
Jorn Kreutel, Semantic Edge and University of
Potsdam (Germany)

Geert-Jan Kruijff, DFKI (Germany)

Staffan Larsson, Goéteborg University (Swe-
den)

Alex Lascarides, University of Edinburgh
(UK)

Lin-Shan Lee, National Taiwan University
(Taiwan)

Oliver Lemon, University of Edinburgh (UK)
Piroska Lendvai, Tilburg University (The
Netherlands)

Diane Litman, University of Pittsburgh (USA)
Ramén Loépez-Cézar, University of Granada
(Spain)

Colin Matheson, University of Edinburgh
(UK)

Michael McTear, University of Ulster (UK)

University of Pittsburgh



Wolfgang Minker, University of Ulm (Ger-
many)

Sebastian Moller, Deutsche Telekom Labs and
Technical University Berlin (Germany)

Mikio Nakano, Honda Research Institute
(Japan)

Yukiko Nakano, Tokyo University of Agricul-
ture and Technology (Japan)

Tim Paek, Microsoft Research (USA)

Patrick Paroubek, LIMSI-CNRS (France)
Norbert Pfleger, DFKI GmbH (Germany)
Roberto Pieraccini, Speech Cycle (USA)

Paul Piwek, Open University (UK)

Livia Polanyi, Powerset (USA)

Andrei Popescu-Belis, IDIAP Research Insti-
tute (Switzerland)

Matt Purver, Stanford (USA)
Manny Rayner, University
(Switzerland)

Norbert Reithinger, DFKI GmbH (Germany)
Laurent Romary, LORIA (France)
Antonio Roque, USC ICT (USA)
Alex Rudnicky, CMU (USA)
Yoshinori  Sagisaka, Waseda

of Geneva

University

Additional Reviewers:

Paul Crook, University of Edinburgh (UK)
Verena Rieser, University of Edinburgh (UK)
Niels Kasch, East Carolina University (USA)

Invited Speaker:

Julia Hirschberg, Columbia University (USA)

Vi

(Japan)

Stephanie Seneff, MIT (USA)

Gabriel Skantze, KTH (Sweden)

Ronnie Smith, East Carolina University
(USA)

Claudia Soria, CNR (Italy)

Manfred Stede, University of Potsdam (Ger-
many)

Amanda Stent, Stony Brook University (USA)
Matthew Stone, Rutgers University (USA)
Thora Tenbrink, University of Bremen (Ger-
many)

Stefanie Tomko, Microsoft Corp (USA)
David Traum, USC/ICT (USA)

Nigel Ward, University of Texas at El Paso
(USA)

Art Ward, University of Pittsburgh (USA)
Janyce Wiebe, University of Pittsburgh (USA)
Jason Williams, AT&T Labs (USA)

Steve Young, Cambridge University (UK)
Ingrid Zukerman, Monash University (Aus-
tralia )



Table of Contents

Optimizing Endpointing Thresholds using Dialogue Features in a Spoken Dialogue System
Antoine Raux and Maxine Eskenazi . ............ ..o 1

Response-Based Confidence Annotation for Spoken Dialogue Systems
Alexander GIrUENSIEIN . . . ..o ..ttt ettt et e ettt 11

Learning N-Best Correction Models from Implicit User Feedback in a Multi-Modal Local Search Ap-
plication
Dan Bohus, Xiao Li, Patrick Nguyen and Geoffrey Zweig ............. ..., 21

Agreement and Disputes in Dialogue
Alex Lascarides and Nicholas Asher........... ..o i 29

Reactive Redundancy and Listener Comprehension in Direction-Giving
Rachel Baker, Alastair Gill and Justine Cassell ............ ... i ... 37

Semantic negotiation in dialogue: the mechanisms of alignment
Gregory Mills and Pat Healey . ........ ... i 46

Degrees of Grounding Based on Evidence of Understanding
Antonio Roque and David Traum . ...... ... e 54

Rapidly Deploying Grammar-Based Speech Applications with Active Learning and Back-off Grammars
Tim Paek, Sudeep Gandhe and Max Chickering ............ ... .iiiiiiiiiiiiniaann. 64

Persistent Information State in a Data-Centric Architecture
Sebastian Varges, Giuseppe Riccardi and Silvia Quarteroni ...................c.ccvviiuun.... 68

Speaking without knowing what to say... or when to end
ANNa HJalmarsSOn . . .. ...ttt e et e e e 72

Learning Contrastive Connectives in Sentence Realization Ranking
Crystal NaKatSU . . ..ottt et e et e et e 76

What Are Meeting Summaries? An Analysis of Human Extractive Summaries in Meeting Corpus
FeiLiuand Yang Liu ... ..o e e 80

A Simple Method for Resolution of Definite Reference in a Shared Visual Context
Alexander Siebert and David Schlangen ........... ... o i i i 84

A Framework for Building Conversational Agents Based on a Multi-Expert Model
Mikio Nakano, Kotaro Funakoshi, Yuji Hasegawa and Hiroshi Tsujino...................... 88

From GEMINI to DiaGen: Improving Development of Speech Dialogues for Embedded Systems
Stefan Hamerich. . ... e 92

vii



Quantifying Ellipsis in Dialogue: an index of mutual understanding
Marcus Colman, Arash Eshghi and Pat Healey.............. ... ... ... ... 96

Implicit Proposal Filtering in Multi-Party Consensus-Building Conversations
Yasuhiro Katagiri, Yosuke Matsusaka, Yasuharu Den, Mika Enomoto, Masato Ishizaki and Kat-
SUYA TaKanashi. . .. ...ttt 100

Optimal Dialog in Consumer-Rating Systems using POMDP Framework
Zhifei Li, Patrick Nguyen and Geoffrey Zweig ...t 104

Training and Evaluation of the HIS POMDP Dialogue System in Noise
Milica Gasié, Simon Keizer, Francois Mairesse, Jost Schatzmann, Blaise Thomson, Kai Yu and
SEEVE YOUIE -« o ottt ettt e e et e e et et e e e e e e 112

A Frame-Based Probabilistic Framework for Spoken Dialog Management Using Dialog Examples
Kyungduk Kim, Cheongjae Lee, Sangkeun Jung and Gary GeunbaeLee ................... 120

Speaking More Like You: Lexical, Acoustic/Prosodic, and Discourse Entrainment in Spoken Dialogue
Systems
Julia Hirschberg . . . .. ..o e 128

Discourse Level Opinion Relations: An Annotation Study
Swapna Somasundaran, Josef Ruppenhofer and Janyce Wiebe ............................ 129

Argumentative Human Computer Dialogue for Automated Persuasion
Pierre Andrews, Suresh Manandhar and MarcoDe Boni................. ..o, 138

Modeling Vocal Interaction for Text-Independent Participant Characterization in Multi-Party Conver-

sation
Kornel Laskowski, Mari Ostendorf and Tanja Schultz . ............ .. ... ... ... o .. 148

Modelling and Detecting Decisions in Multi-party Dialogue
Raquel Fernandez, Matthew Frampton, Patrick Ehlen, Matthew Purver and Stanley Peters . .. 156

User Simulation as Testing for Spoken Dialog Systems
Hua Ai and Fuliang Weng . . ... e e 164

Evaluation Understudy for Dialogue Coherence Models
Sudeep Gandhe and David Traum ... ....... ...t 172

A Framework for Model-based Evaluation of Spoken Dialog Systems
Sebastian Moller and Nigel Ward ... ... i 182

The Effect of Dialogue System Output Style Variation on Users’ Evaluation Judgments and Input Style
Ivana Kruijff-Korbayova and Olga Kukina ......... ... .. o i i i 190

Making Grammar-Based Generation Easier to Deploy in Dialogue Systems
David DeVault, David Traum and Ron ArtStein. ........couuniini i 198

viii



Conference Program

Thursday, June 19, 2008

9:00-9:15

9:15-9:40

9:40-10:05

10:05-10:30

10:30-11:00

11:00-11:25

11:25-11:50

11:50-12:15

12:15-12:40

12:40-2:40

Opening Remarks

Session 1: Dialogue Features and Speech Processing

Optimizing Endpointing Thresholds using Dialogue Features in a Spoken Dialogue
System

Antoine Raux and Maxine Eskenazi

Response-Based Confidence Annotation for Spoken Dialogue Systems
Alexander Gruenstein

Learning N-Best Correction Models from Implicit User Feedback in a Multi-Modal
Local Search Application

Dan Bohus, Xiao Li, Patrick Nguyen and Geoffrey Zweig

Coffee Break

Session 2: Grounding in Dialogue

Agreement and Disputes in Dialogue
Alex Lascarides and Nicholas Asher

Reactive Redundancy and Listener Comprehension in Direction-Giving
Rachel Baker, Alastair Gill and Justine Cassell

Semantic negotiation in dialogue: the mechanisms of alignment
Gregory Mills and Pat Healey

Degrees of Grounding Based on Evidence of Understanding
Antonio Roque and David Traum

Lunch and Poster Session

ix



Thursday, June 19, 2008 (continued)
Poster Session

Rapidly Deploying Grammar-Based Speech Applications with Active Learning and Back-
off Grammars
Tim Paek, Sudeep Gandhe and Max Chickering

Persistent Information State in a Data-Centric Architecture
Sebastian Varges, Giuseppe Riccardi and Silvia Quarteroni

Speaking without knowing what to say... or when to end
Anna Hjalmarsson

Learning Contrastive Connectives in Sentence Realization Ranking
Crystal Nakatsu

What Are Meeting Summaries? An Analysis of Human Extractive Summaries in Meeting
Corpus
Fei Liu and Yang Liu

A Simple Method for Resolution of Definite Reference in a Shared Visual Context
Alexander Siebert and David Schlangen

A Framework for Building Conversational Agents Based on a Multi-Expert Model
Mikio Nakano, Kotaro Funakoshi, Yuji Hasegawa and Hiroshi Tsujino

From GEMINI to DiaGen: Improving Development of Speech Dialogues for Embedded
Systems
Stefan Hamerich

Quantifying Ellipsis in Dialogue: an index of mutual understanding
Marcus Colman, Arash Eshghi and Pat Healey

Implicit Proposal Filtering in Multi-Party Consensus-Building Conversations
Yasuhiro Katagiri, Yosuke Matsusaka, Yasuharu Den, Mika Enomoto, Masato Ishizaki and
Katsuya Takanashi



Thursday, June 19, 2008 (continued)

Session 3: Probabilistic Methods

2:40-3:05 Optimal Dialog in Consumer-Rating Systems using POMDP Framework
Zhifei Li, Patrick Nguyen and Geoffrey Zweig
3:05-3:30 Training and Evaluation of the HIS POMDP Dialogue System in Noise
Milica Gasié, Simon Keizer, Francois Mairesse, Jost Schatzmann, Blaise Thomson, Kai
Yu and Steve Young
3:30-4:00 Coffee Break
4:00-4:25 A Frame-Based Probabilistic Framework for Spoken Dialog Management Using Dialog
Examples
Kyungduk Kim, Cheongjae Lee, Sangkeun Jung and Gary Geunbae Lee
4:25-5:25 SIGdial business meeting
5:25 End of first day
7:00 Reception, Palm House at Franklin Park Conservatory
Friday, June 20, 2008
9:30-10:30  Invited Talk
Speaking More Like You: Lexical, Acoustic/Prosodic, and Discourse Entrainment in Spo-
ken Dialogue Systems
Julia Hirschberg
10:30-11:00  Coffee Break
Session 4: Opinions, Persuasion, and Multi-Party Dialogue
11:00-11:25  Discourse Level Opinion Relations: An Annotation Study
Swapna Somasundaran, Josef Ruppenhofer and Janyce Wiebe
11:25-11:50  Argumentative Human Computer Dialogue for Automated Persuasion

Pierre Andrews, Suresh Manandhar and Marco De Boni

xi



Friday, June 20, 2008 (continued)

11:50-12:15

12:15-12:45

12:45-2:15

2:15-2:40

2:40-3:05

3:05-3:30

3:30-4:00

4:00-4:25

4:25-4:50

4:50-5:00

5:00

Modeling Vocal Interaction for Text-Independent Participant Characterization in Multi-
Party Conversation
Kornel Laskowski, Mari Ostendorf and Tanja Schultz

Modelling and Detecting Decisions in Multi-party Dialogue
Raquel Ferndandez, Matthew Frampton, Patrick Ehlen, Matthew Purver and Stanley Peters

Lunch
Session 5: Evaluation

User Simulation as Testing for Spoken Dialog Systems
Hua Ai and Fuliang Weng

Evaluation Understudy for Dialogue Coherence Models
Sudeep Gandhe and David Traum

A Framework for Model-based Evaluation of Spoken Dialog Systems
Sebastian Moller and Nigel Ward

Coffee Break

Session 6: Generation

The Effect of Dialogue System Output Style Variation on Users’ Evaluation Judgments and
Input Style

Ivana Kruijff-Korbayova and Olga Kukina

Making Grammar-Based Generation Easier to Deploy in Dialogue Systems
David DeVault, David Traum and Ron Artstein

Closing Remarks

End of SIGdial 2008

Xii



Optimizing Endpointing Thresholds using Dialogue
Features in a Spoken Dialogue System

Antoine Raux and Maxine Eskenazi

{antoine,max

}@cs.cmu.edu

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Abstract

This paper describes a novel algorithm to dy-
namically set endpointing thresholds based on
arich set of dialogue features to detect the end
of user utterances in a dialogue system. By
analyzing the relationship between silences in
user’s speech to a spoken dialogue system and
a wide range of automatically extracted fea-
tures from discourse, semantics, prosody, tim-
ing and speaker characteristics, we found that
all features correlate with pause duration and
with whether a silence indicates the end of the
turn, with semantics and timing being the most
informative. Based on these features, the pro-
posed method reduces latency by up to 24%
over a fixed threshold baseline. Offline evalu-
ation results were confirmed by implementing
the proposed algorithm in the Let’'s Go system.

Introduction

(Raux et al., 2006). In contrast, empirical studies
of conversation have shown that human-human dia-
logues commonly feature swift exchanges with lit-
tle or no gap between turns, or even non-disruptive
overlap (Jaffe and Feldstein, 1970; Sacks et al.,
1974). According to Conversation Analysis and
psycholinguistic studies, responsiveness in human
conversations is possible because participants in the
conversation exchange cues indicating when a turn
might end, and are able to anticipate points at which
they can take over the floor smoothly. Much re-
search has been devoted to finding these cues, lead-
ing to the identification of many aspects of language
and dialogue that relate to turn-taking behavior, in-
cluding syntax (Sacks et al., 1974; Ford and Thomp-
son, 1996; Furo, 2001), prosody (Duncan, 1972;
Orestbim, 1983; Chafe, 1992; Ford and Thompson,
1996; Koiso et al., 1998; Furo, 2001), and seman-
tics (Orestom, 1983; Furo, 2001). However, re-
garding this last aspect, Orestrom notes about his

1.1 Responsiveness in Dialogue

Although the quality of speech technologies has imeOrPuUS that “there is no simple way to formaliz-

proved drastically and spoken interaction with malngd & semantic analysis of this conversational mate-

chines is becoming a part of the everyday life O]tial”. This difficulty in formalizing higher levels of

many people, dialogues with artificial agents stiIFo?\t/ﬁrfatlon mlg?t ex?lalnlthti rilatlveriy(ljo.w inter-
fall far short of their human counterpart in terms of-St that conversational analysts have had in seman-

both comfort and efficiency. Besides lingering probpcs and discourse. Yet, as conversational analysts

lems in speech recognition and understanding, Wagaﬁ_used on ml[crtq-levle:_s, of_dt|alogue sucg asdtl;rn-
et al (Ward et al., 2005) identified turn-taking is- axing, computational finguists uncovered and for-

sues, specifically responsiveness, as importantshowgl'zed macro-level dialogue structure and devised

comings. Dialogues with artificial agents are typi_vvell-deflned representations of semantics for at least

cally rigid, following a strict one-speaker-at-a—timesome forms of dialogues (Allen and Perrault, 1980;

structure with significant latencies between turnsgrOSZ and Sidner, 1986; Clark, 1996), which have in

In a previous paper, we concurred with these fincxt-urn been implemented in spoken dialogue systems

ings when analyzing issues with the Let’'s Go systerqQICh and Sidner, 1998; Allen et al., 2005).

1
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1.2 Current Approaches to Turn-Taking in Similarly, Ferrer and her colleagues (Ferrer et al.,
Spoken Dialogue Systems 2003) proposed the use of multiple decision trees,

Unfortunately, while socio- and psycho-linguists re-eaCh triggered at a specific time in the pause, o de-

. . . _cide to either endpoint or defer the decision to the
vealed the complexity of conversational turn-takin

. . . . 91 xt tr nl th r resum king. in
behavior, designers of practical spoken dialogue s ext tree, unless the user resumes speaking. Using

tems have stuck to a simplistic approach to end-o eatures like vowel duration or pitch for the region

wrn detection (hereaftendpointing. Typically, si- immediately preceding the silence, combined with a

lences in user speech are detected using a Iow-Ie\}%Pguage model that predicts gaps based on the pre-

Voice Activity Detector (VAD) and a tum is consid- ceding words, Ferrer et al are able shorten latency

ered finished once a silence lasts longer than afixé(’)vcrlle keeping the FA rate constant. On a corpus

threshold. This approach has the advantage of bei%’recorded spoken dialogue-like utterances (ATIS),

\ . . ey report reductions of up to 81% for some FA
simple, only relying on easily computable low-level

features. However, it leads to suboptimal behaviorrates' While very promising, this approach has sev-

. . . eral disadvantages. First it relies on a small set of
In many instances. First, False Alarms (FA) hap. sible decision points for each pause, preventin
pen when a pause lasts longer than the threshold &> P P » P g

" ine optimization between them. Second, the trees
gets wrongly classified as a dapSecond, latency . . . .
are trained on increasingly smaller datasets requir-
occurs at every gap, because the system must walt .
. .. . Ing smoothing of the tree scores to compensate for
for the duration of the threshold before classifying aOor training of the later trees (which are trained
silence as gap. When setting the threshold, systepm 9

. : on increasingly small subsets of pauses from the
designers must consider the trade-off between the?r%inin set). Finally, and perhaps most importantl
two issues: setting a low threshold reduces laten 9 ' Y P b P Y

. . : . % ese authors have investigated prosodic and lexical
but increases FA rate, while setting a high thresml%atures but not other asgects cﬁ‘ dialogue, such as

reduces FA rate but increases latency. . - )
i . discourse structure, timing, and semantics.
To help overcome the shortcomings of the single- .
In this paper, we propose a new approach to end-

threshold approach, several researchers have pro-. .. . o .
. : ointing that directly optimizes thresholds using au-

posed to exploit various features. Sato et al (Sato : : .
. . omatically extracted dialogue features ranging from
et al., 2002) used decision trees to classify pauses

longer than 750 ms as aap or pause. By using fe iscourse to timing and prosody. Section 2 out-
9 gap orp - By 9 fhes the proposed algorithm. Section 3 describes

tures from semantics, syntax, dialogue stgt_e, '.”"}He analysis of the relationship between silences and
prosody, they were able to improve the classification

: . [ ff ilabl -
accuracy from a baseline of 76.2% to 83.9%. Whil $ Wld? range of features aval at_) € to a standard spo
en dialogue system (hereaftdialogue features

. . . S OB\ aluation results, both offline and in the deployed
the value of using various sources of information in __, . . .
%/ets Go system are given in Section 4.

a dialogue system, the proposed approach (classify-

ing long silences) is not completely realistic (whatz Dynamic Endpointing Threshold
happens when a gap is misclassified as a pause?) and Decision Trees

does not attempt to optimize latency. An extension

to this approach was proposed in (Takeuchi et al2.1 Overview

5884)' dehICh aturn—talang deC|S|.onﬂ|1$., rr:atctle Ve ne issue with current approaches to endpointing
h fmst uring p?ugtezt ct)yvgver, n 'Z a e:jworlfs that they rely on binary gap/pause classifiers and
€ fealures are limited to iming, prosody, and syry, relationship between optimizing for classifica-
tax (part-of-speech). Also the reported C|aSSIflcatIOHon accuracy vs optmizing to minimize latency is

i - ) .
:liiljslésérxvl?bi rsnife_‘:_lgnetsfoa;m?;g_f; /osgr below dSnclear. Also, the performance we obtained when
uthct practical use. applying classification-based approaches to the Let's
1We use the terminology from (Sacks et al., 1974) where 3(1;_(_) datawas dlsapp(_)lntlng. The a_lccuracy of the clas-
pauseis a silence within a turn while gapis a silence between Sifiers was not sufficient for practical purposes, even
turns. We use the tersilenceto encompass both types. with the improvements proposed by (Ferrer et al.,



2003). We hypothesize that the discrepancy betweenostly pauses, or a small root mean square pause
these results and the good performances reported thyration. Ultimately, at the leaves of the tree are sets
others is due to the noisiness of the Let's Go dataf silences that will share the same threshold.

(see Section 3.1.1). To overcome these issues, we

propose a method that directly optimizes endpoin&-3 ~ Cluster Threshold Optimization

ing thresholds using a two-stage process. First, SBiven the clusters generated by the first phase, the
lences are clustered based on dialogue features g@al of the second phase is to find a threshold for
as to create groups of silences with similar propeleach cluster so that the overall latency is minimized
ties. Second, a single threshold is set for each clugt a given FA rate. Under the assumption that pause
ter, so as to minimize the overall latency at a givedurations follow an exponential distribution, which
false alarm rate. The result of the training procesg supported by previous work and our own data (see
is thus a decision tree on dialogue features that cogection 3.2), we show in Figure 3 in appendix that
tains thresholds at its leaves. At runtime, every timehere is a unique set of thresholds that minimizes la-

a silence is detected, the dialogue system runs tigncy and that the threshold for any clusigs given
decision tree and sets its endpointing threshold apy:

cordingly. The following sections describe the two fin X 10g(Bn X Exun)
training stages. On = G 2lin (2)
2.2 Feature-based Silence Clustering wherey,, and3, can be estimated from the data.

The goal of the first stage of training is to clus- . )
ter silences with a similar FA rate/latency trade3 Silences and Dialogue Features
off. The intuition is that we would Iik'e to generates 1 verview of the Data
low-threshold clusters, which contain mostly gaps
and short pauses, and clusters where long paused-1 The Let's Go Corpus
would be concentrated with no or very few gaps, Let's Go is a telephone-based spoken dialogue
allowing to set high thresholds that reduce cut-irsystem that provides bus schedule information for
rate without hurting overall latency. We used ahe Pittsburgh metropolitan area. It is built on the
standard top-down clustering algorithm that exhau$lympus architecture (Bohus et al., 2007), using the
tively searches binary splits of the data based on fe&avenClaw dialogue management framework, and
ture values. The split that yields the minimal overalthe Apollo interaction manager (Raux et al., 2007)
cost is kept, where the coét, of clusterk,, is de- as core components. Outside of business hours
fined by the following function: callers to the bus company’s customer service are
offered the option to use Let's Go. All calls are
C, =G, x \/1 Z Duration(p)? (1) re_zcorded and extensively Iogged for further analy-
| K| sis. The corpus used for this study was collected
between December 26, 2007 and January 25, 2008,
where G, the number of gaps inK, and witha total of 1326 dialogues, and 18013 user turns.
Duration(p) the duration of a pause set to zero Of the calls that had at least 4 user turns, 73% were
for gaps. While other cost functions are possible, theomplete, meaning that the system provided some
intuition behind this formula is that it captures bothschedule information to the user.
the cluster’s gap ratio (first factor) and its pause du- While working on real user data has its advan-
ration distribution (second factor: root mean squartages (large amounts of data, increased validity of
of pause duration). The splitting process is repeatdte results), it also has its challenges. In the case of
recursively until the reduction in cost between thed.et's Go, users call from phones of varying quality
original cost and the sum of the costs of the two splifcell phones and landlines), often with background
clusters falls below a certain threshold. By minimiz-noises such as cars, infant cries, loud television sets,
ing C(K), the clustering algorithm will find ques- etc. The wide variability of the acoustic conditions
tions that yield clusters with either a sméll,, i.e. makes any sound processing more prone to error

3
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than on carefully recorded corpora. For example, as
reported in (Raux et al., 2005), the original speech
recognizer had been found to yield a 17% word error
rate on a corpus of dialogues collected by recruit-
ing subjects to call the system from an office. On
the live Let's Go data, that same recognizer had a
68% WER. After acoustic and language model re- "
training/adaptation, that number was brought down 01 = B .

to about 30% but it is still a testimony to the diffi- 00 ‘ e
culty of obtaining robust features, particularly from ’ e om W e e
acoustics.

o o o
4 o ©
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3.1.2 Correcting Runtime Endpointing Errors Figure 1: Overall False Alarm / Latency trade-off in the

, . Let's Go corpus. The dashed line represents a fitted curve
Let's Go uses a GMM-based VAD trained on Preof the formF A — ef+o-Latency

viously transcribed dialogues. Endpointing deci-
sions are based on a f|xeq 700 ms thres_hold on “}%O ms from most of the following analysis for two
duration of the detected silences. One issue when

. . r ns: 1) th re more pron VOI ivi
analyzing pause distributions from the corpus is thac}%ISO s: 1) they are more prone to voice activity

. etection errors or short non-pause silences within
observed user behavior was affected by system’s be- P

havior at runtime. Most notably, because of the fixe peech (e.g. unvoiced stop closure)j and 2) o °Tder
threshold, no recorded pause lasts more than 700 m% apply the resuilts found here to online endpointing

' P . . Dy the system, some amount of time is required to
To compensate for that, we used a simple heuristi

. s - etect the silence and compute necessary features,
to rule some online endpointing decisions as erro-

. s making endpointing decisions on such very short si-
neous. If a user turn is followed within 1200 ms by g endpointing : y

. lences impractical. Once short silences have been
another user turn, we consider these two turns to bé )
) . . excluded, there are 3083 pauses in the corpus, 0.17
in fact a single turn, unless the first turn was a user

barge-in. This heuristic was established by hand®" turn.

labeling 200 dialogues from a previous corpus wittg.3  Relationship Between Dialogue Features
endpointing errors (i.e. each turn was annotated as  and Silence Distributions

correctly or incorrectly endpointed). On this datasets's.1 Statistical Analysis

the heuristic has a precision of 70.6% and a recall of o : .
75.5% for endpointing errors. Unless specified, all In order to get some insight into the interaction

subsequent results are based on this modified céjrf- th(-? various a_lspect_s of dialogue and silence char-
pUS. acteristics, we investigated a number of features au-

tomatically extracted from the dialogue recordings

3.2 Tum-Internal Pause Duration Distribution ~ and system logs. Each feature is used to split the
Overall there were 9563 pauses in the corpus, whic*t%et of sﬂence_s Into ‘.WO subsets. For nominal fea-
res, all possible splits of one value vs all the others

amounts to 0.53 pauses per turn. The latency / F . . )
. - are tested, while for continuous and ordinal features,
rate trade-off for the corpus is plotted in Figure 1.

) ; . we tried a number of thresholds and report the one
This curve follows an exponential function (t## . .
. . . that yielded the strongest results. In order to avoid
on the linear regression of latency dmwg(F A) is

0.99). This stems from the fact that pause duratior(?)(treme cases that split the data into one very large

. oo~ —and one very small set, we excluded all splits where
approximately follows an exponential distribution,

. : ither of the two sets had fewer than 1000 silences.
which has been observed by others in the past (Ja . . . . :
. _ . | the investigated splits are reported in Appendix,
and Feldstein, 1970; Lennes and Anttila, 2002). .
- 2" in Table 1 and 2. We compare the two subsets gen-
One consequence of the exponential-like distribuz o 1y 6 ch possible split in terms of two metrics:
tion is that short pauses strongly dominate the distri- y P P

bution. We decided to exclude silences shorter than ¢ Gap Ratio (GR), defined as the proportion of
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gaps among all silences of a given set. We rezonfusion on the user’s side, whereas responses to

port the absolute difference in GR between thepen questions also have pauses in the normal flow

two sets, and use chi-square in a 2x2 desigof speech.

(pause vs gap and one subset vs the other) to _

test for statistical significance at the 0.01 level3-3-3 Semantics

using Bonferroni correction to compensate for Semantic features are based on partial speech

multiple testings. recognition results and on their interpretation in the

current dialogue context. We use the most recent

e Mean pause duration. The strength of the infecognition hypothesis available at the time when

teraction is shown by the difference in meanne sjlence starts, parse it using the system’s standard

pause duration, and we use Mann Whitney'$arser and grammar, and match the parse against the

Rank Sum test for statistical significance, agai“expectation agenda” that RavenClaw (Bohus and

at the 0.01 level, using Bonferroni correction. Rudnicky, 2003) maintains. The expectation level

. : o of a partial utterance indicates how well it fits in the
We group features into five categories: discourse,

semantics. prosody. turn-taking. and speaker char current dialogue context. A level of 0 means that
. » prosody, 9, » %e utterance can be interpreted as a direct answer
teristics, described in the following sections.

to the last system prompt (e.g. a "PLACE” con-
3.3.2 Discourse Structure cept as an answer to "Where are you leaving from?”,

Discourse structure is captured by the system’s ¢ Y ES" or a "NO” after a confirmation question).
alogue act immediately preceding the current usépigher Iev_els correspond to utterances that fit in a
turn. In the Let's Go dialogues)7.9% of sys- Droader dialogue context (e.g. a plape name after
tem dialogue acts directly preceding user turns afg€ System asks "Leaving from the airport. Is this
questiond. Of these, 13% are open questions (e.g-Orect?”, or "HELP" in any context). Finally, non-
"What can | do for you?”), 39% are closed ques_gnderstan_dlngs, whlch_ do not match any expecta-
tions (e.g. "Where are you leaving from?”) and 4694100, are given a maiching level afoo.
are confirmation requests (e.g. “Leaving from the Expectation level is strongly related to both fi-
airport. Is this correct?® There are many more nality and pause duration. Pauses following par-
pauses in user responses to open questions tharfigh utterances of expectation level O are signifi-
the other types (cf Table 1). One explanation is th&@ntly more likely to be gaps than those matching
user answers to open questions tend to be long@fY higher level. Also, very unexpected partial ut-
(2046 ms on average, to be contrasted with 1268 nigrances (and non-understandings) contain shorter
for turns following closed questions and 819 ms foPauses than more expected ones. Another indica-
responses to confirmation questions). Converseljvé feature for finality is the presence of a posi-
confirmation questions lead to responses with siglve marker (i.e. a word like "YES” or "SURE") in
nificantly fewer pauses. 78% of such turns conthe partial utterance. Utterances that contain such a
tained only one word, single YES and NO answer@arker are more likely to be finished than others. In
accounting for 81% of these one-word response§ontrast, the effect of negative markers is not signif-
which obviously do not lend themselves to pausedcant. This can be explained by the fact that nega-
Discourse context also has an effect on pause duttiee responses to confirmation often lead to longer
tions, albeit a weak one, with open questions |eadincgorrective utterances more prone to pauses. Indeed,
to turns with shorter pauses. One possible explang}% of complete utterances that contain a positive

tion for this is that pauses after closed and confirmdnarker are single-word, against 67% for negative
tion questions tend to reflect more hesitations and/&harkers.

2The remaining 2.1% belong to other cases such as the usar3.4 Prosody

barging in right after the system utters a statement. . .
3The high number of confirmations comes from the fact that We extracted three types of prosodic features:

Let's Go is designed to ask the user to explicitly confirm evenCOUStiC energy of the last vowel, pitch of the last
concept. voiced region, and duration of the last vowel. Vowel



location and duration were estimated by performin.4 Discussion

phoneme alignment with the speech recognizer. Du- _ _
ration was normalized to account for both vowel andVhat emerges from the analysis above is that fea-

speaker identity. Energy was computed as the logdres from all aspects of dialogue provide informa-
transformed signal intensity on 10ms frames. PitcHON ON silence characteristics. While most previous
was extracted using the Shack toolkit (SjolandeféSearch has focused on prosody as a cue to detect
2004), also at 10ms intervals. For both energy ari@#® end of utterances, timing, discourse, semantic
pitch, the slope of the contour was computed by lin@"d previously observed silences appear to corre-
ear regression, and the mean value was normaliz&§€ more strongly with silence finality in our corpus.
by Z-transformation using statistics of the dialogue] NiS can be partly explained by the fact that prosodic
so-far. As a consequence, all threshold values fépatures are harder to reliably estimate on noisy data

means are expressed in terms of standard deviatighsd that prosodic features are in fact correlated to
from the current speaker’s mean value. higher levels of dialogue such as discourse and se-

Vowel energy, both slope and mean, yielded thgnantics. However, we believe our results make a
highest correlation with silence finality, although itSONg case in favor of a broader approach to turn-

did not rank as high as features from other catd@King for conversational agents, making the most

gories. As expected, vowels immediately preceoo-f all the features that are readily available to such
ing gaps tend to have lower and falling intensitySyStemS' Indeed, particularly in constrained systems

whereas rising intensity makes it more likely that indke Let's Go, higher level features like discourse
turn is not finished. On the other hand, extremel{"d Semantics might be more robust to poor acoustic

high pitch is a strong cue to longer pauses, but On|§,onditions than prosodic features. Still, our findings
happen in 5.6% of the pauses. on mean pause durations suggest that prosodic fea-

tures might be best put to use when trying to pre-
3.3.5 Timing dict pause duration, or whether a pause will occur

Timing features, available from the Interaction® MOt The key to more natural and responsive di-

Manager, provide the strongest cue to finality. Th@/09ue systems lies in their ability to combine all
longer the on-going turn has been, the less likely it i1€S€ features in order to make prompt and robust
that the current silence is a gap. This is true both if#rn-taking decisions.
terms of time elapsed since the beginning of the ut-
terance and number of pauses observed so far. Ths Evaluation of Threshold Decision Trees
latter feature also correlates well with mean pause
duration, earlier pauses of a turn tending tobe longer 1 offline Evaluation Set-Up
than later ones.
o We evaluated the approach introduced in Section 2

3.3.6  Speaker Characteristics on the Let's Go corpus. The set of features was ex-

These features correspond to the observed pausahded to contain a total of 4 discourse features, 6
behavior so far in the dialogue. The idea is that difsemantic features, 5 timing/turn-taking features, 43
ferent speakers follow different patterns in the wayprosodic features, and 6 speaker characteristic fea-
they speak (and pause), and that the system shouloles. All evaluations were performed by 10-fold
be able to learn these patterns to anticipate futurross-validation on the corpus. Based on the pro-
behavior. Specifically, we look at the mean numposed algorithm, we built a decision tree and com-
ber of pauses per utterance observed so far, and theted optimal cluster thresholds for different overall
mean pause duration observed so far for the curreRA rates. We report average latency as a function
dialogue. Both features correlate reasonably wetlf the proportion of turns for which any pause was
with silence finality: a higher mean duration indi-erroneously endpointed, which is closer to real per-
cates that upcoming silences are also less likely formance than silence FA rate since, once a turn has
be final, so does a higher mean number of pausesen endpointed, all subsequent silences are irrele-
per turn. vant.
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We confirmed the offline evaluation’s findings by
implementing the proposed approach in Let's Go’s
== SEMANTIC Interaction Manager. Since prosodic features were
e . not found to be helpful and since their online ex-
: traction is costly and error-prone, we did not include
~~~~ them. At the beginning of each dialogue, the sys-
tem was randomly set as a baseline version, using a
, s . s . 700 ms fixed threshold, or as an experimental ver-
Turn cut-in rate (%) sion using the tree learned from the offline corpus.
Results show that median latency (which includes
Figure 2: Performance of the proposed approach usirgpth the endpointing threshold and the time to pro-
different feature sets. duce the system’s response) is significantly shorter
in the experimental version (561 ms) than in the
baseline (957 ms). Overall, the proposed approach
reduced latency by 50% or more in about 48% of the

First we evaluated each feature set individually. ThiS- However, global results like these might not

results are shown in Figure 2. We concentrate on tﬁgﬂeCt the actual improvement in user experience.

2-6% range of turn cut-in rate where any reasonabl@deed’ we know from human-human dialogues that

operational value is likely to lie (the 700 ms thresh—relat'vely long latencies are normal in some circum-

old of the baseline Let's Go system yields about 40/_g,tances while very short or no latency is expected

cut-in rate). All feature sets improve over the base!! others. The proposed algorithm reproduces some

line. Statistical significance of the result was tested! (NES€ aspects. For example, after open questions,

by performing a paired sign test on latencies for thg/here more uncertain'Fy and ,Va”ab”“Y is expected,
whole dataset, comparing, for each FA rate the préhe experimental version is in fact sllghtly _slower

portion of gaps for which the proposed approac|(|1047 Ims v; 993 ms). On the other hand, it is Laster
gives a shorter threshold than the single-threshoﬁ;@fter close quespon (_800 ms vs 965 ms) and par-
baseline. Latencies produced by the decision trégularly after confirmation requests (324 ms vs 965

for all feature sets were all found to be significantl;{ns)’ Whr']Ch at:_e ;nore pre(_jlctable _pal;ts hOf t?\? dl?)-l
shorter < 0.0001) than the corresponding base- 09u€ Where nigh reSponsIveness 1S oth achievable
line threshold. and natural. This latter result indicates that our ap-

he b forming f , ics. f E:oach has the potential to improve explicit confir-
The best performing feature set is semantics, fo; ations, which are often thought to be tedious and

lowed by' timing, prgsody, speaker, a'nd discours?rritating to the user.

The maximum relative latency reductions for each

feature set range from 12% to 22%. When using a  conclusion

features, the performance improves by a small but

significant amount compared to any single set, up tm this paper, we described an algorithm to dynami-
a maximum latency reduction of 24%. This confirmgally set endpointing threshold for each silence. We
that the algorithm is able to combine features effe@nalyzed the relationship between silence distribu-
tively, and that the features themselves are not cortien and a wide range of automatically extracted fea-
pletely redundant. However, while removing semantures from discourse, semantics, prosody, timing and
tic or timing features from the complete set degradespeaker characteristics. When all features are used,
the performance, this is not the case for discoursthe proposed method reduced latency by up to 24%
speaker, nor prosodic features. This result, simildor reasonable false alarm rates. Prosodic features
to what (Sato et al., 2002) reported in their own exdid not help threshold optimization once other fea-
periment, indicates that prosodic features might bieire were included. The practicality of the approach
redundant with semantic and timing features. and the offline evaluation results were confirmed by

700

500

Average latency (ms)

300

4.2 Performance of Different Feature Sets
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Category | Feature test Number of Gap Ratio | Difference
Silences

Timing Pause start time 3000 ms 1836 /19260 | 65% /87% -23%
Timing Pause number 2 3379/17717| 69% / 88% -19%
Discourse| Previous question is open 3376/17720| 70% / 88% -18%
Semantics| Utterance expectation level 1 10025/11071 78% /92% -14%
Individual | Mean pause duratior 500 ms 1336/19760| 72% / 86% -14%
Semantics| Utterance contains a positive marker 4690 /16406 | 96% / 82% 13%
Prosody | Mean energy of last vowet 5 1528 /19568 | 74% / 86% -12%
Prosody | Slope of energy on last vowel 0 6922 /14174 | 78% / 89% -10%
Individual | Mean number of pauses per utteranc8 | 1929/19267 | 76% / 86% -10%
Semantic | Utterance is a non-understanding 6023/15073 | 79% / 88% -9%
Discourse| Previous question is a confirmation 8893/12203| 90% / 82% 8%
Prosody | Duration of last vowel> 1 1319/19777| 78% / 86% -8%
Prosody | Mean pitch on last voiced region 5 1136/19960| 92% / 85% 7%
Prosody | Slope of pitch on last voiced region 0 6617 /14479| 82% /87% -4%
Semantics| Utterance contains a negative marker | 2667 /18429| 87% / 85% 2%*
Discourse| Previous question is closed 8451 /12645| 86% / 85% 1%*

Table 1: Effect of Dialogue Features on Pause Finality. In columns 3 and 4, the first number is for silences for which
the condition in column 2 is true, while the second number is for those silences where the condition is false. * indicates
that the results are not statistically significant at the 0.01 level.

Category | Feature test Number of | Mean pause | Difference
Pauses | Duration (ms) (ms)
Prosody | Mean pitch on last voiced region 4 172 /2911 608 / 482 126
Semantics Utterance Expectation Leved 4 2202 /881 475 /526 -51
Prosody | Slope of energy on last vowe! 1 382/2701 446 / 495 -39
Timing Pause number 2 1031 /2052 459 /504 -45
Discourse| Previous question is open 1015/2068| 460/504 -43
Individual | Mean pause duratior 500 ms 370/2713 455 /494 -39*
Prosody | Mean energy of last vowet 4.5 404 /2679 456 / 494 -38*
Semanticsg Utterance contains a positive marker 211/2872 522 /487 35*
Discourse| Previous question is closed 117871905 510/477 33*
Timing Pause start time 3000 ms 650/ 2433 465/ 496 -31*
Semantic | Utterance is a non-understanding 124771836 472/502 -30*
Prosody | Duration of last vowel> 0.4 1194 /1889 507 /478 29*
Individual | Mean number of pauses per utterapc@ | 461 /2622 474 ] 492 -19*
Semanticg Utterance contains a negative marker | 344 /2739 504 /488 16*
Prosody | Slope of pitch on last voiced segmentd | 1158 /1925 482/494 -12*
Discourse| Previous question is a confirmation 867 /2216 496 / 487 o9*

Table 2: Effect of Dialogue Features on Pause Duration. In columns 3 and 4, the first number is for silences for which
the condition in column 2 is true, while the second number is for those silences where the condition is false. * indicates
that the results are not statistically significant at the 0.01 level.



Let (K,,) be a set ofx silence clusters, the goal is to set the thresh¢#ig that minimize overall mean
latency, while yielding a fixed, given number of false alarfdet us defing7,, the number of gaps among
the silences of<,,. For each cluster, let us defitig, (6,,) the number of false alarms yielded by threshold
0,, in clustern, and the total latency,, by:

Assuming pause durations follow an exponential distribution, as shown in Section 3, the following relation
holds betweed.,, andE,,:

Ln(6n)
€ Hn = /Bn X En(en) (4)
whereux and g are cluster-specific coefficients estimated by linear regression in the log domain. If we
take the log of both sides, we obtain:

Ln(an) = Hn X lOQ(ﬁn X En(en)) (5)

Theorem 1. If (6,) is a set of thresholds that minimizés, L,, such that)" FE,(6,) = E, then

JAs.t.Vn, 2 (0,) = A

Informal proof. The proof can be done by contradiction. Let us assyéng is a set of thresholds that
minimizes) . L,, and3(p, q)s.t.%(ep) > %(Qq). Then, there exists small neighborhoodgpandé,
whereL,(E,) andL4(E,) can be approximated by their tangents. Since their slopes differ, it is possible to
find a smalle such that the decrease in FA yieldeddyy+ ¢ is exactly compensated by the increase yielded
by 8, — ¢, but the reduction in latency ik, is bigger than the increase I,, which contradicts the fact
that(6,,) minimizesL. O

From Theorem 1, we gélds.t.vn4z= = A. Thus, by deriving Equation 8= = A which givesE,, = 4.

Given that)" E,, = F, Zf{‘" = E. Hence, A = % From 5, we can infer the values &f,(6,,) and,
using 3, the optimal thresholt), for each cluster:

 Ha X log(By, x Jgﬁ:)

n — Gn

(6)

where the values qf,, and,, can be estimated by linear regression from the data based on 5.

Figure 3:Derivation of the formula for optimal thresholds
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Response-Based Confidence Annotation for Spoken Dialogue Systems

Alexander Gruenstein
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Abstract tems which try to allow for greater naturalness and
variation in user input.
Spoken and multimodal dialogue systems typ- Traditionally, dialogue systems have relied on

ically make use of confidence scores to choose
among (or reject) a speech recognizer’s N-
best hypotheses for a particular utterance. We
argue that it is beneficial to instead choose

confidence scores assigned by the speech recognizer
to detect speech recognition errors. In a typical
setup, the dialogue system will choose to either ac-

among a list of candidate systemsponses cept (that is, attempt to understand and respond to)
We propose a novel method in which a con- or reject (that is, respond to the user with an indica-
fidence score for each response is derived tion of non-understanding) an utterance by thresh-
from a classifier trained on acoustic and lex- olding this confidence score.

ical features emitted by the recognizer, as Stating the problem in terms of choosing whether
well as features culled from the generation of

the candidate response itself. Our response- or not to accept_a particular uttera_mce for process-
based method yields statistically significant ~ iNg, however, misses the larger picture. From the
improvements in F-measure over a baselinein ~ USer’s perspective, what is truly important is whether
which hypotheses are chosen based on recog-  or not the system’s response to the utterance is cor-
nition confidence scores only. rect. Sometimes, an errorful recognition hypothe-
sis may result in a correct response if, for example,
proper names are correctly recognized; conversely,
a near-perfect hypothesis may evoke an incorrect re-
The fundamental task for any Spoken dia|ogue sysponse. In |Ight of this, the problem at hand is better
tem is to determine how to respond at any given timtrmulated as one of assigning a confidence score
to a user's utterance. The challenge of understantP a system’s candidate response which reflects the
ing and correctly responding to a user’s natural larProbability that the response is an acceptable one.
guage utterance is formidable even when the wordbthe system can't formulate a response in which it
have been perfectly transcribed. However, dialogugas high confidence, then it should clarify, indicate
system designers face a greater challenge becadis#-understanding, and/or provide appropriate help.
the speech recognition hypotheses which serve asln this paper, we present a method for assign-
input to the natural language understanding compdag confidence scores to candidate system responses
nents of a system are often quite errorful; indeed, by making use not only of features obtained from
is not uncommon to find word error rates of 20-30%he speech recognizer, but also of features culled
for many dialogue systems under development in rérom the process of generating a candidate system
search labs. Such high error rates often arise dueitesponse, and derived from the distribution of can-
the use of out-of-vocabulary words, noise, and thdidate responses themselves. We first compile a list
increasingly large vocabularies of more capable sysf unique candidate system responses by processing

1 Introduction
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each hypothesis on the recognizer’s N-best list. Weso
then train a Support Vector Machine (SVM) to iden-
tify acceptable responses. When given a novel ut4o}
terance, candidate responses are ranked with scores
output from the SVM. Based on the scores, the sysso}
tem can then either respond with the highest-scoring
candidate, or reject all of the candidate responsespt
and respond by indicating non-understanding.
Part of the motivation for focusing our efforts on 1o}
selecting a system response, rather than a recogni-
tion hypothesis, can be demonstrated by counting o
the number of unique responses which can be de- 0
rived from an N-best list. Figure 1 plots the mean
number of unique system responses, parses, ap@ure 1: The mean N-best recognition hypothesis list
recognition hypotheses given a particular maximuriength, mean number of unique parses derived from the
N-best list length; it was generated using the dath-best list of recognition hypotheses, and mean number
described in section 3. Generally, we observe th&f unique system responses derived from those parses,
about half as many unique parses are generated B¢" & maximum recognition N-best list length.
recognition hypotheses, and then half again as many
unique responses. Since many hypotheses evoke the Related Work
same response, there is no value in discriminating
among these hypotheses. Instead, we should aifhere has been much research into deriving
to gain information about the quality of a responseltterance-level confidence scores based on features
by pooling knowledge gleaned from each hypothesigerived from the process of speech recognition. The
evoking that response. baseline utterance-level confidence module we make
We expect a similar trend of multiple hypothe-use of in this paper was introduced in (Hazen et al.,
ses mapping to a single parse in any dialogue syg002); we use a subset of the recognizer-derived fea-
tem where parses contain a mixture of key syntadures used by this module. In it, confidence scores
tic and semantic structure—as is the case here—are derived by training a linear projection model to
where they contain only semantic informatiang, differentiate utterances with high word error rates.
slot/value pairs). Parsers which retain more synThe utterance-level confidence scores are used to de-
tactic structure would likely generate more uniqué&ide whether or not the entire utterance should be
parses, however many of these parses would pro@ccepted or rejected, while the decision as to how
ably map to the same system response since a te-respond is left out of the classification process.
sponse doesn't typically hinge on every syntactic deQf course, most other recognizers make use of utter-
tail of an input utterance. ance or hypothesis level confidence scores as well;
The remainder of our discussion proceeds as fosee, for example (San-Segundo et al., 2000; Chase,
lows. In section 2 we place the method presentet®97).
here in context in relation to other research. In sec- (Litman et al., 2000) demonstrate the additional
tion 3, we describe the City Browser multimodal di-use of prosodic features in deriving confidence
alogue system, and the process used to collect dat@ores, and transition the problem from one of word
from users’ interactions with the system. We themrror rate to one involving concept error rate, which
turn to our techniques for annotating the data iis more appropriate in the context of spoken dia-
section 4 and describe the features which are ejegue systems. However, they consider only the top
tracted from the labeled data in section 5. Finallyrecognition hypothesis.
we demonstrate how to build a classifier to rank can- Our work has been heavily influenced by (Gabs-
didate system responses in section 6, which we evald and Lemon, 2004), (Bohus and Rudnicky, 2002),
uate in section 7. (Walker et al., 2000), and (Chotimongkol and Rud-

Mean N-best Length
‘‘‘‘‘ Mean Unique Parses
Mean Unique Responses

10 20 30 40 50
Maximum N-best length
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nicky, 2001) all of which demonstrate the utility of capable of assigning conditional probabilities to its
training a classifier with features derived from theoutput given its input. The method hinges on proba-
natural language and dialogue management complaifistic inference, yet it is often problematic to map
nents of a spoken dialogue system to better prediatspeech recognizer’s score to a probability as their
the quality of speech recognition results. The worlapproach requires. In addition, the method is evalu-
described in (Gabsdil and Lemon, 2004) is espeted only in a toy domain, using a few sample utter-
cially relevant, because, as in our experiments, thences.

dialogue system of interest provides for map-based

multimodal dialogue. Indeed, we view the exper3 Experimental Data

iments presented here as extending and validatin

the techniques developed by Gabsdil and Lemoﬂ%e data used for the experiments which follow

Our work is novel. however. in that we reframeere collected from user interactions with City

the problem as choosing among system respons€§OWSer, @ web-based, multimodal dialogue system.
rather than among recognizer hypotheses. By ré: th_c_)r_ough description _of the archlt(_acture and ca-
casting the problem in these terms, we are able Rebilities _can be found in (Gruens'Feln et al., 2096;
integrate information from all recognition hypothe-Gruenstein and Seneff, 2007). Briefly, the version
ses which contribute to a single response, and to eRt City Browser used for the experiments in this pa-
tract distributional features from the set of candiPer allows users to access information about restau-
date responses. Another key difference is that offfts, museums, and subway stations by navigating
method produces confidence scores for the candf @ Web page on their own computers. They can
date responses themselves, while the cited metho@iSC locate addresses on the map, and obtain driving
produce a decision as to whether an utterance, giréctions. Users can interact with City Browser's
a particular recognition hypothesis, should be adh@p-based graphical user interface by clicking and

cepted, rejected, or (in some cases), ignored by tif@wing; and they can speak with it by talking into
dialogue system. their computer microphone and listening to a re-

In addition, because of the small size of theponse from their speakers. Speech recognition is

dataset used in (Gabsdil and Lemon, 2004), the aR€rformed via the SUMMIT recognizer, using a tri-
thors were limited to testing their approach withdram language model with dynamically updatable

leave-one-out cross validation, which means thaf!@sses for proper nouns such as city, street, and
when testing a particular user’s utterance, other uféstaurant names—see (Chung et al., 2004) for a de-

terances from the same user also contributed &§'iPtion of this capability. Speech recognition re-
the training set. Their method also does not pro3ults were parsed by the TINA parser (Seneff, 1992)
vide for optimizing a particular metric—such as F-USing a hand-crafted grammar. A discourse mod-
measure—although, it does solve a more difficult!® (Filisko and Seneff, 2003) then Integrates con-
3-class decision problem. Finally, another key girtextual k_nowledge. The fully fo_rmed request is sent
ference is that we make use of argram language to the dlalqgue manager, which attempts to craft
model with a large vocabulary of proper names®" appropriate systgm response—both in terms of
whereas theirs is a context-free grammar with & verbal and graphical response. The GENESIS
smaller vocabulary. system (Seneff, 2002) uses hand-crafted generation

(Niemann et al., 2005) create a dialogue Syg_ules to produce a natural language string, whigh is
tem architecture in which uncertainty is propagateg€nt t©© an off-the-shelf text-to-speech synthesizer.
across each layer of processing through the use Bn2lly, the user hears the response, and the graphi-
probabilities, eventually leading to posterior probaC@! User interface is updated to show, for example, a
bilities being assigned to candidate utterance intef€t Of s€arch results on the map.

retations. Unlike our system, in which we train g _
Eingle classifier using art))/itrary features derived fron%'1 Data Collection
each stage of processing, each component (recobhe set of data used in this paper was collected
nizer, parseretg is trained separately and must beas part of a controlled experiment in which users
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worked through a set of scenarios by accessing tfe Data Annotation

City Browser web page from their own computers,_. the inf i iated with h utt
whenever and from wherever they liked. Interestetdﬂ"'ven € Information assoclated with each utter-

readers may refer to (Gruenstein and Seneff, 200?2‘09 n tth(%[r:ia?s?t, itis potssmle t(;) Ir;p!a;zhan ut-
for more information on the experimental setup, aifrance to the dialogue system and obtain the same

well as for an initial analysis of a subset of the dat esponse—both the spoken response and any up-

used here. Users completed a warmup scenario _dtej [nat(:]e o the.GUI_WhIChtW?E orlg;]tlnally pro-l
which they were simply told to utter “Hello City vided 1o he user in response fo the utierance. in

Browser” to ensure that their audio setup and weBart'CUIar’ we can replicate threply_frame which

browser were working properly. They then worked® passed to GENESIS in order 1o produce a nat-

through ten scenarios presented sequentially, folll-ral language response; and we can replicate the

lowed by time for “free play” in which they could gui_reply_framewhich is sent to the GUI so that it

use the system however they pleased. can be properly updatee.g, to show the results of
a search on the map).

As users interact with City Browser, logs are The ability t licate th tom’ )
made recording their interactions. In addition to € ability {0 replicate the systems response 1o

recording each utterance, every time a user CIiCkesach utt'era'nce also gives'us the flexibility tq try out
or draws with the mouse, these actions are recordggemat've inputs to the dialogue system, given the

and time-stamped. The outputs of the various staggglogue state q’ghe tlmehof the utterance.l S0, in ad(—j
of natural language processing are also logged, ifion to transcribing each utterance, we also passe

that the “dialogue state” of the system is trackeof.aaCh transcript through the dialogue system, yield-

This means that, associated with each utterance i & SyStém response. In the1 experiments that fol-
low, we considered the system’s response to the tran-

]E(r;rer:;;gfl:et 's, among other things, the following Inscribed utterance to be tleerrectresponse for that
utterance. It should be noted that in some cases,
e arecording of the utterance; even given the transcript, the dialogue system may
e the current dialogue state, which includes inrejectand respond by signally non-understanding—
formation such as recently referred to entities, for example, the utterance can’t be parsed. In
for anaphora resolution; these cases, we take the resporgject to be the
e the state of the GUI, including: the current po-correct response.

sition and bounds of the map, any points of in- We note that labeling the data in this fashion

terest (POIs) displayed on the mac; has limitations. Most importantly, the system may
¢ the contents of any dynamically updatable lanrespond inappropriately even to a perfectly tran-
guage model classes; and scribed utterance. Such responses, given our label-

e time-stamped clicks, gestures, and other usémg methodology, would incorrectly be labeled as
interface interaction performed by the user beeorrect In addition, sometimes it may be the case
fore and during speech. that there are actually several acceptable responses

The utterances of 38 users who attempted motsq a particular utterances.
or all of the scenarios \_/vere_ transcribed, providin% Feature Extraction
1,912 utterances used in this study. The utterances
were drawn only from the 10 “real” scenarios; ut-For each utterance, our goal is to produce a set of
terances from the initial warmup and final free playcandidate system responses, where each response is
tasks were discarded. In addition, a small number @flso associated with a vector of feature values to be
utterances were eliminated because logging glitchesed to classify it asicceptableor unacceptable
made it impossible to accurately recover the diaResponses are labeled asceptableif they match
logue system’s state at the time of the utterance. the system response produced from the transcrip-
The classn-gram language model used for datdion, and asinacceptabl®therwise.
collection has a vocabulary of approximately 1,200 We start with the N-best list output by the speech
words, plus about 25,000 proper nouns. recognizer. For each hypothesis, we extract a set
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Recognition Distributional Response
(a) Best across hyps: (b) Drop: (c) Other: percenttop_3 responsdype
total_scoreperword total.drop meanwords percenttop.5 numfound
acousticscoreperbound| acousticdrop top_rank percenttop.10 POl.type
lexical scoreperword lexical.drop | n-bestlength percentnbest is_subset
top_responseaype parsestatus
responsgank | geographicafilter
num.distinct

Table 1: Features used to train the acceptability classifier. Nine features are derived from the recognizer; seven have
to do with the distribution of responses; and six come from the process of generating the candidate response.

of acoustic, lexical, and total scores from the recog- Finally, features derived from the response itself,
nizer. These scores are easily obtained, as they coand natural language processing performed to de-
prise a subset of the features used to train the regve that response, are also calculated. The high-
ognizer’s existing confidence module; see (Hazen &vel type of the response, as well as the type and
al., 2002). The features used are shown in Table Llaumber of any POls returned by a database query
We then map each hypothesis to a candidate syare used as features if they exist, as is a boolean
tem response, by running it through the dialoguédicator as to whether or not these results are a
system given the original dialogue state. From thessubset of the results currently shown on the dis-
outputs, we collect a list afniqueresponses, which play. [If any sort of “geographical filter”, such as
is typically shorter than the recognizer's N-best listan address or circled region, is used to constrain the
as multiple hypotheses typically map to the same reearch, then the type of this filter is also used as a
sponse. feature. Finally, the “best” parse status of any hy-
We now derive a set of features for each uniqupotheses leading to this response is also used, where
response. First, each response inherits the best valfm!_parse = robust_parse = no_parse.
for each recognizer score associated with a hypoth- Table 1 lists all of the features used to train the
esis which evoked that response (see Table 1a). ttassifier, while Table 3 (in the appendix) lists the
addition, the drop in score between the responsgmssible values for the non-numerical features. Fig-
score for each recognition feature and the top valugre 3 (in the appendix) gives an overview of the fea-
occurring in the N-best list is used as a feature (seare extraction process, as well as the classification
Table 1b). Finally, the rank of the highest hypothemethod described in the next section.
sis on the N-best list which evoked the response, the
mean number of words per hypothesis evoking thg Classifier Training and Scoring
responses, and the length of the recognizer’'s N-best
list are used as features (see Table 1c). For a given utterance, we now have a candidate list
Distributional features are also generated baseaf responses derived from the speech recognizer’s
on the distribution of hypotheses on the N-best ligN-best list, a feature vector associated with each re-
which evoked the same response. The percent gponse, and a label telling us the “correct” response,
times a particular response is evoked by the top 3s derived from the transcript. In order to build a
top 5, top 10, and by all hypotheses on the N-beslassifier, we first label each response as eittter
list are used as features. Features are generatedcaptableor unacceptabldy comparing it to the sys-
well, based on the distribution of responses on thiem’s response to the transcribed utterance. If the
list of unique responses. These features are: the iniwo responses are identical, then the response is la-
tial ranking of this response on the list, the numbebeled asacceptable otherwise, it is labeled asn-
of distinct responses on the list, and the type of reacceptable This yields a binary decision problem
sponse that was evoked by the top hypothesis on tfa each response, given a set of features. We train
recognizer N-best list. a Support Vector Machine (SVM) to make this deci-
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sion, using the Weka toolkit, version 3.4.12 (Witterin scores among the responses, the number classi-

and Frank, 2005). fied asacceptable the drop between the top score
Given a trained SVM model, the procedure forand the second-ranked scoeé:

processing a novel utterance is as follows. First,

classify each response (and its associated featufe Evaluation

vector) on the response list for that utterance usin\% )
the SVM. By using a logistic regression model fit onV/e €valuated the response-based method using the
the training data, an SVM score betweet and 1 data described in section 3, N-best lists with a maxi-

for each response is yielded, where responses wifium length of 10, and an SVM with a linear kernel.
positive scores are more likely to heceptableand Ve Nnote that, in the live system, two-pass recogni-

those with negative scores are more likely taupe 10N IS performed for some utterances, in which a
acceptable key concept recognized in the first pasgy( a city

Next, the SVM scores are used to rank the list of@Me) causes a dynamic update to the contents of

responses. Given a ranked list of such responses, fé&!2ss In then-gram language modek(g, a set
dialogue system has two options: it can choose tHY Stréét names) for the second pass—as in the ut-
top scoring response, or it castainfrom choos- €ranceShow me thirty two Vassar Street in Cam-
ing any response. The most straightforward methdgfid9€ where the city nameGambridg¢ triggers

for making such a decision is via a threshold: if thé Sécond pass in which the streets in that city are
score of the top response is above a certain thres§YeN a higher weight. This two-pass approach has
old, this response is accepted: otherwise, the systetfi€n shown previously to decrease word and con-
abstains from choosing a response, and instead GEPt €rror rates (Gruenstein and Seneff, 2006), even
sponds by indicating non-understanding. Figure though it can be susceptible to errors in understand-

(in the appendix) provides a graphical overview of"d: However, since all street names, for example,
the response confidence scoring process. are active in the vocabulary at all times, the two-

At first blush, a natural threshold to choose is 0P@SS approach is not strictly necessary to arrive at

as this marks the boundary betwesteptableand the cqrrect hypotheses. Hence, for simplicity, in the
unacceptableHowever, it may be desirable to Opti_experlments reported here, we do not integrate the

mize this threshold based on the desired characterf¥/0-Pass approach—as this would require us to po-
tics of the dialogue system—in a mission-critical apIen“a”y do a second recognition pass for every can-

plication, for example, it may be preferable to accepfidate response. In a live system, a good strategy
only high-confidence responses, and to clarify othefight be to consider a second recognition pass based
wise. We can optimize the threshold as we like using" the top few candidate responses alone, which

either the same training data, or a held-out develogrould produce a new set of candidates to be scored.

ment set, so long as we have an objective function Ye performed 38-fold cross validation, where in
with which to optimize. In the evaluation that fol- €ach case the held-out test set was comprised of all

lows, we optimize the threshold using the F-measuf@€ utterances of a single user. This ensured that we
on the training data as the objective function. |pbtained an accurate prediction of a novel user’s ex-

would also be interesting to optimize the thresholderience, glthough it meant that the test sets were not
in a more sophisticated manner, such as that dev&f equal size. We calculated F-measure for each test
oped in (Bohus and Rudnicky, 2005) where task suset, using the methodology described in figure 4 (in
cess is used to derive the cost of misunderstandingi€ appendix).
and false rejections, which in turn are used to set a i
rejection threshold. /.1 Baseline

While a thresholding approach makes sense, oth8s a baseline, we made use of the existing confi-
approaches are feasible as well. For instance, a sefence module in the SUMMIT recognizer (Hazen
ond classifier could be used to decide whether or net al., 2002). The module uses a linear projection
to accept the top ranking response. The classifienodel to produce an utterance level confidence score
could take into account such features as the sprebdsed on 15 features derived from recognizer scores,
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Method F

Recognition Confidence (Baseline) .62 1
Recog Features Only .62 1
Recog + Distributional .67 . 1
Recog + Response 71* £ 1
Recog + Response + Distributional 2% g 1

Table 2: Average F-measures obtained via per-user
cross-validation of the response-based confidence scor-

ing method using the feature sets described in Section 5, .| ——Recognition + Response + DistributionalT
as compared to a baseline system which chooses the top , .. L=~ Recognition Confidence (Baseline)
hypothesis if the recognizer confidence score exceeds an oMY sepostve rate ]

optimized rejection threshold. The starred scores are a

statistically significant (* indicategs < .05, ** indicates  Figure 2: Receiver Operator Characteristic (ROC) curves
p < .01) improvement over the baseline, as determine¢averaged across each cross-validation fold) comparing
by a paired-test. the baseline to the best response-based model.

and from comparing hypotheses on the N-best lisno matter what we set our tolerance for false posi-
In our evaluation, the module was trained and testdiyes to be.
on the same data as the SVM model using cross- The above results were obtained by using an SVM
validation. with a linear kernel, where feature values were nor-
An optimal rejection threshold was determinedmalized to be on the unit interval. We also tried
as for the SVM method, using the training data wittusing a quadratic kernel, retaining the raw feature
F-measure as the objective function. For each uttevalues, and reducing the number of binary features
ance, if the confidence score exceeded the thresholty, manually binning the non-numeric feature val-
then the response evoked from the top hypothesis ¢#s. Each change resulted in a slight decrease in
the N-best list was chosen. F-measure.

7.2 Results 8 Conclusion and Future Work

Table 2 compares the baseline recognizer confiden@¢e recast the problem of choosing among an N-best
module to our response-based confidence annotatist of recognition hypotheses as one of choosing the
The method was evaluated using several subsetshdst candidate system response which can be gen-
the features listed in Table 1. Using features deriveerated from the recognition hypotheses on that list.
from the recognizer only, we obtain results compawe then demonstrated a framework for assigning
rable to the baseline. Adding the response and disenfidence scores to those responses, by using the
tributional features yields a 16% improvement ovescores output by an SVM trained to discriminate be-
the baseline system, which is statistically significanfween acceptable and unacceptable responses. The
with p < .01 according to a pairetitest. While the classifier was trained using a set of features derived
distributional features appear to be helpful, the fegrom the speech recognizer, culled from the genera-
ture values derived from the response itself are th#on of each response, and calculated based on each
most beneficial, as they allow for a statistically sigresponse’s distribution. We tested our methods us-
nificant improvement over the baseline when pairethg data collected by users interacting with the City
on their own with the recognizer-derived features. Browser multimodal dialogue system, and showed
Figure 2 plots ROC curves comparing the perforthat they lead to a significant improvement over a
mance of the baseline model to the best respongdeaseline which makes an acceptance decision based
based model. The curves were obtained by varyingn an utterance-level recognizer confidence score.
the value of the rejection threshold. We observe that The technique developed herein could be refined
the response-based model outperforms the baselimeseveral ways. First and foremost, it may well be
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possible to find additional features with discrimina-£d Filisko and Stephanie Seneff. 2003. A context res-
tory power. Also, the decision as to whether or not olution server for the Galaxy conversational systems.

to choose the top-scoring response could potentially In Proc. of EUROSPEECH
. P . gresp 'p .I\>I/alte Gabsdil and Oliver Lemon. 2004. Combining
be improved by choosing a more appropriate metric . ; : .
acoustic and pragmatic features to predict recognition

than F-measure as the objective function, or perhapspencoIrmance in spoken dialogue systems Ptac. of

by using a second classifier at this stage. Association for Computational Linguistics
Finally, our experiments were performed off-line. Alexander Gruenstein and Stephanie Seneff.  2006.

In order to better test the approach, we plan to de- Context-sensitive language modeling for large sets of
ploy the classifier as a component in the running di- ProPer nouns in muitimodal dialogue systems. In

alogue system. This presents some processing timeproc' of IEEE/ACL 2006 Workshop on Spoken Lan-
guage Technology

constraints (as multiple candidate responses must Rfgxander Gruensteéin and Stephanie Seneff. 2007. Re-
generated); and it introduces the confounding factor |easing a multimodal dialogue system into the wild:

of working with a recognizer that can make multi- User support mechanisms. Proc. of the 8th SIGdial
ple recognition passes after language model recon-Workshop on Discourse and Dialogyeages 111-119.

figuration. These challenges should be tractable féiexander Gruenstein, Stephanie Seneff, and Chao
N-best lists of modest length. Wang. 2006. Scalable and portable web-based

multimodal dialogue interaction with geographical
K led databases. IRroc. of INTERSPEECH
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Recognition N-best

Hypothesis Rank S S, S, . i DS Response Parse . i
thirty two vassal street in cambridge 0 453 | 285 26.5 P> R, FULL |
thirty two vassar street in cambridge 1 45.0 27.1 30.5 : > R, FULL :
thirty two vassar street in in cambridge 2 44.2 26.0 30.4 : > R, ROBUST :
at thirty two vassar street <noise> 3 40.1 26.5 29.4 : > R, FULL :
at thirty two vassal street in cambridge 4 39.5 26.3 29.0 i > R, FULL i
thirty two vassar street cambridge <noise> 5 384 | 258 28.4 P> R, FULL |
thirty two vassar street in canton 6 38.0 25.8 28.3 : > R, FULL :
thirty two vassal street in in canton 7 335 225 275 : > R, ROBUST :
twenty vassar in street in zoom 8 324 22.3 26.3 : > R, NONE :
thirty two vassar street in cambridge <noise> 9 32.0 19.5 26.7 i > R, FULL i

Response List
Response Rank S S, S, %Top3 %Top5 Dist. Parse . i SVM Score
R, 0 453 28.5 26.5 .33 8 5 FULL : > 42
R, 1 45.0 27.1 30.5 .66 2 5 FULL : > 73 >R,
R, 6 38.0 25.8 28.3 0.0 0.0 5 FULL : > -.32
R, 7 335 225 275 0.0 0.0 5 ROBUST : > -.55
R, 8 324 223 36.3 0.0 0.0 5 NONE i > -.92

Figure 3: The feature extraction and classification process. The top half of the digram shows how an N-best list
of recognizer hypotheses, with associated scores from the recognizer, are processed by the dialoguBSystem (
produce a list of responses. Associated with each response is a set of feature values derived from the response itself,
as well as the process of evoking the resporsg. the parse status). The bottom half of the figure shows how the
unique responses are collapsed into a list. Each response in the list inherits the best recognition scores available from
hypotheses evoking that response; each also has feature values associated with it derived from the distribution of that
response on the recognizer N-best list. Each set of feature values is classified by a Support Vector Machine, and the
resulting score is used to rank the responses. If the highest scoring response exceeds the rejection threshold, then it is
chosen as the system’s response.
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Feature Possible Values

geography, givalirections, goodbye, greetings, halpectionsdid_notunderstandrom_place,

help.directionsdid_not.understando_place, helpdirectionsno_to_or_from_place,
responseype help.directionssubway, hidesubwaymap, historycleared, listcuisine, listname, liststreet,

top_responseype | nocircleddata, nadata, nomatchnear, nonuniguenear, ok, panninglown, panningeast,

panningsouth, panningip, panningwest, presupgailure, providecity_for_address, refinedesult,

rejector_give_help, showaddress, showubwaymap, spealproperties, speagroperty,

speakverify_false, speakverify_true, welcomegui, zooming, zoomingn, zoomingout

POltype none, city, museum, neighborhood, restaurant, substatyon

parsestatus no_parse, robusparse, fullparse

geographicafilter none, address, circle, line, ligtem, mapbounds, museum, neighborhood, point, polygon, restaurant,
subwaystation, city

Table 3: The set of possible values for non-numerical features, which are converted to sets of binary features.

Casel Response Score Type Label
R, is acceptable and is not reject
0 P J R, Sy speak_property acceptable
SO >T- T.P. R, S, list_cuisine unacceptable
So <T->FN. R, S, speak_property unacceptable
Case I: Example Ranked Response List
Case II Response Score Type Label
ndidate r n
No cand dj eb leSpo 3¢S a?cepljabtle’ R, Sy speak_property unacceptable
or acceptable response is rejec
R, S, list_cuisine unacceptable
. (a) (b) R S speak_propert unacceptable
R . R . 2 2 peak_property P
¢ 18 not reject o 1s reject :
So >T->FP. SO >T7T-> TN. R, S5 reject unacceptable
SO <T->TN. SO <T->TN. R, S, zooming_out unacceptable
Case I1: Example Ranked Response List
Case 11 Response Score Type Label
R, (with n > 0) is acceptable
"( di ) ¢ rei tp R, So speak_property unacceptable
and 18 not rejec
R, S, list_cuisine acceptable
. (a) (b) R S speak_propert unacceptable
R . R . 2 2 peak_property P
0 18 not reject 018 reject :
SO >T- F.P. SO >T->FN. R, S5 reject unacceptable
S() <T->FN. S() <T->FN. R, S, zooming_out unacceptable

Case II1: Example Ranked Response List

Figure 4: Algorithm for calculating the F-measure confusion matrix of True Positives (T.P.), False Positives (F.P.),
True Negatives (T.N.), and False Negatives (F.N.). The ranking technique described in this paper creates a list of
candidate system responses ranked by their scores. The top scoring responsadsapaadf its score exceeds a
thresholdT, otherwise all candidate responses &jected As such, the problem is not a standard binary decision.

We show all possible outcomes from the ranking process, and note whether each case is counted as a T.P., F.P.,, T.N.,
or F.N. We note that given this algorithm for calculating the confusion matrix, no matter how we set the thiigshold
F-measure will always be penalized if Case Il occurs.
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Abstract

We describe a novel n-best correction model
that can leverage implicit user feedback (in
the form of clicks) to improve performance in
a multi-modal speech-search application. The
proposed model works in two stages. First, the
n-best list generated by the speech recognizer
is expanded with additional candidates, based
on confusability information captured via user
click statistics. In the second stage, this ex-
panded list is rescored and pruned to produce
a more accurate and compact n-best list. Re-
sults indicate that the proposed n-best correc-
tion model leads to significant improvements
over the existing baseline, as well as other tra-
ditional n-best rescoring approaches.

1 Introduction

Supported by years of research in speech recogni-
tion and related technologies, as well as advances
in mobile devices, speech-enabled mobile applica-
tions are finally transitioning into day-to-day use.
One example is Live Search for Windows Mobile
(2008), a speech-enabled application that allows
users to get access to local information by speaking
a query into their device. Several other systems
operating in similar domains have recently become
available (TellMeByMobile, 2008; Nuance Mobile
Search, 2008; V-Lingo Mobile, 2008; VoiceSignal
Search, 2008.)

Traditionally, multi-modal systems leverage the
additional input channels such as text or buttons to
compensate for the current shortcomings of speech
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recognition technology. For instance, after the user
speaks a query, the Live Search for Windows Mo-
bile application displays a confirmation screen that
contains the n-best recognition results. The user
selects the correct hypothesis using the buttons on
the device, and only then the system displays the
corresponding search results (see Figure 1.)

We argue that ideally multi-modal systems
could use the additional, more accurate input chan-
nels not only for confirmation or immediate cor-
rection, but also to learn from the interaction and
improve their performance over time, without ex-
plicit human supervision. For example, in the inte-
raction paradigm described above, apart from
providing the means for selecting the correct rec-
ognition result from an n-best list, the user click on
a hypothesis can provide valuable information
about the errors made by system, which could be
exploited to further improve performance.

Consider for instance the following numbers
from an analysis of logged click data in the Live
Search for Windows Mobile system. Over a certain
period of time, the results Beer and Gear were dis-
played together in an n-best list 122 times. Out of
these cases, Beer was clicked 67% of the time, and
Gear was never clicked. In 25% of the cases when
Beer was selected, Gear was incorrectly presented
above (i.e. higher than) Beer in the n-best list.
More importantly, there are also 82 cases in which
Gear appears in an n-best list, but Beer does not. A
manual inspection reveals that, in 22% of these
cases, the actual spoken utterance was indeed Beer.
The clicks therefore indicate that the engine often
misrecognizes Gear instead of Beer.

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 21-28,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



Ideally, the system should be able to take advan-
tage of this information and use the clicks to create
an automatic positive feedback loop. We can envi-
sion several ways in which this could be accom-
plished. A possible approach would be to use all
the clicked results to adapt the existing language or
acoustic models. Another, higher-level approach is
to treat the recognition process as a black-box, and
use the click feedback (perhaps also in conjunction
with other high-level information) to post-process
the results recognition results.

While both approaches have their merits, in this
work we concentrate on the latter paradigm. We
introduce a novel n-best correction model that le-
verages the click data to improve performance in a
speech-enabled multi-modal application. The pro-
posed model works in two stages. First, the n-best
list generated by the speech recognizer is expanded
with additional candidates, based on results confu-
sability information captured by the click statistics.
For instance, in the 82 cases we mentioned above
when Gear was present in the n-best list but Beer
was not, Beer (as well as potentially other results)
would also be added to form an expanded n-best
list. The expanded list is then rescored and pruned
to construct a corrected, more accurate n-best list.

The proposed approach, described in detail in
Section 3, draws inspiration from earlier work in
post-recognition error-correction models (Ringger
and Allen, 1996; Ringger and Allen, 1997) and n-
best rescoring (Chotimongkol and Rudnicky, 2001;
Birkenes et al., 2007). The novelty of our approach
lies in: (1) the use of user click data in a deployed
multi-modal system for creating a positive feed-
back loop, and (2) the development of an n-best
correction model based on implicit feedback that
outperforms traditional rescoring-only approaches.

Li\re Search Listening...
| =4
|Sammamish WA 4)‘
Choose a new location...
- R @
L % "
bl _ \
Categories Directions
i ﬁ “‘a
=
L)
Traffic Maovies Gas Prices

(b)

=

Later on, in Section 5, we will discuss in more de-
tail the relationship of the proposed approach to
these and other works previously reported in the
literature.

Before moving on to describe the n-best correc-
tion model in more detail, we give a high-level
overview of Live Search for Windows Mobile, the
multi-modal, mobile local search application that
provided the test-bed for evaluating this work.

2  Live Search for Windows Mobile

Live Search for Windows Mobile is an application
that enables local web-search on mobile devices. In
its current version, it allows users to find informa-
tion about local businesses and restaurants, to ob-
tain driving directions, explore maps, view current
traffic, get movie show-times, etc. A number of
screen-shots are illustrated in Figure 1.

Recently, Live Search for Windows Maobile has
been extended with a speech interface (notice the
Speak button assigned to the left soft-key in Figure
1.a.) The speech-based interaction with the system
proceeds as follows: the user clicks the Speak but-
ton and speaks the name of a local business, for
instance A-B-C Hauling, or a general category such
as Vietnamese Restaurants. The application end-
points the audio and forwards it over the data
channel to a server (Figure 1.b.) Recognition is
performed on the server side, and the resulting n-
best list is sent back to the client application, where
it is displayed to the user (Figure 1.c.) The user can
select the correct item from the n-best list, re-speak
the request, or abandon the interaction altogether
by pressing Cancel. Once the user selects an item in
the n-best list, the corresponding search results are
displayed (Figure 1.d.)

Did you say ? Results for A B-C Haullng

1 ABC Towing 1 ABC Moving & Storage

2 A/ C Towing 8902 Imperial Way SW

3 A-B-C Hauling Port Orchard, WA 98367

4 ABC Billing (360) 674-3555 35.19 mi
2 :: E -(FDDT::E Returned 1 result.

7 A B C College

m I

Figure 1. Windows Live Search for Mobile. (a) initial screen; (b) user is speaking a request; (c) n-best list
is presented; (d) final search results are displayed
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Apart from business names, the system also
handles speech input for addresses, as well as
compound requests, such as Shamiana Restaurant
in Kirkland, Washington. For the latter cases, a
two-tier recognition and confirmation process is
used. In the first stage a location n-best list is gen-
erated and sent to the client for confirmation. After
the user selects the location, a second recognition
stage uses a grammar tailored to that specific loca-
tion to re-recognize the utterance. The client then
displays the final n-best list from which the user
can select the correct result.

Several details about the system architecture and
the structure of the recognition process have been
omitted here due to space considerations. For the
interested reader, a more in-depth description of
this system is available in (Acero et al., 2008).

3 Approach

We now turn our attention to the proposed n-best
correction model

3.1 Overview

The model works in two stages, illustrated in Fig-
ure 2. In the first stage the n-best list produced by
the speech recognizer is expanded with several
alternative hypotheses. In the second stage, the
expanded n-best list is rescored to construct the
final, corrected n-best list.

The n-best expansion step relies on a result con-

fusion matrix, constructed from click information.
The matrix, which we will describe in more detail
in the following subsection, contains information
about which result was selected (clicked) by the
user when a certain result was displayed. For in-
stance, in the example from Figure 2, the matrix
indicates that when Burlington appeared in the n-
best list, Bar was clicked once, Bowling was
clicked 13 times, Burger King was clicked twice,
and Burlington was clicked 15 times (see hashed
row in matrix.) The last element in the row indi-
cates that there were 7 cases in which Burlington
was decoded, but nothing (@) was clicked. Essen-
tially, the matrix captures information about the
confusability of different recognition results.

The expansion step adds to an n-best list gener-
ated by the recognizer all the results that were pre-
viously clicked in conjunction with any one of the
items in the given n-best list. For instance, in the
example from Figure 2, the n-best list contains
Sterling, Stirling, Burlington and Cooling. Based
on the confusion matrix, this list will be expanded
to also include Bar, Bowling, Burger King, Tow-
ing, and Turley. In this particular case, the correct
recognition result, Bowling, is added in the ex-
panded n-best list.

In the final step, the expanded list is rescored. In
the previous example, for simplicity of explana-
tion, a simple heuristic for re-scoring was used:
add all the counts on the columns corresponding to
each expanded result. As a consequence, the cor-

[=))
£ <
¥ 8
g 5 & ? = 2 >
D = _— s 2
5 & S 5 B 35
m m o m 0N n [l e S
Burlington | 1 ...13 2 15 0 0 00 7 Bar Bowling 28
- Bowling Burlington 15
St?”_'nQ Cooling |0 ... 7 0 0 0 0... 10 9 Burger King Sterling 14
Stirling Burlington Towing 3
Burlington Sterling Burger King 2
Cooling Sterling [0 ... 4 0 0 .. 10 1..22 5 Stirling Stirling 2
Towing Turley 2
Stirling |0 ... 4 0 0 ... 4 1..00 9 Turley Bar 1
Corrected
L expanded &
Initial . . Expanded (
Result Confusion Matrix
N-Best N-Best rescored)
N-Best
. AN J

Y .
Stage 1: Expansion

Y -
Stage 2: Rescoring

Figure 2. A confusion-based n-best correction model
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rect recognition result, Bowling, was pushed to the
top of the n-best list.

We begin by formally describing the construc-
tion of the results confusability matrix and the ex-
pansion process in the next two sub-sections. Then,
we describe three rescoring approaches. The first
one is based on an error-correction model con-
structed from the confusion matrix. The other two,
are more traditional rescoring approaches, based
on language model adaptation.

3.2 The Result Confusion Matrix

The result confusion matrix is computed in a sim-
ple traversal of the click logs. The rows in the ma-
trix correspond to decoded results, i.e. results that
have appeared in an n-best list. The columns in the
matrix correspond to clicked (or intended) results,
i.e. results that the user has clicked on in the n-best
list. The entries at the intersection of row d and
column ¢ correspond to the number of times result
¢ was clicked when result d was decoded:

m, . = #(decoded = d, clicked = c).

In addition, the last column in the matrix, de-
noted @ contains the number of times no result was
clicked when result d was displayed:

m, ¢ = #(decoded = d, clicked = @).

The rows in the matrix can therefore be used to
compute the maximum likelihood estimate for the
conditional probability distribution:

Pus(eld) = gmoe.

The full dimensions of the result confusion ma-
trix can grow very large since the matrix is con-
structed at the result level (the average number of
words per displayed result is 2.01). The number of
rows equals the number of previously decoded re-
sults, and the number of columns equals the num-
ber of previously clicked results. However, the
matrix is very sparse and can be stored efficiently
using a sparse matrix representation.

3.3 N-Best Expansion

The first step in the proposed n-best correction
model is to expand the initial n-best list with all
results that have been previously clicked in con-
junction with the items in the current n-best list.
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Let’s denote by N = {d, },—1_, the initial n-best
list produced by the speech recognizer. Then, the
expanded n-best list EN will contain all d,., as well
as all previously clicked results ¢ such that there
exists r withmy . > 0.

3.4  Confusion Matrix Based Rescoring

Ideally, we would like to rank the hypotheses in
the expanded list EN according to P(i|a), where i
represents the intended result and a represents the
acoustics of the spoken utterance. This can be re-
written as follows:

P(ila) = X4 P(ild) - P(d]a). [1]

The first component in this model is an error-
correction model P(i|d). This model describes the
conditional probability that the correct (or in-
tended) result is i given that result d has been de-
coded. While this conditional model cannot be
constructed directly, we can replace it by a proxy -
P(c|d), which models the probability that the re-
sult ¢ will be clicked, given that result d was de-
coded. As mentioned earlier in subsection 3.2, this
conditional probability distribution can be com-
puted from the result confusion matrix. In replac-
ing P(ild) with P(c|d), we are making the
assumption that the clicks correspond indeed to the
correct, intended results, and to nothing else’.

Notice that the result confusion matrix is gener-
ally very sparse. The maximum likelihood estima-
tor Py (c|d) will therefore often be inappropriate.
To address this data sparsity issue, we linearly in-
terpolate the maximum likelihood estimator with
an overall model Py (c|d):

The overall model is defined in terms of two
constants, « and 3, as follows:

aifc=d
B ifc+d
where «a is the overall probability in the whole

dataset of clicking on a given decoded result, and
B is computed such that P, (c|d) normalizes to 1.

Pofceld) =

! While this assumption generally holds, we have also ob-
served cases where it is violated: sometimes users (perhaps
accidentally) click on an incorrect result; other times the cor-
rect result is in the list but nothing is clicked (perhaps the user
was simply testing out the recognition capabilities of the sys-
tem, without having an actual information need)



Finally, the A interpolation parameter is determined
empirically on the development set.

The second component in the confusion based
rescoring model from equation [1] is P(d|a). This
is the recognition score for hypothesis d. The n-
best rescoring model from [1] becomes:

P(el) = ) AP eld) + (1 = DPo(cld,)] - P(dy o)
d,EN
3.5 Language Model Based Rescoring

A more traditional alternative for n-best rescoring
is to adapt the bigram language model used by the
system in light of the user click data, and re-rank
the decoded results by:

P(ila) < P(d.|a) « P(ald,.)P(d,)

Here P(ald,) is the acoustic score assigned by
the recognizer to hypothesis d,., and P(d,) is the
adapted language model score for this hypothesis.

A simple approach for adapting the system’s
language model is to add the word sequences of
the user-clicked results to the original training sen-
tences and to re-estimate the language model P(d).
We will refer to this method as maximum likelih-
ood (ML) estimation. A second approach, referred
to as conditional maximum likelihood (CML) es-
timation, is to adapt the language model such as to
directly maximize the conditional likelihood of the
correct result given acoustics, i.e.,

P(ali)P(i)
Ya,en P(ald,)P(d,)

P(ila) =

Note that this is the same objective function as
the one used in Section 3.4, except that here the
click data is used to estimate the language model
instead of the error correction model. Again, in
practice we assume that users click on correct re-
sults, i.e.i =c.

4 Experiments

We now discuss a number of experiments and the
results obtained using the proposed n-best correc-
tion approach.

41 Data

For the purposes of the experiments described be-
low we extracted just over 800,000 queries from
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the server logs in which the recognizer had gener-
ated a simple n-best list’. For each recognition
event, we collected from the system logs the n-best
list, and the result clicked by the user (if the user
clicked on any result).

In addition, for testing purposes, we also make
use of 11529 orthographically transcribed user re-
quests. The transcribed set was further divided into
a development set containing 5680 utterances and
a test set containing 5849 utterances.

4.2 Initial N-Best Rescoring

To tease apart the effects of expansion and rescor-
ing in the proposed n-best correction model, we
began by using the rescoring techniques on the
initial n-best lists, without first expanding them.
Since the actual recognition confidence scores
P(d,|a) were not available in the system logs, we
replaced them with an exponential probability den-
sity function based on the rank of the hypothesis:

P(d,|la) =277

We then rescored the n-best lists from the test
set according to the three rescoring models de-
scribed earlier: confusion matrix, maximum like-
lihood (ML), and conditional maximum likelihood
(CML). We computed the sentence level accuracy
for the rescored n-best list, at different cutoffs. The
accuracy was measured by comparing the rescored
hypotheses against the available transcripts.

Note that the maximum depth of the n-best lists
generated by the recognizer is 10; this is the max-
imum number of hypotheses that can be displayed
on the mobile device. However, the system may
generate fewer than 10 hypotheses. The observed
average n-best list size in the test set was 4.2.

The rescoring results are illustrated in Figure 3
and reported in Table 1. The X axis in Figure 3
shows the cutoff at which the n-best accuracy was
computed. For instance in the baseline system, the
correct hypothesis was contained in the top result
in 46.2% of cases, in the top-2 results in 50.5% of
the cases and in the top-3 results in 51.5% of the
cases. The results indicate that all the rescoring
models improve performance relative to the base-

2 We did not consider cases where a false-recognition event
was fired (e.g. if no speech was detected in the audio signal) —
in these cases no n-best list is generated. We also did not con-
sider cases where a compound n-best was generated (e.g. for
compound requests like Shamiana in Kirkland, Washington)
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Figure 3. Initial n-best rescoring (test-set)
Model 1- 2- 3 10-
Best | Best | Best | Best
0 | Baseline 46.2 | 505 | 515 | 535
1 | ML Rescoring 46.8 | 50.9 | 521 | 53.5
2 | CML Rescoring 474 | 514 | 526 | 53.5
3 | Confusion Matrix Resc. | 47.3 | 51.5 | 525 | 53.5
4 | Expansion + Rescoring
(size=7.09) 468 | 523 | 545 | 573
5 E>_(pa£13|on+Resconng 468 | 523 | 544 | 565
(size=4.15)

Table 1. Test-set sentence-level n-best accuracy;
(0) baseline; (1)-(3) initial n-best rescoring;
(4)-(5) expansion + rescoring

line. The improvement is smallest for the maxi-
mum likelihood (ML) language model rescoring
approach, but is still statistically significant
(p = 0.008 in a Wilcoxon sign-rank test.) The con-
fusion-matrix based rescoring and the CML rescor-
ing models perform similarly well, leading to a 1%
absolute improvement in 1-best and 2-best sen-
tence-level accuracy from the baseline (p < 107°).
No statistically significant difference can be de-
tected between these two models. At the same
time, they both outperform the maximum likelih-
ood rescoring model (p < 0.03).

4.3 N-Best Correction

Next, we evaluated the end-to-end n-best correc-
tion approach. The n-best lists were first expanded,
as described in section 3.3, and the expanded lists
were ranked using the confusion matrix based res-
coring model described in Section 3.4.
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The expansion process enlarges the original n-
best lists. Immediately after expansion, the average
n-best size grows from 4.2 to 96.9. The oracle per-
formance for the expanded n-best lists increases to
59.8% (versus 53.5% in the initial n-best lists.)
After rescoring, we trimmed the expanded n-best
lists to a maximum of 10 hypotheses: we still want
to obey the mobile device display constraint. The
resulting average n-best size was 7.09 (this is low-
er than 10 since there are cases when the system
cannot generate enough expansion hypotheses.)

The sentence-level accuracy of the corrected n-
best lists is displayed in line 4 from Table 1. A di-
rect comparison with the rescoring-only models or
with the baseline is however unfair, due to the
larger average size of the corrected n-best lists. To
create a fair comparison and to better understand
the performance of the n-best correction process,
we pruned the corrected n-best lists by eliminating
all hypotheses with a score below a certain thre-
shold. By varying this rejection threshold, we can
therefore control the average depth of the resulting
corrected n-best lists. At a rejection threshold of
0.004, the average corrected n-best size is 4.15,
comparable to the baseline of 4.2 .

The performance for the corresponding cor-
rected (and pruned) n-best lists is shown in line 5
from Table 1 and illustrated in Figure 4. In contrast
to a rescoring-only approach, the expansion pro-
cess allows for improved performance at higher
depths in the n-best list. The maximum n-best per-
formance (while keeping the average n-best size at
4.15), is 56.5%, a 3% absolute improvement over
the baseline (p < 107°).

Figure 5 provides more insight into the relation-
ship between the sentence-level accuracy of the
corrected (and pruned) n-best lists and the average
n-best size (the plot was generated by varying the
rejection threshold.) The result we discussed above
can also be observed here: at the same average n-
best size, the n-best correction model significantly
outperforms the baseline. Furthermore, we can see
that we can attain the same level of accuracy as the
baseline system while cutting the average n-best
size by more than 50%, from 4.22 to 2. In the op-
posite direction, if we are less sensitive to the
number of items displayed in the n-best list (except
for the 10-maximum constraint we already obey),
we can further increase the overall performance by
another 0.8% absolute to 57.3%; this overall accu-
racy is attained at an average n-best size of 7.09.
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Figure 5. Overall n-best accuracy as a function of
the average n-best size

Finally, we also investigated rescoring the ex-
panded n-best lists using the CML approach. To
apply CML, an initial ranking of the expanded n-
best lists is however needed. If we use the ranking
produced by the confusion-matrix based model
discussed above, no further performance improve-
ments can be observed.

5 Related work

The n-best correction model we have described in
this paper draws inspiration from earlier works on
post-recognition error correction models, n-best
rescoring and implicitly supervised learning. In
this section we discuss some of the similarities and

27

differences between the proposed approach and
previous work.

The idea of correcting speech recognition errors
in a post-processing step has been proposed earlier
by (Ringger and Allen, 1996; Ringger and Allen,
1997). The authors showed that, in the presence of
transcribed data, a translation-based post-processor
can be trained to correct the results of a speech
recognizer, leading to a 15% relative WER im-
provement in a corpus of TRAINS-95 dialogues.

The n-best correction approach described here is
different in two important aspects. First, instead of
making use of transcripts, the proposed error-
correction model is trained using implicit user
feedback obtained in a multi-modal interface (in
this case user clicks in the n-best list.) This is a less
costly endeavor, as the system automatically ob-
tains the supervision signal directly from the inte-
raction; no transcripts are necessary. Second, the
approach operates on the entire n-best list, rather
than only on the top hypothesis; as such, it has ad-
ditional information that can be helpful in making
corrections. At Figure 2 illustrates, there is a poten-
tial for multiple incorrect hypotheses to point to-
wards and reinforce the same correction
hypothesis, leading to improved performance (in
this example, Burlington, Cooling, Sterling and
Stirling were all highly confusable with Bowling,
which was the correct hypothesis).

The n-best correction model we have described
includes a rescoring step. N-best rescoring ap-
proaches have been investigated extensively in the
speech recognition community. In the dialog
community, n-best rescoring techniques that use
higher-level, dialog features have also been pro-
posed and evaluated (Chotimongkol and Rudnicky,
2001). Apart from using the click feedback, the
novelty in our approach lies in the added expansion
step and in the use of an error-correction model for
rescoring. We have seen that the confusability-
based n-best expansion process leads to signifi-
cantly improved performance, even if we force the
model to keep the same average n-best size.

Finally, the work discussed in this paper has
commonalities with previous works on lightly su-
pervised learning in the speech community, e.g.
(Lamel and Gauvain, 2002) and leveraging implicit
feedback for learning from interaction, e.g. (Baner-
jee and Rudnicky, 2007; Bohus and Rudnicky,
2007). In all these cases, the goal is to minimize
the need for manually-labeled data, and learn di-



rectly from the interaction. We believe that in the
long term this family of learning techniques will
play a key role towards building autonomous, self-
improving systems.

6 Conclusion and future work

We have proposed and evaluated a novel n-best
correction model that leverages implicit user feed-
back in a multi-modal interface to create a positive
feedback loop. While the experiments reported
here were conducted in the context of a local
search application, the approach is applicable in
any multi-modal interface that elicits selection in
an n-best list from the user.

The proposed n-best correction model works in
two stages. First, the n-best list generated by the
speech recognizer is expanded with additional hy-
potheses based on confusability information cap-
tured from previous user clicks. This expanded list
is then rescored and pruned to create a more accu-
rate and more compact n-best list. Our experiments
show that the proposed n-best correction approach
significantly outperforms both the baseline and
other traditional n-best rescoring approaches, with-
out increasing the average length of the n-best lists.

Several issues remain to be investigated. The
models discussed in this paper focus on post-
recognition processing. Other ways of using the
click data can also be envisioned. For instance, one
approach would be to add all the clicked results to
the existing language model training data and
create an updated recognition language model. In
the future, we plan to investigate the relationship
between these two approaches, and to whether they
can be used in conjunction. Earlier related work
(Ringger and Allen, 1997) suggests that this should
indeed be the case.

Second, the click-based error-correction model
we have described in section 3.4 operates at the
result level. The proposed model is essentially a
sentence level, memory-based translation model.
In the future, we also plan to investigate word-
level error-correction models, using machine trans-
lation techniques like the ones discussed in (Ring-
ger and Allen, 1997; Li et al., 2008).

Finally, we plan to investigate how this process
of learning from implicit feedback in a multi-
modal interface can be streamlined, such that the
system continuously learns online, with a minimal
amount of human intervention.
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Abstract

In this paper we define agreement in terms
of shared public commitments, and implicit
agreement is conditioned on the semantics of
the relational speech acts (e.g., Narration, Ex-
planation) that each agent performs. We pro-
vide a consistent interpretation of disputes,
and updating a logical form with the current
utterance always involves extending it and not
revising it, even if the current utterance denies
earlier content.

1 Introduction

A semantic theory of dialogue should account for
what content dialogue agents agree on. This in-
cludes implicit agreement:

(1) a. A:The room went dark.
b. A: Max turned out the light.
c. B: And John drew the blinds.

Intuitively, A and B agree that the room went dark,
that Max turned out the light, and that the latter is
at least part of the reason why the former occurred.
Thus, implicatures can be agreed upon (that (1b)
is part of the cause of (la) goes beyond composi-
tional semantics), and agreement can be implicated
(B does not repeat (1a) and (1b) nor utter OK to in-
dicate his agreement with A).

In principle, the Grounding Acts Model (GAM,
Traum (1994), Traum and Allen (1994)) supports
implicit agreement. But it demands an acceptance
act for agreement to occur, and its current rules don’t
predict such an act from (1c¢). Segmented Discourse
Representation Theory (SDRT, Asher and Lascarides
(2003)) errs in the opposite direction. It stipulates
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that lack of disagreement implicates agreement, and
so in (1) too much is agreed upon; e.g., (1c). Thus,
SDRT needs modification to deal with (1), just as
GAM needs supplementation.

Agreement can occur even in the context of cor-
rections or disputes. In (2), A asserts (2a) and B its
negation, but a consistent interpretation of (2) over-
all is a pre-requisite to explaining how A and B end
up agreeing on (2b).

(2) a. A:It’sraining.
b. B:Noit’s not.
c. A:OK.

Since a correction negates content in the discourse
context, an obvious strategy for maintaining consis-
tency would be to revise the semantic representation
of the context when updating it with a correction.
But we want to avoid revision, both at the level of
model theory and at the level of composing logi-
cal form. This is for two reasons. Firstly, revision
means that there is in principle no general way of
stating what information is preserved from the pre-
vious discourse state to the current one. But if we
construct logical form in a monotonic way—in our
case, this means that the discourse structure for a
conversation at turn n is an elementary substructure
of the discourse structure at turn n + 1—then stan-
dard preservation results from model theory apply.
Secondly, monotonicity guarantees that interpreta-
tion algorithms can proceed incrementally, combin-
ing information from various sources in a nonde-
structive way (Alshawi and Crouch, 1992).

To our knowledge, there is currently no dynamic
semantics for dialogue that yields adequate interpre-
tations of corrections and implicit agreement. We
will address this gap here. In Section 2, we re-
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view two existing approaches to motivate our ba-
sic strategy, which we then describe in Section 3.
We will refine SDRT so that it tracks each dialogue
participant’s public commitments. Further, while
identifying a speech act involves default reasoning,
constructing logical form will be monotonic, in the
sense that the logical form of an updated discourse
always extends that of its discourse context, rather
than revising it.

2 Motivation

We will say that a proposition p is grounded just
in case p is agreed by the dialogue agents to be
true. This follows Clark’s terminology, in particu-
lar the concept of grounding a joint action at level 4
(Clark, 1996, p388). Clark’s work focusses almost
entirely on grounding at the so-called ‘lower’ lev-
els; how agents ground an understanding of what
was said, for instance. By contrast, in order to fo-
cus on grounding at the higher level, we will assume
a highly idealised scenario where dialogue agents
understand each other perfectly, resolving ambigu-
ities in the same way. One of Clark’s main claims is
that grounding at all levels occurs only when there
is positive evidence for it, and we aim to explore in
a logically precise manner exactly what amount of
positive evidence suffices for grounding a proposi-
tion. In future work, we intend to demonstrate that
our definition of grounding can model grounding at
the lower levels too; this will involve extending the
framework to represent misunderstandings.

GAM links the speech acts performed with its ef-
fects, including effects on grounding (Traum, 1994).
Each conversational participant builds a conversa-
tional information state (or CIS). Update effects of
particular speech acts (and their preconditions) are
specified in terms of changes to (and conditions on)
the CIS. For example, Figure 1 is the update rule for
the speech act e where B asserts K to A. It updates
the common ground (G) to include an event ¢’ that
B intends A to believe K and a conditional event
¢’ that should A accept the assertion, then A would
be socially committed to B to believe K (shown via
the attitude SCCOE). The update rules form a hier-
archy, so that more specific acts inherit effects from
more general ones. The speech act in Figure 1 in-
herits that B is SCCOE-ed to A to K, for instance.
Decision trees then predict which speech acts have
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been performed.

While it is possible in principle for GAM to in-
clude rules that accurately predict (1c)’s illocution-
ary effects, the rules that are actually provided only
recognise (1c) as an assertion. Consequently, its ef-
fects are under-generated: B is socially committed
to (1c), but not to (1a), (1b) or a causal relation be-
tween them. GAM needs to be supplemented with
rules for inferring that B was also implicitly accept-
ing parts of A’s contribution.

Such acceptances, we argue, should be condi-
tioned on relational speech acts. (lc) continues
(1b) as a narrative, and the narrative so formed ex-
plains (1a). These are relational speech acts (Asher
and Lascarides, 2003): they are speech acts because
continuing a narrative or explaining something are
things that people do with utterances; and they are
relational because the successful performance of the
speech act Explanation, say, is logically dependent
on the content of the utterance (or sequence of ut-
terances) that is being explained (in this case, (1a)).
Thus even though the compositional semantics of
(1c) does not entail (1b) or (la), its illocutionary
contribution does entail them—or, perhaps more ac-
curately, entails that B is publicly committed to
them. Similarly, through using (1b) as an Explana-
tion of (1a), A is publicly committed to (1a), (1b)
and a causal relationship between them. Thus, what
is grounded amounts to the shared semantic entail-
ments of the rhetorical relations—or speech acts—
that both A and B performed. This explains why
positive evidence for grounding is necessary (Clark,
1996): both agents must perform a speech act with
appropriate semantic consequences for a proposition
to become grounded. An implicit acceptance (or ac-
knowledgement in SDRT terms) is then logically de-
pendent on the formal semantic interpretations of the
relational speech acts performed. For instance, B’s
commitments to (1a) and (1b) stem from Narration
and Explanation acts he performed in uttering (1c).

Since GAM incorporates relational speech acts,
the general principles that we propose here could
extend it. However, we have chosen to use SDRT
because it defines logical form more abstractly, al-
lowing us to exploit its model theory to determine
grounded propositions. In contrast to GAM, we will
not explicitly represent what’s grounded (and what’s
not) in logical form. Doing so would force us to in-



Name: Assert
Condition on update: G :
Update

[e : Assert(B, A, K]
G+=[€¢']e/ : Try(B, \s'.s’ : Bel(A, K)),
[€”]e” : Accept(A,e) = [s|s : SCCOE(A, B, K)|

Figure 1: The update rule for assertion

corporate revision should grounded content get dis-
puted, as can happen in a dynamic setting, where
facts and beliefs change as the agents engage in di-
alogue. We will make grounding a property of the
interpretation of a logical form, and not part of its
form.

SDRT offers a formal semantics of relational
speech acts (Asher and Lascarides, 2003). Further-
more, in contrast to theories of discourse interpreta-
tion that equate interpreting a discourse with its ef-
fects on the agents’ beliefs (e.g., Hobbs et al. (1993),
Grosz and Sidner (1990)), SDRT separates the glue
logic (i.e., the logic for constructing a logical form
of what was said) from the logic for interpreting
the logical form (i.e., reasoning about whether what
was said is true, or should be believed). This en-
ables SDRT to maintain a decidable procedure for
computing logical form, even though identifying the
speech acts performed inherently involves common-
sense reasoning, and hence consistency tests. Asher
and Lascarides (2003, p78) argue that it must be de-
cidable to explain why, as Lewis (1969) claims, peo-
ple by and large have a common understanding of
what was said.

SDRT’s current representation of (1) is (1”), where
71, w9 and 73 label the contents of the clauses (1a—
¢) respectively, and my and 7 label the content of the
dialogue segments that are created by the rhetorical
connections:

(1" o : Explanation(ry, )
7 : Narration(ra, 73)

In words, (1) implies that the room went dark, and
this was caused by a combination of Max switching
off the light followed by John drawing the blinds.
In the absence of speech acts of denial such as Cor-
rection, SDRT stipulates that all content is grounded
(Asher and Lascarides, 2003, p363). This leads di-
rectly to the wrong predictions for (1).

Unlike GAM, SDRT fails to track the different
commitments of individual speakers. Simply la-
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belling each speech act with its speaker doesn’t suf-
fice, as dialogue (3) shows.!

(3) mi. A:John went to Harrods.
9. B: He bought a suit.
3. A: He then entered the food halls.
4. B: He looked for foie gras.

Intuitively, A’s utterance 73 publicly commits
him not only to Narration(my,ms3), but also to
Narration(my, m2) (for this latter speech act entails,
while the former does not, that John bought the suit
at Harrods). And yet B was the speaker who per-
formed the speech act Narration(my, ), for it is
B who uttered 7. Accordingly, we abandon repre-
senting dialogue with a single SDRS, and replace it
with a tuple of SDRSs—one SDRS per discourse par-
ticipant per turn, representing all his commitments
up to and including that turn. We define grounding
a proposition p in terms of joint entailments from
those commitments, and hence grounding becomes
a semantic property of the logical form. This solves
SDRT’s over-generation problems with grounding.
For instance in (1), A’s public commitments are to
Explanation(my,m2). B, on the other hand, is com-
mitted to the content expressed by (1). The shared
public commitments then accurately reflect what A
and B agree on. We also avoid the under-generation
problems of GAM; grounding need not arise from
an acceptance but instead from so-called veridical
rhetorical relations (e.g., Explanation and Narra-
tion) and the logical relationships among their mean-
ings.

Grounded content is not marked as such in logical
form. This makes monotonic construction of logical
form feasible, even when grounded propositions get
disputed. A further part of our strategy for eschew-
ing revision is to assume that the SDRSs for each turn
represent all of A’s and B’s current commitments,

"For simplicity, we use a contructed example here, although
Sacks (1992) attests many similar, naturally occurring dialogues
where the agents build a narrative together.



from the beginning of the dialogue to the end of that
turn. The alternative, where prior but ongoing com-
mitments from turn 7 — 1 are not shown in the repre-
sentation of turn ¢, and accordingly the input context
for interpreting turn ¢ is the output one from inter-
preting turn ¢ — 1, would condemn us to incorporat-
ing revision into the model theory. This is because
A may commit in turn ¢ to something that is incon-
sistent with his commitments in turn ¢ — 1 (e.g., A’s
utterance (2c¢)), and without revision the output con-
text from turn ¢ would then be L. We want to avoid
revision while maintaining consistency. Represent-
ing all current commitments in each turn avoids re-
vision in the model theory, because one can com-
pute the current commitments of A and B by dy-
namically interpreting their SDRSs for just the last
turn. One can detect how A’s commitments have
changed during the dialogue, but only by comparing
the SDRSs for the relevant turns.?

We will model disputes by adding non-truth pre-
serving operators over relevant segments in the log-
ical form. This avoids the need for downdating and
revision in both the construction and the interpreta-
tion of logical form.

3 Individuating Commitments

The logical form for a dialogue turn proposed in
Section 2 generalises to dialogues with more than
two agents in the obvious way: the logical form of a
dialogue turn is a set {S, : a € D}, where S, is an
SDRS and D is the set of dialogue agents. The log-
ical form of the dialogue overall will be the logical
forms of each of its turns (and all dialogue agents
build all the SDRSs in the logical form, not just the
SDRSs representing their own commitments). We
assume an extremely simple notion of turns, where
turn boundaries occur whenever the speaker changes
(even if this happens mid-clause), and we ignore for
now cases where agents speak simultaneously.

This new logical form for dialogue requires a new
dynamic interpretation. The context C, of evalua-
tion for interpreting a dialogue turn is a set of dy-
namic contexts for interpreting SDRSs—one for each

2Prévot et al. (2006) represent dialogue in terms of commit-
ment slates. Their idea inspired our work, but the details differ
considerably, particularly on monotonic construction.
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agenta € D:
Ca={(C;,C3) sa € D}

Thus C? and C? are world assignment pairs, given
the definitions from Asher and Lascarides (2003).
For instance, (4) defines the dynamic interpreta-
tion of veridical relations (e.g. Narration, Explana-
tion), where meaning postulates then stipulate the
illocutionary effects ¢r(q g—¢.g., for Narration
they stipulate the spatio-temporal progression of the
events (we gloss the content that’s labelled 7 as K,
and m in [.],,, stands for monologue). Equation (5)
defines the dynamic interpretation of Correction.

@ (w, HIR(e, B)],, (W', g) iff
(w7 f)[Ka A KB A @R(a,ﬁ)]m(w,a g)
(5) (w, f)[ Correction(a, B)1,, (v, g) iff
(w’ f)[(ﬁKa) A Kﬁ N @Corr(a,ﬁ)]m(w,’g)

The context change potential (CCP) of a dialogue
turn T' = {S, : a € D} is the product of the CCPs
of the individual SDRSs:

CalT14Ciff C) = {(C2, C2) o [Salyy, :
(€5, C3) € Cg,a € D}

Accordingly, dialogue entailments can be defined in
terms of the entailment relation =, for SDRSs af-
forded by [.1,,:

T [=q ¢ iff Va € D, Sy = ¢

This makes |=, the shared entailment of each agent’s
public commitments. And we assume that content ¢
is grounded or agreed upon by a dialogue turn 7" iff
T =, ¢. Finally, given that the SDRSs for a dialogue
turn reflect all an agent’s current commitments, the
interpretation of the dialogue overall is the CCP of
its last turn.

The logical form of (3) is shown in Table 1 (we
have omitted the logical forms of the clauses, la-
belled 7 to m4). The semantics of the SDRSs for
the last turn correctly predict the following proposi-
tion to be grounded (for it is entailed by them): John
went to Harrods, followed by buying a suit (at Har-
rods), followed by his entering the food halls.

There is a sharing of labels across the SDRSs in
Table 1. This general feature reflects the reality
that one speaker may perform a relational speech act
whose first argument is part of someone else’s turn,



| Turn | A’s SDRS | B’s SDRS
1 ™ 0
2 T mop : Narration(my, ma)
3 w34 : Narration(my, m2) A Narration(ma, 73) | map : Narration(my, m2)
4 734 : Narration(my, o) A Narration(mo, m3) | wap : Narration(rm1, mw2) A Narration(mwy, w3) A
Narration (s, 74)

Table 1: The logical form of dialogue (3).

or part of his own previous turns. Sharing labels cap-
tures the intuition that an agent’s speech acts can re-
veal his commitments (or lack of them) to contextual
content, even if this is linguistically implicit.

Including prior but ongoing commitments in the
SDRS for the current turn has consequences for the
general architecture of the theory: we must stipu-
late what commitments persist across turns when
constructing the SDRSs. Consider the fourth turn
of dialogue (3). Intuitively, uttering 74, commits
B to the illocutionary content of Narration(ms, m4).
But in addition, he is also committed at this point
to Narration(my, wo) A Narration(rs, 73), as shown.
Those commitments persist from prior turns; they
are even transferred from one speaker to another.
However, we will shortly examine other examples,
involving corrections and even explicit acknowl-
edgements (or an acceptance in Traum’s (1994) ter-
minology), where the commitments do not persist.
To handle the data, we must make the ‘commitment
persistence’ principle sensitive to distinct relational
speech acts, and it must support a monotonic con-
struction of logical form.

To motivate our persistence principle, consider
how A and B get to the commitments shown in
Table 1. A’s SDRS for the first turn is m : Kg,,
where K, stands for the representation of John
went to Harrods. Since B hasn’t said anything yet,
his SDRS for the first turn is (). SDRT’s glue logic
uses default axioms to predict the relation that con-
nects o to m (Asher and Lascarides, 2003); here,
these defaults should yield that B is committed to
mop : Narration(my,m2) (we adopt the convention
that the root label of the speaker d’s SDRS for turn j
is named 7;4). A’s SDRS for the second turn is the
same as the first turn: he hasn’t spoken since, and so
his commitments are unchanged.

In the third turn, the glue logic should predict that
A’s utterance w3 forms a narrative with 5. But sim-
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ply adding this to A’s prior SDRS isn’t sufficient.
First, the result is not a well-formed SDRS, because it
won’t contain a single root label. Secondly, it misses
an important interplay between discourse structure
and grounding: adding only Narration(rma,ms3) to
A’s existing commitment to K, makes A commit-
ted to the compositional semantics of 7o, but not
to its illocutionary contribution conveyed by B (e.g.
that John bought the suit at Harrods). And yet intu-
itively, uttering 73 implicates that this (linguistically
implicit) content is agreed on.

Dialogues (1) and (3) feature discourse relations
that occur in monologue as well. Several agents can
use these to build up a narrative together, as noted by
Sacks (1992). Sacks’ observations affirm that such
discourse relations can be used to perform ‘implicit’
acknowledgements, and what’s more they suggest
that the implicit acknowledgement is not only of
the prior contribution’s compositional semantics but
also its illocutionary effects. These observations
lead us to add the following Persistence princi-
ple to the glue logic, together with axioms that iden-
tify undenied commitments (UC'(«) stands for the
undenied commitments of the utterance or segment
):

e Persistence:

A R(a, ) = A: UC(«)

Different glue-logic axioms will then identify the
undenied commitments for different speech acts.
The present case concerns simple left veridical (slv)
relations—those that do not explicitly endorse or
criticise any previous commitments. Note ¢ >
means “If ¢ then normally v”, and T'(d, j, m) means
that label 7 is a part of agent d’s SDRS for turn j:

e Undenied Commitments:
(A R(a, B) NT(dy, 3, N) A slv(R)A
N R (y,a) NT(d2,j —1,\)) >
(A:UC(a) = A : Rl (vy,a))




Undenied Commitments states that if d; com-
mits to R(a, 3) where R is simple left veridical and
dy is already committed to R'(y, a), then normally
the undenied commitments of « include R'(7, ).
Examples of simple left veridical relations include
Narration and Explanation but not Acknowledge-
ment (since this explicitly endorses prior content) or
Correction (since this denies prior content).

Persistence and Undenied
Commitments predict that A’s SDRS for the third
turn of (3) includes 73 4 : Narration(my, m3). This is
because default rules yield 734 : Narration(mo, 7s3),
and  Narration(m1,m2) is in B’s  SDRS.
Persistence and Undenied Commitments
likewise predict that Narration(m,m) and
Narration(mo, m3) are a part of B’s SDRS for the
fourth turn, as shown in Table 1.

Undenied Commitments is defeasible. This
is because if the illocutionary contribution of A’s
(left-veridical) speech act R(«,[3) conflicts with
some proposition p that B conveyed by uttering
«, then clearly A’s speech act should not be con-
strued as an implicit acknowledgement of p. This
affects the analysis of (1), whose logical form is
Table 2. B’s SDRS after the second turn does
not include Explanation(my,m3), even though his
utterance w3 attaches with the veridical relation
Narration to m, and A’s SDRS for turn 1 in-
cludes Explanation(m1,m2). Persistence ap-
plies to this example (for label m3) and the an-
tecedent to Undenied Commitments is sat-
isfied, but Explanation(wi,72) is not an unde-
nied commitment of 7o because its (nonmono-
tonic) semantic consequences conflict with those of
Explanation(m, ), a speech act that the glue logic
must identify as one that B intended to perform (or,
in other words, publicly commit to) as a byproduct
of uttering 73. Explanation(my,m2) conflicts with
Explanation(my,m) because the former nonmono-
tonically entails, via a scalar implicature, that Max
turning out the light was the sole cause of the room
going dark, while the latter (monotonically) entails
it was a strict part of it. This example illustrates how
the default logic rendered by > must be specified in
terms of the consistency in what follows nonmono-
tonically, rather than what follows monotonically.

Undenied Commitments does not apply
for the veridical relation Acknowledgement; i.e.,
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utterances of the form OK, [ agree, repeat-
ing prior content, and the like. In words,
Acknowledgement(my, ) entails K., K, and
that K, implies K, ; to use the GAM term, it is an
act of explicit acceptance. Dialogue (6) illustrates
why Acknowledgement behaves differently from the
simple left veridical relations like Narration:

(6) 1. B:John is nota good speaker
mo. B:because he’s hard to understand.
3. A:Tagree he’s hard to understand.

The compositional semantics of 73 makes A
explicit about what in B’s turn he acknowl-
edges: A must be committed to (at least)
Acknowledgement(ma, w3).  What is outside the
scope of the acknowledgement—namely, B’s pu-
tative explanation for why John is not a good
speaker—is not denied in (6). It would be consistent
to add Explanation(my, m2) to A’s commitments, but
it’s simply not warranted. Dialogue (6) shows that
when the explicit endorsement conveys sufficiently
specific content, it appears to carry a scalar impli-
cature that this precise content is endorsed, and no
more.

Another reason for excluding explicit acknowl-
edgements from the set of simple left veridical rela-
tions is that such speech acts come with their own
grounding requirements. Acknowledgements can
have scope over implicatures as well as composi-
tional semantic contents, since the first argument
to an Acknowledgement relation can be a label of
an arbitrarily complex SDRS. So by acknowledg-
ing 7;, we do not thereby acknowledge the impli-
catures of 7; itself; had we wished to do so, we
would have included them within the scope of the
acknowledgement. That is, we would infer the re-
lation Acknowledgement(r}, m;), where 7 has se-
mantic scope over m;, making 7; and the rhetori-
cal relations it engages in part of what is (explic-
itly) endorsed. It is because the discourse function
of an acknowledgement is precisely to say what one
agent commits to from another agent’s turn—i.e.,
what are the undenied commitments in this case—
that Persistence applies redundantly.

Explicit acknowledgements have been studied
by Traum and Hinkelman (1992), among others.
Here, we will ignore interpretations of an utter-
ance m (e.g., OK) as an acknowledgement that K,



’ Turn H A’s SDRS

| B’s SDRS \

1 714 : Explanation(my,m3) |

2 714 : Explanation(my, ma)

mop : Explanation(my, )
7 : Narration(mg, 73)

Table 2: The logical form of (1).

was said (represented in SDRT with the so-called
metatalk relation Acknowledgement*(my,m3)), in-
stead focussing entirely on an interpretation of o
using Acknowledgement (i.e., a commitment to K,
which in turn entails a commitment that K, was
said). But even so there is ambiguity, because lin-
guistic form does not always fully determine what
the acknowledgement has scope over. Let’s assume
that A’s utterance 73 in (7) is an acknowledgement
of content and not just of understanding that content:

(7) mi. B:John is nota good speaker
9. B: because he is hard to understand.
m3. A: OK.

Acknowledgement(ro, m3) entails K,. Making o
the only label that’s acknowledged leads to an inter-
pretation where the proposition that 7o explains 71
is not acknowledged. This ‘narrow scope’ attach-
ment permits A to continue by challenging the ex-
planatory link, e.g., by uttering but that’s not why
he’s not a good speaker. Another interpretation
of (7) is that A commits to all of B’s commit-
ments, including the implicatures: this is expressed
by adding Acknowledgement(m g, m3) to A’s SDRS,
where 71 : Explanation(m,m2). Indeed, if OK
is all that A says, then one defaults to this wide-
scope interpretation. Even if A follows OK with
He 1S hard to understand with high pitch accents
and a falling boundary tone, the preferred interpre-
tation contrasts with (6), to be one where OK is an
Acknowledgement of mp, and He’s hard to under-
stand is an explanation of that acknowledgement act
(marked with the metatalk relation Explanation™ in
SDRT). It is straightforward to add glue-logic ax-
ioms for constructing logical form that reflect these
principles for identifying the first argument of Ac-
knowledgement.

In dialogue (2), A commits to the negation of
his prior commitment. As before, constructing B’s
SDRS for the second turn involves using the glue
logic to identify how o connects to 1. So long
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as their semantic incompatibility is transferred, in
shallow form, to the glue logic, then the general
principle that the necessary semantic consequences
of a speech act are normally sufficient for inferring
that it was performed will apply, yielding mop
Correction(my,m2) (see Table 3). The cue phrase
OK is then used by the glue logic to infer w34 :
Acknowledgement(ra, m3). This resolves the under-
specified content OK to K,; and thus as before the
glue logic also yields w34 : Correction(my,73), as
shown. [It’s not raining is entailed by the SDRSs
for turn 3. The interpretation of each turn is con-
sistent (i.e., the output state is non-empty), although
the SDRSs for turn 2 are mutually inconsistent (A’s
SDRS entails that it’s raining and B’s entails it’s not).
Finally, the content associated with each label does
not change from one turn to the next, making the
construction of logical form monotonic.

Clark (1996) doesn’t make precise exactly what
counts as sufficient positive evidence for grounding.
Similarly, Traum and Allen (1994) don’t provide
rules for inferring when a speaker has performed
an implicit acceptance. Our framework makes
the quantity of positive evidence that’s needed for
grounding propositions logically precise, in terms
of the relational speech acts that both speakers
perform, and the logical relationships between the
semantics of those speech acts. Persistence
and Undenied Commitments capture a gen-
eral class of examples involving implicit agreement.
Sufficient positive evidence for grounding a propo-
sition through explicit endorsements and challenges
rests on the formal semantic interpretation of the rel-
evant speech acts—namely Acknowledgement and
Correction—and the rules by which one determines
the first argument of these relations.

4 Conclusion

We have presented a novel treatment of agreements
and disputes in which the construction of logi-
cal form is monotonic in the subsumptive sense



| Turn | A’s SDRS | B’s SDRS \
1 m o Ko, 0
2 m o Ko, map : Correction(my, m2)
3 w34 : Correction(my, 3) A Acknowledgement(ma, 3) | map : Correction(ry, ma)

Table 3: The logical form of dialogue (2).

(Shieber, 1986); the semantic representation of the
discourse context is an elementary substructure of
the representation of the dialogue updated with the
current utterance, even if the current utterance de-
nies earlier content. However, the logical form re-
mains a product of complex default reasoning, since
identifying the speech acts that were performed in-
volves commonsense reasoning with the linguistic
and non-linguistic context.

The relationship between the grounded proposi-
tions and the interpretation of the dialogue is entirely
transparent and is defined in terms of the model the-
ory of the logical forms. It provides a logical basis
for exploring Clark’s (1996) notion of positive evi-
dence for grounding. A crucial ingredient in our ac-
count was the use of relational speech acts, and the
logical relationships among their semantics.

We believe our definition of grounding as
shared commitment is capable of modelling Clark’s
more central concern—grounding the understand-
ing of what was said. The left-veridical rela-
tions that are the hallmark of grounding at level
4 entail grounding at the lower levels thanks to
the semantics of DSDRSs.  Moreover, SDRT’s
metatalk relations—such as Explanation*(«, 3) and
Acknowledgement*(«, f)—commit an agent to the
fact that K, was said without committing him K.
Thus shared commitments that follow from a repre-
sentation of the dialogue can ground acts at lower
levels without grounding (or denying) acts at level
4. A full model of grounding at lower levels, how-
ever, requires us to extend the framework to handle
misunderstandings.

This paper presents just some first steps towards a
dynamic theory of grounding. For instance, we have
not yet modelled the impact of questions and imper-
atives on public commitments and grounding. We
have started to explore links between public com-
mitments and other attitudes, such as beliefs, prefer-
ences, and intentions (Asher and Lascarides, 2008),
but this also remains a matter of ongoing research.
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Reactive Redundancy and Listener Comprehension in Direction-Giving
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Abstract tactic structure (Bard et al., 2000; Branigan et al

2003). However, these studies examine utterance
We explore the role of redundancy, both in form, while our study examines content, which is
anticipation of and in response to listener more influenced by audience design (Branigan et
confusion, in task-oriented dialogue. We al., 2003). In every utterance, a speaker either re
find that direction-givers provide redundant duces the likelihood of listener misunderstanding
utterances in response to both verbal and by being more explicit, or reduces their own effort
non-verbal signals of listener confusion. by providing a minimal amount of information.
We also examine the effects of prior ac- Regardless of whether speakers pro-actively moni-
guaintance and visibility upon redundancy. tor the information needs of listeners, they dodnee
As expected, givers use more redundant ut- to respond when listeners say or do something to
terances overall, and more redundant utter- indicate confusion. Developing a better under-
ances in response to listener questions, standing of the factors that affect how and when
when communicating with strangers. We speakers respond to signs of listener confusion is
discuss our findings in relation to theories important at both theoretical and applied levels:
of redundancy, the balance of speaker and first, it can better explain the variation in discse

listener effort, and potential applications. strategies used in different communicative situa-
_ tions; second, it can help in the design of diaéogu
1 Introduction systems (Kopp et al., 2008; Theune et al., 2007).

_ In this study, we examine what types of listener
Our everyday conversations represent a carefullgnayior increase the likelihood that a speakdr wil
negotiated balance between the perceived needspp(f)duce a redundant utterance. We also examine
the speaker and the listener. These opposing for¢gsiy communicative context affects the amount
affect every aspect of language from phonetics {@qundancy a speaker produces overall (Walker,
pragmatics. A careful balance between these @2, 1996) and a speaker’s use of redundancy in
forces allows speakers to produce language thatyigsnonse to listener confusion. In contrast to pre-
both efficient and effective at communicating &qs work, we studyeactive redundancy, or re-
message (Lindblom, 1990; Horn, 1993). Of coursey,ndancy produced in response to signs of listener
the same balance is not appropriate for everySitugnfusion. We investigate two factors that may
tion. When accuracy is critical to the message, @fluence a speaker's tendency to produce redun-
when the speaker perceives the listener to haygnt ytterances and to respond to listener confusio
difficulty understanding, the speaker is more kel yjith redundancy: the relationship between the in-
to prioritize clarity over efficiency, resulting in terjocutors and their visual contact.
more explicit communication. In contrast, during | the following section, we review relevant li-

casual conversation or when speed is a factor, thgaiure and present our hypotheses; we then de-
speaker may choose a more reduced, efficienforihe the direction-giving experiment which we

communication style (Lindblom, 1990; Horton and,seq to examine redundancy in task-oriented di-
Keysar, 1996). A number of scholars have pointeglogue, and present our results; we discuss our re-

out that speakers seem to use the informaliQyits in light of the literature and conclude by
available to themselves rather than that available noting potential applications and future work.

the listener to guide certain linguistic decisions,
such as clarity of pronunciation and choice of syn-
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2 Reated Work and Predictions This is redundancy in service of Fussell and
Krauss’ second method of message-tailoring. The
21 Redundancy advantages of providing redundant information

. _ o reactively include increasing the efficiency of the
Grice’s (1975) second Maxim of Quantity: ‘Do notey change by only providing redundant information

make your contribution more informative than i§pat the listener communicates a need for, and re-

required’ has led to the general impression thgf,cing the burden on the speaker of having to de-
redundancy (providing discourse-old information}iqe when to include redundant information.

is avoided in language (Stalnaker, 1978), with this ~,q important distinction between proactive

mirrored by work in natural language generation reactive redundancy is the grounding status of
(Dalianis, 1999). However, Walker (1992, 1996),¢ requndant information. Reactive redundancy is
points out that such conclusions relating t(_) redurnke|y to provide information that has not been ac-
dancy are often based on flawed assumptions. FQlyteq by the listener, and is therefore not part o
exarr_lple, they assume that agents have ur_lllmlt common ground (Clark and Schaeffer, 1989),
working memory and the ability to automaticallyeyen though it is discourse-old. In contrast, proac
generate all the inferences entailed by every Uttefye requndancy is likely to provide information
ance, that utterance production should be mingom the interlocutors’ common ground. Indeed,
mized, and that assertions by Agent A are acceptggh|er (1996) describes Attitude redundant utter-
by default by Agent B (Walker, 1996: 183). ~  5nces as providing evidence of grounding. Walk-
In fact,_ redundanqy can serve many desirablg's  other types of proactive redundancy
purposes in communication. Redundancy has begRonsequence and Attention) make inferences
shown to increase text cohesion and readabilijseq on grounded utterances explicit and make
(Horning, 1991) as well as provide evidence Ofjements of the common ground salient again.
understanding and grounding, make a proposition Reactive redundancy is one type of repair, like
salient, and make inferences explicit (Walkergyhansions and replacements, which can be used in
1996). A computer simulation of a cooperative tasfesnonse to non-understanding or misunderstand-
dlalogue_ between two agents suggested that the WS§ (Hirst et al., 1994). The type of miscommuni-
of certain types of redundant utterances improvedition may influence a speaker’s choice of repair
the performance of the pair (Walker, 1996). strategy, with reactive redundancy being an appro-
Fussell and Krauss (1989a) point out that the,rfﬁ'iate response to mishearing or misremembering.
are two methods that speakers can use to tailor yowever producing redundant information
their message for the listener. The first methed iRy en when the listener signals a need for it, scur
volves predicting what information it is necessary cost Including redundant information increases
to communicate, using knowledge of the Ilstener’&e length of the dialogue and the speaker’s effort
interests and background. The second method iy gecreases the amount of new information pro-
volves modifying the message in response 10 ligzgeq within a certain length of time. In theseasas

tener feedback. Walker's model only captures thgq speaker must decide how much redundant in-
use of redundancy in the service of the first mggrmation to provide and when to provide it.
thod. We will refer to this type of redundancy as

proactiveredundancy, whereby a speaker providez2  Signals of Confusion
redundant information without waiting for the lis-
tener to express a need for it. The advantages lagteners can express a need for information to be
providing redundant information proactively in-repeated or restated in a number of ways, both ver-
clude being able to integrate the redundant infobally and non-verbally. Brinton et al. (1988) used
mation with the new information, and avoidingguestions and statements of confusion (‘I didn't
conflict by removing the necessity for the listenennderstand”) as signs of communication break-
to express a lack of understanding (Brown and Lelowns. Morrow et al. (1993) describe inaccurate
vinson, 1987). and partial repetitions of instructions as elements
We hypothesize that speakers also use redudf-miscommunication. This prior work leads us to
dancyreactively after the listener signals a lack ofexamine questions, utterances signaling non-
understanding, either verbally or non-verballyunderstanding (e.g. “I don't remember what’s
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next”), incorrect repetitions (e.g. “take the third2.4 Visibility and Communication
right” after the direction-giver said “take the
second right”) and abandoned utterances (e_\fjisibility also has a number of effects on commu-
“Then I'll turn...”) as possible signs of listener Nication. One of the most basic is that when inter-
confusion. We predict redundancy after suckpcutors cannot see each other they cannot use non-
statements because they all indicate that a pieceV§rbal signals to communicate, so they must rely
information has not been understood. on verbal communication. For example, the use of
We also examine eye-gaze as a non-verb@ye-gaze as a sign of listener attention (Argyké an
marker of listener comprehension. Goodwin (1981§00k, 1976; Goodwin, 1981) is only possible
described gaze towards the speaker as a signV‘then interlocutors can see each other. When they
listener attention. However, Nakano et al. (2003)annot see each other, they must indicate attention
found that speakers seemed to interpret a listené@rbally or do without this information.
gazing at them rather than at a map as a sign of Visibility affects both the form and the out-
listener misunderstanding. Therefore, shifting ey&omes of a conversation. When interlocutors can-
gaze away from the speaker can signal that a 180t see each other, conversations are longer and
tener is losing attention, perhaps due to confysiofontain more, shorter, utterances than when they
while shifting gaze towards the speaker can signg®n (Nakano et al., 2003). Interlocutors in an in-
misunderstanding. In this study there is no mapestment game who could not see each other also
and listeners who can see the speaker spend midiek not establish trust to the same extent as those
of the conversation gazing at the speaker. Stilk d Who met face-to-face (Bos et al., 2002).
to the opposing findings in the literature, we ana- Because speakers who cannot see each other
lyze eye-gaze shifts both towards and away frofave fewer channels of communication available to

the speaker as potential signs of listener confusiothem, their interaction can be more difficult than
face-to-face interaction. We predict that this will

2.3 Rdationship and Communication lead them to use more redundancy and more reac-

o ~_tive redundancy in an effort to be clear.
Speakers are more explicit when communicating

with strangers or people with whom they share le€sb  Hypotheses
common ground. This explicithess can take the _
form of highly informative self-introductions on In order to study how responsive speakers are to
the phone (Hornstein, 1985), longer descriptions gfgns of listener confusion, we must first deterenin
abstract figures (Fussell and Krauss, 1989b), aMdat signs speakers respond to. In this study we
explicit references to utterance topics (Svedsen agxamine a number of verbal and non-verbal signs
Evjemo, 2003). These studies indicate that speakPeakers may use to gauge listener confusion. In
ers attempt to make up for the small amount ¢frticular, we expect that speakers will provide
common ground they share with strangers by imedundancy in response to both verbal signs like
cluding more information in the discourse itself. ~guestions, statements of non-understanding, incor-
Another difference between friends and nontect statements, and abandoned utterances, and
friends is that acquaintances tend to be more fdron-verbal signs like eye-gaze changes. We expect
mal, more concerned with self presentation, ledgat speakers will strike a different balance be-
negative, and less likely to disagree than friendéeen efficiency (minimizing speaker effort) and
(Schlenker, 1984; Tickle-Degnen and Rosenthaflarity (minimizing listener effort) depending on
1990; Planalp and Benson, 1992). Therefore, vige relationship between the speaker and listener,
expect that in an initial interaction, a speakell wiand the physical context of the interaction. We ex-
try to appear competent and avoid conflict. pect speakers to use redundancy strategies focused
As noted above, speakers talking to strangeff! Mminimizing speaker effort when addressing
are more explicit, leading us to predict more reffiends and people they can see. Such strategies
dundancy overall. They are also more likely to trjnvolve less redundancy (and therefore less speak-
to impress their interlocutor and avoid conflicting), and less reactive redundancy (requiring less
leading to more reactive redundancy in response fgtener monitoring). Conversely, we expect to find
confusion when the pair are strangers. redundancy strategies maximizing clarity when

39



speakers address strangers and people they caroratestrictions on what could be said, but the dyad
see. Such strategies involve more redundancguld not use maps or props. When the dyad de-
overall (providing the listener with more informa-cided that direction-giving was complete, they sig-
tion in general) as well as more reactive redundanaled the experimenter, who the receiver led to the
cy (which provides the listener with the specifigoal, following the directions.

information they may require). The direction-giving sessions were videotaped.
Hypothesis 1 - Redundancy and Non- Participants’ speech was transcribed and coded for
Under standing possible redundancy triggers and redundant utter-

(@ Verbal cues - Direction-givers will provide ances using the coding scheme described below.
redundancy when the receiver verbally expressesThe time-aligned codings for the giver and receiver
lack of understanding by asking a question, abawere aligned with each other using scripts that cal
doning an utterance, making an incorrect statemerilated which of the receiver’'s utterances or ac-
or explicitly expressing non-understanding. tions directly preceded which of the giver's
(b) Non-verbal cues - Givers will provide redun- utterances. The scripts classify a receiver’'s utter
dancy when the receiver non-verbally expressesaace or action as ‘preceding’ a giver’s utteraffice i
lack of understanding by shifting eye-gaze. its start precedes the start of the giver's uttegan
Hypothesis 2 - Redundancy and Relationship and its end is not more than two seconds before the
Givers will prioritize clarity over efficiency irheir  start of the giver’'s utterance. The two-secondtlimi
redundancy use when speaking to strangers, pkeas used to avoid positing connections between a
viding (a) more redundancy and (b) more reactivgiver’'s utterance and receiver utterances that came
redundancy than when speaking to friends. long before it.

Hypothesis 3 - Redundancy and Visual Contact

Givers will prioritize clarity over efficiency irheir 3.3  Data Coding

redundancy use when they cannot see their partngr,

providing (a) more redundancy and (b) more rea -ach dialogue was divided into clauses, defined as
tive redundancy than when they can see them units that include a subject and predicate and ex-
" press a proposition. Each clause was coded using a

3 Methods modified version of DAMSL (Core and Allen,
1997). Direction-givers’ and receivers’ speech was
3.1 Participants coded differently because we only studied redun-

dancy produced by the giver. We coded the receiv-
Twenty-four university students participated, reer’s speech for signs of confusion. We describe the
sulting in twelve dyads. All were paid $10 for theilabels we used in more detail below.
participation and received $5 gift certificates if Each direction-giver's clauses were coded for
they successfully completed the task. In each dy&®iatements and Info-requests. The Info-request tag
the direction-giver was familiar with the buildingmarks questions and other requests for informa-
in which the experiment took place, and the diregion. In a Statement, a speaker makes a claim about
tion-receiver was unfamiliar with it. Half the dysad the world. The class of Statements was broken

were pairs of friends and half were strangers.  down into Non-redundant, in which the speaker is
trying to change or add to the hearer’s beliefgl an
32 Procedure Redundant, which contain only information that

has already been stated or entailed.

| Each direction-receiver’s clauses were coded
e?gir Statements, Info-requests, Signal non-
understandings (S.N.U.), and Abandoned utter-
fnces. The receiver’s Statements were classified as
ither Correct or Incorrect. If an utterance explic
ﬁ/ expressed non-understanding of an earlier utter-
ince it was coded as Signal non-understanding.
his label was only used for direct statements of
non-understanding, such as “I didn't follow that,”

The task consisted of three consecutive directio
giving sessions, as described in Cassell et
(2007). At the start of each session, the experim
ter led the direction-giver to a point in the biriigl

and back to the experiment room. Half of the dya
sat facing each other during the direction-givin
(the Vision condition) and half sat back-to-back:
with a screen between them (the No-vision cond
tion). The direction-giver then explained the rout
to the direction-receiver. There were no time lgmit
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and not for signals of non-understanding coveragtterance ;(2(1,4539,=.3,p=.619). Figure 1 shows the
by other labels such as Info-requests and Incorrgeércentages of giver utterances that were redundant
Statements. Utterances that were abandoned (fb#owing various receiver dialogue acts.

speaker stops the utterance and it provides no con-

tent to the dialogue) were coded as Abandoned. = 60% 15299
Receiver utterances that were not coded as Info-
requests, Incorrect Statements, Signal-non-
understandings, or Abandoned, were coded as No-
trigger. No-trigger utterances included correct
statements and statements about task management.

48.7%
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We found that a large proportion of giver utter- Figure 1. Percent of redundant giver utterances fol
ances were redundant, ranging from 17% to 38% lowing various receiver dialogue acts.

with a mean of 25%. Examples of redundancyjon-verpal Signals of Non-Under standing

from our recordings are listed in the Appendix.

We first analyzed the data using a hierarchicale tested part (b) of Hypothesis 1 with a separate
loglinear analysis with the variables: visual cendihierarchical loglinear analysis examining only the
tion (Vision, No-vision), relationship (Friends,dyads in the Vision condition for the effects of:
Strangers), receiver-utterance (Info-request, lcofelationship, receiver-utterance, giver-utterance,
rect statement, Signal non-understanding, Abaand receiver-gaze (Gaze-to, Gaze-away, and No-
doned, No-trigger), and giver- utterancegaze-change). The first- and second-order effects
(Redundant, Non-redundant). The overall model igre significant 3 (59.281579582.4, p<.001).
significant 39, 5294,-13254 157,p<.001), justify- A test of partial associations and a chi-square
ing chi-square comparisons of individual factorgest indicate a significant association between giv
within the model. We report tests of partial assockr-utterance and receiver-gaze (Pariiab ssis-
ation and chi-square tests to indicate where signib2 7, p<.001; %%, 2815724.7,p<.001). Chi-square
cant differences lie between groups. tests comparing receiver gaze changes to non-
changes show that redundant utterances are signifi-
cantly more likely after a gaze change toward the
Verbal Signals of Non-Under standing giver ((u249721.5,p<.001) and after a gaze
change away from the givey (1 247576.5,p<.05)
fhan after no gaze change. A chi-square test com-

aring gaze change toward the giver to gaze
“hange away from the giver shows that the differ-
%nce between them is not significamfu(m)—z 7,
=.098). These effects are shown in Figure 2.

4.1 Redundancy and Non-Under standing

We tested part (a) of Hypothesis 1 by running
test of partial associations (adjusted for all @fe
in the model) and an unpartialled chi-square (i
noring variables not included in the effect bein
tested). These showed a significant association
tween receiver-utterance and giver-utterance type
(Partial X (4,5294,-117.7, p<.001; 45%
xa52047121.2,p<.001). 40% |
Chi-square tests comparing giver-utterances fol- .

30% 27.4%
lowing predicted redundancy triggers to giver- 25%

20%

15%

10% -

5%

0%

utterances after No-trigger receiver utterances, in
Towards Away No change

39.7% *

33.8% —* ‘

dicate that Info-requests, Incorrect statements and
Abandoned utterances all significantly increase the
likelihood that the giver will produce a redundant
utterance  %1.4907757.3,p<.001; x’1.4s62728.4,
p<.001;x2(1,4551,=49.1,p<.001, respectively). Expli-
cit Signal-non-understandings do not have signifiFigure 2. Percent of redundant giver utterances fol

cant effects on the likelihood of a redundant-lowing receiver eye-gaze changes toward and away
from the giver, and following no gaze change

Redundant Giver Utterances (%)

Gaze
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4.2 Redundancy and Relationship dant utterances in direction-givers’ speech. We
_ _ _also examined whether the interlocutors’ relation-
Part (a) of Hypothesis 2 was confirmed by the sighip or visual contact influence whether speakers
nificant association between relationship and gigrovide redundant utterances in anticipation of and
er-utterance  (Partial x%1s204713.3, p<.001; in response to listener confusion. We found that
% (1520476, P<.05) in our original analysis. A largergivers used a large proportion of redundant utter-
percentage of giver utterances are redundant in theces, (around 25% of utterances). Walker (1996)
Strangers condition (27.8%) than in the Friend®und that about 12% of utterances were redundant
condition (24.8%). in a corpus of recordings from a call-in financial
To examine part (b) of Hypothesis 2 we ran gadio show. The higher proportion of redundant
hierarchical loglinear analysis after collapsing alutterances in our study is predicted by Walker's
receiver-utterances into question/non-question cgt:996) model, in which a task’s tolerance for com-
egories. This reveals a significant partial associprehension errors influences whether redundant
tion among giver-utterance, receiver-utterance, angterances are produced. In a radio advice show, a
relationship (Partiab(2(1,5294,=7.5, p<.01). A chi- misunderstanding may be more easily recovered
square test comparing utterances after questionsfiom than in direction-giving, in which one wrong
the Friends and Strangers conditions shows thatrn could make it impossible to reach the goal.
redundant utterances are significantly more likely In addition to revealing the impact of task toler-
after questions in the Strangers condition than tlance to error on redundancy, this study sheds light
Friends condition )(2(1,412)= 14.6, p<.0005), as on other circumstances that influence redundancy
shown in Figure 3. use. Givers produced reactive redundancy in re-
Three-way interactions among giver-utterancesponse to the verbal triggers: Info-requests, Aban-
receiver-utterance and relationship are not signifiloned utterances, and Incorrect statements.

cant in any of the other analyses. However, even these triggers were not always fol-
~ lowed by redundancy. In fact, only around 50% of
Do 2% the utterances following these triggers were redun-

® Friends

dant. Such a low response rate is surprising until
we consider the diversity of utterances covered by

50%
40% | 37%
240,27% .
these labels. For instance, some Info-requests seek
0, 4 . .
20% II new information (e.g. “What's at the top of the

W Strangers

Redundant Giver
Utterances (%)
w
&
>

10% 1 stairs?”), and some receiver utterances are aban-
doned because the giver interrupts with new in-
_ , formation. Our study lays the groundwork for
Figure 3. Percent of redundant giver utterances fol — f,1,re examinations of speaker responses to listen-
lowing questions and non-questions, by relationship er confusion, which can refine these broad catego-
4.3 Redundancy and Visual Contact ries. We must also consider the variability in
] o . responses to listener confusion. We found that giv-
There is a trend-level association between visuglg are more likely to provide redundant utterances
condition and giver-utterance type (Partidhssos in response to questions when speaking to stran-
=4.6,p<.05;) "1 5204773.3,p=.071). Contrary to Hy- gers, but this is only one of many factors thatidou
pothesis 3, a larger percentage of utterances @ffect levels of responsiveness, including speaker
redundant in the Vision condition (277%) than irbersona|ity1 time pressure, and task d|f‘f|cu|ty
the No-vision condition (255%) No Significant The non-signiﬁcant effect of Signa|3 non-
association was found among giver-utterance, rgnderstandings on redundancy is surprising. This
ceiver-utterance, and visual condition, even whqaﬁay be due to the small number of examples of
collapsed into question/non-question categories. this category in our recordings. We found only 44
) ) instances of Signal non-understandings, in contrast
5 Discussion to, for example, 156 Abandoned utterances.
_ The non-verbal cue gaze change also increased
r\_ﬁe likelihood of a redundant utterance. Interggtin
, gaze changes both to and away from the giver

Question  Non-question

This study set out to discover what verbal and no
verbal behaviors increase the likelihood of redu
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triggered redundancy. This is consistent with bot8 Conclusion
Nakano et al.’s (2003) finding that gazing at the
speaker signals listener misunderstanding aridis study explored the use of redundancy in task-
Goodwin's (1981) finding that gazing away fromoriented dialogue, specifically the effects oféist
the speaker indicates a lack of listener attention. er behavior and communicative context on the
It is interesting that 24% of giver utterances folamount of redundancy produced. We found that
lowing No-trigger receiver utterances were redurdlirection-givers provided redundant utterances in
dant. These probably include both redundariesponse to verbal and non-verbal signs of listener
utterances triggered by signs of listener confusigipnfusion. As predicted, givers were more likely to
that we did not code for, and proactive redundancprioritize clarity over efficiency in their redunda
Proactive redundancy can appear within the firsy use (using more redundancy overall and more
description of some directions (see the No-triggégedundancy in response to questions) when speak-
example in the Appendix) and when the whole séig to strangers than friends. Contrary to our pre-
of directions is repeated as a memory aid. dictions, givers did not provide more redundant
The relationship between the interlocutors dodgterances when they could not see their listener.
affect the amount of redundancy speakers produce Direction-giving, due to its high memory load
overall and in response to listener signs of conf@nd the need for the receiver to understand the giv
sion. Strangers used more redundant utteranc¥salmost completely, is a type of discourse that
than friends and provided more redundant uttemay encourage more redundancy than other types.
ances after questions. This supports our hypothe#isleed, we note that our data have a much greater
that direction-givers speaking to strangers wilt pr proportion of redundancies than discussions taken
oritize clarity over efficiency. The more consigtenfrom radio talk shows (Walker, 1996). Future work
use of reactive redundancy in the Strangers conghould examine the nature of proactive and reac-
tion may be due to speakers’ tendency to avoftve redundancy in more varied discourse contexts,
confrontation with strangers. When responding téuch as negotiation, teaching, and play. It should
questions from friends, direction-givers may proalso explore the effects of memory load on redun-
vide some new information because they know thelency by varying task complexity, which may be
their friend will feel comfortable asking anothereasier with a more controlled task like the Map-
question if their answer is unclear. However, whet@isk. Researchers could study the relationship be-
answering questions from a stranger, the giver mayeen saliency and redundancy by studying
wish to avoid the embarrassment of further configorrelations between a segment’s salience and its
sion by repeating more discourse-old information. likelihood of being used in a redundant utterance.
However, contrary to our predictions, we did Our findings can be used to improve the com-
not find more redundancy or more reactive redurmunicative efficacy of natural language generation
dancy in the No-vision condition than the Visiorsystems like those used in Embodied Conversa-
condition. In fact, we found numerically more retional Agents (ECAs; Kopp et al., 2008). For ex-
dundancy in the Vision condition. Given the lonample, like strangers, direction-giving ECAs could
level of significance, we do not discuss this in deuse increased overall and reactive redundancy to
tail, however we suggest that this could be due ggmpensate for the lack of shared common ground
the fact that there are more ways of signaling nowith the human user of the system. Analyses of the
understanding available to the receivers in the Vgyntactic structures of different types of reduridan
sion condition (both verbal and non-verbal). Thergitterances will be important for incorporating thes
fore, even if givers do not increase their rates ¢esults into generation systems.
reactive redundancy in the Vision condition, they
could provide more reactive redundancy (and movkcknowledgments

redundancy overall) because j[hey_ are rec_eivilwe thank Paul Tepper, Gregory Ward, Darren
more cues to react to. Not all situations leadmg tGergIe Alex Podbelski, and our anonymous re-
communication difficulties encourage more redu.r\’/ieweré for their helpful :advice and hard work. We

dancy (;)r molr_e_ reactive :jedundg_npy, but thle 'Ere grateful for generous funding from Motorola
creased explicitness and positivity typical of 4 NSE HCC 0705901
conversation between strangers do encourage it.
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Appendix: Examples from Dialogues Abandoned Example

G: and then you're gonna hear some kids and
In the following examples, utterances in italice ar people talking and stuff, you're gonna be head-
the triggers produced by the receiver, and under-ing toward the clinic
lined utterances are redundant. Commas indica®e oh okay
pauses. Receiver utterances in square brack&s okay, the clinic you're is gonna come up on
overlap with the portion of the preceding giver ut- your right, [there’s gonna] be, kind of, semi cir-
terance in brackets. cular blue couches

R: [okay], uhhuh

G: down there, the stapler, is on the floor, right
Question Example next to a pillar, [Jum] so basically you're gonna
Giver (G): as soon as you come outta the door, like, you're gonna kind of, turn right to look into

uhh on the second floor you'll [see like a win- the clinic

dow] in front of you R: [okay], okay
Receiver (R): [mmhm] G: and then, the stapler’'s kinda just over there to
G: [and then], you'll wanna take a left the left, on the floor by one of the pillars
R: [hm]

G and you're gonna hear people talking and
G: if you look to your left you'll see the exit sign there’s gonna [be kids]

uhh with for the stairwell R: [okay] so and then the, pillar its’ like gonna be
R: ok so then | go to this second floor one of the pillars on the, right by like | guess it
G: mmhm on the
R: andthen do | go right? G: basically, basically um you walk into, the clin-
G:no ic, and there’s blue, couches
R: or left? R: mmhm
G: you go left [once you come outta] the secon@: and then it’s just a little bit over to the left

floor R: oh okay
R: [you go left] G: on the floor
Incorrect Statement Example No-Trigger Example

G: and you're gonna go towards the computer, ar@d: open the door, and you’re gonna see a set of
pass the computer, and there will be, copy ma-stairs
chines on your right after you pass the computeR: okay
R: mhmm G: go down those stairs, to the second floor
G: so after you, walk, just past the copy maching®: mmhm
you're gonna want to take a hard left, almost lik& so you're gonna be on the third floor, you're
a U-turn gonna_then you're gonna take the stairs down to
the second floor
G: once you turn to the right at after the firstrsta R: okay
you'll you'll see a computer
R: oh a computer right o&nd then I'm gonna take
a really hard left like a U-turn
G: right well you go past the computer and then
you'll see copying machines
R: oh ok
G: and then but, the copy machines are like maybe
three five feet after the computer
R: ok
G: and then that's when you take the hard left
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Semantic negotiation in dialogue: the mechanisms of alignment

Gregory J. Mills
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Abstract

A key problem for models of dialogue is to
explain how semantic co-ordination in dia-
logue is achieved and sustained. This paper
presents findings from a series of Maze Task
experiments which are not readily explained
by the primary co-ordination mechanisms of
existing models. It demonstrates that align-
ment in dialogue is not simply an outcome of
successful interaction, but a communicative
resource exploited by interlocutors in con-
verging on a semantic model. We argue this
suggests mechanisms of co-ordination in dia-
logue which are of relevance for a general ac-
count of how semantic co-ordination is
achieved.

1 Introduction

One of the first things apparent to European trav-
ellers on arriving at an American hotel is that the
ground floor is also the first floor. Any confusion
can be quickly corrected by an observant
concierge, whether by explicitly stating the con-
vention, or by implicitly bypassing the problem
with a different description, such as “go up 5
flights of stairs”. Assuming this description is suf-
ficient to guide the hapless traveller to the correct
room, when the same traveller asks for assistance
to find another part of the hotel, the concierge is
faced with a choice of whether to give a descrip-
tion involving floor numbers or in terms of flights
of stairs.
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The immediate question that emerges is what
motivates this choice between different semantic
models of a domain, how they are deployed when
interlocutors are faced with problematic under-
standing, and which semantic model is subsequent-
ly used once the problem is resolved. Although ex-
isting approaches to dialogue agree that answering
this question necessarily involves focusing on the
interactional devices available to interlocutors,
their primary emphasis is on the information-ex-
change aspects of language use. Larsson (2007)
provides a useful distinction between the co-ordi-
nation of information, i.e. establishing common
ground (Clark, 1996) and the co-ordination of lin-
guistic resources which are adapted to suit particu-
lar communicative situations in order to make such
information-exchange possible. Part of this frame-
work involves interlocutors negotiating which par-
ticular semantic model to use, and adapting their
own interpretations on the basis of successful/un-
succesful use. However, although this framework
sketches out a formal account of the mechanisms
involved in this process, it is not concerned with
predicting which particular semantic model will be
adopted by interlocutors.

A model of dialogue which attempts to address
this issue is the interactive alignment model of
Pickering and Garrod (2004). In this model conver-
gence on a semantic model is arrived at via tacit
priming occurring at all levels of representation
(phonetic, phonological, lexical, syntactic, seman-
tic and situational): interlocutors are more likely to
re-use the representations used by their partner,
giving rise to a “winner-takes-all” dynamic (cf.
Steels & Belpaeme, 2005) which leads to align-

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 4653,
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ment of interlocutors' representations. This is fur-
ther re-inforced by “percolation” occurring be-
tween levels, thus lexemes associated with particu-
lar semantic models will reinforce the use of these
models.

The claims associated with the interactive align-
ment model (henceforth IM) are drawn from a se-
ries of maze task experiments (Garrod & Doherty
1994; Garrod and Anderson, 1987; Anderson and
Garrod, 1987). This paper discusses some of the
original findings of these experiments and a further
set of maze task experiments conducted by Healey
and Mills (2006), Mills and Healey (2006). These
papers argued that the primary mechanisms provid-
ed by the IM are insufficient for explaining ob-
served patterns in maze task dialogue; in particular
how semantic co-ordination is achieved. The
present paper argues that interlocutors in the Maze
task exploit variation in usage in the service of se-
mantic co-ordination. Furthermore we argue this
suggests mechanisms which are relevant for a gen-
eral account of how semantic co-ordination is
achieved in dialogue. As the claims developed here
are based on the maze task, we first explain the
task in more detail. We then discuss a series of ex-
amples drawn from this task that raise basic issues
for models of semantic co-ordination.
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Figure 1: Example maze configuration. The solid
black circle shows the player's current position, the
cross represents the goal point that the player must
reach, solid bars the gates and shaded areas the
switch points.
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2 The maze task

The maze task developed by Garrod et al involves
pairs of participants seated in separate rooms in
front of a computer which displays a simple maze
consisting of interconnected nodes (see Fig 1).
Participants must move their respective position
markers through the maze in order to reach a
“goal” node. Some of the paths are blocked by
gates, which are opened by participants guiding
each other onto “switch” nodes (shaded areas).
This provides participants with the recurrent co
-ordination problem of collaboratively individuat-
ing and referring to maze locations in order to
solve the maze. The descriptions used by partici-
pants to refer to maze locations are classified by
Garrod et al. into four distinct types:

Picks out salient features of the maze:
“The 1-shape sticking out at the top”
“The uppermost box”

Figural:

Path: Traces a route along the connections
between nodes:

“Go 2 up, 1 down, 3 along, 5 up”

“up, right, down, up ”

Line: Treats the maze as consisting of hori-
zontal or vertical vectors:

“3rd row, 5th box”

“4th column, second square”

Matrix: Cartesian co-ordinate system:
4 27

“AT”

It is assumed that these different description types
correspond to different semantic models of the
maze.

3 Conservatism

The first question, also raised by Healey and Mills
(2006), concerns the tension between the interac-
tive alignment model's inherently conservative pri-
mary co-ordination mechanism and the migration
in description types commonly observed in the
Maze task. To the extent that it relies on priming
as its basic mechanism the IM cannot provide an
account of how once a convention is established
and used successfully, it might be supplanted by



another.. However, it is consistently observed that
the description types used most frequently initially
fall into disuse and are not converged on in later
games. Across trials there is a general shift from
more “concrete” (Figural and Path) descriptions to-
wards more “abstract” (Line and Matrix) descrip-
tions, which runs counter to precedence. A typical
pattern of the shift is given in table 1, below:

0 mins: The piece of the maze sticking out
2 mins: The left hand corner of the maze
5mins: The northenmost box

10 mins: Leftmost square of the row on top
15 mins: 3rd column middle square

20 mins: 3rd column Ist square

25 mins: 6th row longest column

30 mins: 6th row 1st column

40 mins: 61,1 ¢

45 mins: 6,1

Table 1: Semantic shift from “Figural” and
“Path” descriptions to “Line” and “Matrix” ob-
served in maze task dialogues.

Garrod (1999) discusses this process as an “explo-
ration” process. However, this, in itself, doesn't ex-
plain the systematic patterns of change observed in
the experiments.

4  Variation

The early explanations of co-ordination in the
Maze Task also emphasized the importance of
variation in the description types participants are
exposed to. Garrod and Doherty (1994) assigned
participants to one of three different groups: (1)
isolated pairs who always interacted with the same
partner in subsequent games, (2) a sub-community
group whose members changed partners in each
game, only interacting with members from the
same sub-community, and (3) a non-community
group whose members always interacted with a
new partner who was not drawn from the same
community. Although initially pairs in the sub-
community group were less co-ordinated than the
isolated pairs, using a wider variety of referring ex-
pressions, by the later trials, this pattern was re-
versed: participants in the sub-community group
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had converged on a single Matrix scheme and con-
sistently matched each other's descriptions.

These findings present a problem for accounts of
co-ordination which rely on priming, as they make
the emphasis of the priority of alignment of repre-
sentations at all levels problematic. The metaphor
of two tightly-coupled production and comprehen-
sion systems is the paradigm case of successful co-
ordination, as it allows rapid priming between in-
terlocutors' representations. However, these exper-
iments show weaker semantic co-ordination in the
isolated dyads than within the group. As Garrod
and Doherty (1994) concur, this implies that varia-
tion, i.e. differences in interlocutors' representa-
tions is important for establishing and sustaining
semantic co-ordination.

5 Granularity of analysis

If variation of description types is intrinsic to the
development of semantic co-ordination, this
strongly suggests the importance of mechanisms
involved in dealing with problematic understand-
ing (Healey, forthcoming). All things being equal,
variation increases the likelihood that interlocutors
will encounter others whose use of language will
differ more from their own. Further, any account of
misunderstandings must also be able to address se-
mantic differences between descriptions: partici-
pants in the maze task do not treat these four de-
scription types equally, and consequently are not
appropriately modelled as co-ordination equilibria
of the kind described by Lewis (1968) (Healey,
2004; forthcoming). Existing experimental data
shows that participants systematically favour Figu-
ral and Path descriptions when encountering prob-
lematic dialogue (Mills and Healey, 2006; Healey,
1997) not the prior most frequently used semantic
model as predicted by the IM.

Looking more closely at the dialogues, it is not
clear that the co-ordination mechanisms actually
operate directly at the level of the four basic se-
mantic models. Consider the following excerpt in
which a participant encounters difficulties with a
Line description type and its associated counting
conventions. The dialogue continues with more
Figural descriptions, before resuming at turn (35)
with a Line description:



(1) A: go to the 1st row 2nd on the right
(2) B:2nd?
(3) A:on the right

(4) B: OK, I can only get to the left of the
maze

(5) A: go to the highest square on the left
(6) B:yes. And then?

(35) B: I'm on the top row 2nd square

Excerpt 1: Deletion of elements from problem-
atic turn.

While superficially, A's turn at (3) appears sim-
ply as a repeat of (1), with “on the right” being
omitted, the subsequent turns continue with Figural
descriptions. On this basis, it is unclear whether (1)
and (3) invoke the same Line model or whether (3)
invokes a Figural description. There is a large class
of similar clarification sub-dialogues which in-
volve deletion of a problematic element and result
in the continuation of the dialogue with more Figu-
ral descriptions.

This issue is of importance for any theory of
semantic co-ordination as it raises the question of
the granularity of the mechanisms involved in how
interlocutors collaboratively change semantic mod-
el. Further, it strongly suggests that alignment is
not simply an outcome of successful communica-
tion, but can provide the background against which
other co-ordination mechanisms operate. Turns
(1)-(6) demonstrate high levels of between-speaker
alignment, while at the same time involving a shift
in semantic model. Before returning to this below,
we demonstrate further differences between the in-
formational view of language and an account
which focuses on semantic co-ordination.

6 Information vs. semantic co-ordination

From an informational perspective, if an utterance
fails to secure reference, there is the general as-
sumption that more information will be provided to
allow resolution of the problem. However, in (3),
no new information is provided by A. This is a
counter-example to Clark and Marshall's (1981)
model of definite reference repair, which states that
to be effective “repair must add or alter descrip-
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tors, but not delete them”. Importantly, these CR
responses that simply delete elements from the tar-
get turn are not treated by participants as repeats
and queried again, but appear to promote resolu-
tion of the problematic understanding by engender-
ing the use of more Figural descriptions. The
words which are omitted do not appear, as with the
level of description types, to be dictated by prior
frequency of use (Mills, 2007). Instead, the data
suggest that this pattern is motivated by a relax-
ation of the constraints of successful interpretation
(Healey and Mills, 2006).

The example above raises a further question
concerning the relationship between semantic co-
ordination and the exchange of information. In ex-
isting “ladder models” of communication such as
the collaborative model of Clark (1996) and All-
wood (1995), there is the general expectation that
on encountering and signalling problematic under-
standing, interlocutors enter a sub-dialogue to re-
solve the problem, which on completion proceeds
at the same “level”. From this perspective, B's
turn-initial acknowledgment at (4) should demar-
cate the end of the sub-dialogue dealing with the
problematic understanding. Focusing on the de-
scription types, however, shows that it is only at
turn (35) that the interlocutors return to using the
original problematic line description; the semantic
effects persist beyond the immediate sub-dialogue.
This highlights the inadequacy of a strict informa-
tional view of language as the response provides
no additional information, yet still has the effect of
resolving the misunderstanding.

7 Exploitation of alignment: patterns of
deletion, modification and addition

In addition to deletion of elements contained in re-
ferring expressions, the maze task dialogues exhib-
it a multiplicity of ways in which interlocutors
modify descriptions when dealing with problemat-
ic understanding, through the addition, substitution
and (as described above) deletion of elements of
semantic models. We argue that alignment is key
to these patterns of modification, as it provides a
backdrop against which changes can be made.
The canonical example of this is embedded correc-
tion (Jefferson, 1983; Saxton, 2007) which exploits
the structure provided by alignment to make a fig-
ure / ground distinction that allows the corrected
element to be identified:



(1) A: You need to go to the top of the 5th
row

(2) B:Ican't getto the top of the 5th line

Excerpt 2: Substitution of problematic ele-
ments .

Embedded corrections in the maze task exhibit
very high levels of between-speaker alignment, yet
occur at points in the dialogue where there is prob-
lematic understanding. This indicates that align-
ment can not simply be reduced to an index of suc-
cessful communication. While this particular con-
versational device which spans 2 turns (and possi-
bly a third) has received much attention, closer in-
spection of the maze task dialogues reveal a far
larger space of possible means of exploiting align-
ment. Excerpt 1 above showed deletions, Excerpt 2
substitutions, however a similar pattern also ap-
pears with the addition of Figural elements.

(0]
(0]
Q)
(C))

A: I'm in the 4th row 5th square
B: where's that ?
A: The end bit

B: cheers, I'm on the end bit right at the
top

©))

A: can you get to my switch?

(23) B: am on the top row 3rd square

Excerpt 3: Addition of “Figural” elements.

At a first glance, this excerpt looks like a
straightforward clarification request followed by
the provision of more details, specifying that the
“Sth square” is also “the end bit”. B's use of
“cheers” in (4) and subsequent provision of her
own maze location would appear to demarcate the
end of the clarification sequence, as they provide
an acknowledgment and a “next relevant contribu-
tion” (Clark, 1996). However, focusing on the en-
suing turns yields a pattern that parallels the first
example. The semantic effects stretch beyond the
immediate clarification sub-dialogue: both inter-
locutors continue with more Figural descriptions
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until turn (23) where the original, problematic Line
description is attempted again.

A further issue emerges when interlocutors fi-
nally re-use the original description, as in turn (23)
of Excerpt 1, and (35) above: although the surface
form of the descriptions are similar, this does not
necessarily entail that they individuate the same lo-
cations. For example, the counting conventions as-
sociated with squares may change, such as count-
ing from the left instead of the right or counting
from 0 as opposed to 1, similar to the concierge ex-
ample above. The axes may also change, with
“rows” referring to vertical vectors (i.e. columns).

This raises important questions of the relation-
ship between the problematic utterance, the sig-
nalling of the problem, the response, the ensuing
figural sub-dialogue and the subsequent return to
the superficially similar but potentially altered de-
scription type. It appears that alignment is not sim-
ply an outcome but an interactional resource that
is exploited to facilitate the continuation with more
Figural descriptions (cf. Saxton, 2007).

In the first excerpt, turns (1) and (3) only differ
minimally from each other, while in the second ex-
ample, turn (3) can be seen to be operating ellipti-
cally on turn (1). However, both engender similar
semantic shifts towards Figural descriptions and
result in a return to the originally problematic Line
description.

This leads to the immediate question of what
motivates interlocutors' patterns of alignment and
modification, and how they reflect differences of
understanding and diagnosis of the problem. The
tacit and fine-grained nature of these modifications
exacerbates the problem of arriving at a prelimi-
nary taxonomy, as these dialogue sequences are
not readily categorizable as either “elaborations” or
“reformulations” (cf. Purver et al., 2004,
Schlangen 2004).

8 Boundary of (mis)communication

During the course of maze task dialogues, partici-
pants shift seamlessly and tacitly from one descrip-
tion type to another. This occurs both within prob-
lematic and unproblematic dialogue. From an in-
formational perspective, miscommunication is
readily describable as a form of mismatch, yet
from a semantic perspective, participants match
each other more when encountering difficulties.



Thus alignment cannot be taken as a straightfor-
ward index of successful interaction.

This also raises a methodological point. Mea-
sures of matching of representations, whether at
the level of description type or its constituent ele-
ments are only an approximate index of semantic
co-ordination. The excerpts above demonstrate the
importance of the interplay between what is re-
tained and what is modified. What is required is a
measure that is sensitive to the kind of model being
used and the kind of repair being performed.

In addition, more frequent repair does not nec-
essarily entail that a dialogue is unsuccessful. It is
not the case that interlocutors introduce their utter-
ances carefully, and once they are sufficiently co-
ordinated, move on. The general pattern is that
when participants introduce abstract (Line and Ma-
trix) descriptions, they do so opportunistically. At
the start of the games they frequently attempt both
Line and Matrix descriptions, which are associated
with higher co-ordination. However, there is evi-
dence that it is only where they can go through the
process of detecting and responding to differences
in usage, i.e. repair, that co-ordination develops
(Healey and Mills, 2006).

If the boundary between description types and
also the boundary between successful and unsuc-
cessful use can be as porous as demonstrated in the
excerpts above, this also suggests a more complex
picture of referential contraction (Krauss and
Weinheimer, 1966) than provided by current mod-
els of dialogue. In current models this is primarily
associated with successful use: in the collaborative
model, interlocutors follow the principle of “least
collaborative effort” (Clark and Wilkes-Gibbs,
1986), whereby successful use sets a precedent for
an expression; co-ordination on precedence allows
interlocutors to delete elements of the description
on successive mention. It is assumed that the infor-
mation associated with these deleted elements that
are no longer on the conversational surface can be
re-accessed in the common ground and mentioned
explicitly, e.g. to assist disambiguation.

By contrast, the phenomena from the maze task
show how similar processes are operative during
problematic dialogue, raising further questions
concerning the difference between elements that
are removed in successful, as opposed to problem-
atic dialogue and where this boundary lies.

Larsson's model of semantic co-ordination
places a strong emphasis on the role of feedback in
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negotiating this boundary in terms of appropriate-
ness gleamed from feedback (e.g. repair, acknowl-
edgements etc..), and provides a schema which an-
alyzes the effects of novel uses of a word and the
subsequent update of interlocutors' representations.
Findings from the maze task experiments aug-
ment this approach as they suggest that evidence
of appropriateness is also derived in the absence of
overt repair from semantic change alone. The ex-
cerpts indicate that interlocutors are sensitive to
which particular tacit shift in model leads to a re-
laxation of the constraints on successful communi-
cation, and consequently can be exploited to indi-
cate problematic understanding (Mills, 2007). For
example, consider the following two excerpts:

(1) A: It's on the 5th row 4th square
(2) B:Huh?
(3) A: The last square

(1) A:It's on the 5th row 4th square
(2) A: The last square

Excerpts 4, 5: Provision of feedback

If the dialogue continues successfully in both these
instances, it is unclear how to adequately capture
the differences between them, in particular, how
both patterns affect subsequent use of the descrip-
tion types,

One of the main challenges facing an account of
semantic co-ordination is teasing apart how inter-
locutors' models are affected by both semantic
change exploited as a resource using the mecha-
nisms of alignment outlined above, and feedback
concerning that change, as both aspects inhabit the
boundary between successful and unsuccessful use.

Evidence from the maze task suggests this
boundary is one of the important locii in the devel-
opment of semantic co-ordination.

9 Semantic plasticity

To describe how interlocutors dynamically adapt
the meanings of the words they use to the commu-
nicative situation and how they are shaped
throughout the course of the dialogue, Larsson
(2006) introduces the notion of “semantic plastici-



ty””. This model is sensitive to the fact that descrip-
tions can involve a plethora of different “ad-hoc
registers”, which resonates strongly with the em-
pirical phenomena described here. However, the
data from all the maze task experiments presents a
further problem for attempts to model these phe-
nomena, as successful co-ordination on the more
specific abstract levels appears to be predicated
upon prior successful use of less specific Figural
descriptions: the Figural descriptions are highly
specific to individual mazes and allow participants
to co-ordinate on their salient features, whereas the
Line and Matrix descriptions abstract away from
each individual instance to form dyad-specific con-
ceptualizations of vectors and their associated
counting conventions.

While Larsson's account highlights the sheer
flexibility of ways in which linguistic resources are
mobilized and adapted to particular interaction set-
tings, the data from the maze task suggest an addi-
tional level of complexity. Namely that the seman-
tic resources can not be treated as separate, essen-
tially equal encyclopaedias that interlocutors draw
on. One way in which the cumulative shift toward
Matrix descriptions is achieved is by the combina-
tion of different “registers” (Larsson 2007) to form
a super-ordinate one. Here the question concerns
which specific features of each semantic model are
included in the final one, in particular when there
are problems of commensurability. For example, as
table 1 shows, a common pattern in maze task dia-
logues is that approximately half-way through the
dialogues participants use “Line” descriptions. It
can occur that they alternate between describing
the maze as consisting of vertical and horizontal
vectors, say with one participant favouring hori-
zontal and the other favouring vertical vectors
(space considerations preclude a throrough exami-
nation of this process, described in Mills, 2007). It
frequently occurs that Matrix descriptions emerge
when these two different Line models are com-
bined to form a Matrix description. This process,
however, is not as a rule simply a matter of com-
bining the two. Frequently, the two types of Line
description employ different counting conventions,
as in the example of the concierge above, giving
rise to the problem of whether to retain different
counting conventions for the different axes, or em-
ploy the same one. The question then emerges as
to how this super-ordinate, more abstract semantic
model affects the original models.
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Results from the maze task suggest this is
achieved tacitly by interlocutors, employing simi-
lar patterns of modification to those described in
the excerpts above (Mills, 2007).

10 Conclusion

The phenomena described here demonstrate the
need for an account of semantic co-ordination that
explains how interlocutors converge on a semantic
representation. Dialogues from the maze task pro-
vide compelling evidence that such an account
must necessarily be able to account for how varia-
tion, and hence differences in semantic models are
resolved. This approach necessarily involves shift-
ing the focus from an informational view of lan-
guage towards a focus on how interlocutors actual-
ly address these differences.

In a sense, this presents a reversal of the priori-
ties of existing models. For the interactive align-
ment model, as well as the collaborative model,
misunderstanding is seen as a secondary problem
that emerges as a complication of communication
which is ordinarily successful (Healey, 2004;
forthcoming). The collaborative model explicitly
states that in order for communication to be suc-
cessful, positive evidence of understanding must
be demonstrated.

By contrast, the view presented here brings
problematic understanding into the foreground, as
it is in such instances, when conventions don't
work as expected, that interlocutors gain a sense of
their applicability. The phenomena presented here
suggest that the processes operating in instances of
misunderstanding are as much progenitors of se-
mantic co-ordination, as their traditional counter-
part of displays of positive understanding. Inter-
locutors' separate interaction histories inescapably
give rise to problems concerning the development
and sustenance of mutual-intelligibility, intrinsical-
ly requiring interlocutors to resolve differences of
semantic model in interaction. The data from the
maze task experiments demonstrate how this can
be achieved through tacitly modifying the con-
stituents of semantic models. This modification in-
volves the exploitation of alignment, and has the
effect of relaxing the constraints on successful un-
derstanding.

Any theory of dialogue must, in the first in-
stance be concerned with what interlocutors actual-
ly do. The phenomena presented here demonstrate



mechanisms of semantic co-ordination that have
previously fallen under the category of informa-
tion-exchange, and the questions raised present
rich opportunities for further experimental investi-
gation.
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Degrees of Grounding Based on Evidence of Understanding
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Abstract This approach is developed computationally by

Traum, who presents a model of grounding which
adapts Clark and Schaefer’s contributions model to
terial being discussed in a dialogue has been make it usable in an onl?ne dialogue system (Traum,
grounded. This model has been developed and 1994). Other computational approaches to ground-
evaluated by a corpus analysis, and includesa  iNg use decision theory (Paek and Horvitz, 2000a)
set of types of evidence of understanding, aset ~ or focus on modeling belief (Bunt et al., 2007).
of degrees of groundedness, a set of ground- Grounding models generally consider material to
ing criteria, and methods for identifying each g i one of three states: ungrounded, in the process
of these. We describe how this model can be of becoming sufficiently grounded, or sufficiently
used for dialogue management. . . .
grounded. (An exception is (Paek and Horvitz,
_ 2000Db), who use a continuous model of grounded-
1 Introduction ness.) We are developing a model of grounding that

Dialogue system researchers are active in invests attentive to a larger set of types of evidence of un-
gating ways of detecting and recovering from erderstanding than is typical, z?md use this to define a
ror, including determining when to provide confir-Model ofDegrees of Grounding which tracks the
mations or rejections, or how to handle cases &xtent to which material has become a part of the
complete non-understanding (Bohus and Rudnick§ommon ground.
2005a; Bohus and Rudnicky, 2005b; Skantze, 2005). This model includes a set of types®fidence of
Studying the strategies that humans use whéanderstandingthat describes the kinds of cues that
speaking amongst themselves can be helpful (Swette dialogue gives about the state of grounding. A
et al., 2000; Paek, 2003; Litman et al., 2006). Ong&et ofDegrees of Groundednessescribes the ex-
approach to studying how humans manage errors &fnt to which material has achieved mutual belief
understanding is to view conversation as a joint ag¥hile being discussed. A set @rounding Crite-
tivity, in which grounding, or the process of adding ria describes the degree to which material needs to
material to the common ground between speaker@e grounded. Finally, the model provides algorithms
plays a central role (Clark and Schaefer, 19890 assist dialogue management.
From this perspective, conversations are highly co- The next section describes the radio domain
ordinated efforts in which participants work togethemwhich we used to begin developing this model. The
to ensure that knowledge is properly understood hgialogues in this domain contain a large amount of
all participants. There is a wide variety of groundingconfirmation behavior, which make it a good testbed
behavior that is determined by the communicatiofor the initial development of the model. However,
medium, among other things (Clark and Brennarhecause these radio dialogues are highly structured
1991). we are not yet able to make strong claims about the

We introduce the Degrees of Grounding
model, which defines the extent to which ma-

54

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 54—63,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



generality of this model. |_Evidence Description |

In following sections we describe the components| Continued Attention BttSh‘;WS Qetris C?”ti”“ing u
. . . attena an erefore remairns
of the model, annotation evaluations, and ongoing

satisfied with As presentatior.

development of the model. Initiation of Relevant| B starts in on the next contri}
Next Contribution bution that would be relevant
2 Domain at alevel as high as the current
one.
The domain for this corpus analysis involves a radio- | Acknowledgement | B nods or says ‘uh huh;
based military training application. This corpus was “yeah,” or the like.
Demonstration B demonstrates all or part df

developed while building the Radiobot-CFF system

. . . . what he has understood A to
(Roque et al., 2006) in which soldiers are trained mean.
to perform artillery strike requests over a simulated | Display B displays verbatim all or par
radio in an immersive virtual environment. of As presentation.

- Cckzlls :O;anr?e(rggF;LS;?aCI(:g;%Za\tigr ;;ggi%:: g(ibke 1: (Clark and Schaefer, 1989)'s Evidence of Un-
' rstanding between speakers A and B

execute a CFF. &Aorward Observer (FO) team lo-

cates an enemy target and initiates the call. The FO

team is made up of two or more soldiers, usuallgxample of such a CGU is given in Figure 1. Ma-

with one soldier dedicated to spotting the enemy anrial under discussion is disambiguated by several

another soldier dedicated to operating the radio. Thdentifying components of the CGU: in this domain

FO radio operator communicates with thee Di- this is the dialogue move, the parameter, the mission

rection Center (FDC) team, which decides whethernumber, and the adjust number. Note that parameter

to execute the attack, and if so, which of the availvalue is not used as an identifying component; this

able fire assets to use. An example CFF is given iallows for reference to the material by participants

the Appendix. who may not yet agree on its value.

i nfornation:
di al ogue nmove: target location

Aninfluential description of evidence of understand-  Pa"@meter: direction
val ue: 5940

ing was presented in (Clark and Schaefer, 1989), @S i ssi on number: to be det erni ned
shown in Table 1. This set of types of evidence was adj ust number: 0
described as being “graded roughly from weakest tgevi dence hi story:
strongest” and was part of the acceptance phase of geS”bm t- @1, repeat_back- S19 ]
. gree of groundedness: agreed-content
two-phase grounding process. (Clark and Brennang, ounding criteria met: true
1991) further develop Clark’s notion of evidence,
describing “the three most common forms of posi-
tive evidence” as being acknowledgments, initiation
of the relevant next turn, and continued attention.  The remainder of this section describes the kinds
The Degrees of Grounding model exchangesf evidence of understanding found in the corpus.
Clark and Schaefer's two-phase model for an agsection 6 describes inter-annotator agreement stud-
proach that tracks grounding acts in a way similajes that determine that humans can reliably identify
to (Traum, 1994). Also, rather than concerning itthese types of evidence.
self with the strength of a given type of evidence, the )
current model tracks the strength of material basegtl Submit
on its degree of groundedness, which is derived frolA Submit type of evidence is provided when ma-
sequences of evidence as described in Section 4. terial is introduced into the common ground for the
Evidence in the Degrees of Grounding model ifirst time. The Submit type of evidence is derived
tracked peCommon Ground Unit (CGU) inanin- from the Presentation phase of (Clark and Schaefer,
formation state, as in (Traum and Rickel, 2002). Ari989).

3 Evidence of Understanding

Figure 1: Example Common Ground Unit
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An example of a Submit is given in line 1 of Tableparticipant, or based on new occurences in the vir-
2: “direction 6120” is information that had not yettual world (for example, the lifting of smoke that

been mentioned and has no assumed values. was previously obscuring a target.) Due to the na-
ture of the task, this corpus had few instances of

[ Line [ ID [ Utterance | Evidence |  non-correction follow-up behavior, where material
1 G91 [ direction 6120 over | Submit was presented a second time for the purposes of fur-

2 S19 | direction 6120 out Repeat Back ther discussion. Such follow-ups are an evidence of

3 | 691 correction  direction) Resubmit understanding whose behavior is probably different

6210 over . .
from that of the Resubmit type of evidence as de-
Table 2: Example Dialogue scribed here, and will be examined in future work as

described in Section 7.

Dialogue systems that do not specifically mode§_4 Acknowledge

grounding generally assume that material is

grounded when it is first Submitted unless there g Acknowledgetype of evidence is aggneral state-
evidence to the contrary. ment of agreement that does not specifically address

the content of the material. Acknowledges are iden-
3.2 Repeat Back tified by semantic interpretation. Acknowledges are

. . ) a part of (Clark and Schaefer, 1989)’s set of types of
A Repeat Backtype of evidence is provided when evidence of understanding.

material that was Submitted by another dialogue Table 3 contains an example: in line 1 the speaker

participant is presented back to them, often as PaH91 Submits information about the target’s status,

of an explicit confirmatign. . ~which is then Acknowledged by speaker S19 in turn
The Repeat Back evidence is related to the “Disgpe 2

play” evidence of (Clark and Schaefer, 1989) and

described in Table 1, however here it is renamed tq Line [ ID | Utterance [ Evidence |
indicate that it pertains to verbal repetitions, rather[ 1 GO1 | end of mission targel Submit

than general displays which may be in other modal- destroyed over

ities, such as visual. In fact, there is evidence that 2 S19 | roger Acknowledge

grounding behavior related to visual feedback is dif-

ferent from that related to auditory feedback (Clark

and Brennan, 1991; Thompson and Gergle, 2008).
An example is given in line 2 of Table 2: the3.5 Request Repair

“direction 6120” information given in line 1 is Re- A Request Repairtype of evidence is a statement

Table 3: Example of an Acknowledgment

peated Back as part of a confirmation. that indicates that the speaker needs to have the
_ material Resubmitted by the other participant. Re-
3.3 Resubmit quest Repairs are identified by semantic interpreta-

A Resubmittype of evidence is provided when ma-tion. Request Repairs are another example of nega-
terial that has already been Submitted by a dialogu#/e evidence (Clark and Brennan, 1991).

participant is presented again as part of a self- or Table 4 gives an example: in line 1 G91 submits
other-correction. This is an example of what (Clarid map grid coordinate, and in line 2 S19 asks that
and Brennan, 1991) call negative evidence, whicthe other speaker “say again” that grid coordinate,

indicate a lack of mutual belief. which is a Request for Repair.
An example is shown in Table 2; the direction in- .
formation which was Submitted in turn 1 and Re- [ Line [ ID_ | Utterance | Evidence |
peated Back in turn 2 is Resubmitted in turn 3. 1 GO1 | grid 5843948 Submit ,
. . . 2 S19 | say again grid over | Request Repair
In this domain, follow-up presentations of mate-
rial were almost always corrections, usually of in- Table 4: Example of a Request Repair

formation that has been repeated back by the other
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3.6 Move On Not all typical sequences provide Move On ev-

A Move On type of evidence is provided when aidenc_e. In the example in Table. 6,_ in _Iine 1 891
participant decides to proceed to the next step of txPmits @ “message to observer” indicating the kind
task at hand. This requires that the given task hafl firé that is being delivered, which is followed in

a set of well-defined steps, and that the step beirtj€ 2 by @ confirmation by G91. S19 then proceeds
Moved On from needs to be grounded before thi® the next step of the task by indicating in line 3

next step can be discussed. Move Ons are identifidg@t the artillery has been fired. Line 3, however, is

based on a model of the task at hand. Move Ons af@t @ Move On because although it is typically the

related to (Clark and Schaefer, 1989)'s “Initiation of?€Xt Stép in the task, providing that information is
the relevant next contribution,” although Clark and'°t dependent on fully grounding the material being
Schaefer do not specify that “next contributionsdiscussed in line 2 - in fact, line 3 will be provided

should be dependent on sufficiently grounding th¥/hen the artillery has been fired, and not based on
previous step. any other decision by S19.

A Move On provides evidence because a coope

ative dialogue participant would typically not move . _ . o
on to the next step of the task under such condf* Usetype of evidence is provided when a partici-

tions unless they felt that the previous step was sylant presents an utterance that indicates, through its
ficiently grounded. semantics, that a previous utterance was understood.
Table 5 shows an example of a Move On. In lindJses are re'Iated to (Clark and Schaefer, 1989)’'s
1, GO1 indicates that the kind of artillery fire they D€monstration”.
want is a “fire for effect’; this is Repeated Back in !N the Radiobot-CFF corpus, most Uses are
line 2. G91 then Submits grid information related©Plies to a request for information, such as in Ta-
to the target location. The task specification of CaIIQIe 7, yvhere S19's request for a target .de'scrlptlo.n in
for Fire indicates that fire requests should proceed i€ 1 is answered with a target description, in line
several steps: after a Warning Order is established 2a
Target Location should be given, followed by a Tar-

Use

get Description. By moving on to the step in which | _tine [ ID_ [ Utterance | Evidence |
a Target Location is provided, G91 tacitly indicates | ! S19 | s2 wants o know whaty Submit
. . . . . the target description
that the step in which a Warning Order is established over
has been dealt with to their satisfaction. 2 GO91 | zsu over Submit,
Use
| Line [ ID [ Utterance | Evidence | Table 7 E e of 2 U
1 G91 | fire for effect over Submit aple /- Example ota Use
2 S19 | fire for effect out Repeat Back _ _ _
3 GO91 | grid 45183658 Submit, Move Another example of Use is shown in Table 8, in
On which S19 is providing an intelligence report in line

1 regarding an enemy target, and line 2 replies with
a statement asking whether the target is a vehicle.
The utterance in line 2 uses information provided in

Table 5: Example of a Move On

[ Line [ ID [ Utterance | Evidence ] line 1.

1 S19 | message to observer Submit Lack of R n
kilo 2 rounds AB0001 3.8 ack o hesponse
over A Lack of Responsetype of evidence is provided

2 G91 | mike tango oscar kilg RepeatBack |  \when neither participant speaks for a given length of
ig‘;ﬁg‘foﬁrget number time. ldentifying a Lack of Response type of evi-

3 S19 | shot over Submit denge i_n_volves de_termi_ning how much silence will

be significant for signalling understanding or lack of
Table 6: Example of a non-Move On understanding.
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| Line [ ID [ Utterance | Evidence | | Degreee | Pattern{ldentlfler |
1 S19 | again it should havg Submit Unknown not yet_lntroduced -
rather large antennas aj- Misunderstood (anythlpg,Request Repair)
fixed to it uh they are Unacknowledged (Submit, Lack of Response)
still sending out signals Accessible (Submit) or (anything,Resubmit)
at the time Agreed-Signal (Submit, Acknowledgment)
2 GO91 | this is some Kind of Submit, Agreed-Signal+ (Submit, Acknowledgment, othe
vehicle over Use Agreed-Content (Submit, Repeat Back)
Agreed-Content+ | (Submit, Repeat Back, other)
Table 8: Example of a Use Assumed grounded by other means

Table 11: Degrees of Groundedness

In the example shown in Table 9, G91 submits

an identifying utterance to see if S19 is available. . _
After 12 seconds, G91 has heard nothing back; thf groundedness before it is Submitted, another de-

is negative evidence of grounding, so in line 3 GoBree after it is Submitted, another degree after it is

resubmits the utterance. Repeated Back, and another degree after the Lack of
Response.
[Tine [ 1D [ Utterance [ Evidence | _A key'part of defining thes_e degrees is to deter-
1 GOl | S19thsisGO1 Submit mine which of these degrees is worth modeling. For
2 (12 seconds of silence)| Lack of example, Table 3 shows a CGU further grounded by
_ Response a single Acknowledgment. In this domain, for the
3 Go1| S19thisisG91 Resubmit purposes of determining grounding criteria and dia-

logue management algorithms, it is not worth distin-
guishing between the case in which it had been fol-
O!]pwed by one more Acknowledgment and the case
in which it had been followed by two or more Ac-
nowledgments.

Table 9: Example of a Lack of Response

A Lack of Response can also be an indication
positive grounding, as in Table 10. In line 1, G9

submits information about a target, which in line Table 11 sh the sianificant d identified
is repeated back. Line 3indicates a period of silence, avle 22 shows the significant degrees identine
during the corpus study, as well as the definition or

in which neither speaker took the opportunity to re-

quest a repair or otherwise indicate theirdisapprovz!ﬁ}lem"(ylng pattern of evidence. These degrees are

. . Ishown from Unknown, which is least grounded, to
with the state of the groundedness of the material. I d. which i ded by oth h
that sense, the silence of line 3 is positive evidendg>>umed, Which Is grounded by ofher means, Suc

: as written information given during a scenario brief-
of understanding.

ing. Most degrees are identified by patterns of evi-
dence. For example, a CGU is misunderstood if the

[ bine | ID_| Utterance | Evidence | |atest item of evidence provided is a Request Repair,
1 G91 | bm pinthe open over | Submit and CGU is Unacknowledged if it is Submitted fol-
2 S19 | bmpinthe openout | Repeat
Back lowed by a Lack of Response.
3 (10 seconds of silence)| Lack of The degree of groundedness is used to compute
Response how much (if any) additional evidence is needed

to reach the grounding criterion, or “criterion suffi-
cient for current purposes” as defined by (Clark and
Schaefer, 1989). This computation can be used in di-
4 Degrees of Groundedness alogue management to help select a next utterance.
In this domain, information such as target num-
Degrees of groundedness are defined such that mabers have high grounding criteria, such as Agreed-
rial has a given degree before and after any sequenCentent+; they would need to be Repeated Back,
of evidence given. For example, in Table 10 the tarand followed at least by a Lack of Response, giv-
get description given in line 1 has a certain degremg the other participant an opportunity to correct.

Table 10: Example of a Lack of Response
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Other information might have a grounding crite-to measure inter-annotator agreement in identifying
rion of Agreed-Signal, needing only an Acknowl-the increase or decrease of the degree of grounded-
edgment to be grounded, as in Table 3. Future womkess, and to ensure that identifying the increase or
will address the fact that grounding criteria are varidecrease of a degree of groundedness can reliably
able: for example, in noisy conditions where errorde done by an algorithm.

are more probable, the grounding criteria may in- Human transcribers produced transcriptions of

crease. several sessions between two sets of humans acting
) as Forward Observer and Fire Direction Center radio
5 Dialogue Management operators in the training simulation. A subset of the

Exploiting this model of grounding for dialogue COrPUS was used for close analysis: this subset was
management involves several steps. Evidence of uflade up of 4 training sessions, composed of 17 fire
derstanding must be identified given a semantic ifDiSSIons, totaling 456 utterances; this provided a to-
terpretation and the history of evidence provided si 0f 1222 possible indicators of evidence of under-
far. Given an utterance’s new evidence and a CGU&anding made up of 886 dialogue move parameters
current degree of groundedness, the CGU’s new dand 336 period of silence.
gree of groundedness must be determined. We automatically performed a dialogue act inter-
Once a CGU’s current degree is determined, it caRfétation on the dialogue move parameters, which
be compared to its grounding criterion to determindere then manually corrected. We then manually
whether or not it has been sufficiently grounded, ang@nnotated the evidence of understanding identified
if not, a new item of evidence may be suggested t €ach dialogue move parameter and period of si-
help further ground the material. lence. An example of the data produced from this
All of these can be put together in one algorithmProcess is given in the Appendix.

as shown in Figure 2. 6.1 Inter-Annotator Agreement - Identifying
for each dial ogue act paraneter, Evidence

fdentify the relevant CGU . An inter-annotator agreement study was performed
i dentify evidence of understanding ; ;
conpute the CGU s degree of groundedness in which two annotators tagged a subset of the cor-
pus (318 dialogue move parameters and 74 silences)
for each CGU not sufficiently grounded to identify the evidence of understanding, given an
gg;g[j{nentehiv'cdgejngedtegr 22 J Vgpoundedness utterance and dialogue act interpretation. One anno-
tator was the first author of this paper, and the other
if Lack of Response detected was a computer professional who had no previous
compute the CGU s degree of groundedness  experience with the domain or with tagging data.
Table 12 shows the results, broken down by the
Figure 2: Dialogue Management Algorithm Standalone types of evidence, which could occur
by themselves (Submit, Repeat Back, Resubmit,
The specifics of how this algorithm is integratedACknOWbdg& and Request Repair), the Additional
into a system and how it influences task decision@,pes of evidence, which only occurred with other
will vary based on the system being used. To ©¢ypes of evidence (Move On and Use), and the
plore the domain-independence of this model, W&jjence-Related Lack of Understanding type of ev-
are currently integrating it into a dialogue managefgence. Each of these showed acceptable levels of
in a domain unrelated to the CFF task. agreement, with the exception of the Kappa for the
additional evidence. The low score on the additional
evidence is probably due to the fact that Move On
The validity of this model has been evaluated in sejudgments depend on a strong understanding of the
eral corpus tests to measure inter-annotator agre#gemain-specific task structure, as described in sec-
ment in identifying evidence, to ensure that identifytion 3.6; to a lesser extent Use judgments tend to
ing evidence can reliably be done by an algorithnrely on an understanding of the scenario as well.

6 Evaluation
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| Evidence Type [ P(A) | Kappa | | Agreement Type | P(A) | Kappa ]
Standalone 0.95 | 0.91 Human-Human 0.97 | 0.94
Additional 0.87 | 0.53 Human-Algorithm | 0.87 | 0.73
Silence-Related 0.92 | 0.84

Table 14: Degree Increase/Decrease Agreements
Table 12: Inter-Annotator Agreement - Evidence

| Evidence Type | P(A) | Kappa | has reached a grounding criterion. A dialogue sys-
Standalone 0.88 | 0.81 tem need not be tied to human behavior to be effec-
Additional 0.98 | 0.92

tive, so given these human behaviors, we are inter-
ested in whether computer algorithms can be built
Table 13: Algorithm Agreement - Evidence to produce useful results in terms of task completion

and human-realistic behavior. For this reason we

evaluate the model of degrees of grounding based on
This highlights the fact that for most of the evidencehow human-realistic its ability to identify whether a
of understanding (all except for Move On and Use)CGU's degree of groundedness has increased or de-
agreement can be reached with a non-expert annotaeased, and in future work study whether a system
tor. implementation performs acceptably in terms of task
completion and managing human-realistic ground-
ing behavior.

To perform the test of whether degree increase or
The results of the inter-annotator agreement teglecrease could be reliable detected, we annotated a
were merged into the larger 1222-markable corpugubset of the corpus with a non-domain expert. For
to create a consensus human-annotated corpus. Thiget of CGUs, we tracked the sequence of evidence
was used in the next test, to identify whether an athat was provided to ground that CGU. Before and
gorithm can automatically identify evidence. after each item of evidence, we asked the annota-

We authored a set of rules to identify evidence ofors to determine whether the CGU was more or less
understanding based on the order in which CGUgrounded than it was the turn before.
were introduced into the common ground, the iden- \\e also developed a set of rules based on the defi-
tity of the speaker who introduced them, and thgjtion of the degrees of groundedness defined in sec-
semantic interpretations. The rules were then agpn 4 to determine after each utterance whether a
plied to the 1222-markable corpus, and the resultingGu’s degree of groundedness had increased or de-
identifications were then compared to the identificacreased from the utterance before. We then com-
tions made by the human annotators. The results gigred the results of that set of rules with human-
shown in Table 13. The respectable agreement ag@nsensus judgments about degree increase and de-
kappa values indicate that it is possible for an algqsregse.
rithm to reliably identify evidence. The results are shown in Table 14, indicating that
humans could reliably agree among themselves, and

) ~arule-based algorithm could reliably agree with the
Finally, we explored whether humans could reliably, ;man consensus judgments.

agree on whether a given material’s groundedness
had increased or decreased after a given turn. 7 Discussion and Future Work

We studied this because we are not here claiming
that humans explicitly model degrees of groundedn this paper we describe the initial development of
ness or perform a computation to compare a givetme Degrees of Grounding model, which tracks the
material with something they had grounded preextent to which material has been grounded in a di-
viously. It is more likely that humans track evi- alogue. The Degrees of Grounding model contains
dence, determine whether material is more or lessricher variety of evidence of understanding than
grounded than it was before, and check whether host models of grounding, which allows us to de-

Silence-Related 1.0 1.0

6.2 Algorithm Agreement - Identifying
Evidence

6.3 Degree Increase/Decrease Agreements
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fine a full set of degrees of groundedness. Herbert H Clark and Edward F Schaefer. 1989. Con-
We recognize that the initial domain, although tributing to discourseCognitive Sciencel 3:259-294.

richin groundmg behavpr, is not typical of mqst hu_Diane Litman, Julia Hirschberg, and Marc Swerts. 2006.

man Conversa.tlon. B§§|des the structured dlalOQU(_ESCharacterizing and predicting corrections in spoken

and the domain-specific word use, the types of evi- gjalogue systems.Computational linguisticspages

dence of understanding presented in Section 3 does417-438.

not cover all possible types of evidence. For ex_-l_, pack and Eric Horvi 5 ]

ample, (Clark and Schaefer, 1989) describe “contin.™ Paek and Eric Horvitz. . 2000a. ~Conversation as
d attention” h ibilit hich t action under uncertainty. IRroceedings of the 16th

ue 'a en an as anO. er pos§| ity W IC .Was MO conference on Uncertainty in Artificial Intelligence

available with .th.e radio modality .used in 'thIS study. (yAl), pages 455-464.

Furthermore, it is a feature of this domain that Re- . . _ o

submit evidence genera”y indicates lack of under-.l.—lm Paek and Eric Horvitz. 2000b. G'roundlng Crllterlon:

standing; in general conversation, it is not true that Tovxt/alr&a forrfr;?qltheoryhof’grqlunl\cjll'ng. Tfei‘flf‘”'ﬁal, rel-

the repeated mention of material indicates that it is port, VICTOSOTL Research, April. Microsott fechnica

“ . - Report, MSR-TR-2000-40.

not understood, so a “Follow-Up” evidence is likely,

as are variations of “Use.” Tim Paek. 2003. Toward a taxonomy of communica-
To explore these questions, we are extending tion errors. InProceedings of the ISCA Tutorial and

work to other domains, and are currently focusing Research Workshop on Error Handling in Spoken Di-

on one in which virtual humans are used for a ques- 2/09u€ Systempages 53-58, August 28-31. Chateau

L . o d’'Oex, Vaud, Switzerland.

tioning task. Also, we plan to run evaluations in im-

plemented systems, exploring performance in termmtonio Roque, Anton Leuski, Vivek Rangarajan, Su-

of task completion and believable human behavior. san Robinson, Ashish Vaswani, Shri Narayanan, and

David Traum. 2006. Radiobot-CFF: A spoken dia-
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Appendix

Line | ID Utterance Semantic Interpretation | Evidence: Evidence:
Standalone | Additional
1 G91 | fire for effect over WO-MOF: fire for effect | Submit
2 S19 | fire for effect out WO-MOF-: fire for effect | Repeat Back
3 Silence: 0.7 seconds
ah roger ROGER Acknowledge
4 G91 | grid four five four two ah three six TL-GR: 45423638 Submit Move On
three eight
5 Silence: 2.3 seconds
6 S19 | grid four five four two three six TL-GR: 45423638 Repeat Back
three eight out
7 Silence: 0.7 seconds
ah roger ROGER Acknowledge
8 G9l| brdm TD-TYPE:brdm Submit Move On
in the open over TD-DESC: in the open Submit
9 Silence: 1.3 seconds
10 S19 | brdm TD-TYPE:brdm Repeat Back
in the open out TD-DESC: in the open Repeat Back
11 Silence: 9.9 seconds Lack of Re-
sponse
Comments:

This dialogue is between G91 as a Forward Observer idemgifgi target, and S19 as a Fire Direction
Center who will send the artillery fire when given the appraterinformation.

Inline 1, G19’s utterance is interpreted as a Warning Ordéethod of Fire (WO-MOF), describing the
kind of artillery fire requested, whose value is “fire for effé This is the first mention of a WO-MOF for
this particular CFF, so it is identified as a Submit type otlevice related to a new CGU, which now has arn
Accessible degree of groundedness.

In line 2, a WO-MOF is again given. The WO-MOF is identified agerring to the CGU introduced
in line 1, and a Repeat Back type of evidence is added to thadl’€&idence history, which gives it an
Agreed-Content degree of groundedness.

In line 3 there follows a silence that is not long enough to haek of Response.

Inline 4, G91 provides an Acknowledge type of evidence, angd@g On to the next task item: identifying
the Target Location - Grid (TL-GR) of the CFF. The Acknowledgnd Move On, referring to the CGU
created in line 1, raise that CGU'’s degree of groundednei$s goounding criterion of Agreed-Content+, at
which point it becomes grounded. At the same time, the inicbdn of the TL-GR information creates a
new CGU, whose degree is Accessible.

Inline 6 the TL-GR CGU is Repeated Back, thereby raisingetgrde of groundedness to Agreed-Content

In line 8 an Acknowledge is provided and a set of informatielated to the Target Description (TD-) is
given, providing a Move On, thereby grounding the TL-GR C®&d.by line 8, two CGUs (WO-MOF and
TL-GR) have been added to the common ground, and two more GG YPE and TD-DESC) have
Accessible degrees and are in the process of being grounded.

In line 10 the TD CGUs are Repeated Back, raising their degfrgeoundedness to Agreed-Content.

In line 11 the Lack of Response raises the TD CGUs to Agreauatébd+ thereby grounding them. At this
point there is enough information in the common ground f@® ®lsend the artillery fire.
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Line | ID Utterance Semantic Interpretation | Evidence: Evidence:
Standalone | Additional
message to observer kilo MTO-BAT: kilo Submit
12 S19 | two rounds MTO-NUM: two Submit Move On
target number alpha bravo zefdI'N: ABOO1 Submit
zero one over
13 Silence: 3.1 seconds
a roger mike tango alpha ah alphaROGER Acknowledge
14 G91 | target number alpha bravo zerol'N: ABOOO1 Repeat Back
Zero zero one
a kilo MTO-BAT: kilo Repeat Back
two rounds out MTO-NUM: two Repeat Back
11 Silence: 11.4 seconds Lack of Re-
sponse
16 S19 | shot SHOT Submit
rounds complete over RC Submit
17 Silence: 0.8 seconds
18 G91 | shot SHOT Repeat Back
rounds complete out RC Repeat Back
19 S19 | splash over SPLASH Submit
20 Silence: 1.5 seconds
21 | G91] splash out | SPLASH Repeat Back
22 Silence: 30.4 seconds Lack of Re-
sponse
ah end of mission a target numbeiN: ABO01 Submit
alpha bravo zero zero one
23 G91 | one EOM-NUM: one Submit
brdm EOM-TYPE:brd m Submit
destroyed over EOM-BDA: destroyed Submit
24 S19 | end of mission b r d des m d cof-EOM-TYPE: brdm Repeat Back
rectionbrdm
destroyed out EOM-BDA: destroyed Repeat Back
Comments:

In line 12, S19 provides information about the artillery fimat is going to be sent. This includes the
battery that will be firing (MTO-BAT), the number of roundstie fired (MTO-NUM) and the target number
that will be used to refer to this particular fire mission frémat point on (TN).

In line 14, G91 Repeats Back the information presented a1ia along with an Acknowledge.

In line 16, S19 notifies that the mission has been fired; in 1li@¢his is confirmed. Likewese, in line 19
S19 notifies that the mission is about the land; in line 21ithednfirmed.

Between lines 22 and 23 several turns have been removeddce spasons. These turns were related to a
adjustment of the artillery fire: after the initial bombareint, the Forward Observer requested that the sam
artillery be fired 100 meters to the left of the original bomdyaent. This was confirmed and delivered.

In line 23, G91 sends a description of the amount of damadersdfby the target: the number of enemy
affected (EOM-NUM), the type of enemy (EOM-TYPE) and theesttof the damage (EOM-BDA). These
are Repeated Back by S19, thereby ending the CFF. Note tBatd&E not Repeat Back the EOM-NUM. In
this particular instance the number of enemies is impliethByeOM-TYPE being singular, but throughout

=)

the corpus EOMs are seen to have a low grounding criteria.
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Abstract

Grammar-based approaches to spoken lan-
guage understanding are utilized to a great ex-
tent in industry, particularly when developers
are confronted with data sparsity. In order to
ensure wide grammar coverage, developers
typically modify their grammars in an itera-
tive process of deploying the application, col-
lecting and transcribing user utterances, and
adjusting the grammar. In this paper, we ex-
plore enhancing this iterative process by leve-
raging active learning with  back-off
grammars. Because the back-off grammars
expand coverage of user utterances, develop-
ers have a safety net for deploying applica-
tions earlier. Furthermore, the statistics related
to the back-off can be used for active learning,
thus reducing the effort and cost of data tran-
scription. In experiments conducted on a
commercially deployed application, the ap-
proach achieved levels of semantic accuracy
comparable to transcribing all failed utter-
ances with 87% less transcriptions.

1 Introduction

Although research in spoken language understand-
ing is typically pursued from a statistical perspec-
tive, grammar-based approaches are utilized to a
great extent in industry (Knight et al., 2001).
Speech recognition grammars are often manually
authored and iteratively modified as follows: Typi-
cally, context-free grammars (CFG) are written in
a format such as Speech Recognition Grammar
Specification (SRGS) (W3C, 2004) and deployed.
Once user utterances are collected and transcribed,
the grammars are then adjusted to improve their
coverage. This process continues until minimal

gandhe@usc.edu

OOG utterances are observed. In this paper, we
explore enhancing this iterative process of gram-
mar modification by combining back-off gram-
mars, which expand coverage of user utterances,
with active learning, which reduces “the number of
training examples to be labeled by automatically
processing unlabeled examples, and then selecting
the most informative ones with respect to a speci-
fied cost function for a human to label” (Hakkani-
Tur et al., 2002). This paper comprises three sec-
tions. In Section 2, we describe our overall ap-
proach to rapid application development (RAD). In
Section 3, we explain how data transcription can
be reduced by leveraging active learning based on
statistics related to the usage of back-off gram-
mars. Finally, in Section 4, we evaluate the active
learning approach with simulation experiments
conducted on data collected from a commercial
grammar-based speech application.

2 RAD Approach & Related Work

Working under the assumption that developers in
industry will continue to use CFGs for rapid appli-
cation development, our approach to grammar
modification is as follows:

1. Create a CFG (either manually or automatically).
1.1  Generate a back-off grammar from the CFG.
2. Deploy the application.
2.1  Use the back-off grammar for OOG utterances.
3. Gather data from users.
4. Selectively transcribe data by using statistics re-
lated to the back-off for active learning; i.e., transcribe
only those utterances that satisfy the active learning
criterion.
5. Modify CFG either manually or automatically and
go to step 1.1.

To begin with, developers start with a CFG in Step
1. If they had access to a grammatical platform

2 Second author was partly sponsored by the U.S. Army Research, Development, and Engineering Command (RDECOM). Statements and opi-
nions expressed do not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred.
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such as Regulus (Rayner et al., 2006), they could
in principle construct a CFG automatically for any
new domain, though most developers will probably
manually author the grammar. Two steps are added
to the typical iterative process. In Step 1.1, we
generate a back-off grammar from the CFG. One
way to accomplish this is by constructing a back-
off CFG using filler models (Paek et al., 2007),
which when applied to the same command-and-
control task in Section 4 can result in a 35% rela-
tive reduction in semantic error rate for OOG ut-
terances. However, the back-off grammar could
also be a SLM trained on artificial data created
from the CFG (Galescu et al., 1998). Whatever
back-off mechanism is employed, its coverage
should be wider than the original CFG so that ut-
terances that fail to be recognized by the CFG, or
fall below an acceptable confidence threshold, can
be handled by the back-off in a second or simulta-
neous pass. That is the gist of Step 2.1, the second
additional step. It is not only important to generate
a back-off grammar, but it must be utilized for
handling possible OOG utterances.

Our approach attempts to reduce the usual cost
associated with grammar modification after the
application has been deployed and data collected in
Step 4. The idea is simple: Exploit the fast and ac-
curate CFG recognition of in-grammar (ING) ut-
terances by making OOG utterances handled by
the back-off grammar ING. In other words, expand
CFG coverage to include whatever gets handled by
the back-off grammar. This idea is very comple-
mentary with a two-pass recognition approach
where the goal is to get utterances correctly recog-
nized by a CFG on the first pass so as to minimize
computational expenses (Paek et al., 2007).

All of this can be accomplished with reduced
transcription effort by keeping track of and leve-
raging back-off statistics for active learning. If the
back-off is a CFG, we keep track of statistics re-
lated to which CFG rules were utilized the most,
whether they allowed the task to be successfully
completed, etc. If the back-off is a SLM, we keep
track of similar statistics related to the semantic
alignment and mapping in spoken language under-
standing. Given an active learning criterion, these
statistics can be used to selectively transcribe ut-
terances which can then be used to modify the
CFG in Step 5 so that OOG utterances become
ING. Section 3 covers this in more detail.
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Finally, in Step 5, the CFG grammar is mod-
ified using the selectively transcribed utterances.
Although developers will probably want to do this
manually, it is possible to automate much of this
step by making grammar changes with minimal
edit distance or Levenshtein distance.

Leveraging a wider coverage back-off grammar
is of course not new. For grammar-based applica-
tions, several researchers have investigated using a
CFG along with a back-off grammar either simul-
taneously via a domain-trained SLM (Gorrell et
al., 2002), or in two-pass recognition using either
an SLM trained on CFG data (Gorrell, 2003) or a
dictation n-gram (Dusan & Flanagan, 2002). To
our knowledge however, no prior research has con-
sidered leveraging statistics related to the back-off
grammar for active learning, especially as part of a
RAD approach.

3 Active Learning

Our overall approach utilizes back-off grammars to
provide developers with a safety net for deploying
applications earlier, and active learning to reduce
transcription effort and cost. We now elaborate on
active learning, demonstrate the concept with re-
spect to a CFG back-off.

Active learning aims at reducing transcription
of training examples by selecting utterances that
are most likely to be informative according to a
specified cost function (Hakkani-Tur et al., 2002).
In the speech community, active learning has been
successfully applied to reducing the transcription
effort for ASR (Hakkani-Tur et al., 2002), SLU
(Tur et al., 2003b), as well as finding labeling er-
rors (Tur et al., 2003). In our case, the examples
are user utterances that need to be transcribed, and
the learning involves modifying a CFG to achieve
wider coverage of user expressions. Instead of pas-
sively transcribing everything and modifying the
CFG as such, the grammar can “actively” partici-
pate in which utterances are transcribed.

The usual procedure for selecting utterances for
grammar modification is to transcribe at least all
failed utterances, such as those that fall below a
rejection threshold. By leveraging a back-off
grammar, developers have more information with
which to select utterances for transcription. For a
CFG back-off, how frequently a back-off rule fired
can serve as an active learning criterion because
that is where OOG utterances are handled. Given



this active learning criterion, the algorithm would
proceed as follows (where i denotes iteration, S;
denotes the set of transcribed utterances, and S,
denotes the set of all utterances):

[1] Modify CFG; using S; and generate corresponding
back-off; from the CFG;.

[2] Recognize utterances in set S, using CFG; + back-
off;.

[3] Compute statistics on what back-off rules fired
when and how frequently.

[4] Select the k utterances that were handled by the
most frequently occurring back-off rule and tran-
scribe them. Call the new transcribed set as S;.

[B1 s, =s.Us;s, =S, -5,

[6] Stop when CFG; achieves a desired level of seman-
tic accuracy, or alternatively when back-off rules
only handle a desired percentage of S, otherwise
go to Step 1.

Note that the set S, grows with each iteration and
follows as a result of deploying an application with
a CFG; + back-off;. Step [1] corresponds to Step 5,
1.1, and 2.1 of our approach. Steps [2-4] above
constitute the active learning criterion and can be
adjusted depending on what developers want to
optimize. This algorithm currently assumes that
runtime efficiency is the main objective (e.g., on a
mobile device); hence, it is critical to move utter-
ances recognized in the second pass to the first
pass. If developers are more interested in learning
new semantics, in Step [4] above they could tran-
scribe utterances that failed in the back-off. With
an active learning criterion in place, Step [6] pro-
vides a stopping criterion. This too can be adjusted,
and may even target budgetary objectives.

4 Evaluation

For evaluation, we used utterances collected from
204 users of Microsoft Voice Command, a gram-
mar-based command-and-control (C&C) applica-
tion for high-end mobile devices (see Paek et al.,
2007 for details). We partitioned 5061 transcribed
utterances into five sets, one of which was used
exclusively for testing. The remaining four were
used for iterative CFG modification. For the first
iteration, we started with a CFG which was a de-
graded version of the grammar currently shipped
with the Voice Command product. It was obtained
by using the mode, or the most frequent user utter-
ance, for each CFG rule. We compared two ap-
proaches: CFG_Full, where each iterative CFG
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was modified using the full set of transcribed utter-
ances that resulted in a failure state (i.e., when a
false recognition event occurred or the phrase con-
fidence score fell below 45%, which was set by a
proprietary tuning procedure for optimizing word-
error rate), and CFG_Active, where each iterative
CFG was modified using only those transcribed
utterances corresponding to the most frequently
occurring CFG back-off rules. For both CFG_Full
and CFG_Active, CFG; was modified using the
same set of heuristics akin to minimal edit dis-
tance. In order to assess the value of using the
back-off grammar as a safety net, we also com-
pared CFG_Full+Back-off, where a derived CFG
back-off was utilized whenever a failure state oc-
curred with CFG_Full, and CFG_Active+Back-off,
where again a CFG back-off was utilized, this time
with the back-off derived from the CFG trained on
selective utterances.

As our metric, we evaluated semantic accuracy
since that is what matters most in C&C settings.
Furthermore, because recognition of part of an ut-
terance can increase the odds of ultimately achiev-
ing task completion (Paek et al., 2007), we carried
out separate evaluations for the functional consti-
tuents of a C&C utterance (i.e., keyword and slot)
as well as the complete phrase (keyword + slot).
We computed accuracy as follows: For any single
utterance, the recognizer can either accept or reject
it. If it is accepted, then the semantics of the utter-
ance can either be correct (i.e., it matches what the
user intended) or incorrect, hence:

accuracy = CA/(CA+I1A+R) @

where CA denotes accepted commands that are
correct, 1A denotes accepted commands that are
incorrect, and R denotes the number of rejections.
Table 2 displays semantic accuracies for both
CFG_Full and CFG_Active. Standard errors about
the mean were computed using the jacknife proce-
dure with 10 re-samples. Notice that both
CFG_Full and CFG_Active initially have the same
accuracy levels because they start off with the
same degraded CFG. The highest accuracies ob-
tained almost always occurred in the second itera-
tion after modifying the CFG with the first batch of
transcriptions. Thereafter, all accuracies seem to
decrease. In order to understand why this would be
case, we computed the coverage of the i CFG on
the holdout set. This is reported in the ‘O0G%’
column. Comparing CFG_Full to CFG_Active on



. Utterances Keyword Slot Keyword + Slot Processing
Approach ' | Transcribed Accuracy Accuracy Accuracy Time (ms) 00G%
1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10%
CFG Full | 2 590 66.20% (0.12%) | 71.02% (0.23%) | 70.59% (0.23%) 401 (4.0586) 31.92%
- 3 1000 65.80% (0.15%) 69.72% (0.19%) 69.06% (0.19%) 422 (4.5804) 31.30%
4 1393 66.10% (0.13%) 67.54% (0.22%) 66.88% (0.21%) 433 (4.7061) 30.95%
1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10%
CEG Full + 2 590 73.32% (0.11%) 72.11% (0.22%) 71.68% (0.23%0) 562 (10.4696) 31.92%
Bac_k-off 3 1000 72.52% (0.12%) 72.11% (0.21%) 71.46% (0.22%) 584 (10.4985) 31.30%
4 1393 73.02% (0.10%) 71.02% (0.23%) 70.37% (0.23%) 592 (10.6805) 30.95%
1 0 50.25% (0.13%) 46.84% (0.22%) 46.84% (0.22%) 387 (3.9005) 61.10%
. 2 87 64.09% (0.13%) 74.29% (0.21%) 74.07% (0.22%) 395 (4.1469) 42.09%
CFG_Active — 138 64.29% (0.15%) | 70.15% (0.22%) | 69.50% (0.24%) 409 (4.3375) 38.02%
4 193 64.09% (0.15%) 69.72% (0.23%) 69.06% (0.24%) 413 (4.4015) 37.93%
1 0 66.70% (0.10%) 66.23% (0.22%) 66.01% (0.22%) 631 (11.1320) 61.10%
CFG_Active | 2 87 72.52% (0.10%) | 76.91% (0.19%) | 76.47% (0.21%) 568 (10.3494) 42.09%
+ Back-off | 3 138 71.72% (0.14%) 71.90% (0.24%) 71.24% (0.27%) 581 (10.6330) 38.02%
4 193 71.21% (0.15%) 71.90% (0.25%) 71.24% (0.26%) 580 (10.5266) 37.93%

Table 2. Semantic accuracies for partial (keyword or slot) and full phrase recognitions (keyword + slot) using a CFG trained on either
“Full” or “Active” transcriptions (i.e., selective transcriptions based on active learning). Parentheses indicate standard error about the mean.
The ‘i’ column represents iteration. The ‘Utterances Transcribed” column is cumulative. The ‘O0G%’ column represents coverage of the
ith CFG on the hold-out set. Rows containing “Back-off” evaluate 2-pass recognition using both the CFG and a derived CFG back-off.

keyword + slot accuracy, CFG_Full decreases in
accuracy after the second iteration as does
CFG_Active. However, the OOG% of CFG_Full is
much lower than CFG_Active. In fact, it seems to
level off after the second iteration, suggesting that
perhaps the decrease in accuracies reflects the in-
crease in grammar perplexity; that is, as the gram-
mar covers more of the utterances, it has more
hypotheses to consider, and as a result, performs
slightly worse. Interestingly, after the last iteration,
CFG_Active for keyword + slot and slot accuracies
was slightly higher (69.06%) than CFG_Full
(66.88%) (p = .05). Furthermore, this was done
with 193 utterances as opposed to 1393, or 87%
less transcriptions. For keyword accuracy,
CFG_Active (64.09%) was slightly worse than
CFG_Full (66.10%) (p < .05).

With respect to the value of having a back-off
grammar as a safety net, we found that both
CFG_Full and CFG_Active achieved much higher
accuracies with the back-off for keyword, slot, and
keyword + slot accuracies. Notice also that the dif-
ferences between CFG_Full and CFG_Active after
the last iteration were much closer to each other
than without the back-off, suggesting applications
should always be deployed with a back-off.

5 Conclusion

In this paper, we explored enhancing the usual
iterative process of grammar modification by leve-
raging active learning with back-off grammars.
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Because the back-off grammars expand coverage
of user utterances to handle OOG occurrences, de-
velopers have a safety net for deploying applica-
tions earlier. Furthermore, because statistics related
to the back-off can be used for active learning, de-
velopers can reduce the effort and cost of data
transcription. In our simulation experiments, leve-
raging active learning achieved levels of semantic
accuracy comparable to transcribing all failed ut-
terances with 87% less transcriptions.
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Abstract

We present the ADAMACH data centric dia-
log system, that allows to perform on- and off-
line mining of dialog context, speech recog-
nition results and other system-generated rep-
resentations, both within and across dialogs.
The architecture implements a “fat pipeline”
for speech and language processing. We detail
how the approach integrates domain knowl-
edge and evolving empirical data, based on a
user study in the University Helpdesk domain.

1 Introduction

In this paper, we argue that the ability to sfore and
query large amounts of data is a key requirement
for data-driven dialog systems, in which the data is
generated by the spoken dialog system (SDS) com-
ponents (spoken language understanding (SLU), di-
alog management (DM), natural language genera-
tion (NLG) etc.) and the world it is interacting
with (news streams, ambient sensors etc.). We
describe an SDS that is built around a database
management system (DBMS), uses the web ser-
vice paradigm (in contrast to the architecture de-
scribed in (Varges and Riccardi, 2007)), and em-
ploys a Voice XML (VXML) server for interfac-
ing with Automatic Speech Recognition (ASR) and
Text-to-Speech (TTS) components. We would like
to emphasize upfront that this does not mean that
we follow a VXML dialog model.

“This work was partially supported by the European Com-
mission Marie Curie Excellence Grant for the ADAMACH

project (contract No. 022593) and by LUNA STREP project
(contract no33549).
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The data centric architecture we adopt has sev-
eral advantages: first, the database concentrates het-
erogeneous types of information allowing to uni-
formly query the evolving data at any time, e.g. by
performing queries across various types of infor-
mation. Second, the architecture facilitates dialog
evaluation, data mining and online learning because
data is available for querying as soon as it has been
stored. Third, multiple systems/applications can be
made available on the same infrastructure due to a
clean separation of its processing modules (SLU,
DM, NLG etc.) from data storage and persistency
(DBMS), and monitoring/analysis/visualization and
annotation tools. Fourth, there is no need for sep-
arate ‘logging’ mechanisms: the state of the SDS
is contained in the database, and is therefore persis-
tently available for analysis after the dialog ends.

As opposed to the presented architecture, the
Open Agent Architecture (OAA) (Martin et al.,
1999) and DARPA Communicator (Seneff et al.,
1998) treat data as peripheral: they were not specif-
ically designed to handle large volumes of data, and
data is not automatically persistent. In contrast to
the CSLI-DM (Mirkovic and Cavedon, 2005), and
TrindiKit (Larsson and Traum, 2000), but similar
to Communicator, the ADAMACH architecture is
server-based, thus enabling continuous operation.

To prove our concept, we test it on a University
helpdesk application (section 4).

2 Dialog System Architecture

Figure 1 shows our vision for the architecture of the
ADAMACH system. We implemented and evalu-
ated the speech modality based core of this system

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 6871,
Columbus, June 2008. (©)2008 Association for Computational Linguistics
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(figure 2). A typical interaction is initiated by a
phone call that arrives at an telephony server which
routes it to a VXML platform. A VXML page is
continuously rewritten by the dialog manager, con-
taining the system utterance and other TTS param-
eters, and the ASR recognition parameters for the
next user utterance. Thus, VXML is used as a low-
level interface to the ASR and TTS engines, but not
for representing dialog strategies. Once a user utter-
ance is recognized, a web service request is issued
to a dialog management server.

All communication between the above-mentioned
components is stored in the DBMS: ASR recogni-
tion results, TTS parameters and ASR recognition
parameters reside in separate tables. The dialog
manager uses the basic tables as its communication
protocol with ASR and TTS engines, and addition-
ally stores its Information State (IS) in the database.
This means that the IS is automatically persistent,
and that dialog management becomes a function that
maps ASR results and old IS to the TTS and ASR
parameters and a new IS. The tables of the database
are organized into turns, several of which belong to a
call (dialog), thus resulting in a tree structure that is
enforced by foreign key constraints in the relational
database.

The VXML standard is based on the web infras-
tructure. In particular, a VXML platform can issue
HTTP requests that can be served by a web server
just like any (HTML) page. The VXML server only
sees the generated VXML page, the ‘return value’
of the HTTP request. This allows us to organize the
processing modules of the dialog system (SLU, DM,
VXML generator) as web services that are invoked
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by the HTTP request. As a consequence, each sys-
tem turn of a dialog is a separate, stateless request.
The state of the dialog is stored in the database.
Furthermore, by threading the VXML session ID
through the processing loop (including the VXML
pages generated on-the-fly) and distinguishing en-
tries in the DB by sessions, the SDS is inherently
parallelizable, just as a conventional web server can
serve many users in parallel. Figure 2 shows how
information is processed for each turn. The HTTP
requests that invoke the processing modules pass on
various IDs and parameters, but the actual data is
stored in the DB and retrieved only if a processing
module requires it. This effectively implements a
‘fat pipeline’: each speech, language and DM mod-
ule has access to the database for rescoring and mod-
eling (i.e. data within and across dialogs). At the im-
plementation level, this balances a lightweight com-
munication protocol downstream with data flowing
laterally towards the database.

3 Dialog Management

Dialog management works in two stages: retriev-
ing and preprocessing facts (tuples) taken from the
database, and inferencing over those facts to gen-
erate a system response. We distinguish between
the ‘context model’ of the first phase and the ‘dialog
move engine’ (DME) of the second phase (Larsson
and Traum, 2000).

The first stage entails retrieving from the persis-
tent Information State the following information:
all open questions for the current dialog from the
database, any application information already pro-
vided by the user (including their grounding status),
the ASR recognition results of last user turn, and
confidence and other thresholds. The context model
that is applied when retrieving the relevant dialog
history from the database can be characterized as a
‘linear default model’: application parameters pro-
vided by the user, such as student ID, are overrid-
den if the user provides a new value, for example to
correct a previous misunderstanding. Task bound-
aries are detected and prevent an application param-
eter from carrying over directly to the new task.

The second stage employs an inference engine
to determine the system action and response: SLU
rules match the user utterance to open questions.
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This may result in the decision to verify the applica-
tion parameter in question, and the action is verbal-
ized by language generation rules. If the parameter
is accepted, application dependent task rules deter-
mine the next parameter to be acquired, resulting in
the generation of an appropriate request. For reasons
of space, we cannot provide more details here.

4 Experiments

Our current application is a University helpdesk
in Italian which students call to perform 5 tasks:
receive information about exams (times, rooms
...), subscribe/cancel subscriptions to exams, obtain
exam mark, or request to talk to an operator. Follow-
ing experimentations, we annotated the dialogs and
conducted performance statistics using the system’s
built-in annotation tool.

Two Italian mothertongues were in charge of
manually annotating a total of 423 interactions.
Each annotator independently annotated each dialog
turn according to whether one of the five available
tasks was being requested or completed in it. To
compute inter-annotator agreement, 24 dialogs were
processed by both annotators; the remaining ones
were partitioned equally among them.

We computed agreement at both turn and dialog
level. Turn level agreement is concerned with which
tasks are requested and completed at a given dia-
log turn according to each annotator. An agree-
ment matrix is compiled where rows and columns
correspond to the five task types in our application.
Cohen’s k (Cohen, 1960), computed over the turn
matrix, gave a turn agreement of 0.72 resp. 0.77
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for requests resp. completions, exceeding the rec-
ommended 0.7 threshold. While turn-level agree-
ment refers to which tasks occurred and at what
turn, dialog level agreement refers to how many task
requests/completions occurred. Also at the dialog
level, the x statistic gave good results (0.71 for re-
quests and 0.9 for completions).

General dialog statistics The average duration of
the 423 annotated dialogs is 63.1 seconds, with an
average of 7.43 turn (i.e. adjacency) pairs. 356 of
the dialogs contained at least one task; the majority
(338) contained exactly one, 17 dialogs contained 2
tasks, and one dialog contained 3. In the remain-
ing 67 dialogs, no tasks were detected: from the
audio files, it seems that these generally happened
by accident or in noisy environments, hence noin-
put/hangup events occurred shortly after the initial
system prompt.

Furthermore, relative frequencies of task requests
and task completions are reported in Table 1. In to-
tal, according to the two annotators, there were 375
task requests and 234 task completions. Among the
requested tasks, the vast majority was composed by
“Get exam mark” —a striking 96%— while “Exam
withdrawal” never occurred and the three others
were barely performed. Indeed, it seems that stu-
dents preferred to use the system to carry on “in-
formative” tasks such as obtaining exam marks and
general information rather than “active” tasks such
as exam subscription and withdrawal.

Table 1: Task request and completion frequencies (%)

Task Request  Completion
Get exam mark 96 (360) 96.6 (226)
Info on exam 1.9 (7) 1.7 (4)
Exam subscription 1.1 (4) 0.4 (1)
Exam withdrawal 0.0 (0) 0.0 (0)

Talk to operator 1.1 4) 1.3(3)

Total 100 (375) 100 (234)

Task and dialog success Based on the annotation
of task requests and completions, we defined task
success as a binary measure of whether the request
of a given task type is eventually followed by a task
completion of the same type. Table 2 reports the av-
erage success of each task type according to the an-



notators'. Our results show that the most frequently
requested type, “Get exam mark”, has a 64.64% suc-
cess rate (it seems that failure was mostly due to the
system’s inability to recognize student IDs).

Table 2: Top: annotator (srj;) and automatic (sr4) task
success rates. Mean & binomial proportion confidence
interval on the average task success (a=95%) is reported.
Bottom: mean annotator (dsrjs) and automatic (dsr4)
dialog success rates & normal law c.i. (o= 95%).

Task s (%) s14(%)
Get exam mark 64.64 77.97
Info on exam 57.14 7143
Exam subscription 25 100
Exam withdrawal - -

Talk to operator 75 75
Average 64.17£4.96 78.06+4.28
Dialog dsrg (%) dsr 4 (%)
Average 64.47+495 88.31+9.2

In fact, while it is straightforward to obtain task
success information using the manual annotation of
dialogs, when the dialog system cannot rely on hu-
man judgments, unsupervised approaches must be
defined for a rapid (on-line or off-line) evaluation.
For this purpose, an automatic approximation of the
“manual” task success estimation has been defined
using a set of database queries associated to each
task type. For instance, the task success query as-
sociated to “Info on exam” checks that two condi-
tions are met in the current dialog: 1) it includes
a turn where an action is requested the interpreta-
tion of which contains “information”; 2) it contains
a turn where the concept Exam_Name is in focus.

Automatic task success rates have been computed
on the same dialogs for which manual task success
rates were available and are reported in Table 2, col.
2. The comparison shows that the automatic metric
sr 4 is more “optimistic” than the manual one s7;.
Indeed, automatic estimators rely on “punctual” in-
dicators (such as the occurrence of confirmations of
a given value) in the whole dialog, regardless of the
task they appear in (this information is only avail-
able from human annotation) and also of the order
with which such indicators appear in the dialog.

' As several task types occur seldom, we only report the con-
fidence intervals on the means relating to the overall (“Aver-
age”) task success, computed according to the normal law.
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As a by-product of task success evaluation, we de-

fined dialog success rate (dsr) as the average success

t;
rate of the tasks in a dialog: dsr = %9

T being the set of requested tasks. Depending on
whether sr,; or sr4 is used, we obtain two metrics,
dsrps resp. dsra.

Our dialog success results (last row of Table 2) are
comparable to the task success ones; also, the differ-
ence between the automatic and manual estimators
of dialog success is similar to their difference at the
the task level. This is not surprising when consider-
ing that most of the dialogs contained only one task.

5 Conclusions

We have presented a data-centric Spoken Dialog
System whose novel aspect is the storage and re-
trieval of dialog management state, ASR results and
other information in a database. As a consequence,
dialog management can be lightweight and operate
on a turn-by-turn basis, and dialog system evaluation
and logging are facilitated.

Acknowledgments

We would like to thank Pierluigi Roberti for helping
with the speech platform and annotation tools, and
LOQUENDO for providing the VXML platform.

References

J. Cohen. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement,

20:37-46.
S. Larsson and D. Traum. 2000. Information State and

dialogue management in the TRINDI Dialogue Move
Engine Toolkit. Natural Language Engineering, 6(3—
4):323-340.

D. L. Martin, A. J. Cheyer, and D. B. Moran. 1999. The
Open Agent Architecture: A framework for building
distributed software systems. Applied Artificial Intel-

ligence: An International Journal, 13(1-2):91-128.
D. Mirkovic and L. Cavedon. 2005. Practical Plug-and-

Play Dialogue Management. In Proceedings of PA-

CLING, Tokyo, Japan.
S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and

V. Zue. 1998. GALAXY-II: A reference architecture
for conversational system development. In Proc. of

ICSLP 1998, Sydney, Australia.
S. Varges and G. Riccardi. 2007. A data-centric archi-

tecture for data-driven spoken dialogue systems. In
Proceedings of ASRU, Kyoto, Japan.



Speaking without knowing what to say... or when to end

Anna Hjalmarsson
Centre for Speech Technology
KTH
SE-10044, Stockholm, Sweden
annah@speech.kth.se

Abstract

Humans produce speech incrementally and
on-line as the dialogue progresses using in-
formation from several different sources in
parallel. A dialogue system that generates
output in a stepwise manner and not in pre-
planned syntactically correct sentences needs
to signal how new dialogue contributions re-
late to previous discourse. This paper de-
scribes a data collection which 1is the
foundation for an effort towards more human-
like language generation in DEAL, a spoken
dialogue system developed at KTH. Two an-
notators labelled cue phrases in the corpus
with high inter-annotator agreement (kappa
coefficient 0.82).

1 Introduction

This paper describes a data collection with the goal
of modelling more human-like language generation
in DEAL, a spoken dialogue system developed at
KTH. The DEAL objectives are to build a system
which is fun, human-like, and engaging to talk to,
and which gives second language learners of
Swedish conversation training (as described in
Hjalmarsson et al., 2007). The scene of DEAL is
set at a flea market where a talking animated agent
is the owner of a shop selling used objects. The
student is given a mission: to buy items from the
shop-keeper at the best possible price by bargain-
ing. From a language learning perspective and to
keep the students motivated, the agent’s language
is crucial. The agent needs to behave human-like in
a way which allows the users to suspend some of
their disbeliefs and talk to DEAL as if talking to
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another human being. In an experimental study
(Hjalmarsson & Edlund, in press), where a spoken
dialogue system with human behaviour was simu-
lated, two different systems were compared: a rep-
lica of human behaviour and a constrained version
with less variability. The version based on human
behaviour was rated as more human-like, polite
and intelligent.

1.1 Human language production

Humans produce speech incrementally and on-line
as the dialogue progresses using information from
several different sources in parallel (Brennan,
2000; Aist et al., 2006). We anticipate what the
other person is about to say in advance and start
planning our next move while this person is still
speaking. When starting to speak, we typically do
not have a complete plan of how to say something
or even what to say. Yet, we manage to rapidly
integrate information from different sources in par-
allel and simultaneously plan and realize new dia-
logue contributions. Pauses, corrections and
repetitions are used to stepwise refine, alter and
revise our plans as we speak (Clark & Wasow,
1998). These human behaviours bring valuable
information that contains more than the literal
meanings of the words (Arnold et al., 2003).

In order to generate output incrementally in
DEAL we need extended knowledge on how to
signal relations between different segments of
speech. In this paper we report on a data collection
of human-human dialogue aiming at extending the
knowledge of human interaction and in particular
to distinguish different types of cue phrases used in
the DEAL domain.

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 72-75,
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2 The DEAL corpus collection

The dialogue data recorded was informal, human-
human, face-to-face conversation. The task and the
recording environment were set up to mimic the
DEAL domain and role play.

2.1 Data collection

The data collection was made with 6 subjects (4
male and 2 female), 2 posing as shop keepers and 4
as potential buyers. Each customer interacted with
the same shop-keeper twice, in two different sce-
narios. The shop-keepers and customers were in-
structed separately. The customers were given a
mission: to buy items at a flea market at the best
possible price from the shop-keeper. The task was
to buy 3 objects for a specific purpose (e.g. to buy
tools to repair a house). The customers were given
a certain amount of toy money, however not
enough to buy what they were instructed to buy
without bargaining. The shop-keeper sat behind a
desk with images of different objects pinned to the
wall behind him. Some of the object had obvious
flaws, for example a puzzle with a missing piece,
to open up for interesting negotiation. None of the
shop-keepers had any professional experience of
bargaining, which was appropriate since we were
more interested in capturing naive conceptual
metaphors of bargaining rather than real life price
negotiation. Each dialogue was about 15 minutes
long, so about 2 hours of speech were collected
altogether. The shop-keepers used an average of
13.4 words per speaker turn while the buyers’ turns
were generally shorter, 8.5 words per turn (in this
paper turn always refers to speaker turns). In total
16357 words were collected.

3 Annotation

All dialogues were first transcribed orthographi-
cally including non-lexical entities such as laughter
and hawks. Filled pauses, repetitions, corrections
and restarts were also labelled manually.

3.1 Cue phrases

Linguistic devices used to signal relations between
different segments of speech are often referred to
as cue phrases. Other frequently used terms are
discourse markers, pragmatic markers or discourse
particles. Typical cue phrases in English are: oh,
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well, now, then, however, you know, I mean, be-
cause, and, but and or. Much research within dis-
course analysis, communicative analysis and
psycholinguistics has been concerned with these
connectives and what kind of relations they hold
(for an overview see Schourup, 1999). Our defini-
tion of cue phrases is broad and all types of lin-
guistic entities that the speakers use to hold the
dialogue together at different communicative lev-
els are included. A rule of thumb is that cue
phrases are words or chunks of words that have
little lexical impact at the local speech segment
level but serve significant pragmatic function. To
give an exact definition of what cue phrases are is
difficult, as these entities often are ambiguous. Ac-
cording to the definition used here, cue phrases can
be a single word or larger units, occupy various
positions, belong to different syntactic classes, and
be realized with different prosodic contours.

The first dialogue was analyzed and used
to decide which classes to use in the annotation
scheme. Nine of the classes were a subset of the
functional classification scheme of discourse
markers presented in Lindstrom (2008). A tenth
class, referring, was added. There were 3 different
classes for connectives, 3 classes for responsives
and 4 remaining classes. The classes are presented
in Table 1; the first row contains an example in its
context from data, the word(s) in bold are the la-
belled cue phrase, and the second row presents fre-
quently used instances of that class.

Additive Connectives (CAD)

och gront ar ju fint
[and green is nice]

och, alltsd, s
[and, therefore, so]

Contrastive Connectives (CC)

men den dr ganska antik
[but it is pretty antique]

men, fast, alltsd
[but, although, thus]

Alternative Connectives (CAL)

som jag kan titta pa istiillet
[which I can look at instead]

eller, istéllet [or, instead]

Responsive (R)

ja jag tycker ju det
[yeah I actually think so]

ja, mm, jaha, ok
[yes, mm, yeah, ok]

Responsive New Information (RNI)

jaha har du nagra sadana
[right do you have any of those]

jaha, ok, ja, mm

[right, ok, yes, mm]




Responsive Disprefrence (RD)
ja men det dr klart dom funkar
[yeah but of course they work]

ja, mm, jo [yes, mm, sure]

Response Eliciting (RE)

vad ska du ha for den da

[how much do you want for that one then]
da, eller hur [then, right]

Repair Correction (RC)
nej nu sa jag fel
[no now I said wrong]
nej, jag menade [no, I meant]
Modifying (MOD)
jajag tycker ju det
[yeah I actually think so]
ju, liksom, jag tycker ju det [of course, so to speak, I like]
Referring (REF)

fyra hundra kronor sa vi
[four hundred crowns we said]
sa vi, sa vi inte det [we said, wasn’t that what we said]

Table 1: The DEAL annotation scheme

The labelling of cue phrases included a two-fold
task, both to decide if a word was a cue phrase or
not — a binary task — but also to classify which
functional class it belongs to according to the an-
notation scheme. The annotators could both see the
transcriptions and listen to the recordings while
labelling. 81% of the speaker turns contained at
least one cue phrase and 21% of all words were
labelled as cue phrases. Table 2 presents the distri-
bution of cue phrases over the different classes.

30%

15%

0% -
MOD R CAD cc RD RNI RE REF RC CAL

Table 2: Cue phrase distribution over the different classes

Two of the eight dialogues were annotated by two
different annotators. A kappa coefficient was cal-
culated on word level. The kappa coefficient for
the binary task, to classify if a word was a cue
phrase or not, was 0.87 (p=0.05). The kappa coef-
ficient for the classification task was 0.82 (p=0.05).
Three of the classes, referring, connective alterna-
tive and repair correction, had very few instances.
The agreement in percentage distributed over the
different classes is presented in Table 3.
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Table 3: % agreement for the different classes
4 Data analysis

To separate cue phrases from other lexical entities
and to determine what they signal is a complex
task. The DEAL corpus is rich in disfluencies and
cue phrases; 86% of the speaker turns contained at
least one cue phrase or disfluency. The annotators
had access to the context and were allowed to lis-
ten to the recordings while labelling. The respon-
sives were generally single words or non lexical
units (e.g. “mm”) and appeared in similar dialogue
contexts (i.e. as responses to assertions). The clas-
sification is likely based on their prosodic realiza-
tion. Acoustic analysis is needed in order to see if
and how they differ in prosodic contour. In
Hirschberg & Litman (1993) prosodic analysis is
used to distinguish between discourse and senten-
tial use of cue phrases. Table 4 presents how the
different cue phrases were distributed over speaker
turns, at initial, middle or end position.

Oend
B middle
W initial

100% -

80% -

60% -

40% -

20% -

3982zt
s [3) o 'S o

F
RC
AL
All

Table 4: Turn position distribution

5 Generation in DEAL

The collected and labelled data is a valuable re-
source of information for what cue phrases signal
in the DEAL domain as well as how they are lexi-
cally and prosodically realized. To keep the re-



sponse times constant and without unnaturally long
delays, DEAL needs to be capable of grabbing the
turn, hold it while the system is producing the rest
of the message, and release it after completion.
DEAL is implemented using components from the
Higgins project (Skantze et al., 2006) an off-the-
shelf ASR system and a GUI with an embodied
conversational agent (ECA) (Beskow, 2003). A
current research challenge is to redesign the mod-
ules and architecture for incremental processing, to
allow generation of conversational speech. Deep
generation in DEAL - the decision of what to say
on an abstract semantic level — is distributed over
three different modules; (1) the action manger, (2)
the agent manager and the (3) communicative
manager. The action manger is responsible for ac-
tions related to user input and previous discourse'.
The agent manager represents the agents’ personal
motivations and personality. DEAL uses mixed
initiative and the agent manager takes initiatives. It
may for example try to promote certain objects or
suggest prices of objects in focus. It also generates
emotional facial gestures related to events in the
dialogue. The communicative manager generates
responses on a communicative level based on shal-
low analysis of input. For example, it initiates re-
quests for confirmations if speech recognition
confidence scores are low. This module initiates
utterances when the user yields the floor, regard-
less of whether the system has a complete plan of
what to say or not. Using similar strategies as the
subjects recorded here, the dialogue system can
grab the turn and start to say something before
having completed processing input. Many cue
phrases were used in combination, signalling func-
tion on different discourse levels; first a simple
responsive, saying that the previous message was
perceived, and then some type of connective to
signal how the new contribution relates.

6 Final remarks

Since DEAL focuses on generation in role play, we
are less interested in the ambiguous cue phrases
and more concerned with the instances where the
annotators agreed. The DEAL users are second
language learners with poor knowledge in Swed-
ish, and it may even be advisable that the agent’s
behaviour is exaggerated.

! For more details on the discourse modeller see Skantze et al,
2006.
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Abstract

We look at the average frequency of con-
trastive connectives in the SPaRKy Restaurant
Corpus with respect to realization ratings by
human judges. We implement a discriminative
n-gram ranker to model these ratings and ana-
lyze the resulting n-gram weights to determine
if our ranker learns this distribution. Surpris-
ingly, our ranker learns to avoid contrastive
connectives. We look at possible explanations
for this distribution, and recommend improve-
ments to both the generator and ranker of the
sentence plans/realizations.

1 Introduction

Contrastive discourse connectives are words or
phrases such as however and on the other hand.
They indicate a contrastive discourse relation be-
tween two units of discourse. While corpus-based
studies on discourse connectives usually look at nat-
urally occurring human-authored examples, in this
study, we investigate the set of connectives used
in the automatically generated SPaRKy Restaurant
Corpus!. Specifically, we consider the relationship
between connective usage and judges ratings, and
investigate whether our n-gram ranker learns the
preferred connective usage. Based on these findings
and previous work on contrastive connectives, we
present suggestions for modifying both the genera-
tor and the ranker in order to improve the generation
of realizations containing contrastive connectives.

"We thank Marilyn Walker and her research team for mak-
ing all of the MATCH system data available for our study, espe-
cially including the SPaRKy Restaurant Corpus.
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2 Corpus Study

2.1 SPaRKy Restaurant Corpus

The SPaRKy Restaurant Corpus was generated by
the MATCH Spoken Language Generator (Walker et
al., 2007) which consists of a dialog manager, SPUR
text planner (Walker et al., 2004), SPaRKy sentence
planner (Walker et al., 2007), and RealPro surface
realizer (Lavoie and Rambow, 1997).

The corpus contains realizations for 3 dialogue
strategies:

e RECOMMEND (REC): recommend an entity from
a set of entities

o COMPARE-2 (C2): compare 2 entities
e COMPARE-3 (C3): compare 3 or more entities

Each strategy contains 30 content plans from
which either 16 or 20 sentence plans were generated
by the SPaRKy sentence plan generator. 4 sentence
plans were discarded due to duplication upon real-
ization, totaling 1756 realizations in the corpus.’

A content plan consists of several assertions and
the relations which hold between them. Con-
tent plans from the RECOMMEND strategy ex-
clusively employ the Rhetorical Structure Theory
(RST) (Mann and Thompson, 1987) relation JUS-
TIFY while those from COMPARE-2 use CONTRAST
and ELABORATION. COMPARE-3 content plans
consists mostly of CONTRAST and ELABORATION
relations, though some use only JUSTIFY. In addi-

2The total number of realizations reported here is inconsis-
tent with the information reported in (Walker et al., 2007). In
corresponding with the authors of that paper, it is unclear why
this is the case; however, the difference in reported amounts is
quite small, and so should not affect the outcome of this study.

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 7679,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



Strategy | Alt# | Rating | Rank | Realization
3 3 7 | Sonia Rose has very good decor but Bienvenue has decent decor.
7 1 16 | Sonia Rose has very good decor. On the other hand, Bienvenue has decent decor.
8 4.5 13 | Bienvenue has decent decor. Sonia Rose, on the other hand, has very good decor.
C2 10 4.5 5 | Bienvenue has decent decor but Sonia Rose has very good decor.

11 1 12 | Sonia Rose has very good decor. However, Bienvenue has decent decor.

13 5 14 | Bienvenue has decent decor. However, Sonia Rose has very good decor.

14 5 3 | Sonia Rose has very good decor while Bienvenue has decent decor.

15 4 4 | Bienvenue has decent decor while Sonia Rose has very good decor.

17 1 15 | Bienvenue’s price is 35 dollars. Sonia Rose’s price, however, is 51 dollars. Bienvenue has decent decor.

However, Sonia Rose has very good decor.

Figure 1: Some alternative [Alt] realizations of SPaRKy sentence plans from a COMPARE-2 [C2] plan, with averaged
human ratings [Rating] (5 = highest rating) and ranks assigned by the n-gram ranker [Rank] (1 = top ranked).

tion, the SPaRKy sentence plan generator adds the
INFER relation to assertions whose relations were
not specified by the content planner.

During the sentence planning phase, SPaRKy or-
ders the clauses and combines them using randomly
selected clause-combining operations. During this
process, a clause-combining operation may insert 1
of 7 connectives according to the RST relation that
holds between two discourse units (i.e. inserting
since or because for a JUSTIFY relation; and, how-
ever, on the other hand, while, or but for a CON-
TRAST relation; or and for an INFER relation).

After each sentence plan is generated, it is real-
ized by the RealPro surface realizer and the result-
ing realization is rated by two judges on a scale of
1-5, where 5 is highly preferred. These ratings are
then averaged, producing a range of 9 possible rat-
ings from {1, 1.5, ..., 5}.

2.2 Ratings/Connectives Correlation

From the ratings of the examples in Figure 1, we
can see that some of the SPaRKy sentence plan re-
alizations seem more natural than others. Upon fur-
ther analysis, we noticed that utterances containing
many contrastive connectives seemed less preferred
than those with fewer or no contrastive connectives.

To quantify this observation, we calculated the av-
erage number of connectives (ave.,;) used per real-
ization with rating 4, using ave., = Total., /Ny,,
where T'otal., is the total number of connectives in
realizations with rating ¢, and N, is the number of
realizations with rating <.

We use Pearson’s r to calculate each correlation
(in each case, df = 7). For both COMPARE strategies
(represented in Figure 2(a) and 2(b)), we find a sig-
nificant negative correlation for the average number
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of connectives used in realizations with a given rat-
ing (C2: r = —0.97, p < 0.01; and C3: r = —0.93,
p < 0.01). These correlations indicate that judges’
ratings decreased as the average frequency of the
connectives increased.

Further analysis of the individual correlations
used in the comparative strategies show that there is
a significant negative correlation for however (C2:
r = —0.91, p < 0.01; and C3: » = —0.86,
p < 0.01) and on the other hand (C2: r = —0.89,
p < 0.01; and C3: r = —0.84, p < 0.01) in both
COMPARE strategies. In addition, in COMPARE-3,
the frequencies of while and but are also signifi-
cantly and strongly negatively correlated with the
judges’ ratings (r = —0.86, p < 0.01 and r =
—0.90, p < 0.01, respectively), though there is no
such correlation between the use of these connec-
tives and their ratings in COMPARE-2.

Added together, all the contrastive connectives
show strong, significant negative correlations be-
tween their average frequencies and judges’ ratings
for both comparative strategies (C2: r = —0.93,
p < 0.01; C3:r = —0.88, p < 0.01).

Interestingly, unlike in the COMPARE strategies,
there is a positive correlation (r = 0.73,p > 0.05)
between the judges’ ratings and the average fre-
quency of all connectives used in the RECOMMEND
strategy (see Figure 2(c)). Since this strategy only
uses and, since, and because and does not utilize any
contrastive connectives, this gives further evidence
that only contrastive connectives are dispreferred.

2.3 N-gram Ranker and Features

To acertain whether these contrastive connectives
are being learned by the ranker, we re-implemented
the n-gram ranker using SVM-light (Joachims,
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Figure 2: Correlation Graphs: The thick solid line indicate the correlation of all the connectives summed together,
while the thick dashed line indicates the correlation of the 4 contrastive connectives summed together.

Strategy ‘ however o.t.o.h  while but all contrastives
C2 25.0% 250% 09% 2.7% 53.6%
C3 9.9% 109% 0.0% 3.1% 24.0%

Table 1: The proportion of the 20% most negatively
weighted features for all contrastive connectives.

2002). As in Walker et. al (2007), we first pre-
pared the SPaRKy Restaurant Corpus by replacing
named entity tokens (e.g numbers, restaurant names,
etc.) with their corresponding type (e.g. NUM for
61), and added BEGIN and END tokens to mark the
boundaries of each realization. We then trained our
ranker to learn which unigrams, bigrams, and tri-
grams are associated with the ratings given to the
realizations in the training set.

Although we implemented our ranker in order to
carry out an error analysis on the individual fea-
tures (i.e. n-grams) used by the ranker, we also
found that our n-gram ranker performed compara-
bly (REC: 3.5; C2: 4.1; C3: 3.8)3 to the full-featured
SPaRKy ranker (REC: 3.6; C2: 4.0; C3: 3.6) out of
a possible best (human-performance) score of (REC:
4.2;C2:4.5;,C3:4.2).

Using a perl script*, we extracted feature weights
learned by the ranker from the models built dur-
ing the training phase. After averaging the feature
weights across 10 training partitions, we examined
the top 20% (C2:112/563 features; C3: 192/960
features) most negatively weighted features in each
strategy to see whether our ranker was learning to
avoid contrastive connectives. Table 1 shows that
features containing contrastive connectives make up

3These scores were calculated using using the TopRank
evaluation metric (Walker et al., 2007).
“written by Thorsten Joachims

78

53.6% of the 20% most negatively weighted features
in COMPARE-2 and 24.0% of the 20% of the most
negatively weighted features used in COMPARE-3.
Interestingly, COMPARE-2 features that contained
either however or on the other hand (o.t.0.h) make
up the bulk of the contrastive connectives found in
the negatively weighted features, mirroring the re-
sults of the correlations for COMPARE-2. This indi-
cates that the discriminative n-gram ranker learns to
avoid using contrastive connectives.

3 Contrastive Connectives Usage

3.1 Usage Restrictions

Previous work on contrastive connectives have
found that these connectives often have different re-
strictions on their location in the discourse struc-
ture, with respect to maintaining discourse coher-
ance (Quirk et al., 1972; Grote et al., 1995).

Quirk et. al. (1972) classifies however and on
the other hand as subordinating conjuncts, a class
of connectives that do not allow their clauses to be
reordered without changing the perlocutionary force
of the sentence (e.g. contrast C2: Alts # 11 & 13 in
Figure 1). In addition, on the other hand prompts
readers to regard the 2nd clause as more important
(Grote et al., 1995). Given that both however and
on the other hand contain the same restrictions on
clause ordering, it seems reasonable that they would
pattern the same with respect to assigning clausal
prominence. This predicts that if the human judges
rated the SPaRKy realizations based on the expecta-
tion of a particular perlocutionary act (e.g., that the
comparison highlights the restaurant with the best
decor), they would prefer realizations where how-
ever or on the other hand were attached to the more



desirable of the contrasted qualities. When we ex-
amine the SPaRKy realizations and ratings, this in-
deed seems to be the case — when the better property
is ordered last, the realization was rated very highly
(e.g. Alt 8 & 13 in Figure 1), but when the lesser
property was ordered last, the realization was rated
poorly (e.g. Alt7 & 11 in Figure 1).

In contrast, while and but are not subordinating
conjuncts and so are not subject to the clause or-
dering restriction. Thus, realizations with their con-
trasted clauses in either order should be rated simi-
larly, and indeed, this is what we find in the corpus
(e.g. Alts 3&10, and 14&15 in Figure 1).

3.2 Other Factors

In addition to clause order, another factor that may
contribute to the awkwardness of however and on
the other hand in some usages is that both of these
connectives seem to be rather “grand” for these sim-
ple contrasts. Intuitively, these connectives seem
to indicate a larger contrast than while and but, so
when they are used to indicate small contrasts (e.g.
contrasting only one quality), or contrasts close to-
gether on the scale (e.g. good vs. decent) instead
of diametric opposites, they sound awkward. In ad-
dition, however and on the other hand may also be
seeking “heavy” arguments that contain more syl-
lables, words, or complex syntax. Lastly, human-
authored comparisons, such as in this example from
CNET.com:

...[it] has two convenient USB ports at the bottom of the
front panel. Its beige predecessor, on the other hand,

supplied these only on the back of the box.

seem to indicate that when our expectations of ar-
gument order are violated, the 2nd clause is often
qualified by words such as “just” or “only”, as if to
acknowledge the flaunted preference.

4 Discussion and Future Work

Due to the poverty of highly rated instances of con-
trastive connective usage (particularly for however
and on the other hand), our ranker learns to avoid
these connectives in most situations. However, the
ratings suggest that people do not dislike these con-
trastives unilaterally, but rather prefer them in spe-
cific usage patterns only. One way to combat this
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problem is to modify the sentence planner to take
into account these semantic preferences for argu-
ment ordering when selecting a contrastive connec-
tive. This should produce a wider variety of can-
didates that observe this ordering preference, and
thus provide the ranker with more highly rated can-
diates that use contrastive connectives. This is not
to say that only candidates observing this preference
should be generated, but merely that a wider variety
of candiates should be generated so that the ranker
has more opportunities to learn the restrictions sur-
rounding the use of contrastive connectives.

As for the ranker, we can also identify features
that are sensitive to these linguistic properties. Cur-
rently, n-gram features don’t capture the semantic
nuances such as argument order or the scalar dis-
tance between property values, so identifying fea-
tures that capture this type of information should
improve the ranker. Together, these improvements
to both the quality of the generated candidate space
and the ranking model should improve the accuracy
of the top-rated/selected candidate.
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Abstract in evaluation in order to account for the inconsistency
among human annotations.

While there have been efforts on speech summariza-
tion approaches and evaluation, some fundamental prob-

lems are still unclear. For example, what are speech sum-

Significant research efforts have been devoted to
speech summarization, including automatic ap-
proaches and evaluation metrics. However, a fun-

damental problem about what summaries are for the
speech data and whether humans agree with each
other remains unclear. This paper performs an anal-
ysis of human annotated extractive summaries us-
ing the ICSI meeting corpus with an aim to examine
their consistency and the factors impacting human
agreement. In addition to using Kappa statistics and
ROUGE scores, we also proposed a sentence dis-
tance score and divergence distance as a quantitative
measure. This study is expected to help better define
the speech summarization problem.

Introduction

maries? Do humans agree with each other on summary
extraction? In this paper, we focus on the meeting do-
main, one of the most challenging speech genre, to an-
alyze human summary annotation. Meetings often have
several participants. Its speech is spontaneous, contains
disfluencies, and lacks structure. These all post new chal-
lenges to the consensus of human extracted summaries.
Our goal in this study is to investigate the variation of
human extractive summaries, and help to better under-
stand the gold standard reference summaries for meet-
ing summarization. This paper aims to answer two key
guestions: (1) How much variation is there in human ex-

1 tractive meeting summaries? (2) What are the factors

With the fast development of recording and storage tecfitat may impact interannotator agreement? We use three
ceived more attention. A variety of approaches hav8Ummaries, including Kappa statistic, ROUGE score, and
been investigated for speech summarization, for exan® N€W proposed divergence distance score to reflect the
ple, maximum entropy, conditional random fields, latenfoherence and quality of an annotation.
semantic analysis, support vector machines, maximu inti
marginal relevance (Maskey and Hirschberg, 2003; Ho? Corpus Description
et al., 2003; Buist et al., 2005; Galley, 2006; Murray eWe use the ICSI meeting corpus (Janin et al., 2003) which
al., 2005; Zhang et al., 2007; Xie and Liu, 2008). Theseontains 75 naturally-occurred meetings, each about an
studies used different domains, such as broadcast nevisur long. All of them have been transcribed and anno-
lectures, and meetings. In these approaches, different itated with dialog acts (DA) (Shriberg et al., 2004), top-
formation sources have been examined from both text ancds, and abstractive and extractive summaries in the AMI
speech related features (e.g., prosody, speaker activiproject (Murray et al., 2005).
turn-taking, discourse). We selected 27 meetings from this corpus. Three anno-
How to evaluate speech summaries has also been studtors (undergraduate students) were recruited to extract
ied recently, but so far there is no consensus on evatummary sentences on a topic basis using the topic seg-
uation yet. Often the goal in evaluation is to developnents from the AMI annotation. Each sentence corre-
an automatic metric to have a high correlation with husponds to one DA annotated in the corpus. The annota-
man evaluation scores. Different methods have been ustats were told to use their own judgment to pick summary
in the above summarization research to compare systesentences that are informative and can preserve discus-
generated summaries with human annotation, such as $en flow. The recommended percentages for the selected
measure, ROUGE, Pyramid, sumACCY (Lin and Hovysummary sentences and words were set to 8.0% and
2003; Nenkova and Passonneau, 2004; Hori et al., 2003)6.0% respectively. Human subjects were provided with
Typically multiple reference human summaries are useloth the meeting audio files and an annotation Graphi-
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cal User Interface, from which they can browse the maripants. All of the following experiments are based on

ual transcripts and see the percentage of the currently deata Set (1) with 27 meetings.

lected summary sentences and words. We computed Kappa statistic for each topic instead of
We refer to the above 27 meetinGata set | in this the entire meeting. The distribution of Kappa score with

paper. In addition, some of our studies are performerkespect to the topic length (measured using the number of

based on the 6 meeting used in (Murray et al., 2005PAs) is shown in Figure 1. When the topic length is less

for which we have human annotated summaries usingtBan 100, Kappa scores vary greatly, from -0.065 to 1.

different guidelines: Among the entire range of different topic lengths, there
e Data set I1: summary annotated on a topic basis. This isSE€MS no obvious relationship between the Kappa score
a subset of the 27 annotated meetings above. and the topic length (a regression from the data points

e Data set I11: annotation is done for the entire meetingdoes not suggest a fit with an interpretable trend).
without topic segments.

e Data set 1V: the extractive summaries are from the AMI
annotation (Murray et al., 2005).

.
ESANCN .,‘
o

Kappa score

3 AnalysisResults

31 Kappa StatIStIC } Toe;?c Iengtheou 1000 1200 1400
Kappa coefficient (Carletta, 1996) is commonly used
as a standard to reflect inter-annotator agreement. Tdrgure 1: Relationship between Kappa score and topic length.
ble 1 shows the average Kappa results, calculated for
each meeting using the data sets described in Section 2Using the same Kappa score for each topic, we also in-
Compared to Kappa score on text summarization, whictestigated its relationship with the number of speakers in
is reported to be 0.38 by (Mani et al., 2002) on a sethat topic. Here we focused on the topic segments longer
of TREC documents, the inter-annotator agreement dhan a threshold (with more than 60 DAs) as there seems
meeting corpus is lower. This is likely due to the dif-to be a wide range of Kappa results when the topic is
ference between the meeting style and written text. short (in Figure 1). Table 2 shows the average Kappa
score for these long topics, using the number of speak-
Data Set I Il m v ers in the topic as the variable. We notice that when the
Avg-Kappa 0.261 0.245 0.335 0.290 speaker number varies from 4 to 7, kappa scores grad-
] ually decrease with the increasing of speaker numbers.
Table 1: Average Kappa scores on different data sets.  Thjs phenomenon is consistent with our intuition. Gener-
There are several other observations from Table Rlly the more participants are involved in a conversation,
First, comparing the results for Data Set (I1) and (I1l),the more discussions can take place. Human annotators
both containing six meetings, the agreement is highdeel more ambiguity in selecting summary sentences for
for Data Set (Ill). Originally, we expected that by di- the discussion part. The pattern does not hold for other
viding the transcript into several topics, human subjectgpeaker numbers, namely, 2, 3, and 8. This might be due
can focus better on each topic discussed during the meég-a lack of enough data points, and we will further ana-
ing. However, the result does not support this hypothlyze this in the future research.
esis. Moreover, the Kappa result of Data Set (lll) also
outperforms that of Data Set (IV). The latter data set is # of speakers] # of topics | Avg Kappa score

from the AMI annotation, where they utilized a different 2 2 0.204
annotation scheme: the annotators were asked to extract 3 6 0.182
dialog acts that are highly relevant to the given abstrac- 4 26 0.29
tive meeting summary. Contrary to our expectation, the S 26 0.249
Kappa score in this data set is still lower than that of Data 6 33 0.226
Set (lIl), which used a direct sentence extraction scheme 7 19 0.221
on the whole transcript. This suggests that even using 8 ’ 0.3

the abstracts as a guidance, people still have a high varigs, e ». Average Kappa score with respect to the number of

tion in extracting summary sentences. We also calculate%eakers after removing short topics.

the pairwise Kappa score between annotations in differ-

ent data sets. The inter-group Kappa score is much low8r3 ROUGE Score

than those of the intragroup agreement, most likely dUROUGE (Lin and Hovy, 2003) has been adopted as

to the different annotation specifications used in the tw@ standard evaluation metric in various summarization

different data sets. tasks. It is computed based on the n-gram overlap be-
. tween a summary and a set of reference summaries.

3.2 Impacting Factors Though the Kappa statistics can measure human agree-

We further analyze inter-annotator agreement with rement on sentence selection, it does not account for the

spect to two factorstopic length and meeting partic-  fact that different annotators choose different sentences
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that are similar in content. ROUGE measures the word

match and thus can compensate this problem of Kappa.
Table 3 shows the ROUGE-2 and ROUGE-SU4 F-

measure results. For each annotator, we computed

ROUGE scores using other annotators’ summaries as ref

erences. For Data Set (I), we present results for each an

notator, since one of our goals is to evaluate the qual-

ity of different annotator’s summary annotation. The lowrFigure 2: Percentage distribution of the summary sentence dis-

ROUGE scores suggest the large variation among humégamce scores for the 3 annotators in Data Set (I).

annotations. We can see from the table that annotator

1 has the lowest ROUGE score and thus lowest agree- (dimae —1+1) x q i#0

ment with the other two annotators in Data Set (). The Qi) =4{1- denm (i)

ROUGE score for Data Set (llI) is higher than the others. =l

Percentage

4 . 5 6 7
Distance Score

This is consistent with the result using Kappa statistic: =1- 2 xq =0
the more sentences two summaries have in common, the i i
more overlapped n-grams they tend to share. whered,, ., denotes the maximum distance score based

on the selected summary sentences from all the annota-
[ ROUGE-2 | ROUGE-SU4 tors. We assign linearly decreasing probabilitigg) for
different distance values(i > 0) in order to give more

Annotator 1 0.407 0.457 . . .
data (I) [Annotafor 2 0471 047T credit to sentences Wlth_sm_all distance scores. The rest
Annotator 3 0.433 0.483 of the probability mass is given t@(0). The parame-
data (i) | 2 annotators|  0.532 0564 ter ¢ is small, such that the probability distributidghcan
data (IV) | 3 annotators|  0.447 0.484 approximate the ideal situation.

For each annotator, the probability distributiBris de-
Table 3: ROUGE F-measure scores for different data sets. fined as:

w; X fi :
. . =i e D
3.4 Sentence Distance and Divergence Scores P(i) = { 2iwixfi s
. . 0 otherwise
From the annotation, we notice that the summary sen-

tences are not uniformly distributed in the transcript, bufype ey s the set of the possible distance values for this
rather with a clustering or coherence property. Howeve%\nnotator,fi is the frequency for a distance scateand

neither Kappa coefficient nor ROUGE score can rep;, s the weight assigned to that distance s i when

resent such clustering tendency of meeting summarlels.7é 0; wq is p). We use parameterto vary the weighting

This paper attempts to develop an evaluation metric Qcale for the distance scores in order to penalize more for
measure this property among different human annotatorg, large distance values

For a sentencéselected by one annotator, we define a Using the distributionP for each annotator and the

distance scord; to measure its minimal distance to SUM-i4eal distribution(, we compute their KL-divergence
mary sentences selected by other annotators (distance &lled the Diverger;ce Distance score (DD-score): '
tween two sentences is represented using the difference '

)

of their sentence indexesj; is 0 if more than one anno- . P(i
tator have extracted the same sentence as summary sen- DD = Z P(i)log Q(i)
tence. Using the annotated summaries for the 27 meet- !
ings in Data Set (l), we computed the sentence distand®e expect that the smaller the score is, the better the sum-
scores for each annotator. Figure 2 shows the distributiamary is. In the extreme case, if an annotator's DD-score
of the distance score for the 3 annotators. We can séeequal to O, it means that all of this annotator’s extracted
that the distance score distributions for the three annotaentences are selected by other annotators.
tors differ. Intuitively, small distance scores mean hette Figure 3 shows the DD-score for each annotator cal-
coherence and more consistency with other annotatorsulated using Data Set (1), with varying parameters.
results. We thus propose a mechanism to quantify ea@@ur experiments showed that the scale parameitethe
annotator's summary annotation by using a random varannotator’s probability distribution only affects the abs
able (RV) to represent an annotator’'s sentence distanti¢e value of the DD-score for the annotators, but does
scores. not change the ranking of each annotator. Therefore we
When all the annotators agree with each other, the R¥imply setp = 10 when reporting DD-scores. Figure 3
d will take a value of 0 with probability 1. In general, shows that different weight scaledoes not impact the
when the annotators select sentences close to each otlianking of the annotators either. We observe in Figure 3,
the RV d will have small values with high probabilities. annotator 1 has the highest DD score to the desirable dis-
Therefore we create a probability distributighfor the tribution. We found this is consistent with the cumulative
ideal situation where the annotators have high agreemenistance score obtained from the distance score distribu-
and use this to quantify the quality of each annotati@n. tion, where annotator 1 has the least cumulative frequen-
is defined as: cies for all the distance values greater than 0. This is
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also consistent with the ROUGE scores, where annotator terms of evaluating human annotation agreement. In
1 has the lowest ROUGE score. These suggest that thddition, using the sentence distance score, we demon-
DD-score can be used to quantify the consistency of astrated that we can remove some poorly chosen sentences

annotator with others. from the summary to improve human annotation agree-
ment and preserve the information in the summary. In
B our future work, we will explore other factors, such as

—=— Annotator 2

summary length, and the speaker information for the se-
lect summaries. We will also use a bigger data set for a
more reliable conclusion.

Annotator 3

Divergence
Distance Score
3

7 8 9 10 11 12 13 5 16 17 18 19 20 21
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Abstract _mE —

We present a method for resolving definite ex- ‘LP ' ‘E o
ophoric reference to visually shared objects ——
that is based on a) an automatically learned, T e
simple mapping of words to visual features a ! t; . |
(“visual word semantics”), b) an automat- -
ically learned, semantically-motivated utter- - —
ance segmentation (“visual grammar”), and c) ‘:F

a procedure that, given an utterance, uses b) \
to combine a) to yield a resolution. We evalu-
ated the method both on a pre-recorded corpus Figure 1: Example Scene

and in an online setting, where it performed . i h | h .
with 81% (chance: 14%) and 66% accuracy, discourse salience), the module uses the evidence

respectively. This is comparable to results re-  Present in the utterance (words, syntax) and in the

ported in related work on simpler settings. visual scene (visual features) to derive at a new as-
sumption about likely referents. If we call such an
1 The Task assumption aconfidence functior that assigns to

each object in the domai®, a number between 0
The method described in this paper is a module a@fnd 1; i.e.c: O — R, thenreference resolutiors a
a dialogue system that acts as a collaborator of fanctionr that takes a triple of an initial confidence
human player in the task of manipulating visuallyfunction ¢, an utterances, and a visual scene repre-
present puzzle objects. An example scene is shoveentationv to yield an updated confidence function
in Figure 1 (the indices andb are added here for /. Formally:r : C x U x V — C.
illustrative purposes). Given utterances like those in In the following, we describe the resources
(1), the task of the module is to identify the likely needed to set up the module, its subcomponents, and
referents (herea andb, respectively): the evaluation we performed. We close by relating

. i ) . the proposed method to prior work and discussing
(1) a.Take the piece in the middle on the left S'defuture extensions.

b.Take the piece in the middle. 2 Resources

More formally, the task can be characterised as foR.1 Corpus

lows: possibly starting with am priori assump- As our method is based on automatically learned
tion about likely referents (e.g., from knowledge ofmodels, a corpus is required. Our intended use case
Tsystem is implemented for German input; for ease oifs Sin,]”ar to the setting de_zscribed in_(_SChlangen and
description we use examples from our corpus translated infe€rnandez, 2007), but with the addition of a shared

English here. visual context. We collected 300 scene descriptions

&4
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(of scenes containing between 1 and 12 distinct, CT b 1
monochrome shapes, randomly placed and rotated [

on a rectangular area) using the two-part methodol- ?Fr
ogy of (Siebert et al., 2007) that yields recordings Fp‘ , #
and quality assessments (here: attempts to follow M 'F ‘d
other subjects’ instructions). We also later recorded ’ I Fi
an additional 300 scene descriptions by a single - b
speaker, to further increase our data base. E

After transcription of the recordings (239 min- [:L Fﬁ

utes of audio material), we discarded roughly 6% =

of the instructions because they could not be fol-

lowed by the evaluators, and a further 4% because Figure 2: Scene with Horizontal Group Detection

the complexity of the descriptions was outside the

scope of what we wanted to model. The remainin% . .

) : . escribes the macro-structure of a spatial expres-
instructions were then automatically cleaned from

. . . gion, i.e., the division intdarget (the denoted ob-
dysfluencies, morphologically lemmatised and PO 2ct: T) and optionalandmarks (other objects; LM)
tagged, and annotated as described below. Ject P Jects,

and theirrelationto the target (R; see example in Ta-

2.2 Computer Vision ble 2). The second level annotates the spatial-lexical
The other required resource is a visual perceptiofunction of each word, e.g., whether the word de-
algorithm. We use it to compute a feature reprenotes a piece or a configuration of pieces (Table 1).

sentation of every visual scene as presented in thefully ‘parsed’ example is shown in Table 2.
data collectior?. First, each object is represented by

a number ofobject featuresuch as size / length /| Name Description Examples
height of the bounding box, center of gravity, num{ ! lexical reference T piece,cross
ber of edges. Seconthpological featuresiote for ar topological direction ) top left Corner
. ; . ; ds topological distance outer left
each object the distance to certain points on the g numetic second column
board (edges, center, etc.) and to other objects.p-g | group (perceptually active) from the leftcolumn
(For details on the computation of such features see 9-S synthetic group the threepieces on the left
for example (Regier and Carlson, 2001).) Lastly, : . rg";:;ﬂg:;’?ﬁ a’: on ::mz'\:q'%%:z
we also compute groupings of objects by clustering graq grading function exactly right

along columns and rows or both (see Figure 2 for an
illustration). For each group, we compute two sets  Table 1: Visual Lexical Functions of Words
of topological featuresone for the objects within

the group (e.g., distance to the center of the groug)weToss T fom [ e T second [ column [ From [ Tef | artheton]

and one for the cgnfiguratiqn of groups (distance ¢t———r——1—1o 153 T o T o]
group to other objects). This set of features was se- (&) -Annotation of spatiallexical functions
lected to be representative of typical basicvisualfea- [ T [ R T T ™M [ M [ M [IM] T ]

(b) - Segmentation of visual spatial parts
tures.
Table 2: Example Annotation / ‘Parse’

3 Components
3.1 Visual Grammar Given the requirement for robustness, we decided

The ‘visual grammar’ segments utterances aCCor&l_gainst a hand-written grammar for deriving such

ing to functional aspects on two levels. The firsfnnotations; the moderate size of our corpus on
- the other hand made for example Markov model-

2At the moment, the input to the algorithm is a symbolichgsed approaches difficult to apply. We hence chose

representation of the scene (which object is where); theirfes. transformation-based learning to create this (shal-
are designed to also be derivable from digital images idstea

using standard computer vision techniques (Shapiro antkSto [OW) segmentation grammar, converting the seg-
man, 2001); this is future work, however. mentation task into a tagging task (as is done in
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(Ramshaw and Marcus, 199%)ter alia). In our ap- most frequent value as representative for a feature
proach, each token that is to be tagged is itself repréfor a given word), performed better, and is hence
sented in three different forms or layers: lemmatisethe method we chose.
word, as POS-tag, and by its spatial-functional tag For b), dimensionality reduction, we again chose
(as in Table 1; added by simple look-up). All thesea very simple approach (much simpler than for ex-
layers can be accessed in the learned rules. Aparnple (Roy, 2002)): features are filtered out as ir-
from this, the module is a straightforward imple-relevant for a given lemma features if their variance
mentation of (Ramshaw and Marcus, 1995), whicks above a certain threshold. To give an example,
in turn adapts (Brill, 1993) for syntactic chunking. for the lemmaleft the distribution of values of the
_ _ featurex_distanceto_centervaries with ao of 0.05,

3.2 Visual Word Semantics that of y_distanceto_centerwith a o of 0.41. We
To learn the visual semantics of words we impleempirically determined the setting of the threshold
mented a simple technique for grounding words isuch that it excluded the lattér.
perceptions. Roughly, the idea is to extract from L
all instances in which a word was used in the traing'3 Combination
ing corpus and all associated scenes a prototypical s
visual meaning representation by identifying those
features whose val_ues best predict the_appro_pna_te—the; —|— thei s ] v
ness of the word given a scene. (This is similar in TL/ 1 e |
spirit to the approach used in (Roy, 2002).) o

As material for learning, we only used the sim-
ple expressions (target only, no landmark) in the e ‘! LANDMARK RELATIONS | _
corpus, to ensure that all words used were in some
way ‘about’ the target. The algorithm iterates ovelrigure 3: Steps of the Algorithm for Example Utterance
all pairs of utterance and scene and saves for each
lemma all visual information. This creates for each The combination algorithm works through the
lemma a matrix of feature values with as many rowsegmented utterance and combines visual word se-
as there were occurrences of the lemma. The valuasantics to yield a reference hypothesis. Figure 3
in each column (that is, for each feature) are theitiustrates this process for the example from Table 2.
normalised to the interval [-1, 1] and the standar®n detecting a landmark segment (Step 1), the res-
deviation is recorded. olution algorithm ‘activates’ the appropriate group;

The next tasks then are a) to compute one siwhich one this is is determined by tipeg item in
gle representative value for each feature, but onlthe landmark segment. (Hereolumr). The group
b) for those features that carry semantic weight fais then treated as a single object, and (Step 2) the
the given word (i.e., to compute a dimensionality resemantics of topological terms _¢dor d_s) in the
duction). E.qg., for the lemma ’left’, we want the fea-landmark segment is applied to it (more on this in
ture x_distanceto_centerto be part of the semantic a second). For our example, this yields a ranking
model, but nol_distanceto_center of all columns with respect to their ‘left-ness’. The

One option for a) is to simply take the averageordinal ‘second’ finally simply picks out the second
value as representative for a feature (for a giveslement on this list-the second group w.r.t. the prop-
word). While this works for some words, it causeserty of leftness (Step 3). The expressions in the tar-
problems for others which imply a maximisationget segment are now only applied to the members
and not a prototypisation. E.g., the lemdedt is of the group that was selected in this way; i.e., the
best represented byaximalvalues of the feature semantic models of ‘top’ and ‘cross’ are now only
x_distanceto_center not by the average of all val- applied to the objects in that column (Steps 4 to 6).
ues for all occurrences @éft (this will yield some- ~ 3With more data and hence the possibility to set aside a de-

thing like leftish). Perhaps surprisingly, representayejopment set, one could and should of course set such dthres
tion through the majority value, i.e., choosing theold automatically.
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Semantic word models are applied through a sinte adapt to the capabilities of the system.
ple calculation of distance between values (of se- .
mantic model and actual scene): the closer, the bet- €onclusions

ter the match of word to scene. (Modulo selectivityye have presented a method for resolving defi-
of a feature; for a feature that occurred for all |emnite, exophoric reference to ObjectS that are visu-
mata with a high specificity (smatf), good matches ally co-present to user and system. The method
are expected to be closer to the prototype value thambines automatically acquired models (a ‘visual
for features with a high variability.) word semantics’, a simple, but effective mapping be-
This method encodes parts of the utterance seween visual features and words; and a ‘visual gram-
mantics procedurally, namely the way how certaiitar’, a semantically motivated segmentation of ut-
phrases (here grouped under the ldaetimark se- terances) and hard-coded knowledge (combination
mantically modify other phrases (here grouped urprocedure). To us, this combines the strengths of
der the labetargey). This encoding makes the al-two approaches: statistical, where robustness and
gorithm perhaps harder to understand than semanide coverage is required, hard-coding, where few,
tic composition rules tied to syntactic rules, but itout complex patterns are concerned.
also affords a level of abstraction over specific syn- We are currently integrating the module into a
tactic rules: our very general conceptslafidmark working dialogue system; in future work we will in-
andtarget cover various ways of modification (e.g.vestigate the use of digital images as input format.
through PPs or relative clauses), adding to the ro-
bustness of the approach. Acknowledgements
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(Roy, 2002; Gorniak and Roy, 2004). We also think, Do YISIOn Prentics Hal Few Jersey, USA

exander Siebert, David Schlangen, and Raquel
these results represent the lower end of the perfor- pernandez. 2007. An implemented method for dis-

mance range that can be expected in practical use tributed collection and assessment of speech data. In
as in an interactive dialogue system users have time Proceedings of SIGdial 200Antwerp, Belgium.
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Abstract

This paper presents a novel framework for
building symbol-level control modules of an-
imated agents and robots having a spoken di-
alogue interface. It features distributed mod-
ules called experts each of which is special-
ized to perform certain kinds of tasks. A com-
mon interface that all experts must support is
specified, and any kind of expert can be incor-
porated if it has the interface. Several modules
running in parallel coordinate the experts by
accessing them through the interface, so that
the whole system can achieve flexible control,
such as interruption handling and parallel task
execution.

1 Introduction

As much attention is recently paid to autonomous
agents such as robots and animated agents, spoken
dialogue is expected to be a natural interface be-
tween users and such agents. Our objective is to es-
tablish a framework for developing the intelligence
module of such agents.

In establishing such a framework, we focus on
achieving the following features. (1) Multi-domain
dialogue: Since agents are usually expected to per-
form multiple kinds of tasks, they need to work in
multiple domains and switch domains according to
user utterances. (2) Interruption handling: It is cru-
cial for human-agent interaction to be able to handle
users’ interrupting utterances while speaking or per-
forming tasks. (3) Parallel task execution: Agents,
especially robots that perform physical actions, are
expected to be able to execute multiple tasks in par-
allel when possible. For example, robots should be
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able to engage in a dialogue while moving. (4) Ex-
tensibility: Since the agents can be used for a vari-
ety of tasks, various strategies for dialogue and task
planning should be able to be incorporated.

Although a number of models for conversational
agents have been proposed, no model has all of the
above properties. Several multi-domain dialogue
system models have been proposed and they are ex-
tensible, but it is not clear how they handle interrup-
tions to system utterances and actions (e.g., O’Neill
et al. (2004), Lin et al. (1999), and Hartikainen et al.
(2004)). There are several spoken dialogue agents
and robots that can handle interruptions thanks to
their asynchronous control (Asoh et al., 1999; Boye
et al., 2000; Blaylock et al., 2002; Lemon et al.,
2002), they do not focus on making it easy to add
new dialogue domains with a variety of dialogue
strategies.

This paper presents a framework called RIME
(Robot Intelligence based on Multiple Experts),
which employs modules called experts.! Each ex-
pert is specialized for achieving certain kinds of
tasks by performing physical actions and engaging
in dialogues. It corresponds to the symbol-level con-
trol module of a system that can engage in tasks in
a single small domain, and it employs fixed con-
trol strategies. Only some of the experts take charge
in understanding user utterances and decide actions.
The basic idea behind RIME is to specify a com-
mon interface of experts for coordinating them and
to achieve flexible control. In RIME, several mod-

'RIME is an improved version of our previous model
(Nakano et al., 2005), whose interruption handling was too sim-
ple and which could not achieve parallel task execution.
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ules run in parallel for coordinating experts. They
are understander, which is responsible for speech
understanding, action selector, which is responsible
for selecting actions, and task planner, which is re-
sponsible for deciding which expert should work to
achieve tasks.

RIME achieves the above mentioned features.
Multi-domain dialogues are possible by selecting an
appropriate expert which is specialized to dialogues
in a certain domain. Interruption handling is possi-
ble because each expert must have methods to de-
tect interruptions and decide actions to handle in-
terruptions, and coordinating modules can use these
methods. Parallel task execution is possible because
experts have methods for providing information to
decide which experts can take charge at the same
time, and the task planner utilizes that information.
Extensibility is achieved because any kind of expert
can be incorporated if it supports the common inter-
face. This makes it possible for agent developers to
build a variety of conversational agents.

2  Multi-Expert Model

This section explains RIME in detail. Fig. 1 depicts
its module architecture.

2.1 Experts

Each expert is a kind of object in the object-oriented
programming framework. In this paper, we call
tasks performed by one expert primitive tasks. Ex-
perts should be prepared for each primitive task type.
For example, if there is an expert for a primitive task
type “telling someone’s extension number”, “telling
person A’s extension number” is a primitive task.
By performing a series of primitive tasks, a com-
plicated task can be performed. For example, a mu-
seum guide robot can perform “explaining object B”
by executing “moving to B” and “giving an explana-
tion on B”. Among the experts, a small number of
experts can perform tasks at one time. Such experts
are called being in charge.

Each expert holds information on the progress of
the primitive task. It includes task-type-independent
information, such as which action in this primitive
task is being performed and whether the previous
robot action finished, and task-type-dependent in-
formation such as the user intention understanding
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Figure 1: Architecture for RIME-Based Systems

results and dialogue history. The contents and the
data structure for the task-type-dependent informa-
tion for each expert can be designed by the system
developer.

Experts are classified into system-initiative task
experts and user-initiative task experts. In this pa-
per, the initiative of a task means who can initiate
the task. For example, the task “understanding a
request for weather information” is a user-initiative
task, and the task “providing weather information”
is a system-initiative task.

In RIME, executing multiple tasks in parallel be-
comes possible by making multiple experts take
charge. To check whether two experts can take
charge simultaneously, we currently use two fea-
tures verbal and physical. Two experts having the
same feature cannot take charge simultaneously.

The interface of experts consists of methods for
accessing its internal state. Below are some of the
task-type-dependent methods, which need to be im-
plemented by system developers.

The understand method updates the internal state
based on the user speech recognition results, us-
ing domain-dependent sentence patterns for utter-
ance understanding. This method returns a score
which indicates the plausibility the user utterance
should be dealt with by the expert. Domain selection
techniques in multi-domain spoken dialogue sys-
tems (Komatani et al., 2006) can be applied to obtain
the score. The select-action method outputs one ac-
tion based on the content of the internal state. Here,
an action is a multimodal command which includes
a text to speak and/or a physical action command.



The action can be an empty action, which means do-
ing nothing. The detect-interruption method returns
a Boolean value that indicates whether the previous
user utterance is an interruption to the action being
performed when this expert is being in charge. The
handle-interruption method returns the action to be
performed after an interruption is detected. For ex-
ample, an instruction to stop the utterance can be
returned.

In the definition of these methods, experts can
access a common database called global context to
store and utilize information across domains, such
as information on humans, information on the envi-
ronment, and past dialogue topics.

2.2 Modules Coordinating Experts

To exploit experts, three processes, namely the un-
derstander, the action selector, and the task planner,
work in parallel.

The understander receives output of an input pro-
cessor, which typically performs speech recogni-
tion. Each time the understander receives a user
speech recognition result from the input processor,
it performs the following process. First it dispatches
the speech recognition result to the experts in charge
and the user-initiative experts with their understand
methods, which then returns the scores mentioned
above. The expert that returns the highest score is
selected as the expert to take charge. If the selected
expert is not in charge, it tells the task planner that
the expert is selected as the user-initiative expert to
take charge. If the selected expert is in charge, it
calls the detect-interruption method of the expert. If
true 1s returned, it tells the action selector that an
interruption utterance is detected.

The action selector repeats the following process
for each expert being in charge in a short cycle.
When an interruption for the expert is detected, it
calls the expert’s handle-interruption method, and
it then sends the returned action to the action ex-
ecutor, which is assumed to execute multimodal ac-
tions by controlling agents, speech synthesizers, and
other modules. Otherwise, unless it is not waiting
for a user utterance, it calls the expert’s select-action
methods, and then sends the returned action to the
action executor. The returned action can be an empty
action. Note that it is assumed that the action execu-
tor can perform two or more actions in parallel when
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ID | task type initiative | feature
A | understanding weather information requests user verbal
B | providing weather information agent verbal
C | understanding extension number requests user verbal
D | providing extension numbers agent verbal
E | understanding requests for guiding to places user verbal
F | moving to show the way agent physical
G | explaining places agent verbal

Table 1: Experts in the Example Robotic System

Utterances and physical actions Experts in charge and tasks

Human: "Where is the meeting
room?"

Robot: "Would you like to know
where the meeting room is?"

Human: "yes."
Robot: "Please come this way."

Expert E

understand request
to show the way

(start moving) Expert F Expert C
Human: "Tell me A's extension move to understand '
number." show the request for A's
Robot: "A's extension number is way ext. number
1234." Expert D
Robot: (stop moving) :ﬂlmA';SereXt.
Robot: "The meeting room is over Expert G

there." show the way

Figure 2: Expert Selection in a Parallel Task Execution
Example

possible.

The task planner is responsible for deciding which
experts take charge and which experts do not. It
sometimes makes an expert take charge by setting
a primitive task, and sometimes it discharges an ex-
pert to cancel the execution of its primitive task. To
make such decisions, it receives several pieces of in-
formation from other modules. First it receives from
the understander information on which expert is se-
lected to understand a new utterance. It also receives
information on the finish of the primitive task from
an expert being in charge. In addition, it receives
new tasks from the experts that understand human
requests. The task planner also consults the global
context to access the information shared by the ex-
perts and the task planner. In this paper we do not
discuss the details of task planning algorithms, but
we have implemented a task planner with a simple
hierarchical planning mechanism.

There can be other processes whose output is
written in the global context. For example, a robot
and human localization process using image pro-
cessing and other sensor information processing can
be used.



3 Implementation as a Toolkit

The flexibility of designing experts increases the
amount of effort for programming in building ex-
perts. We therefore developed RIME-TK (RIME-
ToolKit), which provides libraries that facilitate
building systems based on RIME. It is implemented
in Java, and contains an abstract expert class hier-
archy. The system developers can create new ex-
perts by extending those abstract classes. Those ab-
stract classes have frequently used functions such
as WFST-based language understanding, template-
based language generation, and frame-based dia-
logue management. RIME-TK also contains the im-
plementations of the understander and the action se-
lector. In addition, it specifies the interfaces for the
input processor, the action executor, and the task
planner. Example implementations of these mod-
ules are also included in RIME-TK. Using RIME-
TK, conversational agents can be built by creating
experts, an input processor, an action executor, and
a task planner.

As an example, we have built a robotic system,
which is supposed to work at a reception, and can
perform several small tasks such as providing ex-
tension numbers of office members and guiding to
several places near the reception such as a meeting
room and a restroom. Some experts in the system
are listed in Table 1. Fig. 2 shows an example inter-
action between a human and the robotic system that
includes parallel task execution and how experts are
charged. The detailed explanation is omitted for the
lack of the space.

By developing several other robotic systems and
spoken dialogue systems (e.g., Komatani et al.
(2006), Nakano et al. (2006), and Nishimura et al.
(2007)), we have confirmed that RIME and RIME-
TK are viable.

4 Concluding Remarks

This paper presented RIME, a framework for build-
ing conversational agents. It is different from pre-
vious frameworks in that it makes it possible to
build agents that can handle interruptions and exe-
cute multiple tasks in parallel by employing experts
which have a common interface. Although the cur-
rent implementation is useful for building various
kinds of systems, we believe that preparing more
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kinds of expert templates and improving expert se-
lection for understanding utterances facilitate build-
ing a wider variety of systems.

Acknowledgments We would like to thank all
people who helped us to build RIME-TK and its ap-
plications.

References

H. Asoh, T. Matsui, J. Fry, F. Asano, and S. Hayamizu.
1999. A spoken dialog system for a mobile office

robot. In Proc. Eurospeech-99, pages 1139-1142.
N. Blaylock, J. Allen, and G. Ferguson. 2002. Synchro-

nization in an asynchronous agent-based architecture
for dialogue systems. In Proc. Third SIGdial Work-
shop, pages 1-10.

J. Boye, B. A. Hockey, and M. Rayner. 2000. Asyn-
chronous dialogue management: Two case-studies. In

Proc. Gotalog-2000.
M. Hartikainen, M. Turunen, J. Hakulinen, E.-P. Salo-

nen, and J. A. Funk. 2004. Flexible dialogue manage-
ment using distributed and dynamic dialogue control.

In Proc. Interspeech-2004, pages 197-200.
K. Komatani, N. Kanda, M. Nakano, K. Nakadai, H. Tsu-

jino, T. Ogata, and H. G. Okuno. 2006. Multi-domain
spoken dialogue system with extensibility and robust-
ness against speech recognition errors. In Proc. 7th

SIGdial Workshop, pages 9—17.
O. Lemon, A. Gruenstein, A. Battle, and S. Peters. 2002.

Multi-tasking and collaborative activities in dialogue
systems. In Proc. Third SIGdial Workshop, pages

113-124.
B. Lin, H. Wang, and L. Lee. 1999. Consistent dialogue

across concurrent topics based on an expert system
model. In Proc. Eurospeech-99, pages 1427-1430.
M. Nakano, Y. Hasegawa, K. Nakadai, T. Nakamura,
J. Takeuchi, T. Torii, H. Tsujino, N. Kanda, and H. G.
Okuno. 2005. A two-layer model for behavior and
dialogue planning in conversational service robots. In

Proc. 2005 IEEE/RSJ IROS, pages 1542—-1547.
M. Nakano, A. Hoshino, J. Takeuchi, Y. Hasegawa,

T. Torii, K. Nakadai, K. Kato, and H. Tsujino. 2006.
A robot that can engage in both task-oriented and non-
task-oriented dialogues. In Proc. 2006 IEEE/RAS Hu-

manoids, pages 404—411.
Y. Nishimura, S. Minotsu, H. Dohi, M. Ishizuka,

M. Nakano, K. Funakoshi, J. Takeuchi, Y. Hasegawa,
and H. Tsujino. 2007. A markup language for describ-
ing interactive humanoid robot presentations. In Proc.

1UI-07.
I. O’Neill, P. Hanna, X. Liu, and M. McTear. 2004.

Cross domain dialogue modelling: an object-based ap-
proach. In Proc. Interspeech-2004, pages 205-208.



From GEMINI to DiaGen:
Improving Development of Speech Dialogues
for Embedded Systems

Stefan W. Hamerich

University of Hamburg
Department of Informatics
Natural Language Systems Division
Hamburg — Germany

Harman/Becker Automotive Systems
CoC Speech & Connectivity
Speech Services
Ulm — Germany

shamerich@harmanbecker.com

Abstract

In this paper DiaGen is presented, a tool that
provides support in generating code for em-
bedded dialogue applications. By aid of it, the
dialogue development process is speeded up
considerably. At the same time it is guaran-
teed that only well-formed and well-defined
constructs are used. Having had its roots in
the EU-funded project GEMINI, fundamen-
tal changes were necessary to adopt it to the
requirements of the application environment.
Additionally within this paper the basics of
embedded speech dialogue systems are cov-
ered.

1 Introduction

The EU funded research project GEMINI (Generic
Environment for Multilingual Interactive Natural In-
terfaces) aimed at the development of an Applica-
tion Generation Platform (AGP) to semiautomati-
cally generate multimodal dialogue applications for
database access (Hamerich et al., 2004a). At the end
of the project, two telephony applications had been
successfully deployed: a banking application for a
Greek bank, and a citizen care application for a Ger-
man city. The former has been used by several thou-
sand customers (Hamerich et al., 2004b).

Based on the ideas and concepts of GEMINI a
new tool named DiaGen has been developed, which
improves the development process for dialogue ap-
plications with regard to certain aspects.

This paper is structured as follows: First the basic
ideas of the GEMINI AGP are introduced. Next the
characteristics and peculiarities of embedded speech
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applications are explained. This is followed by a
description of the concepts of GEMINI which had
been a starting point for the development of DiaGen.
The core of this paper follows: a detailled descrip-
tion of the DiaGen tool. Finally the conclusion and
outlook are presented.

2 The GEMINI AGP

The GEMINI AGP provided support for the semi-
automatic creation of phone-based dialogue applica-
tions. The development process had several layers.
Through the different phases of a layer the applica-
tion developer was guided by a wizard and had to
use specialised assistants for each phase.

The first starting point was a rough abstract dia-
logue model, which has been enriched step by step
through all phases until finally dialogue model was
completed. All models are completely written in
a language specifically developed for the purposes
of GEMINI covering both, dialogue description and
data modelling (Hamerich et al., 2003; Schubert and
Hamerich, 2005).

Originally the GEMINI AGP was designed for
phone-based or web-based applications. Therefore
the final outcome of the AGP was VoiceXML or
xHTML, according to the initial selection of the ap-
plication developer.

The three layers of the platform are described in
depth in (d’Haro et al., 2006).

3 Automotive Speech Dialogues

Speech dialogues for cars are embedded solutions
running under real-time operating systems with very
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low memory and CPU power (Hamerich, 2005).!
Next to these hardware requirements customers
from automotive industry demand very explicit
specifications to understand the complete dialogue
flow and see its connections to the graphical/haptical
HMI (human machine interface) in a car. Therefore
special algorithms and tools are used, to develop and
run speech dialogues on such embedded systems. In
consequence Harman/Becker has a proprietary dia-
logue description language developed especially for
being used on embedded environments (Hamerich
and Hanrieder, 2004). The Generic Dialogue Mod-
elling Language (GDML) is designed as a compiled
language to save memory and CPU resources. This
makes sense, since dialogues within a car are still
closed applications.

Speech control for cars is available to the end
customer since 1996 (Heisterkamp, 2001). Today
many car manufacturers offer speech control sys-
tems. Typical applications in a car are voice con-
trol of telephone, tuner and navigation system. Di-
rect control of media files using their meta-data
(e.g. ID3-Tags) by saying e.g. “play title 'Bad’ by
’Michael Jackson’” is a feature currently under de-
velopment (Wang and Hamerich, 2008).

In spite of several tools and libraries, dialogue de-
velopment for automotive applications is mainly still
manual work.

4 Porting Ideas from GEMINI to DiaGen

Since the GEMINI AGP showed that advanced
speech dialogue applications can be created fast and
easy it was straightforward to attempt to transfer at
least some of the possibilities from the AGP into the
world of embedded speech dialogues. However the
following features need to be changed for the new
tool:

e Speech dialogues in cars do not access a
database; instead the devices are controlled di-
rectly by the speech dialogue. Therefore Dia-
Gen does not need a database interface but
should instead offer a flexible way to integrate
access to external devices.

!Generally embedded systems comprise other highly inte-
grated systems as well. Since the approach for embedding
speech dialogue systems described here can work on such sys-
tems as well, the term ’embedded’ is used as a generalisation.
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e When starting development with the AGP first

a rough dialogue specification has to be pro-
vided, which for every new application needs
to be given again (except the library approach
is used, which makes only sense for very sim-
ilar applications). It would make sense to pro-
vide a sample dialogue at the start of dialogue
development for embedded applications, con-
taining the most common interfaces and allow-
ing faster creation of new applications from this
starting point.

When using the AGP for dialogue develop-
ment, there was no consistency check for
speech grammars and their connection to the
dialogue. This should be improved with Dia-
Gen.

Since highly customised applications are de-
manded, code is still written by hand. Never-
theless dialogue designers are supported with
several tools and libraries. Therefore the new
tool should fit into the existing tool chain,
but should also allow for manual editing or
at least fine-tuning of the code. Since it
was experienced from GEMINI that generat-
ing VoiceXML from the models coded in the
GEMINI modelling language was hard work,
it was decided to directly work on the runtime
language for the new tool. This minimises ef-
forts for the generation components and on the
other hand allows for easy editing of code files.
That means for the new tool no generator com-
ponent is needed. Instead the compiler needed
for the embedded dialogue descriptions should
be added to DiaGen, to allow for integrated de-
velopment.

Since the creation of a phone-based dialogue
system requires specialised handling for differ-
ent situations (e.g. for database access, output
generation, etc.) several specialised wizards
have been created forming the AGP. Since de-
velopment for a speech control system is quite
different it does not make sense, to have several
assistants. Therefore DiaGen integrates all the
needed functionality into one tool.



5 DiaGen

As already described above, DiaGen was developed
as a new tool, based on the experiences made within
the GEMINI project. The key idea of DiaGen is to
ease development of speech dialogues for automo-
tive applications. The main point here is not only
to speed up coding of dialogue scripts but addition-
ally to support the development of correct, consis-
tent, and user-friendly dialogue applications.

The main differences between DiaGen and the
GEMINI AGP are already described above. In this
section the most outstanding properties of the final
tool are discussed in detail.

5.1

Since effort for generating runtime code from de-
velopment models was a big issuee within GEMINI
and it is often required to change code details even in
a late phase of development, it was decided for Dia-
Gen to work directly on GDML. This allows DiaGen
to offer manual editing at any development stage.

Modelling Language

5.2 Integration

For a GDML developer, there are daily tools to work
with. These are the grammar and dialogue compiler
and a testing and debugging tool. These tools all
have been integrated into DiaGen. For each tool,
DiaGen allows to set configuration parameters as
well as to compile and debug directly in the envi-
ronment.

5.3 Project Model

One of the main features of DiaGen is a complete
project model, which contains all project files and
runtime configuration settings. Loading this model
into DiaGen allows easy compiling, testing and edit-
ing of the complete application.

The model can be extended by editing the con-
tained files using DiaGen. Additionally DiaGen also
offers the possibility to add predefined routines or
methods to the model, allowing for a library usage.

Another advantage of the model is the complete
coverage of variables, functions, prompts, etc. This
speeds up the development process quite a lot, since
the tool automatically proposes allowed argument
values for a function call. And if a variable has not
been defined in the current context, this can just be
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done by a simple click on the respective button. This
feature was already available in parts with the GEM-
INI AGP.

5.4 Sample Application

As already mentioned in section 4 development for
a new application with DiaGen starts with a sample
application. This saves time since setting up a new
running application with correct configuration set-
tings by hand can be a lengthy process. If instead
a complete running system is copied and stripped
down, this costs time as well. Starting with a small
sample application therefore is much more efficient.

The sample application can easily be updated and
maintained, therefore even new configuration set-
tings or techniques can be adopted.

5.5 Device Interface

To control devices by speech, their interface must be
accessible for the dialogue. This in GDML generally
is done with the concept of system calls for details
see (Hamerich and Hanrieder, 2004). New system
calls can be created using DiaGen or just be added
to an existing DiaGen project. When a system call
is needed, it can just be selected from a list, saving
time for lookup. Of course all the advantages of the
project model (sec. 5.3) apply for system calls and
their arguments and results as well.

5.6 Grammar Tag Consistency

GDML (like VoiceXML) uses semantic grammar
tags to identify user utterances. These tags are even
independent of the used language making GDML di-
alogues complete language independent. This gives
bigger flexibility and minimises efforts for porting a
dialogue application to another language.

To initiate a dialogue reaction, a specified tag
has to be delivered from the parser. For each tag
a dialogue action inside the dialogue code itself is
needed. In this case consistency of these tags in
grammar and dialogue script is of highest impor-
tance. As already mentioned the GEMINI AGP did
not ensure this consistency automatically. This led
to high efforts when developing an application with
the AGP. To minimise these efforts and disable po-
tential errors the consistency shall be ensured auto-
matically by DiaGen.



To do so DiaGen offers a special view of the
grammar. For each grammar rule or combination of
rules all possible grammar tags are shown. Selecting
a tag automatically constructs a complete switch-
case statement for all possible alternatives and en-
sures consistency between grammar and dialogue.

5.7 Usage of DiaGen

DiaGen has been developed to allow fast creation
of flexible speech dialogues for automotive applica-
tions. See Figure 1 for possibilities of its context
menu. It was used successfully for a proactive dy-
namic traffic information application based on Traf-
fic Message Channel (TMC) messages. This ap-
plication has already been described in (Hamerich,
2007). Since the tool is still in its testing phase, it is
currently used for prototypical development only.

<step name="st_init" >

Undo Chrl+Z

</step
Paste Chrl+y
<step Select Al Ctri+i
L&
Add GOML Dlaloq Reference four™ -
#dd GDML Function Call Reference
Add Prompt Call 1_detourl
Add Mew Mexk-Step Element
Add Mew Wait-Event Element tourAnds
Add Switch Statement henlio ——
Add Enum Assign Statement dtate D
Add Switch Statement For Grammar Feature i "
LalogSta

Add Mew Variable
Insert Feature Chrl+1

Figure 1: Context menu of DiaGen within GDML dialog
step.

6 Conclusion

In this paper DiaGen was presented. A tool to im-
prove the development process of embedded speech
dialogues as used for automotive systems. Ma-
jor improvements offered by usage of DiaGen are
speed-up of coding and verified code consistency.
DiaGen results partly from the experiences collected
within the GEMINI project. But since GEMINI con-
centrated on phone-based and multimodal applica-
tions, several changes have been necessary for em-
bedded dialogues, which have been described.
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7 Future Work

As pointed out the tool is currently used to develop
a pilot application. As feedback from the work on
the pilot application, DiaGen is constantly being up-
dated. At a later development stage of DiaGen it will
be evaluated to be used for product development as
well.
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Abstract

This paper presents a coding protocol that al-
lows naive users to annotate dialogue tran-
scripts for anaphora and ellipsis. Cohen's
kappa statistic demonstrates that the protocol
is sufficiently robust in terms of reliability. It
is proposed that quantitative ellipsis data may
be used as an index of mutual-engagement.
Current and potential uses of ellipsis coding
are described.

1. Introduction

Spontaneously generated dialogue, whether natu-
rally occurring or task-oriented, rarely sticks to
accepted rules of grammar or even politeness. In-
terruptions, ungrammatical utterances and grunts
or other noises are found in the majority of contri-
butions in dialogue corpora. One reason for this is
the ubiquitous use of ellipsis; the omission of
words or phrases from a contribution which can be
inferred or extracted from previous contributions.
Ellipsis is optional; the full constituent could serve
communication as well as the elliptical version.
Where ellipsis occurs across speakers i.e., one par-
ticipant makes (elliptical) use of another’s contri-
bution, it provides a direct index of the mutual-
accessibility of the current conversational context
(cf. Healey et. al. 2007; Eshghi and Healey, 2007).
In some cases elliptical contributions are obvi-
ous, as in the polar response 'yeah', signifying that
a question has been heard, understood and consid-
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ered; however, there are degrees of complexity that
would seem to require a close understanding of
what another participant is referring to. It is this
issue of mutual-accessibility or 'grounding' that we
propose can be investigated through the quantifica-
tion of elliptical phenomena. These phenomena
are, we propose, also related to the way referring
expressions can contract over repeated use. (e.g.
Schober and Clark, 1989; Wilkes-Gibbs and Clark,
1992). The approach taken in Clark et al.'s 'col-
laborative theory' is that as mutual understanding
increases, dialogue contributions become shorter as
referring terms become part of the common
ground. Clark and Krych (2004) note that various
elliptical phrases can be used to establish common
ground, from continuers (‘uh-huh', 'yeah') or as-
sessments ('gosh') to establishing shared attention
through deictic expressions such as 'this', 'that’,
'here' and 'there'.

Healey et al. (2007) demonstrated the basic con-
cept and viability of quantifying ellipsis phenom-
ena as a quantitative index of mutual-accessibility
of context. They showed that the frequency of use
of cross-speaker elliptical expressions in online
chat varies systematically depending on whether
communication is ‘local’ i.e. within a single chat
room or ‘remote’. However, the coding of ellipsis
in this study did not follow an explicit protocol. It
relied mainly on the distinctions made by Fernan-
dez et al. (2004) but specific measures of reliabil-
ity and validity were not calculated.

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 96-99,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



Does this contribution use one of the following words
to refer to something or someone?
{he, she, we, they, his, her, our, their, hers, ours, theirs, him, us, them, it, its}
{this, that, these, those -either standalone or with a noun/adjective-}

Does all or part of the contribution answer a question or query? ‘

l

o

{here, there -only in certain cases-}

From the transcript can you identify a specific word or words

that this word or words replaces or refers to?

Is the word from the list used
after the word or phrase it
replaces or refers to?

Does the word refer to something
or someone in the participants’
immediate
environment?

NO YES
| ENDOPHOR | | CATAPHOR | |EXAPHOR | | VAGUEANAPHOR |

I

Identify where the
previous mention
took place.

I

Repeat above section for further occurrences of words from the above
list if necessary.

Is there a positive or negative answer to a direct question given as a
sentence fragment, phrase, word or noise?

POLAR ANSWER

Does this contribution contain a sentence fragment, word or noise that
acknowledges understanding or agreement with a previous contribution?

ACKNOWLEDGEMENT

Is all or part of this answer a sentence fragment?

=

| PROMPTED NSU ANSWER | | UNPROMPTED NSU ANSWER |

Was this information specifically requested?

’ CONTINUE ONTO NEXT DECISION CHART |

Figure 1. ‘Anaphora’ decision chart

In this paper we present an ellipsis coding protocol
that provides a set of coding categories and we re-
port the inter-rater reliability scores that have been
obtained with it. In order to simplify coding and
increase reliability, categories suggested by Fer-
nandez et al. have been collapsed into broader
ones. It should be pointed out that we are not, in
general, trying to produce an accurate or definitive
analysis of ellipsis. The protocol is rather the prod-
uct of contending with the compromise between
robust coding categories and linguistic elegance.
The categories presented here are generally or-
dered in terms of occurrence in order to assist the
coder. A contribution to dialogue may contain
more than one type of elliptical utterance; contri-
butions are not assigned to one mutually exclusive
category. Rather, coders are able to use the proto-
col to label any part of a dialogue that is elliptical.

2. The Ellipsis Protocol

The protocol is designed as a tool for coding one
aspect of dialogue, developed with the intention
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CONTINUE ONTO NEXT DECISION CHART ‘
Figure 2. ‘Answers’ decision chart

that users with no specific knowledge of linguistics
can use it. As can be seen from Figures 1-4, it con-
sists of four binary branching decision trees that
are applied to each contribution in an interaction.
Full instructions for use of the protocol have also
been written and are available from the authors.

3. Inter-rater reliability

In order to demonstrate reliability between coders,
two coders (one computer scientist, one psycholo-
gist) applied the ellipsis protocol to a sample of
task oriented dialogue. This was taken from the
HCRC Map Task corpus (Anderson et al, 1991); a
series of dialogues in which one participant at-
tempts to describe a route on a fictional map to
another. The longest of these dialogues was chosen
to be coded (transcript QINC1) which consisted of
446 turns and 5533 words. Cohen's kappa was cal-
culated using the procedure outlined in Howell
(1994); see Carletta (1996) for a discussion of the
use of kappa in dialogue coding. Kappa in this in-
stance was .81, which shows very high reliability,
even by conservative standards (Krippendorff,



Does all or part of the contribution contain any type of question or query? |

YES NO

Is there a sentence fragment asking for more information that contains
one or more question words?
{e.g.why, where, when, which, what, who, how}

YES NO

SLUICE

Is there a sentence fragment that repeats all or part of a previous
contribution in order to clarify it due to a problem in understanding?

YES NO

‘ CLARIFICATION ELLIPSIS
l | Is this question or query a sentence fragment? |
Does this fragment check that another participant has
understood a contribution?
YES

CONTINUE ONTO NEXT DECISION CHART |
Figure 3. ‘Questions’ decision chart

1980). Table 1 below presents a breakdown of the
instances of categories that were agreed upon.
Table 1 shows the total number and approximate
percentage of agreements. Also given, '1.dis' and
'2.dis' are the number of observed instances by
coders one and two respectively identified but dis-
puted for that particular category. The total number
of elliptical or non-elliptical instances coded, from
single words or phrases to entire turns was 624; of
these, 100 (16%) were disagreed upon and 78 in-
stances (12.5%) were agreed to contain no ellipti-
cal phenomena (no ellipsis disagreements = 50).
Some categories have very low frequencies; how-
ever, previous work suggests that these categories
are necessary. To some extent this table shows the
limitations of the kappa statistic; coder agreement
varies considerably across these categories.
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Does all or part of this contribution use a sentence fragment to dispute, reject

or correct a previous statement?
:YES NO

Does the contribution contain a sentence fragment that describes or qualifies all
or part of a previous contribution?
{e.g. possibly, maybe, hardly, great, terrible}

YES NO

Is all or part of the contribution a sentence fragment that directly continues from

a previous contribution?
NO
CONTINUATION

Does this contribution contain a sentence that implies a longer sentence that can

be constructed by bringing in a phrase or sentence from something
NO

stated previously?

SENTENTIAL ELLIPSIS

| MOVE ONTO THE NEXT CONTRIBUTION
Figure 4. ‘Statements’ decision chart

Endophor | Cataphor Exaphor Vague
Anaphor
Total | 119 2 8 33
% 19 .03 1.3 5.3
1.dis 12 1 1 20
2.dis [ 10 3 17 6
Polar Acknowledge | Prompted Un-
Answer NSU Ans. prompted
NSU Ans.
Total | 113 78 1 7
% 18.1 12.5 0.2 1.1
ldis | 7 15 0 1
2dis [ 5 9 1 5
Sluice Clarification Check NSU Query
Ellipsis
Total | 2 7 20 27
% .03 1.1 3.2 4.3
ldis | 0 0 2 5
2.dis | 2 2 0 2
Rejection [ Modification Continua- Sentential
tion Ellipsis
Total | 2 1 13 13
% .03 .002 2.1 2.1
ldis | 1 0 3 10
2dis | 4 0 3 3

Table 1. Total agreements by category



4. Discussion

Although mutual-accessibility of context is funda-
mental to communication, there has not been a re-
liable method for observing or measuring it. The
ellipsis protocol presented here thus provides a
useful step in this direction. It gives a standardised
coding scheme that can quantify the extent to
which speakers can directly access the constituents
of each other’s turns.

In previous work there have been several differ-
ent attempts to define taxonomies of elliptical or
context dependent utterances. For example, non-
sentential utterances (NSUs), e.g. Schlangen and
Lascarides (2003); Fernandez and Ginzburg
(2002); Fernandez, Ginzburg and Lappin (2007).
One issue with these previous approaches is the
lack of reliability data; a statistic such as Cohen’s
kappa is needed in order to demonstrate that a tax-
onomy or coding scheme can be reliably applied
between independent coders. Carletta et al. (1997)
presented a reliable coding scheme for the classifi-
cation of dialogue moves; although there are over-
laps between their categories and ours, the
questions used in the scheme are intended to estab-
lish solely the function of an utterance and impor-
tantly, not whether the utterance is elliptical. The
protocol presented here achieves a high level of
reliability for some of these context dependent
phenomena without requiring specific prior knowl-
edge of the relevant linguistic theory.

Further work will code a sample from the BNC
(Burnard, 2000) in order to allow comparisons
with previous taxonomies. The HCRC map task
corpus has previously been examined in terms of
various features of dialogue, e.g. Dialogue Games
Analysis (Kowtko et al, 1991) and disfluencies
(Lickley and Bard, 1998). Ongoing work will de-
velop this through coding the entire HCRC map
task corpus; providing data on how ellipsis varies
over different conditions such as medium, familiar-
ity and task role.
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Abstract

An attempt was made to statistically estimate
proposals which survived the discussion to
be incorporated in the final agreement in an
instance of a Japanese design conversation.
Low level speech and vision features of hearer
behaviors corresponding to aiduti, noddings
and gaze were found to be a positive pre-
dictor of survival. The result suggests that
non-linguistic hearer responses work as im-
plicit proposal filters in consensus building,
and could provide promising candidate fea-
tures for the purpose of recognition and sum-
marization of meeting events.

1 Introduction

Non-verbal signals, such as gaze, head nods, fa-
cial expressions and bodily gestures, play signif-
icant roles in the conversation organization func-
tions. Several projects have been collecting multi-
modal conversation data (Carletta et al., 2006) for
multi-party dialogues in order to develop techniques
for meeting event recognitions from non-verbal as
well as verbal signals. We investigate, in this paper,
hearer response functions in multi-party consensus-
building conversations. We focus particularly on the
evaluative aspect of verbal and non-verbal hearer re-
sponses. During the course of a consensus-building
discussion meeting, a series of proposals are put
on the table, examined, evaluated and accepted or
rejected. The examinations of proposals can take
the form of explicit verbal exchanges, but they can
also be implicit through accumulations of hearer
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responses. Hearers would express, mostly uncon-
sciously for non-verbal signals, their interest and
positive appraisals toward a proposal when it is
introduced and is being discussed, and that these
hearer responses would collectively contribute to the
determination of final consensus making. The ques-
tion we address is whether and in what degree it is
possible and effective to filter proposals and estimate
agreement by using verbal and non-verbal hearer re-
sponses in consensus-building discussion meetings.

2  Multi-Party Design Conversation Data
2.1 Data collection

We chose multi-party design conversations for the
domain of our investigation. Different from a fixed
problem solving task with a ‘correct’ solution, par-
ticipants are given partially specified design goals
and engage in a discussion to come up with an agree-
ment on the final design plan. The condition of our
data collection was as follows:

Number of participants: six for each session
Arrangement: face-to-face conversation

Task: Proposal for a new mobile phone business
Role: No pre-determined role was imposed

A compact meeting archiver equipment, AIST-
MARC (Asano and Ogata, 2006), which can cap-
ture panoramic video and speaker-separated speech
streams, was used to record conversations (Fig. 1).
The data we examined consist of one 30 minutes
conversation conducted by 5 males and 1 female.
Even though we did not assign any roles, a chairper-
son and a clerk were spontaneously elected by the
participants at the beginning of the session.
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Figure 1: AIST-MARC and a recording scene

2.2 Data Annotation

2.2.1 Clause units

In order to provide a clause level segmentation
of a multi-channel speech stream, we extended the
notion of ‘clause units (CUs)’, originally developed
for analyzing spoken monologues in the Corpus of
Spontaneous Japanese (Takanashi et al., 2003), to
include reactive tokens (Clancy et al., 1996) and
other responses in spoken conversations. Two of the
authors who worked on the Corpus of Spontaneous
Japanese independently worked on the data and re-
solved the differences, which created 1403 CUs con-
sisting of 469 complete utterances, 857 reactive to-
kens, and 77 incomplete or fragmental utterances.

2.2.2 Proposal units

We developed a simple classification scheme of
discourse segments for multi-party consensus build-
ing conversations based on the idea of ‘interaction
process analysis’ (Bales, 1950).

Proposal: Presentation of new ideas and their eval-
uation. Substructure are often realized through
elaboration and clarification.

Summary: Sum up multiple proposals possibly
with their assessment

Orientation: Lay out a topic to be discussed and
signal a transition of conversation phases, initi-
ated mostly by the facilitator of the discussion

Miscellaneous: Other categories including opening
and closing segments

The connectivity between clause units, the content
of the discussion, interactional roles, relationship
with adjacent segments and discourse markers were
considered in the identification of proposal units.
Two of the authors, one worked on the Corpus of
Spontaneous Japanese and the other worked for the
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Figure 2: Image processing algorithm

project of standardization of discourse tagging, in-
dependently worked on the data and resolved the
differences, which resulted in 19 proposals, 8 sum-
maries, 19 orientations and 2 miscellaneouses.

2.3 Core clause units and survived proposal
units

Core clause units (CUs) were selected, out of all the
clause units, based on whether the CUs have sub-
stantial content as a proposal. A CU was judged
as a core CU, when the annotator would find it ap-
propriate to express, upon hearing the CU, either an
approval or a disapproval to its content if she were
in the position of a participant of the conversation.
Three of the authors worked on the text data exclud-
ing the reactive tokens, and the final selection was
settled by majority decision. 35 core CUs were se-
lected from 235 CUs in the total of 19 proposal PUs.
Cohen’s kappa agreement rate was 0.894.

Survived proposal units (PUs) were similarly se-
lected, out of all the proposal units, based on
whether the PUs were incorporated in the final
agreement among all the participants. 9 survived
PUs were selected from 19 proposal PUs.

3 Feature Extraction of Hearer’s Behavior

For each clause unit (CU), verbal and non-verbal
features concerning hearer’s behavior were ex-
tracted from the audio and the video data.

3.1 Non-Verbal Features

We focused on nodding and gaze, which were ap-
proximated by vertical and horizontal head move-
ments of participants.

An image processing algorithm (Figure 2) was ap-
plied to estimate head directions and motions (Mat-
susaka, 2005). Figure 3 shows a sample scene and
the results of applying head direction estimation al-
gorithm.



Figure 3: Sample scene with image processing results.
The circles represent detected face areas, and the lines in
the circles represent head directions.

For each CU, the vertical and horizontal compo-
nents of head movements of 5 hearers were calcu-
lated for two regions, the region inside the CU and
the 1-sec region immediately after the CU. For each
of the two regions, the mean and the peak values and
the relative location, in the region, of the peak were
computed. These 12 non-verbal features were used
for the statistical modeling.

3.2 Verbal Features

Verbal features were extracted from the audio data.
For each CU, power values of 5 hearers were ex-
tracted for two regions, ‘within’ and ‘after’ CU, and
for each of the two regions, the mean and the peak
values and the relative location, in the region, of
the peak were computed. In addition to these ver-
bal features, we also used aiduti features of reactive
tokens (RTs). The percentage of the total duration
of RTs, the total number of RTs, and the number of
participants who produced an RT were computed in
‘within’ and ‘after’ regions for each of the CUs. A
total of 12 CU verbal features were used for the sta-
tistical modeling.

4 Experiments

4.1 Overview of the Algorithm

Statistical modeling was employed to see if it is pos-
sible to identify the proposal units (PUs) that are sur-
vived in the participants’ final consensus. To this
end, we, first, find the dominant clause unit (CU) in
each PU, and, then, based on the verbal and non-
verbal features of these CUs, we classify PUs into
‘survived’ and ‘non-survived.’
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Table 1: The optimal model for finding core-CUs

Estimate
(Intercept) —1.72
within/speech power/mean —11.54
after/vertical motion/peak loc. —4.25
after/speech power/mean 3.91
after/aiduti/percent 3.02

Table 2: Confusion matrix of core-CU prediction experi-
ment (precision = 0.50, recall = 0.086)

Predicted
Observed Non-core Core
Non-core 431 3
Core 32 3

4.2 Finding Dominant CUs

A logistic regression model was used to model the
coreness of CUs. A total of 24 verbal and non-verbal
features were used as explanatory variables. Since
the number of non-core CUs was much larger than
that of core CUs, down-sampling of negative in-
stances was performed. To obtain a reliable estima-
tion, a sort of Monte Carlo simulation was adopted.

A model selection by using AIC was applied for
the 35 core CUs and another 35 non-core CUs that
were re-sampled from among the set of 434 com-
plete and non-core CUs. This process was repeated
100 times, and the features frequently selected in
this simulation were used to construct the optimal
model. Table 1 shows the estimated coefficient for
the optimal model, and Table 2 shows the accu-
racy based on a leave-1-out cross validation. The
dominant CU in each PU was identified as the CU

p
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Figure 4: The predicted coreness of CUs. Dominant CUs
were defined to be CUs with the highest coreness in each
of the PUs. Black and white dots are CUs labeled as core
and non-core.



Table 3: The optimal model for finding survived-PUs

Estimate
within/vertical motion/peak val. 3.96
within/speech power/mean —27.76
after/speech power/peak val. 1.49

Table 4: Result of the survived-PU prediction (precision
=0.83, recall = 0.44)

Predicted
Observed Non-survived  Survived
Non-survived 37 1
Survived 4 5

with the highest predicted value in that PU. Figure 4
shows the predicted values for coreness.

4.3 Finding Survived PUs

The verbal and non-verbal features of the dominant
CUs of each of the PUs were used for the modeling
of the survived-PU prediction. Discriminant analy-
sis was utilized and a model selection was applied
for the 47 PUs. Table 3 shows the estimated coeffi-
cient for the optimal model, and Table 4 shows the
accuracy based on a leave-1-out cross validation.

5 Discussions

The results of our estimation experiments indicate
that the final agreement outcome of the discus-
sion can be approximately estimated at the proposal
level. Though it may not be easy to identify actual
utterances contributing to the agreement (core-CUs),
the dominant CUs in PUs were found to be effective
in the identification of survived-PUs. The prediction
accuracy of survived-PUs was about 89%, with the
chance level of 69%, whereas that of core-CUs was
about 92%, with the chance level of 86%.

In terms of hearer response features, intensity
of verbal responses (within/speech power/mean, af-
ter/speech power/mean), and immediate nodding re-
sponses (after/vertical motion/peak loc.) were the
most common contributing features in core-CU es-
timation. In contrast, occurrence of a strong aiduti
immediately after, rather than within, the core-
CU (after/speech power/peak val.), and a strong
nodding within the core-CU (within/vertical mo-
tion/peak val.) appear to be signaling support from
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hearers to the proposal. It should be noted that iden-
tification of target hearer behaviors must be vali-
dated against manual annotations before these gen-
eralizations are established. Nevertheless, the re-
sults are mostly coherent with our intuitions on the
workings of hearer responses in conversations.

6 Conclusions

We have shown that approximate identification of
the proposal units incorporated into the final agree-
ment can be obtained through the use of statistical
pattern recognition techniques on low level speech
and vision features of hearer behaviors. The result
provides a support for the idea that hearer responses
convey information on hearers’ affective and evalu-
ative attitudes toward conversation topics, which ef-
fectively functions as implicit filters for the propos-
als in the consensus building process.
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Abstract

Voice-Rate is an experimental dialog system
through which a user can call to get prod-
uct information. In this paper, we describe
an optimal dialog management algorithm for
Voice-Rate. Our algorithm uses a POMDP
framework, which is probabilistic and cap-
tures uncertainty in speech recognition and
user knowledge. We propose a novel method
to learn a user knowledge model from a review
database. Simulation results show that the
POMDP system performs significantly better
than a deterministic baseline system in terms
of both dialog failure rate and dialog interac-
tion time. To the best of our knowledge, our
work is the first to show that a POMDP can
be successfully used for disambiguation in a
complex voice search domain like Voice-Rate.

1 Introduction

In recent years, web-based shopping and rating sys-
tems have provided a valuable service to consumers
by allowing them to shop products and share their
assessments of products online. The use of these
systems, however, requires access to a web interface,
typically through a laptop or desktop computer, and
this restricts their usefulness. While mobile phones
also provide some web access, their small screens
make them inconvenient to use. Therefore, there
arises great interests in having a spoken dialog in-
terface through which a user can call to get product
information (e.g., price, rating, review, etc.) on the
fly. Voice-Rate (Zweig et al., 2007) is such a sys-
tem. Here is a typical scenario under which shows
the usefulness of the Voice-Rate system. A user en-
ters a store and finds that a digital camera he has
not planned to buy is on sale. Before he decides
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to buy the camera, he takes out his cell phone and
calls Voice-Rate to see whether the price is really
a bargain and what other people have said about
the camera. This helps him to make a wise deci-
sion. The Voice-Rate system (Zweig et al., 2007) in-
volves many techniques, e.g., information retrieval,
review summarization, speech recognition, speech
synthesis, dialog management, etc. In this paper, we
mainly focus on the dialog management component.

When a user calls Voice-Rate for the information
of a specific product, the system needs to identify,
from a database containing millions of products, the
exact product the user intends. To achieve this, the
system first solicits the user for the product name.
Using the product name as a query, the system then
retrieves from its database a list of products related
to the query. Ideally, the highest-ranked product
should be the one intended by the user. In reality,
this is often not the case due to various reasons. For
example, there might be a speech recognition error
or an information retrieval ranking error. Moreover,
the product name is usually very ambiguous in iden-
tifying an exact product. The product name that the
user says may not be exactly the same as the name
in the product database. For example, while the user
says “Canon Powershot SD750”, the exact name
in the product database may be “Canon Powershot
SD750 Digital Camera”. Even the user says the ex-
act name, it is possible that the same name may be
corresponding to different products in different cat-
egories, for instance books and movies.

Due to the above reasons, whenever the Voice-
Rate system finds multiple products matching the
user’s initial speech query, it initiates a dialog proce-
dure to identify the intended product by asking ques-
tions about the products. In the product database,
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many attributes can be used to identify a product.
For example, a digital camera has the product name,
category, brand, resolution, zoom, etc. Given a list
of products, different attributes may have different
ability to distinguish the products. For example, if
the products belong to many categories, the category
attribute is very useful to distinguish the products. In
contrast, if all the products belong to a single cate-
gory, it makes no sense to ask a question on the cat-
egory. In addition to the variability in distinguishing
products, different attributes may require different
knowledge from the user in order for them to an-
swer questions about these attributes. For example,
while most users can easily answer a question on
category, they may not be able to answer a question
on the part number of a product, though the part
number is unique and perfect to distinguish prod-
ucts. Other variabilities are in the difficulty that the
attributes impose on speech recognition and speech
synthesis. Clearly, given a list of products and a set
of attributes, what questions and in what order to ask
is essential to make the dialog successful. Our goal
is to dynamically find such important attributes at
each stage/turn.

The baseline system (Zweig et al., 2007) asks
questions only on product name and category. The
order of questions is fixed: first ask questions on
product category, and then on name. Moreover, it
is deterministic and does not model uncertainly in
speech recognition and user knowledge. Partially
observable Markov decision process (POMDP) has
been shown to be a general framework to capture the
uncertainty in spoken dialog systems. In this paper,
we present a POMDP-based probabilistic system,
which utilizes rich product information and captures
uncertainty in speech recognition and user knowl-
edge. We propose a novel method to learn a user
knowledge model from a review database. Our sim-
ulation results show that the POMDP-based system
improves the baseline significantly.

To the best of our knowledge, our work is the first
to show that a POMDP can be successfully used for
disambiguation in a complex voice search domain
like Voice-Rate.

2 Voice-Rate Dialog System Overview

Figure 1 shows the main flow in the Voice-Rate sys-
tem with simplification. Specifically, when a user
calls Voice-Rate for the information of a specific
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List of|Products
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Human
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* Intended product

Figure 1: Flow Chart of Voice-Rate System

Step-1: remove products that do not match
the user action

Step-2: any category question to ask?
yes: ask the question and return
no: go to step-3

Step-3:  ask a product name question

Table 1: Baseline Dialog Manager Algorithm

product, the system first solicits the user for the
product name. Treating the user input as a query
and the product names in the product database as
documents, the system retrieves a list of products
that match the user input based on TF-IDF mea-
sure. Then, the dialog manager dynamically gener-
ates questions to identify the specific intended prod-
uct. Once the product is found, the system plays
back its rating information. In this paper, we mainly
focus on the dialog manager component.

Baseline Dialog Manager: Table 1 shows the
baseline dialog manager. In Step-1, it removes all
the products that are not consistent with the user re-
sponse. For example, if the user answers “camera”
when given a question on category, the system re-
moves all the products that do not belong to category
“camera”. In Step-2 and Step-3, the baseline system
asks questions about product name and product cat-
egory, and product category has a higher priority.

3 Overview of POMDP

3.1 Basic Definitions

A Partially Observable Markov Decision Process
(POMDP) is a general framework to handle uncer-
tainty in a spoken dialog system. Following nota-



tions in Williams and Young (2007), a POMDP is
defined as a tuple {S, A, T, R, O, Z, A, go} where S
is a set of states s describing the environment; A is
a set of machine actions a operating on the environ-
ment; T defines a transition probability P(s'|s, a);
R defines a reward function (s, a); O is a set of ob-
servations o, and an observation can be thought as
a corrupted version of a user action; Z defines an
observation probability P(o'|s ,a); A is a geometric
discount factor; and 50 is an initial belief vector.

The POMDP operates as follows. At each time-
step (a.k.a. stage), the environment is in some unob-
served state s. Since s is not known exactly, a distri-
bution (called a belief vector I;) over possible states
is maintained where b(s) indicates the probability of
being in a particular state s. Based on the current be-
lief vector b, an optimal action selection algorithm
selects a machine action a, receives a reward r, and
the environment transits to a new unobserved state
s'. The environment then generates an observation
o (i.e., a user action), after which the system update
the belief vector b. We call the process of adjusting
the belief vector b at each stage “belief update”.

3.2 Applying POMDP in Practice

As mentioned in Williams and Young (2007), it is
not trivial to apply the POMDP framework to a
specific application. To achieve this, one normally
needs to design the following three components:

e State Diagram Modeling
e Belief Update
e Optimal Action Selection

The state diagram defines the topology of the
graph, which contains three kinds of elements: sys-
tem state, machine action, and user action. To drive
the transitions, one also needs to define a set of
models (e.g., user goal model, user action model,
etc.). The modeling assumptions are application-
dependent. The state diagram, together with the
models, determines the dynamics of the system.

In general, the belief update depends on the ob-
servation probability and the transition probability,
while the transition probability itself depends on the
modeling assumptions the system makes. Thus, the
exact belief update formula is application-specific.

Optimal action selection is essentially an opti-
mization algorithm, which can be defined as,
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where A refers to a set of machine actions a.
Clearly, the optimal action selection requires three
sub-components: a goodness measure function G, a
prediction algorithm P, and a search algorithm (i.e.,
the argmax operator). The prediction algorithm is
used to predict the behavior of the system in the
future if a given machine action a was taken. The
search algorithm can use an exhaustive linear search
or an approximated greedy search depending on the
size of A (Murphy, 2000; Spaan and Vlassis, 2005).

a” = argmax G(P(a)),

4 POMDP Framework in Voice-Rate

In this section, we present our instantiation of
POMDP in the Voice-Rate system.

4.1 State Diagram Modeling

4.1.1 State Diagram Design

Table 2 summarizes the main design choices in
the state diagram for our application, i.e., identifying
the intended product from a large list of products.

As in Williams and Young (2007), we incorporate
both the user goal (i.e., the intended product) and
the user action in the system state. Moreover, to ef-
ficiently update belief vector and compute optimal
action, the state space is dynamically generated and
pruned. In particular, instead of listing all the possi-
ble combinations between the products and the user
actions, at each stage, we only generate states con-
taining the products and the user actions that are rel-
evant to the last machine action. Moreover, at each
stage, if the belief probability of a product is smaller
than a threshold, we prune out this product and all
its associated system states. Note that the intended
product may be pruned away due to an overly large
threshold. In the simulation, we will use a develop-
ment set to tune this threshold.

As shown in Table 2, five kinds of machine ac-
tions are defined. The questions on product names
are usually long, imposing difficulty in speech syn-
thesis/recgonition and user input. Thus, short ques-
tions (e.g., questions on category or simple at-
tributes) are preferable. This partly motivate us to
exploit rich product information to help the dialog.

Seven kinds of user actions are defined as shown
in Table 2. Among them, the user actions “others”,
“not related”, and “not known” are special. Specif-
ically, to limit the question length and to ensure the



Component

Design

Comments

System State

(Product, User action)

e.g., (HP Computer, Category: computer)

Machine Action

Question on Category
Question on Product name

Question on Attribute
Confirmation question

e.g., choose category: Electronics, Movie, Book

e.g., choose product name: Canon SD750 digital cam-
era, Canon Powershot A40 digital camera, Canon
SD950 digital camera, Others

e.g., choose memory size: 64M, 128M, 256M

e.g., you want Canon SD750 camera, yes or no?

Play Rating e.g., I think you want Canon SD750 digital camera,
here is the rating!
User Action Category e.g., Movie

Product name
Attribute value
Others

Yes/No

Not related

Not known

e.g., Canon SD750 digital camera

e.g., memory size: 64M

used when a question has too many possible options
used for a confirmation question

used if the intended product is unrelated to the question

used if the user does not have required knowledge to
answer the question

Table 2: State Diagram Design in Voice-Rate

human is able to memorize all the options, we re-
strict the number of options in a single question to a
threshold IV (e.g., 5). Clearly, given a list of prod-
ucts and a question, there might be more than /N pos-
sible options. In such a case, we need to merge some
options into the “others” class. The third example in
Table 2 shows an example with the “others” option.
One may exploit a clustering algorithm (e.g., an it-
erative greedy search algorithm) to find an optimal
merge. In our system, we simply take the top-(IN-1)
options (ranked by the belief probabilities) and treat
all the remaining options as “others”.

The “not related” option is required when some
candidate products are irrelevant to the question. For
example, when the system asks a question regarding
the attribute “cpu speed” while the products contain
both books and computers, the “not related” option
is required in case the intended product is a book.

Lastly, while some attributes are very useful to
distinguish the products, a user may not have enough
knowledge to answer a question on these attributes.
For example, while there is a unique part number for
each product, however, the user may not know the
exact part number for the intended product. Thus,
“not known” option is required whenever the system
expects the user is unable to answer the question.
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4.1.2 Models

We assume that the user does not change his goal
(i.e., the intended product) along the dialog. We
also assume that the user rationally answers the
question to achieve his goal. Additionally, we as-
sume that the speech synthesis is good enough such
that the user always gets the right information that
the system intends to convey. The two main mod-
els that we consider include an observation model
that captures speech recognition uncertainty, and a
user knowledge model that captures the variability
of user knowledge required for answering questions
on different attributes.

Observation Model: Since the speech recogni-
tion engine we are using returns only a one-best and
its confidence value C' € [0, 1]. We define the obser-
vation function as follows,

» C if a, = ay,
P(a,lay) = 2
(@ulau) {lju—ﬁl otherwise. @)

where a,, is the true user action, a,, is the speech
recognition output (i.e., corrupted user action), and
A, is the set of user actions related to the last ma-
chine action.

User Knowledge Model: In most of the appli-
cations (Roy et al., 2000; Williams, 2007) where



the POMDP framework got applied, it is normally
assumed that the user needs only common sense to
answer the questions asked by the dialog system.
Our application is more complex as the product in-
formation is very rich. A user may have different
difficulty in answering different questions. For ex-
ample, while a user can easily answer a question on
category, he may not be able to answer a question
on the part number. Thus, we define a user knowl-
edge model to capture such uncertainty. Specifically,
given a question (say a,,) and an intended product
(say g,) in the user’s mind, we want to know how
likely the user has required knowledge to answer the
question. Formally, the user knowledge model is,

P(unk|gy, am,) if a,=unk,
P(aylgu, am) = § 1 — P(unkl|gy, an,) if a,=truth,
0 otherwise.

(3)

where unk represents the user action “not known”.
Clearly, given a specific product g, and a specific
question a,,, there is exactly one correct user ac-
tion (represented by truth in Equation 3), and its
probability is 1 — P(unk|gy, am). Now, to obtain
a user knowledge model, we only need to obtain
P(unk|gy, an,). As shown in Table 2, there are four
kinds of guestion-type machine actions a,,. We as-
sume that the user always has knowledge to answer
a question regarding the category and product name,
and thus P(unk|g,, a,,) for these types of machine
actions are zero regardless of what the specific prod-
uct g, is. Therefore, we only need to consider
P(unk|gy, a,) when a,, is a question about an at-
tribute (say attr). Moreover, since there are millions
of products, to deal with the data sparsity issue, we
assume P (unk|g,, a,,) does not depends on a spe-
cific product g, instead it depends on only the cate-
gory (say cat) of the product g,,. Therefore,

P(unk|gy, a,,) ~ P(unk|catattr). 4)

Now, we only need to get the probability
P(unk|cat,attr) for each attribute attr in each cate-
gory cat. To learn P(unk]cat,attr), one may collect
data from human, which is very expensive. Instead,
we learn this model from a database of online re-
views for the products. Our method is based on the
following intuition: if a user cares/knows about an
attribute of a product, he will mention either the at-
tribute name, or the attribute value, or both in his
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review of this product. With this intuition, the occur-
rence frequency of a given attr in a given category
cat is collected from the review database, followed
by proper weighting, scaling and normalization, and
thus P(unk]cat,attr) is obtained.

4.2 Belief Update

Based on the model assumptions in Section 4.1.2,
the belief update formula for the state (g,, a;) is,

b(gus ay) = (5)

kX P(Gy)a,)P(ay|gu am) > blgu, au)
au€A(gu)

where k is a normalization constant. The P(a,,|a,,)
is the observation function as defined in Equation 2,
while P(a,,|gy, am) is the user knowledge model as
defined in Equation 3. The A(g,) represents the set
of user actions a,, related to the system states for
which the intended product is gy,.

In our state representation, a single product g,
is associated with several states which differ in the
user action a,,, and the belief probability of g, is the
sum of the probabilities of these states. Therefore,
even there is a speech recognition error or an un-
intentional user mistake, the true product still gets
a non-zero belief probability (though the true/ideal
user action a, gets a zero probability). Moreover,
the probability of the true product will get promoted
through later iterations. Therefore, our system has
error-handling capability, which is one of the major
advantages over the deterministic baseline system.

4.3 Optimal Action Selection

As mentioned in Section 3.2, the optimal action se-
lection involves three sub-components: a prediction
algorithm, a goodness measure, and a search algo-
rithm. Ideally, in our application, we should mini-
mize the time required to successfully identify the
intended product. Clearly, this is too difficult as
it needs to predict the infinite future and needs to
encode the time into a reward function. Therefore,
for simplicity, we predict only one-step forward, and
use the entropy as a goodness measure'. Formally,

'Due to this approximation, one may argue that our model
is more like the greedy information theoretic model in Paek and
Chickering (2005), instead of a POMDP model. However, we
believe that our model follows the POMDP modeling frame-
work in general, though it does not involve reinforcement learn-
ing currently.



the optimization function is as follows:

a* = arg min H (Products | a), (6)
acA

where H (Products | a) is the entropy over the belief

probabilities of the products if the machine action

a was taken. When predicting the belief vector us-

ing Equation 5, we consider only the user knowledge

model and ignore the observation function?.

In the above, we consider only the question-type
machine actions. We also need to decide when
to take the play rating action such that the dialog
will terminate. Specifically, we take the play rating
action whenever the belief probability of the most
probable product is greater than a threshold. More-
over, the threshold should depend on the number of
surviving products. For example, if there are fifty
surviving products and the most probable product
has a belief probability greater than 0.3, it is reason-
able to take the play rating action. This is not true
if there are only four surviving products. Also note
that if we set the thresholds to too small values, the
system may play the rating for a wrong product. We
will use a development set to tune these thresholds.

4.3.1 Machine Action Filtering during Search

We use an exhaustive linear search for the opera-
tor argmin in Equation 6. However, additional filter-
ing during the search is required.

Repeated Question: Since the speech response
from the user to a question is probabilistic, it is quite
possible that the system will choose the same ques-
tion that has been asked in previous stages. Since
our product information is very rich, many differ-
ent questions have the similar capability to reduce
entropy. Therefore, during the search, we simply ig-
nore all the questions asked in previous stages.

“Not Related” Option: While reducing entropy
helps to reduce the confusion at the machine side, it
does not measure the “weirdness” of a question to
the human. For example, when the intended product
is a book and the candidate products contain both
books and computers, it is quite possible that the
optimal action, based solely on entropy reduction,

*Note that we ignore the observation function only in the
prediction, not in real belief update.

*In a regular decision tree, the answer to a question is deter-
ministic. It never asks the same question as that does not lead to
any additional reduction of entropy. This problem is also due to
the fact we do not have an explicit reward function.
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is a question on the attribute “cpu speed”. Clearly,
such a question is very weird to the human as he is
looking for a book that has nothing related to “cpu
speed”. Though the user may be able to choose the
“not related” option correctly after thinking for a
while, it degrades the dialog quality. Therefore, for
a given question, whenever the system predicts that
the user will have to choose the “not related” option
with a probability greater than a threshold, we sim-
ply ignore such questions in the search. Clearly, if
we set the threshold as zero, we essentially elimi-
nates the “not related” option. That is, at each stage,
we generate questions only on attributes that apply
to all the candidate products. Since we dynamically
remove products whose probability is smaller than
a threshold at each stage, the valid question set dy-
namically expands. Specifically, at the beginning,
only very general questions (e.g., questions on cate-
gory) are valid, then more refined questions become
valid (e.g., questions on product brand), and finally
very specific questions are valid (e.g, questions on
product model). This leads to very natural behav-
ior in identifying a product, i.e., coarse to fine*. It
also makes the system adapt to the user knowledge.
Specifically, as the user demonstrates deeper knowl-
edge of the products by answering the questions cor-
rectly, it makes sense to ask more refined questions
about the products.

5 Simulation Results

To evaluate system performance, ideally one should
ask people to call the system, and manually collect
the performance data. This is very expensive. Al-
ternatively, we develop a simulation method, which
is automatic and thus allow fast evaluation of the
system during development. In fact, many design
choices in Section 4 are inspired by the simulation.

5.1 Simulation Model

Figure 2 illustrates the general framework for the
simulation. The process is very similar to that in
Figure 1 except that the human user and the speech

“While the baseline dialog manager achieves the similar be-
havior by manually enforcing the order of questions, the sys-
tem here automatically discovers the order of questions and the
question set is much more richer than that in the baseline.

SHowever, we agree that simulation is not without its limi-
tations and the results may not precisely reflect real scenarios.
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Figure 2: Flow Chart in Simulation

recognizer are replaced with a simulated compo-
nent, and that the simulated user has access to a user
knowledge model. In particular, we generate the
user action and its corrupted version using random
number generators by following the models defined
in Equations 3 and 2, respectively. We use a fixed
value (e.g., 0.9) for C' in Equation 2.

Clearly, our goal here is not to evaluate the good-
ness of the user knowledge model or the speech rec-
ognizer. Instead, we want to see how the probabilis-
tic dialog manger (i.e., POMDP) performs compared
with the deterministic baseline dialog manager, and
to see whether the richer attribute information helps
to reduce the dialog interaction time.

5.2 Data Resources

In the system, we use three data resources: a prod-
uct database, a review database, and a query-click
database. The product database contains detailed in-
formation for 0.2 million electronics and computer
related products. The review database is used for
learning the user knowledge model. The query-
click database contains 2289 pairs in the format (text
query, product clicked). One example pair is (Canon
Powershot A700, Canon Powershot A700 6.2MP
digital camera). We divide it into a development set
(1308 pairs) and a test set (981 pairs).

5.3 Results on Information Retrieval

For each initial query, the information retrieval
(IR) engine returns a list of top-ranked products.
Whether the intended product is in the returned list
depends on the size of the list. If the intended prod-
uct is in the list, the IR successfully recalled the
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product. Table 3 shows the correlation between the
recall rate and the size of the returned list. Clearly,
the larger the list size is, the larger the recall rate is.
One may notice that the IR recall rate is low. This
is because the query-click data set is very noisy, that
is, the clicked product may be nothing to do with
the query. For example, (msn shopping, Handspring
Treo 270) is one of the pairs in our data set.

List Size | Recall Rate (%)
50 38.36

100 41.46

150 43.5

Table 3: Information Retrieval Recall Rates on Test set

5.4 Dialog System Configuration and Tuning

As mentioned in Section 4, several parameters in the
system are configurable and tunable. Specifically,
we set the max number of options in a question as
5, and the threshold for “not related” option as zero.
We use the development set to tune the following pa-
rameters: the threshold of the belief probability be-
low which the product is pruned, and the thresholds
above which the most probable product is played.
The parameters are tuned in a way such that no dia-
log error is made on the development set.

5.5 Results on Error Handling

Even the IR succeeds, the dialog system may not
find the intended product successfully. In particu-
lar, the baseline system does not have error handling
capability. Whenever the system makes a speech
recognition error or the user mistakenly answers a
question, the dialog system fails (either plays the rat-
ing for a wrong product or fails to find any product).
On the contrary, our POMDP framework has error
handling functionality due to its probabilistic na-
ture. Table 5 compares the dialog error rate between
the baseline and the POMDP systems. Clearly,
the POMDP system performs much better to han-
dle errors. Note that the POMDP system does not
eliminate dialog failures on the test set because the
thresholds are not perfect for the rest ser®. This is
due to two reasons: the system may prune the in-
tended product (reason-1), and the system may play
the rating for a wrong product (reason-2).

®Note that the POMDP system does not have dialog failures
on the development set as we tune the system in this way.



System | Size Average Max
Stages | Characters | Words || Stages | Characters | Words

50 2.44 524.0 82.3 11 2927 546

Baseline | 100 3.37 765.4 120.4 25 7762 1369

150 3.90 906.4 143.0 30 9345 1668

50 1.57 342.8 54.3 4 2659 466

POMDP | 100 2.36 487.9 76.6 18 3575 597

150 2.59 541.3 85.0 19 4898 767

Table 4: Interaction Time Results on Test Set

Size Baseline POMDP (%) terministic baseline system is doomed to fail. More-
(%) Total | Reason-1 | Reason-2 over, the POMDP system exploits richer product in-
50 13.8 8.2 4.2 4.0 formation to reduce the interaction time required to
100 17.7 2.7 1.2 1.5 complete a dialog. We have developed a simulation
150 19.3 4.7 0.7 4.0 model, and shown that the POMDP system improves

Table 5: Dialog Failure Rate on Test Set

5.6 Results on Interaction Time

It is quite difficult to measure the exact interaction
time, so instead we measure it through the number of
stages/characters/words required during the dialog
process. Clearly, the number of characters is the one
that matches most closely to the true time. Table 4
reports the average and maximum numbers. In gen-
eral, the POMDP system performs much better than
the baseline system. One may notice the difference
in the number of stages between the baseline and
the POMDP systems is not as significant as in the
number of characters. This is because the POMDP
system is able to exploit very short questions while
the baseline system mainly uses the product name
question, which is normally very long. The long
question on product name also imposes difficulty in
speech synthesis, user input, and speech recognition,
though this is not reflected in the simulation.

6 Conclusions

In this paper, we have applied the POMDP frame-
work into Voice-Rate, a system through which a
user can call to get product information (e.g., price,
rating, review, etc.). We have proposed a novel
method to learn a user knowledge model from a re-
view database. Compared with a deterministic base-
line system (Zweig et al., 2007), the POMDP system
is probabilistic and is able to handle speech recogni-
tion errors and user mistakes, in which case the de-
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the baseline system significantly in terms of both di-
alog failure rate and dialog interaction time. We also
implement our POMDP system into a speech demo
and plan to carry out tests through humans.
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Abstract

This paper investigates the claim that a di-
alogue manager modelled as a Partially Ob-
servable Markov Decision Process (POMDP)
can achieve improved robustness to noise
compared to conventional state-based dia-
logue managers. Using the Hidden Infor-
mation State (HIS) POMDP dialogue man-
ager as an exemplar, and an MDP-based dia-
logue manager as a baseline, evaluation results
are presented for both simulated and real dia-
logues in a Tourist Information Domain. The
results on the simulated data show that the
inherent ability to model uncertainty, allows
the POMDP model to exploit alternative hy-
potheses from the speech understanding sys-
tem. The results obtained from a user trial
show that the HIS system with a trained policy
performed significantly better than the MDP
baseline.

Introduction

in noisy conditions or where the user is unsure of
how to use the system.

It has been suggested that Partially Observable
Markov Decision Processes (POMDPSs) offer a nat-
ural framework for building spoken dialogue sys-
tems which can both model these uncertainties
and support policies which are robust to their ef-
fects (Young, 2002; Williams and Young, 2007a).
The key idea of the POMDP is that the underlying
dialogue state is hidden and dialogue management
policies must therefore be based not on a single state
estimate but on a distribution over all states.

Whilst POMDPs are attractive theoretically, in
practice, they are notoriously intractable for any-
thing other than small state/action spaces. Hence,
practical examples of their use were initially re-
stricted to very simple domains (Roy et al., 2000;
Zhang et al., 2001). More recently, however, a num-
ber of techniques have been suggested which do al-
low POMDPs to be scaled to handle real world tasks.
The two generic mechanisms which facilitate this
scaling are factoring the state space and perform-

Conventional spoken dialogue systems operate [#§g policy optimisation in a reducesimmary state
finding the most likely interpretation of each usespace(Williams and Young, 2007a; Williams and
input, updating some internal representation of th¥oung, 2007b).

dialogue state and then outputting an appropriate re-Based on these ideas, a number of real-world
sponse. Error tolerance depends on using confidenB©MDP-based systems have recently emerged. The
thresholds and where they fail, the dialogue managenost complex entity which must be represented in
must resort to quite complex recovery procedureshe state space is the user's goal. In Begyesian
Such a system has no explicit mechanisms for refppdate of Dialogue State (BUDSYystem, the user’s
resenting the inevitable uncertainties associated witfpal is further factored into conditionally indepen-
speech understanding or the ambiguities which natdent slots The resulting system is then modelled
rally arise in interpreting a user’s intentions. The reas a dynamic Bayesian network (Thomson et al.,

sult is a system that is inherently fragile, especially2008).
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(Bui et al., 2007a; Bui et al., 2007b). An alterna-wherek is a normalisation constant (Kaelbling et al.,
tive approach taken in thdidden Information State 1998). The first term on the RHS of (1) is called the
(HIS) system is to retain a complete representatioobservation modednd the term inside the summa-
of the user’s goal, but partition states into equivation is called theransition model Maintaining this
lence classes and prune away very low probabilitpelief state as the dialogue evolves is calbedief
partitions (Young et al., 2007; Thomson et al., 2007monitoring
Williams and Young, 2007b).

Whichever approach is taken, a key issue in a real [
Sq
|
1| Belief

POMDP-based dialogue system is its ability to be

|
[
robust to noise and that is the issue that is addressed | Speech :
in this paper. Using the HIS system as an exem- Understanding | 51 | Estimator |
plar, evaluation results are presented for areal-world % [ :N] [
tourist information task using both simulated and User | Sy ayd | lb(sm) !
real users. The results show that a POMDP system — [ :
can learn noise robust policies and that N-best out- " | speech ’ || Dialog
puts from the speech understanding component can Generation |, | Policy :

be exploited to further improve robustness.

The paper is structured as follows. Firstly, in Sec-
tion 2 a brief overview of the HIS system is given. . _
Then in Section 3, various POMDP training regime%:'gure 1: Abstract view of a POMDP-based spoken dia-

: : . Qgue system

are described and evaluated using a simulated user A

differing noise levels. Section 4 then presents results

from a trial in which users conducted various tasks At each time step, the machine receives a reward

over a range of noise levels. Finally, in Section 5y (b, a,, ) based on the current belief stajend the

we discuss our results and present our conclusionsselected action,,, ;. Each actioru,, ; is determined
by a policyn(b;) and building a POMDP system in-

2 The HIS System volves finding the policyr* which maximises the
discounted sunk of the rewards

Sm= <@uSu:S¢>

2.1 Basic Principles

A POMDP-based dialogue system is shown in Fig- o
ure 1 wheres,,, denotes the (unobserved or hidden) R=> Xr(b,amg) 2)
machine state which is factored into three compo- t=0

nents: the last user aet,, the user's goak, and

the diglogue history,. Sinces,, is unknowq, at \vhere)t is a discount coefficient.

each time-step the system computes a belief state

such that the probability of being in statg, given

belief stateb is b(s,,). Based on this current belief 2.2 Probability Models

stateb, the machine selects an actiap,, receives

a rewardr(s,,, a,,), and transitions to a new (un- In the HIS system, user goals are partitioned and
observed) state/,, wheres’, depends only o, initially, all statess,, € S, are regarded as being
anda,,. The machine then receives an observatiofdually likely and they are placed in a single par-
o/ consisting of an N-best list of hypothesised usefftion po. As the dialogue progresses, user inputs

actions. Finally, the belief distributiohis updated result in changing beliefs and this root partition is
based o’ anda,, as follows: repeatedly split into smaller partitions. This split-

ting is binary, i.ep — {p’, p — p’} with probability
V(s ) = kP(O|s, am) Z P(s! |am, $m)b(sm) P |p). By replacings,, f:')y its factors(sy, ay, sq) .
pr and making reasonable independence assumptions,
(1) it can be shown (Young et al., 2007) that in parti-
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tioned form (1) becomes two hypotheses, and unlike actions in master space,
they are limited to a small finite segyreet, ask, ex-

/o ! !/ / _ . /| ! / / 7 . - O . .
b, au,s0) = K w M plicit_confirm, implicitconfirm, selectonfirm, of-
observation user action fer, inform, findalternative, querymore, goodbye
model model A simple heuristic is then used to map the selected
" P(sylp', iy sa,am) P(P|p)b(p, sa) (3) Nnext system action back into the fuliasterbelief
od dialogue partition space.
model splitting

. Ontology Rules Application Database
Observation I

wherep is the parent of'.

In this equation, thebservation modet approx-
imated by the normalised distribution of confidense
measures output by the speech recognition system.
Theuser action modehllows the observation probs,,
ability that is conditioned ow/, to be scaled by th&™"
probability that the user would speak given the
partition p’ and the last system prompt,. In the
current implementation of the HIS system, user dia- | A T
logue acts take the forart(a = v) whereact is the Specic T Gowrsi) | Swaege | PO
dialogue typeg is an attribute and is its value [for e e
example,request(food=Chinesg) The user action
model is then approximated by

P(al |, am) = P(T(a,)|T (am))P(M(al,)[p)

4) The dialogue manager is able to support nega-
where 7(-) denotes thetype of the dialogue act tions, denials and requests for alternatives. When the
and M(-) denotes whether or not the dialogue acselected summary action is to offer the user a venue,
matchesthe current partitionp’. The dialogue the summary-to-master space mapping heuristics
model is a deterministic encoding based on a simpkill normally offer a venue consistent with the most
grounding model. It yields probability one when thdikely user goal hypothesis. If this hypothesis is then
updated dialogue hypothesis (i.e., a specific combiejected its belief is substantially reduced and it will
nation ofp’, a/,, sq anda,,) is consistent with the no longer be the top-ranking hypothesis. If the next

u

I'summary Space

|

|

| Map to
Summary ——

|

|

|

Space

Figure 2: Overview of the HIS system dialogue cycle

history and zero otherwise. system action is to make an alternativer, then
_ _ the new top-ranking hypothesis may not be appro-
2.3 Policy Representation priate. For example, if an expensive French restau-

Policy representation in POMDP-systems is nonrant near the river had been offered and the user asks
trivial since each action depends on a complex prolier one nearer the centre of town, any alternative of-
ability distribution. One of the simplest approachegered should still include the user’s confirmed de-
to dealing with this problem is to discretise the statsire for an expensive French restaurant. To ensure
space and then associate an action with each dikis, all of the grounded features from the rejected
crete grid point. To reduce quantisation errors, theypothesis are extracted and all user goal hypothe-
HIS model first maps belief distributions into a re-ses are scanned starting at the most likely until an
ducedsummary spacbefore quantising. This sum- alternative is found that matches the grounded fea-
mary space consists of the probability of the topures. For the current turn only, the summary-to-
two hypotheses plus some status variables and theaster space heuristics then treat this hypothesis as
user act type associated with the top distributionf it was the top-ranking one. If the system then of-
Quantisation is then performed using a simple diders a venue based on this hypothesis, and the user
tance metric to find the nearest grid point. Ac-accepts it, then, since system outputs are appended
tions in summary space refer specifically to the topo user inputs for the purpose of belief updating, the
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alternative hypothesis will move to the top, or neadiscounted by\ at each step. On completion of a
the top, of the ranked hypothesis list. The dialogubatch of dialogs, thé) values are updated accord-
then typically continues with its focus on the newlying to the accumulated rewards, and the policy up-

offered alternative venue. dated by choosing the action which maximises each
. Q@ value. The whole process is then repeated until
2.4 Summary of Operation the policy stabilises.

To summarise, the overall processing performed by In our experimentss was fixed af.1 and A was

the HIS system in a single dialogue turn (i.e. one cyfixed at0.95. The reward function used attempted
cle of system output and user response) is as showtencourage short successful dialogues by assign-
in Figure 2. Each user utterance is decoded into dAg +20 for a successful dialogue anel for each
N-best list of dialogue acts. Each incoming act pluglialogue turn.

the previous system act are matched against the for- . .

est of user goals and partitions are split as neede%‘.2 User Simulation

Each user act, is then duplicated and bound toTo train a policy, a user simulator is used to gen-
each partitionp. Each partition will also have a erate responses to system actions. It has two main
set of dialogue histories; associated with it. The components: &ser Goaland aUser Agenda At
combination of eaclp, a,, and updateds; forms a the start of each dialogue, the goal is randomly
new dialogue hypothesis, whose beliefs are eval- initialised with requests such as “name”, “addr”,
uated using (3). Once all dialogue hypotheses havghone” and constraints such as “type=restaurant”,
been evaluated and any duplicates merged, the mé&fpod=Chinese”, etc. The agenda stores the di-
ter belief stateh is mapped into summary spaée alogue acts needed to elicit this information in a
and the nearest policy belief point is found. The asstack-like structure which enables it to temporarily
sociated summary space machine actignis then store actions when another action of higher priority
heuristically mapped back to master space and ti@eds to be issued first. This enables the simulator
machine’s actual response, is output. The cycle to refer to previous dialogue turns at a later point. To

then repeats until the user’s goal is satisfied. generate a wide spread of realistic dialogs, the sim-

ulator reacts wherever possible with varying levels

3 Training and Evaluation with a of patience and arbitrariness. In addition, the sim-
Simulated User ulator will relax its constraints when its initial goal

cannot be satisfied. This allows the dialogue man-
ager to learn negotiation-type dialogues where only
Policy optimisation is performed in the discretean approximate solution to the user’s goal exists.
summary space described in the previous section USpeech understanding errors are simulated at the di-
ing on-line batche-greedy policy iteration. Given alogue act level using confusion matrices trained on
an existing policyr, dialogs are executed and madabelled dialogue data (Schatzmann et al., 2007).
chine actions generated accordingat@xcept that o )

with probability ¢ a random action is generated. The>-3  Training and Evaluation

system maintains a set of belief poil{ii}. Ateach When training a system to operate robustly in noisy
turn in training, the nearest stored belief pdﬁmto conditions, a variety of strategies are possible. For
bis located using a distance measure. If the distanexample, the system can be trained only on noise-
is greater than some thresholgdis added to the set free interactions, it can be trained on increasing lev-
of stored belief points. The sequence of poibts els of noise or it can be trained on a high noise level
traversed in each dialogue is stored in a list. Asfrom the outset. A related issue concerns the gener-
sociated with each,; is a functionQ(Bi, an,) Whose ation of grid points and the number of training itera-
value is the expected total reward obtained by chootions to perform. For example, allowing a very large
ing summary actior,,, from stateb;. At the end number of points leads to poor performance due to
of each dialogue, the total reward is calculated andver-fitting of the training data. Conversely, having
added to an accumulator for each point in the listoo few point leads to poor performance due to a lack

3.1 Policy optimisation
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of discrimination in its dialogue strategies. also tested on 1-best output.
After some experimentation, the following train;00

ing schedule was adopted. Training starts i e e et
noise free environment using a small number of ¢ Lo . _m jg—_;j‘fe;;:;:?b“f
points and it continues until the performance of e \\“\ _

policy levels off. The resulting policy is then tak, s \”“\SZ_\

as an initial policy for the next stage where the n(§ 7 ’;\\\"‘ -

level is increased, the number of grid points is * ™ ‘\:
panded and the number of iterations is increa * “\{\i
This process is repeated until the highest noise | zz v
is reached. This approach was motivated by the

servation that a key factor in effective reinforcem 0 o1 02 03 04 05
learning is the balance between exploration and ex- Semanti Erer Rate

ploitation. In POMDP policy optimisation which Figure 3: Average simulated dialogue success rate as a
uses dynamically allocated grid points, maintainingunction of error rate for a hand-crafted (hdc), noise-free
this balance is crucial. In our case, the noise introand incrementally trained (increm) policy.

duced by the simulator is used as an implicit mech-

anism for increasing the exploration. Each time ex-

——increm_2best

ploration is increased, the areas of state-space -0 - noise_free_tbest
will be visited will also increase and hence the nu. ~ s, Vi
ber of available grid points must also be increas 1““——ﬂ———u__ﬂ__

At the same time, the number of iterations musLE 8 = \D\\\éi\&

increased to ensure that all points are visited a § TR

ficient number of times. In practice we found tI* , \E\k\
around 750 to 1000 grid points was sufficient ¢ \u
the total number of simulated dialogues needec \:‘;f
training was around 100,000. ’ 01 02 03 04 #

A second issue when training in noisy conditic *
is whether to train on just the 1-best output from the
simulator or train on the N-best outputs. A limit-Figure 4: Average simulated dialogue reward as a func-
ing factor here is that the computation required fotion of error rate for a hand-crafted (hdc), noise-free and
N-best training is significantly increased since thécrementally trained (increm) policy.

rate of partition generation in the HIS model in- A b both th ined policies i
creases exponentially with N. In preliminary tests, S can be seen, both the trained policies improve

it was found that when training with 1-best Ou,[letS’significantIy on the hand-crafted policies. Further-

there was little difference between policies trained0"€: although the average rewards are all broadly
entirely in no noise and policies trained on increas§'m_'lar'_ the_ success rate of the mc_rementally trained
ing noise as described above. However, policie;gollcy 5 sjlgnlflcantly.better at higher error rates.
trained on 2-best using the incremental strategy dilaence, th_'s latter policy was selected for the user
exhibit increased robustness to noise. To iIIustrattéIal described next

this, Figures 3 and 4 show the average dialogue sug-
cess rates and rewards for 3 different policies, al
trained on 2-best: a hand-crafted policy (hdc), a polfhe HIS-POMDP policy (HIS-TRA) that was incre-
icy trained on noise-free conditions (naifee) and mentally trained on the simulated user using 2-best
a policy trained using the incremental scheme ddists was tested in a user trial together with a hand-
scribed above (increm). Each policy was tested usrafted HIS-POMDP policy (HIS-HDC). The strat-
ing 2-best output from the simulator across a rangegy used by the latter was to first check the most
of error rates. In addition, the noise-free policy wasikely hypothesis. If it contains sufficient grounded

Semantic Error Rate

Evaluation via a User Trial
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keys to match 1 to 3 database entities, théferis particular hotels, bars, or restaurants in that town.

selected. If any part of the hypothesis is inconsisEach subject was asked to complete a set of pre-
tent or the user has explicitly asked for another sugiefined tasks where each task involved finding the
gestion, therfind_alternative action is selected. If name of a venue satisfying a set of constraints such
the user has asked for information about an offereals food type is Chinese, price-range is cheap, etc.,
entity theninform is selected. Otherwise, an un-and getting the value of one or more additional at-

grounded component of the top hypothesis is identiributes of that venue such as the address or the
fied and depending on the belief, one of the confirpphone number.

actions is selected. For each task, subjects were given a scenario to

In addition, an MDP-based dialogue manager deead and were then asked to solve the task via a di-
veloped for earlier trials (Schatzmann, 2008) waalogue with the system. The tasks set could either
also tested. Since considerable effort has been puthave one solution, several solutions, or no solution
optimising this system, it serves as a strong baselira all in the database. In cases where a subject found
for comparison. Again, both a trained policy (MDP-that there was no matching venue for the given task,
TRA) and a hand-crafted policy (MDP-HDC) werehe/she was allowed to try and find an alternative
tested. venue by relaxing one or more of the constraints.

In addition, subjects had to perform each task at
one of three possible noise levels. These levels cor-
The dialogue system consisted of an ATK-basetkspond to signal/noise ratios (SNRs) of 35.3 dB
speech recogniser, a Phoenix-based semantic pargkaw noise), 10.2 dB (medium noise), or 3.3 dB
the dialogue manager and a diphone based spedtigh noise). The noise was artificially generated
synthesiser. The semantic parser uses simple phraaall mixed with the microphone signal, in addition
grammar rules to extract the dialogue act type andiawas fed into the subject’s headphones so that they
list of attribute/value pairs from each utterance.  were aware of the noisy conditions.

In a POMDP-based dialogue system, accurate An instructor was present at all times to indicate
belief-updating is very sensitive to the confidencéo the subject which task description to follow, and
scores assigned to each user dialogue act. Ideatty start the right system with the appropriate noise-
these should provide a measure of the probability dével. Each subject performed an equal number of
the decoded act given the true user act. In the evaltasks for each system (3 tasks), noise level (6 tasks)
ation system, the recogniser generates a 10-best lgtd solution type (6 tasks for each of the types 0, 1,
of hypotheses at each turn along with a compact coor multiple solutions). Also, each subject performed
fusion network which is used to compute the inferone task for all combinations of system and noise
ence evidence for each hypothesis. The latter is devel. Overall, each combination of system, noise
fined as the sum of the log-likelihoods of each artevel, and solution type was used in an equal number
in the confusion network and when exponentiatedf dialogues.
and renormalised this gives a simple estimate of the
probability of each hypothesised utterance. Each uf-3  Results
terance in the 10-best list is passed to the semantit Table 1, some general statistics of the corpus re-
parser. Equivalent dialogue acts output by the parseulting from the trial are given. The semantic error
are then grouped together and the dialogue act foate is based on substitutions, insertions and dele-
each group is then assigned the sum of the sentendi®ns errors on semantic items. When tested after the

4.1 System setup and confidence scoring

level probabilities as its confidence score. trial on the transcribed user utterances, the semantic
] error rate was 4.1% whereas the semantic error rate
4.2 Trial setup on the ASR input was 25.2%. This means that 84%

For the trial itself, 36 subjects were recruited (albf the error rate was due to the ASR.

British native speakers, 18 male, 18 female). Each Tables 2 and 3 present success rates (Succ.) and
subject was asked to imagine himself to be a tourisiverage performance scores (Perf.), comparing the
in a fictitious town called Jasonville and try to findtwo HIS dialogue managers with the two MDP base-
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Number of dialogues 432 The results show that the trained HIS dialogue
Number of dialogue turns 3972 manager significantly outperforms both MDP based
\l;lvlér::jt;err):::J/\g;j:n(é;anscnptlons) 1?;’2 dialogue managers. For success rate on partial com-
Word Error Rate 329 pletion, both HIS systems perform better than the
Semantic Error Rate 25.2 MDP systems.

Semantic Error Rate transcriptions 4.1 4.3.1 Subjective Results

Table 1: General corpus statistics. In the user trial, the subjects were also asked for
a subjective judgement of the systems. After com-

pleting each task, the subjects were asked whether

line systems. For the success rates, also the StgRay had found the information they were looking
dard deviation (std.dev) is given, assuming a bingg,, (yes/no). They were also asked to give a score
mial distribution. The success rate is the percentagg, 4 scale from 1 to 5 (best) on how natural/intuitive
of successfully completed dialogues. A task is CONhey thought the dialogue was. Table 4 shows the
sidered to be fully completed when the user is able tQ.q its for the 4 systems used. The performance of
find the venue he is looking for and get all the addiyhe s systems is similar to the MDP systems, with

tional information he asked for; if the task has no SOz slightly higher success rate for the trained one and

lution and the system indicates to the user no VeNnUgiightly lower score for the handcrafted one.
could be found, this also counts as full completion.

A task is considered to be partially completed when System | Succ. Rate (std.deV) Score
only the correct venue has been given. The results on | MDP-HDC 78 (4.30) 3.52
partial completion are given in Table 2, and the re- | MDP-TRA 78 (4.30) 3.42
sults on full completion in Table 3. To mirror the re- HIS-HDC 71 (4.72) 3.05
ward function used in training, the performance for | HIS-TRA 83 (3.90) 3.41

each dialogue is computed by assigning a reward of

20 points for full completion and subtracting 1 poimTabIe 4: Subijective performance results from the user

for the number of turns up until a successful reco

mendation (i.e., partial completion).

\ Partial Task Completion statistics

trial.

m-

5 Conclusions

This paper has described recent work in training a

System Succ. (std.dev) #turns Pery. POMDP-based dialogue manager to exploit the ad-
MDP-HDC | 68.52 (4.83) 480 890 itional information available from a speech under-
MDP-TRA | 70.37 (4.75) 4.75  9.32 standing system which can generate ranked lists of
ﬂ:g?g; ;ig; (;"'gg) 7.04 7'787 hypotheses. Following a brief overview of the Hid-

- .26 (3.78) 463 12.29 den Information State dialogue manager and pol-

Table 2: Success rates and performance results on parl@y Optimisation using a user simulator, results have

completion.

\ Full Task Completion statistics

been given for both simulated user and real user di-
alogues conducted at a variety of noise levels.

The user simulation results have shown that al-
though the rewards are similar, training with 2-best

System Succ. (std.dev) #urns Peff. rather than 1-best outputs from the user simulator
MDP-HDC | 64.81 (4.96) 586 7.10 Yields better success rates at high noise levels. In
MDP-TRA | 65.74 (4.93) 6.18 6.97 View of this result, we would have liked to inves-
HIS-HDC 63.89 (4.99) 857 4.2 tigate training on longer N-best lists, but currently
HIS-TRA 78.70 (4.25) 6.36 9.34 computational constraints prevent this. We hope in

the future to address this issue by developing more

Table 3: Success rates and performance results on felfficient state partitioning strategies for the HIS sys-

completion.
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The overall results on real data collected from the Dialogue Systems. IRroc 5th Workshop on Knowl-
user trial clearly indicate increased robustness by the edge and Reasoning in Practical Dialogue Systems

HIS system. We would have liked to be able to_ Pages 34-57. .
H Bui, B van Schooten, and D Hofs. 2007b. Practi-

plot performance and success scores as a functlonCal dialogue manager development using POMDPS .

of noise level or speech understanding error rate, |, gin s|Gdial Workshop on Discourse and Dialogue
but there is great variability in these kinds of com-  antwerp.
plex real-world dialogues and it transpired that théP Kaelbling, ML Littman, and AR Cassandra. 1998.
trial data was insufficient to enable any statistically glanni.ng ?An?fA(':tilnlg:nlrartiallyl?)lisggrviglj Stochastic
i i i i omains.Araricial Intelligence 99— .
e o e oy e and TR 3660 Sk Dilous
. . . ) Management Using Probabilistic Reasoning.Phoc
trial data to properly investigate the behaviour of Ac|
such systems as a function of noise level. The tridl Schatzmann, B Thomson, and SJ Young. 2007. Error
described here, including transcription and analysis Simulation for Training Statistical Dialogue Systems.
consumed about 30 man-days of effort. IncreasinS; égﬁ;f#a%w%% Séigggt'ical User and Erfor Mod.
this by a factor of 10 or more is not therefore an :

. . . elling for Spoken Dialogue Systent?h.D. thesis, Uni-
option for us, and clearly an alternative approach is versity of Cambridge.

needed. B Thomson, J Schatzmann, K Weilhammer, H Ye, and
We have also reported results of subjective suc- SJ Young. 2007. Training a real-world POMDP-based

cess rate and opinion scores based on data obtainedPialog System. IFHLT/NAACL Workshop "Bridging

from subjects after each trial. The results were only tThe r?aFI” Aca?gmitr:] a”td Industrial Research in Dialog

: echnologies; Rochester.

weakly correlated with the. measured' performancg Thomsor?, 3’ Schatzmann, and SJ Young.  2008.

and success rates. We belleve_ that this is part_ly dueBayesian Update of Dialogue State for Robust Dia-

to confusion as to what constituted success in the ogue Systems. lint Conf Acoustics Speech and Sig-

minds of the subjects. This suggests that for subjec- nal Processing ICASSPRas Vegas.

tive results to be meaningful, measurements such 48 Williams and SJ Young. 2007a. Partially Observable

these will only be really useful if made on live sys- Markov Decision Processes for Spoken Dialog Sys-

tems where users have a real rather than imagined!€™s: Computer Speech and LanguagH (2):393-

information need. The use of live systems wouldp wijliams and SJ Young. 2007b. Scaling POMDPs

also alleviate the data sparsity problem noted earlier. for Spoken Dialog ManagemenEEE Audio, Speech
Finally and in conclusion, we believe that despite and Language Processing5(7):2116-2129.

the difficulties noted above, the results reported i§J Young, J Schatzmann, K Weilhammer, and H Ye.

this paper represent a first step towards establish—2007' The Hidden Information State Approach to Dia-

. . log Management. [IICASSP 200,Honolulu, Hawaii.
ing the POMDP as a viable framework for develop—SJ Young. 2002. Talking to Machines (Statistically

ing spoken dialogue systems which are significantly speaking). Irint Conf Spoken Language Processing
more robust to noisy operating conditions than con- Denver, Colorado.
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Abstract

This paper proposes a probabilistic framework
for spoken dialog management using dialog
examples. To overcome the complexity prob-
lems of the classic partially observable Mar-
kov decision processes (POMDPS) based
dialog manager, we use a frame-based belief
state representation that reduces the complexi-
ty of belief update. We also used dialog ex-
amples to maintain a reasonable number of
system actions to reduce the complexity of the
optimizing policy. We developed weather in-
formation and car navigation dialog system
that employed a frame-based probabilistic
framework. This framework enables people to
develop a spoken dialog system using a prob-
abilistic approach without complexity prob-
lem of POMDP.

1 Introduction

A robust dialog manager is an essential part of
spoken dialog systems, because many such sys-
tems have failed in practice due to errors in speech
recognition. Speech recognition errors can be
propagated to spoken language understanding
(SLU), so the speech input must be considered er-
ror-prone from a standpoint of dialog management.
Therefore robust dialog managers are necessary to
develop practical spoken dialog systems.

One approach to dialog management uses the
partially observable Markov decision process
(POMDRP) as a statistical framework, because this
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approach can model the uncertainty inherent in
human-machine dialog (Doshi and Roy, 2007).
The dialog manager uses a probabilistic, rather
than deterministic, approach to manage dialog. As
more information becomes available, the dialog
manager updates its belief states. A POMDP-based
dialog manager can learn the optimized policy that
maximizes expected rewards by reinforcement
learning.

But applying classic POMDP to a practical di-
alog system incurs a scalability problem. The com-
putational complexity of updating belief states and
optimizing the policy increases rapidly with the
size of the state space in a slot-filling dialog task.
To solve this scalability problem, the method of
compressing states or mapping the original state
space to summarized space can be used (Williams
and Young, 2006; Roy et al.,2005), but these algo-
rithms tend to approximate the state space exces-
sively. The complexity problem of POMDP comes
from updating beliefs that are out of the user’s in-
tention, and from calculating the reward of system
actions that do not satisfy user’s objective.

In this paper, we propose a new probabilistic
framework for spoken dialog management using
dialog examples. We adopted a frame-based belief
state representation to reduce the complexity of
belief update. Furthermore, we used an example-
based approach to generate only a reasonable
number of system action hypotheses in a new
framework. We developed a dialog system by us-
ing our new framework in weather information
service and car navigation service.

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 120-127,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



2 Overview

We try to address two problems of applying
POMDP to slot-filling dialog management. 1)
Computational complexity of belief update: it is
difficult to maintain and update all belief states at
every turn of dialog since there are too many di-
alog states in slot-filling dialog tasks. 2) Computa-
tional complexity of policy optimizing: optimizing
complexity depends on both the space size of di-
alog states, and the number of available machine
actions. In slot-filling dialog tasks, a system action
can have various slot values so that the system
needs to choose an action among a large number of
action hypotheses.

In our new probabilistic framework (Figure 1),
we try to solve these problems. Our approach uses
1) the frame-based belief state representation to
solve the computational complexity problem of
belief update and 2) the dialog examples to gener-
ate action hypotheses to solve the computational
complexity of policy optimizing by reducing the
number of system action hypotheses. First, the sys-
tem groups belief states dynamically using frame-
based belief state representation according to us-
er’s utterance and its SLU result. Then the system
uses an example-based approach to generate only
system action hypotheses that are suitable for cur-
rent belief states. If there are too many hypotheses
for calculating expected utility, the system prunes
them away until only a reasonable number of hy-
potheses remains. The following describes the de-
tails of each system’s component and the dialog
managing process.

[

User’s Utterance
B
SLU Result

e
wap

Frame-based Belief
State Representation

User’s Intention,
Semantic Frame,
Dialog Histof

Generating

Dialog
Hypotheses

Example DB

v

v

Calculating
Utilities

'

Lexico-semantic
Similarity
System action

Figure 1. Overview of the system operation. Bold ar-
rows indicate the control flow. Thin arrows indicate the

data flow.

Pruning
Hypotheses

F 3
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3 Frame-based Belief State Representation

We assumed that the machine’s internal represen-
tation of the dialog state s, consists of three com-
ponents: user’s goal S,, user’s last action a, and
dialog history sq. This section briefly describes the
basic introduction of POMDP framework and ex-
plains each component of machine’s internal state
in the standpoint of our frame-based probabilistic
framework.

3.1 POMDP for spoken dialog management

A POMDRP is defined as a tuple that consists of six
substates: (S, A, P, R, Q, O) where S is a set of
state, A is a set of action, P is a transition proba-
bility P(s|s,a), R is a reward function R(s,a,s’), Q
is a set of observation and O is an observation
model P(o|s,a). The current state is not determinis-
tic in a POMDP framework while it is determined
as a specific state in a Markov decision process
(MDP) framework. In a POMDP, the probability
distribution over all states s &S, which is referred
as a belief state b(s), is maintained instead of de-
terministic state. At each time instant t, the system
chooses an action a €A, and this causes the system
to move from current state s to next state s’ with
the transition probability P(s’ [s,a). Then, the sys-
tem is granted a reward R(s,a) while the system
receives an observation o with probability of
P(o|s’,a). The system computes the belief state in
the next time instance b’(s’) as a following:

b'(s")=k-P(o]s, a)Z P(s'| s,a)b(s)

where k is a normalizing factor. This process is
referred as belief update.

Optimizing a POMDP policy is a process of
finding a mapping function from belief states to
actions that maximizes the expected reward. The
system should compute a value function over be-
lief spaces to find optimized actions. However,
unlike as in a MDP, each value in a POMDRP is a
function of an entire probability distribution and
belief spaces are very complex, so that a POMDP
has a scale problem of computing the exact value
function.

A POMDP for spoken dialog system is well
formulated in (Williams and Young, 2007). First, a
state s can be factored to three substates: (s, ay, Sq)



where s, is a user goal state, a, is a user action, and
Sq is a dialog history. A system action a,, and user
action a, can be cast as action a and observation o
respectively. With some independence assumption
between variables, the belief update equation can
be rewritten as following:

b'(s) =b(s;, a;,S4)-
=k-P(a; |a,)P(a, | s;,ay)-
ZP(S(J |Su1am)'zp(st'j |al,J1Sd’am)‘

Zb(sil’alg ’ S(;)!
3y

where @ is an automatic speech recognizer (ASR)

and SLU recognition result of user action. In our
framework, belief update is done based on this eg-
uation. But applying this directly to a spoken di-
alog system can have a problem because the
probabilities used in the equation are hard to esti-
mate from the corpus due to the data sparseness.
Therefore, we adopted Young’s (2007) belief up-
date formula that is simplified from the original
equation.

3.2 User goal state

In a slot-filling dialog system, the user’s goal can
be represented as a fully-filled frame in which all
slots of the frame contain values specified by the
user’s intention. Therefore, if a dialog system has
W slots and each slot can have a value among V
candidates, then V"V user goals can be represented
as frames. This means that the number of user
goals is related exponentially to the number of
slots. This number of user goals is intractable in
practical dialog systems.

Therefore, a method is needed to reduce the size
of the state space rather than maintaining all belief
states. To do this, we developed a frame-based be-
lief state representation in which the system dy-
namically groups set of equivalent states to a high-
level frame state. Frame state, which is a similar
concept to the partition in the hidden information
state (HIS) approach (Young et al, 2007)
represents the indistinguishable classes of user’s
goals. The biggest difference between frame-based
representation and partition-based representation is
that the former uses only user input to split the
frame state, whereas the latter uses the user input
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and external ontology rules such as a prior proba-
bility for belief of split partition. Therefore, the
frame-based representation has relatively high do-
main portability because it does not need that kind
of external domain dependent information.

In the frame-based belief state representation, a
partially-filled frame state represents the current
user’s goal state for which the unfilled slot can be
filled in the future, while a fully-filled frame state
represents a complete user’s goal state. Figure 2
describes an example of the subsumption relation-
ship between partially filled frames and fully filled
frames.

TIME_DATE = tomorrow
WEATHER_TYPE = temperature
LOC_CITY = Seoul

What will the temperature be tomoirronw? J

—

TIME_DATE = tomorrow

TIME_DATE = tomorrow
WEATHER_TYPE = temperature
LOC_CITY =Busan

=]

WEATHER_TYPE = temperature
B TIME_DATE = tomorrow

WEATHER_TYPE = temperature
LOC_CITY = Jeju

Figure 2. Subsumption relationship between partially
filled frame and fully filled frame. The left frame is par-
tially filled and three frames in the right side are fully
filled.

At the start of a dialog, all states belong to the
root frame state fo. As the dialog progresses, this
root frame state is split into smaller frame states
whenever the value of a slot is filled by the user’s
input (Figure 3). First, if the user’s input [A=a]
fills the slot of the root frame state f,, then it splits
into two frame states: f;, which includes all user
goal states with the slot A having ‘a’ as a value;
and {f,-f .}, which is the relative complement of f;.
Next, if the user’s input [B=b] is entered to the
system, each frame f; and {f,-f,} is split into small-
er frame states. The system updates not all belief
states but only the beliefs of the frame states, so
that the computational complexity remains rela-
tively small.

If each user’s goal has uniform distribution, the
belief of frame state b(f) can be calculated as fol-
lows:

b(f)= # of user goals contained in frame f

# of all user goals
This can be computed as follows:

L.H

Si€Sfltea ' T s; S i€ SporFitled

v, =V, |
v, |

b

b(f)=
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Figure 3. Splitting frame states and their beliefs with three user’s inputs. fo, f;, f,, ... denote frame states and b(f)
means the belief of frame state f. A, B, C are the slot labels and a, b, ¢ are the respective values of these slots.

where Sgjies Mmeans the set of slots that are filled by
the user’s input in frame state f, and Syoies Means
the set of empty slots. V, denotes the set of availa-
ble values for slot s, and V;’ stands for the set of
values for slot s that were specified by the user in
other frame states.

3.3 User action

The SLU result of current user's utterance is used
for the user action. The result frame of SLU con-
sists of a speech act, a main goal, and several
named-entity component slots for each user's utter-
ance. The speech act stands for the surface-level
speech act per single utterance and the main goal
slot is assigned from one of the predefined classes
which classify the main application actions in a
specific domain such as “search the weather
(SEARCH_WEATHER)” or “search the tempera-
ture (SEARCH_TEMPERATURE)” in the weather
information service domain. The tasks for filling
the named-entity component slots, such as, name
of the city, name of the state, are viewed as a se-
guence labeling task. The Figure 4 shows some
examples of predefined classes for SLU semantic
frame in weather information service dialog system

Our SLU module was developed based on the
concept spotting approach, which aims to extract
only the essential information for predefined mean-
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ing representation slots, and was implemented by
applying a conditional random field model (Lee et
al., 2007).

Speech Act

YN_QUESTION WH_QUESTION  REQUEST
REQ_QUESTION ACCEPT REJECT
STATEMENT SAY HOPE
THANK

Main goal

SEARCH_WEATHER ASK_STATE_LIST SEARCH
SEARCH_TEMPERATURE  ASK_TY_LIST NONE
SEARCH_RAINY_PROB

Component slots

TIME_DATE Loc_ary LOC_STATE

WEATHER_TYPE
Figure 4 Example predefined classes for semantic frame
of SLU in weather information service dialog system.

3.4 Dialog history

Similar to the traditional frame-based dialog
management approach, a frame can represent the
history of the dialog. The difference between the
traditional frame-based dialog manager and our
framework is that traditional frame-based dialog



manager maintains only one frame while our
framework can maintain multiple dialog hypothes-
es. Moreover, each hypothesis in our framework
can have a probability as in the belief state of the
classic POMDP.

4 Example-based System Action Genera-
tion

4.1 Example-based system action hypothesis

generation

It is impossible to consider all of the system ac-
tions as hypotheses because the number of possible
actions is so large. We used an example-based ap-
proach to generate a reasonable number of system
action hypotheses as hinted in (Lee et al., 2006). In
this approach, the system retrieves the best dialog
example from dialog example database (DEDB)
which is semantically indexed from a dialog cor-
pus. To query a semantically close example for the
current situation, the system uses the user’s inten-
tion (speech act and main goal), semantic frame
(component slots) and discourse history as search
key constraints (Lee et al., 2006). These search
keys can be collected with SLU output (e.g., user
intention and semantic frame) and discourse histo-
ry in a dialog manager. Figure 5 describes an ex-
ample of search key for DEDB on a weather
information service system.

User’s utterance What will the temperature be tomorrow?

Weather_Type Time_Date

Search key
constraints

Speech Act = wh_question

Main Goal = search_temperature
WEATHER_TYPE =1 (filled)
TIME_DATE =1 (filled)
LOC_CITY =0 (unfilled)
LOC_STATE = 0 (unfilled)

Lexico-semantic What will the [WEATHER_TYPE] be
Input [TIME_DATE]?

Figure 5. Example search key constraints for dialog
example database.

For each frame state f;, ..., f,, the system gene-
rates one or more system action hypotheses by
querying the DEDB respectively. Queried actions
may inconsistent with the current frame state be-
cause the situation of indexed dialog examples
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may different from current dialog situation. There-
fore, the system maps the contents of dialog exam-
ple to information of current frame state. Slot
values of frame state and information from content
database (e.g., weather information database) are
used for making the action consistent. If the system
retrieves more than a threshold number of system
action hypotheses using the search key constrains,
then the system should prune away dialog exam-
ples to maintain only a reasonable number of hypo-
theses. We wused lexico-semantic similarity
between the user utterance and the retrieved exam-
ples to limit the number of hypotheses. To measure
the lexico-semantic similarity, we first replace the
slot values in the user utterance by its slot names to
generate lexico-semantic input, and calculate the
normalized edit distance between that input and
retrieved examples (Figure 5). In the normalized
edit distance, we defined following cost function
C(i,j) to give a weight to the term which is re-
placed by its slot name.

0 ifw,; =w,;
C@,J)=11ifw; FW, and Wi Wo i & Sgor name
15 ifw; #w,; andw;,w,; €S

slot _name

where wy; is ith word of user’s utterance, w;; is jth
word of dialog example’s utterance, and Sgiot name IS
the set of slot names. According to the lexico-
semantic similarity, the system appends the top Ny-
ranked hypotheses to the final action hypotheses
(where Ny, is the rank threshold).

Many existing systems used heuristics or rule-
based approaches to reduce the number of system
action hypotheses (Young et al., 2007). But these
methods are not flexible enough to handle all di-
alog flows because a system developer should de-
sign new heuristics or rules whenever the system
needs to support a new kind of dialog flow. The
example-based approach, on the contrary, can in-
stantly refine the control of dialog flows by adding
new dialog examples. This is a great advantage
when a system developer wants to change or refine
a dialog control flow.

4.2  Calculating Expected Utilities

We adopted the principle of maximum expected
utility to determine the optimized system actions
among the hypotheses (Paek and Horvitz, 2004).



& =argmax EU(a| &)
=argmax Y _P(H =h| &)u(a,h)
=argmax Y _b(h)u(a, h)

where ¢ denotes all information about the envi-
ronment, u(a,h) means the utility of taking an ac-
tion when the internal state of the machine is h,
which consists of three substates, (f, a,, Sq) : f is a
frame state, a, is a user’s last action, and sy is a
dialog history. The utility function u(a,h) can be
specific to each application. We defined a
handcrafted utility function to calculate the ex-
pected utility.

5 Experiments

We performed two evaluations. 1) Real user evalu-
ation: we measured the user satisfaction with vari-
ous factors by human. 2) Simulated user
evaluation: we implemented user simulator to
measure the system performance with a large
number of dialogs. We built dialog corpora in two
domains: weather information service and car na-
vigation.

5.1 Real user evaluation

We built a dialog corpus in weather information
service to measure the performance of the dialog
system using our approach by real user evaluation.
This corpus consists of 99 dialogs with 503 user
utterances (turns). User’s utterances were anno-
tated with the semantic frame including speech
acts, main goal and component slots for training
the SLU module and indexing the DEDB.

To evaluate the preliminary performance, four
test volunteers among computer science people
evaluated our dialog system with five different
weather information-seeking tasks. The volunteers
typed their utterances with a keyboard rather than
using a real ASR because it is hard to control the
WER. We employed a simulated ASR error chan-
nel by generating random errors to evaluate the
performance of dialog management under various
levels of WER. We will explain the details of our
ASR channel simulator in Section 5.2. The WER is
controlled by this ASR channel simulator while the
volunteers were interacting with computer. To
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measure the user perception of task completion
rate (TCR), the volunteers evaluated the system’s
response in each dialog to measure the success turn
rate (STR) and decided whether the entire dialog
was successful or not. We evaluated the perfor-
mance of our dialog system based on criteria out-
lined in (Litman and Pan, 2004) by measuring user
satisfaction, which is defined with a linear combi-
nation of three measures: TCR, Mean Recognition
Accuracy (MRA), and STR.

User Satisfaction = aTCR +4STR + yMRA
In our evaluation, we set o, # and y to 1/3, so

that the maximum value of the user satisfaction is
one.

TCR, STR and User Satisfation

04 - e

0.3

0 10 20 30 40
Word Error Rate (%)

Figure 6 Dialog system performance with various word

error rates in weather information seeking tasks. Dotted

line is TCR; dashed line is STR; solid line is user satis-

faction.

TCR, STR and user satisfaction decreased with
WER. User satisfaction has relatively high value
when the WER is smaller than 20% (Figure 6). If
the WER is equal or over 20%, user satisfaction
has small value because the TCR decreases rapidly
in this range.

Generally, TCR has a higher value than STR,
because although a dialog turn may fail, users still
have a chance to use other expressions which can
be well recognized by the system. As a result of
this, even when some dialog turns fail, the task can
be completed successfully.

TCR decreases rapidly when WER >20%.
When WER is high, the probability of losing the



information in a user utterance is also large. Espe-
cially, if words contain important meaning, i.e.,
values of component slots in SLU, it is difficult for
the system to generate a proper response.

STR is 0.83 when WER is zero, i.e., although all
user inputs are correctly recognized, the system
sometimes didn’t generate proper outputs. This
failure can be caused by SLU errors or malfunction
of the dialog manager. SLU errors can be propa-
gated to the dialog manager, and this leads the sys-
tem to generate a wrong response because SLU
results are inputs of dialog manger.

If the WER is 20%, user satisfaction is relatively
small because TCR decreases rapidly in this range.
This means that our approach is useful in a system
devoted to providing weather information, and is
relatively robust to speech errors if the WER is less
than 20%.

5.2  Simulated user evaluation

We built another dialog corpus in car navigation
service to measure the performance of the dialog
system by simulated user evaluation. This corpus
consists of 123 dialogs with 510 user utterances
(turns). The SLU result frame of this corpus has 7
types of speech acts, 8 types of main goals, and 5
different component slots.

The user simulator and ASR channel simulator has
been used for evaluating the proposed dialog man-
agement framework. The user simulator has two
components: an Intention Simulator and a Surface
Simulator. The Intention Simulator generates the
next user intention given current discourse context,
and the Surface Simulator generates user sentence
to express the generated intention.

ASR channel simulator simulates the speech
recognition errors including substitution, deletion,
and insertions errors. It uses the phoneme confu-
sion matrix to estimate the probability distribution
for error simulation. ASR channel simulator dis-
torts the generated user utterance from Surface Si-
mulator. By simulating user intentions, surface
form of user sentence and ASR channel, we can
test the robustness of the proposed dialog system in
both speech recognition and speech understanding
errors.

We defined a final state of dialog to automati-
cally measure TCR of a simulated dialog. If a di-
alog flow reaches the final state, the evaluator
regards that the dialog was successfully completed.
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TCRs and average dialog lengths were measured
under various WER conditions that were generated
by ASR channel simulator. Until the SLU result is
an actual input of the dialog manager, we also
measured the SLU accuracy. If a SLU result is
same as a user’s intention of the Intention Simula-
tor, then the evaluator considers that the result is
correct. Unlike in the real user evaluation, the di-
alog system could be evaluated with relatively
large amount of simulated dialogs in the simulated
user evaluation. 5000 simulated dialogs were gen-
erated for each WER condition.

1.00 -
0.90 4

0.80 A

SLU accuracy and TCR
Avg. Dialog Length (turns)

0.60

0 5 10 15 20 25 30 35 40

Word Error Rate (%)

Figure 7 TCR, SLU accuracy, and average dialog length
of the dialog system under various WER conditions.

We found that the SLU accuracy and TCR li-
nearly decreased with the WER. Similar in the
human evaluation, TCR is about 0.9 when WER is
zero, and it becomes below 0.7 when WER is
higher than 20%. Average dialog length, on con-
trary, increased with WER, and it has similar val-
ues when WER is less than 10% although it
increased relatively rapidly when WER is higher
than 15%.

6 Conclusions

This paper proposed a new probabilistic method to
manage the human-machine dialog by using the
frame-state belief state representation and the ex-
ample-based system action hypothesis generation.
The frame-based state representation reduces the
computational complexity of belief update by
grouping the indistinguishable user goal states.
And the system generates the system action hypo-



theses with the example-based approach in order to
refine the dialog flows easily. In addition, this ap-
proach employed the POMDP formalism to main-
tain belief distribution over dialog states so that the
system can be robust to speech recognition errors
by considering the uncertainty of user’s input.

A prototype system using our approach has been
implemented and evaluated by real and simulated
user. According to the preliminary evaluation, our
framework can be a useful approach to manage a
spoken dialog system.

We plan to progress the research on adopting a
formalized online search to determine the optimal
system action (Ross and Chaib-draa, 2007). With
the online searching, system doesn’t need to be-
have the useless computation because this ap-
proach searches only possible path. We expect that
this property of the online searching show the syn-
ergetic effect on dialog management if it combines
with example-based approach.

Similar to example-based approach, the case-
based reasoning approach (Eliasson, 2006) can be
helpful for our future research. Some properties
such as using previous cases to process current
case can be shared with our approach. We think
that some other properties including the concept of
online learning can be useful for making our ap-
proach concrete
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Speaking More Like You: Lexical,
Acoustic/Prosodic, and Discour se Entrainment
in Spoken Dialogue Systems
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Abstract

When people engage in conversation, they adapt the way they speak to
the speaking style of their conversational partner in a variety of ways. For
example, they may adopt a certain way of describing something based upon
the way their conversational partner describes it, or adapt their pitch range
or speaking rate to a conversational partner’'s. They may even align their
turn-taking style or use of cue phrases to match their partner’s. These types
of entrainment have been shown to correlate with various measures of task
success and dialogue naturalness. While there is considerable evidence for
lexical entrainment from laboratory experiments, much less is known about
other types of acoustic-prosodic and discourse-level entrainment and little
work has been done to examine entrainments in multiple modalities for the
same dialogue. We will discuss work on entrainment in multiple dimensions
in the Columbia Games Corpus. Our goal is to understand how the different
varieties of entrainment correlate with one another and to determine which
types of entrainment will be both useful and feasible for Spoken Dialogue
Systems.
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Abstract of opinions, their properties, and components is im-
portant, we believe that discourse interpretation is
needed as well. It is by understanding the passage
arise from related opinion targets and which as a discourse that we sedgy I'|k§ a box com-

are common in task-oriented meeting dialogs. putery andmany buttongs descriptions of the type
We define the opinion frames and explaintheir ~ Of designD does not prefer, andand-held organic
interpretation. Additionally we present an shape andsimple designas descriptions of the type
annotation scheme that realizes the opinion  he does. These descriptions are not in general syn-
frames and via human annotation studies, we  pnyms/antonyms of one another; for example, there

This work proposespinion framess a repre-
sentation of discourse-level associations that

show that these can be reliably identified. are hand-held “computery” devices and simple de-

signs that are edgy. The unison/opposition among

1 Introduction the descriptions is due to how they are used in the
discourse.

There has been a great deal of research in recent_ )
years on opinions and subjectivity. Opinions have This paper focuses on such relations between the

been investigated at the phrase, sentence, and dol@9€ts Of opinions in discourse. Specifically, we

ment levels. However, little work has been Carried)roposepplnlon frameswh|ch. consist of t\_NO oplp—
out at the level of discourse ions which are related by virtue of having united

Consider the following excerpt from a dialogor opposed targets. We believe that recognizing

about designing a remote control for a television (th@PINion frames will provide more information for
opinion targets- what the opinions are about - areNLP applications than recognizing their individual
shown initalics). components alone. Further, if there is uncertainty

t any one of th mponents, w liev in-

Q) D:: And | thoughtnot too edgy and like a bgxmore fabo:;l any one o eﬁCO . ponents, we pe e. € op
kind of hand-heldnot as computery yeah,more or- 10N frames are an e ch_ve representation incorpo-
ganic shaped think. Simple designslike the last one rating discourse information to make an overall co-

we just sawnot too many buttons. . herent interpretation (Hobbs, 1979; Hobbs, 1983).

SpeakeD expresses an opinion in favor of a de- To our knowledge, this is the first work to ex-
sign that is simple and organic in shape, and againtnd a manual annotation scheme to relate opinions
an alternative design which is not. Several individin the discourse. In this paper, we present opin-
ual opinions are expressed in this passage. The filsh frames, and motivate their usefulness through
is a negative opinion about the design being too edggxamples. Then we provide an annotation scheme
and box-like, the next is a positive opinion towardor capturing these opinion frames. Finally we per-
a hand-held design, followed by a negative opinform fine-grained annotation studies to measure the
ion toward a computery shape, and so on. Whilauman reliability in recognizing of these opinion
we believe that recognizing individual expressiongrames.
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Opinion frames are presented in Section 2, our an- | SPSPsame, SNSNsame, APAPsame, ANANsame,

. . . . . . SPAPsame, APSPsame, SNANsame, ANSNsame,
notation scheme is described in Section 3, the inter- SPSNalt, SNSPalt, APANalt, ANAPalt,

annotator agreement studies are presented in Section| gpanalt, SNAPalt, APSNalt, ANSPalt
4, related work is discussed in Section 5, and conclu- | SPSNsame, SNSPsame, APANsame, ANAPsame,
sions are in Section 6. SPANsame, APSNsame, SNAPsame, ANSPsame,
SPSPalt, SNSNalt, APAPalt, ANANalt,
SPAPalt, SNANalt, APSPalt, ANSNalt

2 Opinion Frames

21 Introduction Table 1: Opinion Frames

The components of opinion frames are individual

opinions and the relationships between their target@. k
We address two types of opiniorsentimenand S those in our data. _ _

arguing Following (Wilson and Wiebe, 2005; So-  With four opinion type - polarity pairsSN SP

masundaran et al., 2007), sentiment includes pogdih: AP), for each of two opinion slots, and two pos-

tive and negative evaluations, emotions, and judg:Pl€ target relations, we have 4 * 4 * 2 = 32 types

ments, while arguing includes arguify oragainst ©f frame, listed in Table 1.

something, and arguinthat something should or In the remainder of this section, we elaborate fur-
should not be done. In our examples, the lexical arf€r on thesametarget relation (in 2.2) thalter-
chors revealing the opinion type (as the words arJgatlve_target relatlon_(ln 2._3) and explain a methoc!
interpreted in context) are indicated old face. PY Which these relationships can be propagated (in
In addition, the text span capturing the target of thé-4)- Finally, we illustrate the usefulness of opinion
opinion (again, as interpreted in context) is indicatef@mes in discourse interpretation (in 2.5).

in italics.

ey commonly occur in task-oriented dialogs such

2.2 SameTargets

2 D:: ... this kind of rubbery materialit's a bit more . .
boungy, like you said they get chucked around a lot. A0ur notion of sameness for targets includes cases

bit more durableandthatcan also bergonomicandit ~ Of anaphora and ellipses, lexically similar items, as
kind of feelsa bit different from all theother remote  well as less direct relations such as part-whole, sub-
controls. set, inferable, and instance-class.

SpeakerD expresses his preference for the rub- Looking at the opinion frames for Example 2 in
bery material for the remote. He reiterates his opinMore detail, we separately list the opinions, followed
ion with a number of positive evaluations liket by the relations between targets.
more bouncy, bit more durable, ergonomic and  Opinion Span - target Span Type
SO on. O1bit morebouncy - it's [t1] SP

All opinions in this example are related to the oth-O2Pit moredurable- ellipsis [t2] SP
. .. . . O3 ergonomic - that [t3] SP
ers via opinion frames by virtue of having the same,, . pit different from all the other remote - it [t4] SP

targets, i.e., the opinions are essentially about the

same things (the rubbery material for the remoteflaf%gt'target S:ﬂe
For example, the opiniors gonomic anda bit dif- 1 -3 same
ferent from all the other remote controls are re- t3-t4 same

lated in a frame of typ&PSPsameneaning the first
opinion 1S aS_(entlme'nt)Nlth polanty F"(05|t|ve7). the resents the (implicit) target of that opinion, and [t2]
second also is &(entimentvith polarity P(ositive) has asamerelation to [t1], the target of thiit more

anld f[he targets of the opinions are in a same (targegbuncy opinion. (Note that the interpretation of the
relation. first target, [t1], would require anaphora resolution

The specific target relations addressed in this PR its target span with a previous noun phrass-
per are the relations of either being the same or beirlﬂary material)

alternatives to one another. While these are not the | et us now consider the following passage, in
only possible relations, they are not infrequent, andhich a meeting participant analyzes two leading re-

Ellipsis occurs withbit more durable. [t2] rep-
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motes on the markét. Opinion Span - target Span Rel

(3)  D: These are twieading remote controlsat the mo- O should be - curved]tl] AP
ment. You knowtheyre grey, this onés got loads of ~ O2 Nothlng,- square-likeft2] AN
buttons, it's hard to tell from here whatheyactually ~©3shouldn’t have - square cornergt3] AN
do, andtheydon’t look very exciting at all. O4too - square cornergt3] SN
Opinion Span - target Span Rel O5Not - the old box looKt4] AN
01 leading - remote controlgt1] sp O6theold box look - the old box looKt4] SN
O2grey - they[t2] SN Target - target Rel
O3loads of buttons- this one[t3] SN t1 -t2 alternatives
O4hard totdl - they|[t4] SN t2-t3 same
O5don’t look very exciting at all - they[t5] SN t3-t4 same
Target - target Rel There is analt relation between, for example,
t1-t2 same -
©2-13 same [t1] and [t2]. Thus, we have an opinion frame be-
t3-t4 same tweenO1 and O2, whose type isAPANalt From
t5-11 same this frame, we understand that a positive opinion is

Target [t2] is the set of two leading remotes, and [t3]eXpressed toward something and a negative opinion
which is in asamerelation with [t2], is one of those IS expressed toward its alternative.

remotes. Target [t4], which is also insamerela- . o
tion with [t3],%s afn ]aspect of that remote, namelf'4 Link Transitivity

its buttons. Thus, opinion O3 is directly about on@Vhen individual targets are linked, they form a
of the remotes, and indirectly about the set of botghain-like structure. Due to this, a connecting path
remotes. Similarly, opinion O4 is directly about themay exist between targets that were not directly
buttons of one of the remotes, and indirectly abodinked by the human annotators. This path may be

that remote itself. traversed to create links between new pairs of tar-
_ gets - which in turn results in new opinion frame re-
23 Alternative Targets lations. For instance, in Example 4, the frame with

Thealt(ernative)target relation arises when multiple direct relation iSO102 APANalt By following the
choices are available, and only one can be selectedlt link from [t1] to [t2] and thesamelink from [t2]
For example, in the domain of TV remote controlsto [t3], we have aralt link between [t1] and [t3],
the set of all shapes are alternatives to one anothand the additional frame3103 APANaland0104
since a remote control may have only one shape at®PSNalt Repeating this process would finally link
time. In such scenarios, a positive opinion regardingpeakeiC’s opinion O1 withB’s opinion OB, yield-
one choice may imply a negative opinion toward théng aAPSNaltframe.
rest of the choices, and vice versa. _

As an example, let us now consider the follow2> Interpretation
ing passage (some intervening utterances have beBhis section illustrates two motivations for opinion

removed for clarity). frames: they may unearth additional information

(4)  C: ... shapesshould be curved so round shapés over and above the individual opinions stated in the
Nothing square-like text, and they may contribute toward arriving at a
&:;t‘kih i%}}"t’ﬁiﬁg".“'d” thave too square comerand  oharent interpretation (Hobbs, 1979: Hobbs, 1983)
B:: Yeah okay:Not the old box look. of the opinions in the discourse.

— o Through opinion frames, opinions regarding
In the other examples in this paper, the source (holder) of

the opinions is the speaker. Tlaading opinion in this example something not eXpIICIt.Iy mentioned in the local con-
is an exception: its source is implicit; it is a consensusiopi  t€Xt @and not even lexically related can become rel-

that is not necessarily shared by the speaker (i.e., inssted evant, providing more information about someone’s
source(Wiebe et al., 2005)). opinions. This is particularly interesting whelt

2 H «,
In the context of the dialogs, the annotators read the "Spoovinng are involved, as opinions towards one al-
round shapes” as a summary statement. Had the “so” been inter

preted as Arguing, the round shapes would have been andotaf€rnative imply opinions of opposite polarity toward
as a target (and linked trveqg. the remaining options. For instance in Example 4
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above, if we consider only the explicitly stated opin- On the other hand, evidence for non-reinforcing
ions, there is only one (positive) opinion about thepinions would suggest other frames, potentially re-
curved shape, namefy1l. However, the speaker ex- sulting in different interpretations of polarity and re-
presses several other opinions which reinforce hiations among targets. Such non-reinforcing associ-
positivity toward the curved shape. These are iations between opinions and often occur when the
fact opinion frames in which the other opinion haspeaker is ambivalent or weighing pros and cons.
the opposite polarity a®1 and the target relation is Table 1 lists the frames that occur in reinforcing sce-
alt (for example frames such &103 APANaliand narios in the top row, and the frames that occur in
0104 APSNalt non-reinforcing scenarios in the bottom row.

In the dialog, notice that speak8ragrees with
C and exhibits his own reinforcing opinions. These3 Annotation Scheme

would be similarly linked via targets resulting in ] ] o
frames likeO106 APSNalt Our annotation scheme began with the definition

Turning to our second point, arriving at a coher@nd basics (_)f the Opi”if’” annotation from previ-
ent interpretation obviously involves disambigua®!® work (Wilson and Wiebe, 2005; Somasundaran

tion. Suppose that some aspect of an individudt al., 2007). hWe then add to it the alitrlbutes ",md
opinion, such as polarity, is unclear. If the discoursé&:orm:’Onents that are necessary to make an Opinion
rame.

suggests certain opinion frames, this may in turn re- <~ o
solve the underlying ambiguity. For instance in Ex- First, the text span that reveals the opinion expres-

ample 2, we see that out of context, the polarities gilon is identified. Then, the text spans corresponding
bouncy anddifferent from other remotes are un- to the targets are marked, if there exist any (we also

clear (bounciness and being different may be ne@oW span-less targets). Then, the type and polar-

ative attributes for another type of object). Howty of the opinion in the context of the discourse is_

ever, the polarities of two of the opinions are cleaft@rked. Finally the targets that are related (again
(durable ander gonomic). There is evidence in this IN the context of the discourse) are linked. S_peC|f—
passage of discourse continuity asamerelations, ically, the components that form the Annotation of
such as the pronouns, the lack of contrastive cJ8€ frame are as follows:

phrases, and so on. This evidence suggests that the. . o
speaker expresses similar opinions throughout th pinion Sp'ar'1: This is a span of text that reveals
passage, making the opinion fral8®SPsammore the opinion.

likely throughout. Recognizing the frames would re- o . . - -
solve the polarity ambiguities dfouncy anddiffer- Type: This attribute specifies the opinion type as ei

ther Arguingor Sentiment
ent.

Example 2 is characterized by opinion frames ifby4rity: This attribute identifies the valence of an
which the opinions reinforce one other. Interest- opinion and can be one opositive, negative

ingly, interplays among different opinion types may neutral. both. unknown.
show the same type of reinforcement. As we an- ’ ’
alyzed above, Example 4 is characterized by mixrarget Span: This is a span of text that captures

tures of opinion types, polarities, and target rela-  \hat an opinion is about. This can be a propo-
tions. However, the opinions are still unified in sition or an entity.

the intention to argue for a particular type of shape.

There is evidence in this passage suggesting reiffarget Link: This is an attribute of a target and
forcing frames: the negations are applied to targets  records all the targets in the discourse that the
that are alternative to the desired option, and the pas-  target is related to.

sage is without contrastive discourse cues. If we

are able to recognize the best overall set of opiniohink Type: The link between two targets is speci-
frames for the passage, the polarity ambiguities will  fied by this attribute as eitheame or alterna-

be resolved. tive.
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In addition to these definitions, our annotation man- Gold | Exact | Lenient| Subset

ual has guidelines detailing how to deal with gram- ANN-1 | 53 89 87
o ) : : ) ANN-2 | 44 76 74

matical issues, disfluencies, etc. Appendix A illus-

trates how this annotation scheme is applied to theTable 2: Inter-Annotator agreement on Opinion Spans

utterances of Example 4.

Links between targets can be followed in eithe¥
direction to construct chains. In this work, we
consider target relations to be commutative, i.e.,
Link(t1,t2) => Link(t2,t1). When a newly anno-
tated target is similar (or opposed) to a set of ta
gets already participating samerelations, then the
same (or alt) link is made only to one of them - the
one that looks most natural. This is often the on
that is closest.

our participants collaborate to design a new TV
remote control in a series of four meetings. The
rheetings represent different project phases, namely
rprolect kick-off, functional design, conceptual de-
sign, and detailed design. Each meeting has rich
transcription and segment (turn/utterance) informa-
gon for each speaker. Each utterance consists of
one or more sentences. At each agreement stage we
used approximately 250 utterances from a meeting
for evaluation. The annotators also used the audio
and video recordings in the annotation of meetings.
Construction of an opinion frame is a stepwise pro-
cess where first the text spans revealing the opiniods? Opinion Spansand Target Spans

and their targets are selected, the opinion text spaj} this step, the annotators selected text spans and
are classified by type and polarity and finally thaapeled them aspinion or target We calculated our
targets are linked via one of the possible relationggreement for text span retrieval similar to Wiebe et
We split our annotation process into these 3 intuitive) (2005). This agreement metric corresponds to
stages and use an evaluation that is most applicalig precision metric in information retrieval, where
for the task at that stage. annotations from one annotator are considered the
Two annotators (both co-authors on the paper) uyold standard, and the other annotator’s annotations
derwent training at each stage, and the annotatiqfte evaluated against it.
manual was revised after each round of training. In Taple 2 shows the inter-annotator agreement (in
order to prevent errors incurred at earlier stages froercentages). For the first row, the annotations pro-
affecting the evaluation of later stages, the annQjyced by Annotator-1 (ANN-1) are taken as the gold
tators produced a consensus version at the end ghndard and, for the second row, the annotations
each stage, and used that consensus annotationf@en annotator-2 form the gold standard. The “Ex-
the starting point for the next annotation stage. lact” column reports the agreement when two text
producing these consensus files, one annotator figians have to match exactly to be considered cor-
annotated a document, and the other annotator 1gsct. The “Lenient” column shows the results if
viewed the annotations, making changes if needegn overlap relation between the two annotators’ re-
This prevented any discussion between the annotgjeved spans is also considered to be a hit. Wiebe
tors from influencing the tagging task of the nexit a1. (2005) use this approach to measure agree-
stage. ment for a (somewhat) similar task of subjectivity
In the following subsections, we first intrOducespan retrieval in the news corpus. Our agreement
the data and then present our results for annotatigfumbers for this column is comparable to theirs. Fi-
studies for each stage, ending with discussion.  nally, the third column, “Subset”, shows the agree-
ment for a more strict constraint, namely, that one
41 Data of the spans must be a subset of the other to be con-
The data used in this work is the AMI meeting cor-sidered a match. Two opinion spans that satisfy this
pus (Carletta et al., 2005) which contains multitelation are ensured to share all the opinion words of
modal recordings of group meetings. We annotateithe smaller span.
meetings from the scenario based meetings, whereThe numbers indicate that, while the annotators

4 Annotation Studies
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Gold | Exact | Lenient| Subset and polarity, we use Accuracy and Cohen’s Kappa
ANN-1 | 54 3 1 (x) metric (Cohen, 1960). The metric measures
ANN-2 | 54 75 74 :

the inter-annotator agreement above chance agree-
Table 3: Inter-Annotator agreement on Target Spans ment. The results, in Table 5, show thaboth for
type and polarity tagging is very high. This con-
Gold | Exact| Lenient | Subset firms our hypothesis that Sentiment and Arguing can
ﬁm:; ;g gg gé be reliably distingu.ished once the opinion spans are

known. Our polarity detection task shows an im-
Table 4: Inter-Annotator agreement on Targets with Peprovement inx over a similar polarity assignment
fect Opinion spans task by Wilson et al. (2005) for the news corpus (
of 0.72). We believe this improvement can partly be
e@l}tributed to the target information available to our

do not often retrieve the exact same span, th
reliably retrieve approximate spans. Interestinglfnmtators'
the agreement numbers between Lenient and Supyx Target Linking

set columns are close. This implies that, in the cases

of inexact matches, the spans retrieved by the twfdS N intuitive first step in evaluating target link-
annotators are still close. They agree on the opinio'ﬂg’ we t_reat ta_rget links in the discourse similarly to
words and differ mostly on the inclusion of func-2naphoric chains and apply methods developed for

tion words (e.g. articles) and observation of syntacSO-reference resolution (Passonneau, 2004) for our
tic boundaries. evaluation. Passonneau’s method is based on Krip-

In similar fashion, Table 3 gives the in,[er_pendorf’sa metric (Krippendorff, 2004) and allows

annotator agreement for target span retrieval. AJQr_ partial matches between.anap.horic. (.:hains. In ad-
ditionally, Table 4 shows the inter-annotator agreedition to this, we evaluate links identified by both
ment for target span retrieval when opinions that dBnnotgtors for the typesgme/ glternatlve labeling

not have an exact match are filtered out. That is, T&&SK With the help of the metric.

ble 4 shows results only for targets of the opinions Fassonneau (2004) reports thatin her co-reference
on which the annotators perfectly agree. As targef@Sk On spoken monologs; varies with the diffi-

are annotated with respect to the opinions, this seEyIty of the corpus (from 0.46 to 0.74). This is rue
ond evaluation removes any effects of disagreemerlfs 0Ur case too. Table 6 shows our agreement for

in the opinion detection task. As seen in Table 4, thighe four typgs of meetings in.the AMI F:orpus: the
improves the inter-coder agreement. kickoff meetlng. (@), the functlonal.de5|gn.(b), the
conceptual design (c) and the detailed design (d).

4.3 Opinion Typeand Polarity Of the meetings, the kickoff meeting (a) we use

In this step, the annotators began with the consens[]gS relatlv'ely clea}r discussions. The concep.tu'al de-
opinion span and target span annotations. We h§1gn meetlng (©) IS Fhe toughest, as as p.art|C|pan.ts
pothesized that given the opinion expression, detefl © EXPressing opinions ab.out a hypothetlcql (desir-
mining whether it is Arguing or Sentiment would notable) remote. In our detailed design meeting (d),

be difficult. Similarly, we hypothesized that targetthere are two final designs being evaluated. On an-

information would make the polarity labeling taskaIyZIngl the chains from the two annotgtors, we dis-
clearer covered that one annotator had maintained two sepa-

As every opinion instance is tagged with a typ _ate ghz_:tin_s fprthe two_re_motes as there is no explicit
inguistic indication (within the 250 utterances) that

‘ . ‘ these two are alternatives. The second annotator, on

ey Typ;ngogmg Po'agg’;;]gg'”g the other hand, used the knowledge that the goal
- 0.95 0.957 of the meeting is to design a single TV remote to
link them as alternatives. Thus by changing just
Table 5: Inter-Annotator agreement on Opinion Type$wo links in the second annotator’s file to account

and Polarity for this, oura for this meeting went up from 0.52
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Meeting: a | bjc | d ative to other constraints), or simply as an argument

Target linking ) 0.79| 0.74 | 0.59 | 0.52 for adhering to the budget.

Relation Labelingf) | 1 | 1 |091] 1 One potential source of problems to the target-
linking process consists of cases where the same
ftem becomes involved in more than one opposition.
For instance, in the example below, speakeini-
tially sets up an alternative between speech recog-
0 0.70. We plan to further exolore other eval nition and buttons as a possible interface for navi-
0 L. /0. pla plore other evallagation, But later, speakek re-frames the choice as
tion methodologies that account for severity of dif-petween having speech recognition only and having
ferences in linking and are more relevant for ouboth options. Connecting up all references to speech

task. Nonetheless, the resulting numbers indicaf€cognition as a target respects the co-reference but
t also results in incorrect conclusions: the speech

that there is sufficient information in the discoursérecognition is an alternative to having both speech
to provide for reliable linking of targets. recognition and buttons.

The high « for the relation type i_den_tiﬁcation @ A:: One thing isinteresting is talking aboutspeech
shows that once the presence of a link is detected,  recognitionin a remote control...

Table 6: Inter-Annotator agreement on Target relatio
identification

it is not difficult to determine if the targets are simi- D:: ... So that we don't need any button on the remote
lar or alternatives to each other control it would be all based on speech.
) A:: ... I think thatwould not work sowell. You wanna

. . haveboth options
45 Discussion P

Our agreement studies help to identify the aspects 6f Related Work

opinion frames that are st_raightforward, an(_1| thOSEvidence from the surrounding context has been
that negd complex reasoning. Our resu!tg IndlcatL?sed previously to determine if the current sentence
that while the labeling tasks such as opinion type

- i ) Should be subjective/objective (Riloff et al., 2003;

opinion pplarlty and target relat.lon type are reI-Pang and Lee, 2004)) and adjacency pair informa-
atively reliable for humans, re.tnevgl of OPINIONS4ihn has been used to predict congressional votes
spans, target spans and target links is more difficul

A common cause of annotation disagreement ghomas et al., 2006). However, these methods do

different interpretation of the utterance, particularly0t explicitly model the relations between opinions.
in the presence of disfluencies and restarts. For efdditionally, in our scheme opinions that are not

ample consider the following utterance where a pain the immediate context may be allowed to influ-

ticipant is evaluating the drawing of another partiCignce the interpretation of a given opinion via target
pant on the white board. chains

(5)  Itsababy shark it lookstome, ... Polanyi and Zaenen (2006), in their discussion on
One annotator interpreted this “it looks to me” agontextual valence shifters, have also observed the

an arguing for the belief that it was indeed a drawPhenomena described in this work - namely that a
ing of a baby sharkpositive Arguing. The sec- central topic may be divided into subtopics in order
ond annotator on the other hand looked at it as t& perform evaluations, and that discourse structure
neutral viewpoint/evaluation $entiment being ex- can influence the overall interpretation of valence.
pressed regarding the drawing. Thus even though Shyder and Barzilay (2007) combine an agree-
both annotators felt an Opinion is being expresseﬂr’]ent model based on contrastive RST relations with
they differed on its type and p0|arity. a local aSpeCt(Or target) model to make a more in-
There are some opinions that are inherently on tHermed overall decision for sentiment classification.
borderline of Sentiment and Arguing. For exampleThe contrastive cue indicates a change in the senti-
consider the followmg utterance where there is af,ont polarity. In our scheme, their aspects would
appeal to importance: - .
be related asameand their high contrast relations
(6) Also importaljt for you all is um thg production cost would result in frames such &BPSNsameSNSP-
must be maximal twelve Euro and fifty cents . . .
same Additionally, our frame relations would link
Here, “also important” might be taken as an assessentiments across non-adjacent clauses, and make
ment of the high value of adhering to the budget (releonnections vialt target relations.
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A Annctation Example B Comparison between Opinion Frames
and Discour se Relations

C:: ... shapesshould be curved so round shapesNothing

square-like - . . : .

C:: ... Soweshouldn’t havetoo square cornergand that kind Opinion frames can align with discourse relations

of thing. between clauses only when the frames represent the

B:: Yeah okay.Not the old box look. dominant relation between two clauses (1); but not

Span Attributes when the opinions occur in the same clause (2); or

O1should be type=Arguing; Polarity=pos; target=t1 ~ when the relation between opinions is not the most

té zcurvid Lir1|<,ty|f>e:(t2,alt)I ) prominent (3); or when two distinct targets are nei-
Nothing type=Arguing; Polarity=neg; target=t :

t2 square-like Link,type=(t1,alt),(t3,same) ther same nor alternatives (4).

O3shouldn’t have type=Arguing; Polarity=neg; target=t3 . . .

0O4too type=Sentiment; Polarity=neg; target=t3 (1)  Non-reinforcing 9p'”'°” frame (SNSP-

t3 square corners  Link,type=(t2,same),(t4,same) same); Contrast discourse relation

O5Not type=Arguing; Polarity=neg; target=t4 D :: And so what | have found and after a lot

t4 the old box look  Link,type=(t3,same) of work actually | draw for you thischema

O6theold box look type=Sentiment; Polarity=neg; target=t4 that can be maybtoo technical for you but

is very important for me you know.

(2) Reinforcing opinion frame (SPSPsame); no
discourserelation
Thirty four percent said it takes too long
to learn to use a remote control, theyant
something that'sasier to usestraight away,
more intuitiveperhaps.

(3) Reinforcing opinion frame (SPSPsame);
Reason discourserelation
She even likes my manga, actually the quote
is: “I like it, because youike it, honey.”
(source: web)

(4) Unréelated opinions; Contrast discoursere-
lation
A :: Yeah, what | have to say about means.
The smart boards okay. Digital penis hor-
rible. 1 dunno if you use it. But if you want
to download it to your computer, it's doesn’t
work. No.
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Abstract

Argumentation is an emerging topic in the
field of human computer dialogue. In this
paper we describe a novel approach to dia-
logue management that has been developed to
achieve persuasion using a textual argumen-
tation dialogue system. The paper introduces
a layered management architecture that mixes
task-oriented dialogue techniques with chat-
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dialogue has rarely focused on persuasive tech-
niques (Guerini, Stock, and Zancanaro, 2004, initi-
ated some research in that field). Our dialogue man-
agement system applies a novel method, taking ad-
vantage of persuasive and argumentation techniques
to achieve persuasive dialogue.
According to the cognitive dissonanceheory

(Festinger, 1957), people will try to minimise the
discrepancy between their behaviour and their be-

bot techniques to achieve better persuasive-

ness in the dialogue. liefs by integrating new beliefs or distorting existing

ones. In this paper, we approach persuasion as a pro-

_ cess shaping user’s beliefs to eventually change their
1 Introduction behaviour.

Human computer dialogue is a wide research area The presented dialogue management system has
in Artificial Intelligence. Computer dialogue is been developed to work on known limitations of cur-
now used at production stage for applications suci¢nt dialogue systems:

as tutorial dialogue — that helps teaching students Theimpression of lack of contras an issue when
(Freedman, 2000) — task-oriented dialogue — thalfe user is interacting with a purely task-oriented di-
achieves a particular, limited task, such as bool@logue system (Farzanfar et al., 2005). The system
ing a trip (Allen et al., 2000) — and chatbot dialogudollows a plan to achieve the particular task, and the
(Levy et al., 1997) — that is used within entertainuser's dialogue moves are dictated by the planner
ment and help systems. and the plan operators.

None of these approaches use persuasion as al'he lack of empathyof computers is also a
mechanism to achieve dialogue goals. Howeveproblem in human-computer interaction for applica-
research towards the use of persuasion in Hdions such as health-care, where persuasive dialogue
man Computer Interactions has spawned around tkeuld be applied (Bickmore and Giorgino, 2004).
field of natural argumentation (Norman and Reedlhe system does not respond to the user’s personal
2003). Similarly research on Embodied Conand emotional state, which sometimes lowers the
versational Agents (ECA) (Bickmore and Picarduser's implication in the dialogue. However, exist-
2005) is also attempting to improve the persuasiveng research (Klein, Moon, and Picard, 1999) shows
ness of agents with persuasion techniques; howhat a system that gives appropriate response to the
ever, it concentrates on the visual representatioser’'s emotion can lower frustration.
of the interlocutor rather than the dialogue man- In human-human communication, these lim-
agement. Previous research on human computiéations reduce the effectiveness of persuasion
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(Stiff and Mongeau, 2002). Even if the response tgproach allows the user to feel more comfortable in
wards the computer is not always identical to théhe dialogue while preserving the dialogue consis-
one to humans, it seems sensible to think that petency provided by the planner. Eventually, this trans-
suasive dialogue systems can be improved by appliates into a more persuasive dialogue (see Section 6).

ing known findings from human-human communi-
cation. 2 Related Work

The dialogue management architecture describq;dersuasion through dialogue is a novel
in this paper (see Figure 1) addresses these dialogy of Human Computer Interaction

management issues by using a novel layered 3R%eiter, Robertson, and Osman (2003),Reed (1998)

!oroach to di.alogue managemgnt, aIIovying the MIX3nd Carenini and Moore (2000) apply persuasive
ing of techniques from task-oriented dialogue man-

_ ) communication principles to natural language
agement and chatbot techniques (see Section 4). generation, but only focus on monologue.

The 3-tier planner for tutoring dialogue by
Zinn, Moore, and Core (2002) provides a di-

|Argumentation/| Long Term Planning Belief

Model Model alogue management technique close to our

1 = approach: a top-tier generates a dialogue plan,
Generation |f | Reaetive Component " the middle-tier genera_tes refinements to the
Model 1™ Monitor plan and the bottom-tier generates utterances.
soma , Mazzotta, de Rosis, and Carofiglio  (2007) also
Model UD Represeptaion propose a planning framework for user-adapted

persuasion where the plan operators are mapped
to natural language (or ECA) generation. How-
ever, these planning approaches do not include a

The use of a planner guarantees the consistenfjfchanism to react to users counter arguments
of the dialogue and the achievement of persuasifgat are difficult to plan beforehand. This paper
goals (see Section 4.2). Argumentative dialogue cdifOPOS€ a novel approach that could improve
be seen as a form of task-oriented dialogue wheff€ Users comfort in the dialogue as well as its
the system’s task is to persuade the user by preseRE"SUASIVENESS.
ing the arguments. Thus, the dialogue manager fir§t
uses a task-oriented dialogue methodology to cre-
ate a dialogue plan that will determine the contenpart of the problem in evaluating persuasive dia-
of the dialogue. The planning component's role isogue is using an effective evaluation framework.
to guarantee the consistency of the dialogue and tivoon (1998) uses the Desert Survival Scenario to
achievement of the persuasive goals. evaluate the difference of persuasion and trust in

In state-of-the-art task-oriented dialogue managénteraction between humans when face-to-face or
ment systems, the planner provides instructions favhen mediated by a computer system (via an instant
a surface realizer (Green and Lehman, 2002), renessaging platform).
sponsible of generating the utterance corresponding The Desert Survival Scenario
to the plan step. Our approach is different to al{Lafferty, Eady, and Elmers, 1974) is a negoti-
low more reactivity to the user and give a feelingation scenario used in team training. The team is
of control over the dialogue. In this layered apput in a scenario where they are stranded in the
proach, the reactive component provides a direct relesert after a plane crash. They have to negotiate a
action to the user input, generating one or more utanking of the most eligible items (knife, compass,
terances for a given plan step, allowing for reactionmap, etc.) that they should keep for their survival.
to user’s counter arguments as well as backchannelFor the evaluation of the dialogue system, a simi-
and chitchat phases without cluttering the plan.  lar scenario is presented to the participants. The user

Experimental results show that this layered aphas to choose an initial preferred ranking of items

Figure 1: Layered Management Architecture

Case Study
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and then engages in a discussion with the dialogwr_map) the system wants the user to believe that

system that tries to persuade the user to change ttee “flashlight” item should be ranked higher than

ranking. At the end of the dialogue, the user has thée “airrmap” item. The argumentation model de-

opportunity to either change or keep the ranking. scribes the argumentation process that is required
The architecture of the dialogue system is deto introduce this new belief: the system first has to

scribed throughout this paper using examples fromnake sure the user believesrigte_|lower (air_map)

the Desert Scenario. The full evaluation protocol isndrate_higher(flashlight)

described in Section 5 and 6. Lower level facts (see Figure 2) are the goal facts
_ ) of the dialogue, the ones the system chooses as di-
4 Dialogue Management Architecture alogue goals, according to known user beliefs and

The following sections provide a description ofih® System’s goal beliefs (e.g. according to the rank-

the dialogue management architecture introduced [R9 the system is trying to defend). The facts in the
Figure 1. middle of the hierarchy are intermediate facts that

need to be asserted during the dialogue. The top-
4.1 Argumentation Model level facts are world knowledge: facts that require

The Argumentation model represents the differedliNimum defense and can be easily grounded in the

arguments (conclusions and premises) that can Fi#logue.

proposed by the user or by the system. Figure A2 Planning Component

gives a simplified example of the Desert Scenario } ) )
The planning component’s task is to find a plan us-

model. _ . .
ing the argumentation model to introduce the re-
Z%th;ilg;te Zizce \riﬁ;yeeyl;nuogvrsé goal(be_found) quire.d facts in the user'g belief j[O support t.he per-
fffffffffffff -+ suasive goals. The plan is describes a path in the ar-
v v gumentation model beliefs hierarchy that translates
goal(signal) goal(stay_put) to argumentation segments in the dialogue.
J Y In our current evaluation method, the goal of the
rate_higher(flashlight) rate_lower(air_map)  gialogue is to change the user's beliefs about the
,,,,,,,,,,,,,,,, | 2 items so that the user eventually changes the rank-
reorder(flashlight > air_map) ing. At the beginning of the dialogue, the ranking of
the system is chosen and persuasive goals are com-
Figure 2: Argumentation Model Sample puted for the dialogue. These persuasive goals cor-

respond to the lower level facts in the argumentation
This model shows the different facts that aremodel — like ‘reorder(flashlight > air_map} in our
known by the system and the relations beprevious example. The available planning operators
tween them. Arrows represent trgupport re- are:
lation between two facts. For examplees- use world(fact) describes a step in the dialogue
cueknowswhereyou are is a support to the fact that introduces a simple fact to the user.
goal(signal) (the user goal is to signal presence to ground(fact) describes a step in the dialogue that
the rescue) as well as a supporgtal (stay put) (the  grounds a fact in the user beliefs. Grounding a fact
user goal is to stay close to the wreckage). This a different task from these world operator as it
relational model is comparable to the argumentawill need more support during the dialogue.
tion framework proposed by Dung (1995), but stores do_support([factO, factl, ...], fact2)describes a
more information about each argument for reasorcomplex support operation. The system will initiate
ing within the planning and reactive component (sea dialogue segment supportifigct2 with the facts
Section 4.2). factlandfactQ, etc. that have previously been intro-
Each fact in this model represents a belief to bduced in the user beliefs.
introduced to the user. For example, when the dia- The planning component can also use two
logue tries to achieve the goedorder(flashlight > non-argumentative operatorsdo_greetings and
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do farewells that are placed respectively at the bethe user that are related to a particular argument.
ginning and the end of the dialogue plan to open andor example, in the Desert Scenario, the operator

close the session.

ground(can(helpatnight, item(flashlight)ynay re-

Here is an example plan using the two argusult in the following set of utterances:

ments described in Figure 2 to support the geal

order(flashlight > air mapy

Step 1 do_greeti ngs

Step 2 use_wor | d(goal (be_found))
ground(rescue_knows_wher e_you_are)

ground( can( hel pat ni ght,
item(flashlight)))

Step 3 do_support ([ can( hel pat ni ght,
item(flashlight))],
rate_hi gher(iten(flashlight)))
do_support (
[ rescue_knows_where_you._are,
goal (befound)],
goal (stay_put))

Step 4 do_support ([ goal (stay_put)],

S(ystem)| think the flashlight could
be useful as it could help us at
ni ght,

U(ser) How is that? W are not going
to nove during the night.

Swell, if we want to collect water,
it will be best to do things at
ni ght and not under the burning
sun.

Ul see. It could be useful then.

In this example, the ground operator has been re-
alized by the reactive component in two different ut-
terances to react to the user’s interaction.

The goal of the reactive component is to make the
user feel that the system understands what has been

said. It is also important to avoid replanning as it
tries to defend the arguments chosen in the plan.

As described in Section 4.2, the planner relies on
the argumentation model to create a dialogue plan.
Encoding all possible defenses and reactions to the
user directly in this model will explode the search

The plan is then interpreted by the reactive comsPace of the planner and require careful authoring

ponent that is responsible for realizing each step #f @void planning iqconsistencﬁasln addition, pre-
a dialogue segment. dicting at the planning level what counter arguments

a user is likely to make requires a prior knowledge
4.3 The Reactive Component of the user’s beliefs. At the beginning of a one-off

The reactive component’s first task is to realize théidlogue, it is not possible to make prior assump-
operators chosen by the planning component into cflons on the user's beliefs; the system has a shal-
alogue utterance(s). However, it should not be midow knowledge of the user’s beliefs and will discover
taken for a surface language realizer. The reacti8€m as the dialogue goes.

component’s task, when realizing the operator, is to Hence, it is more natural to author a reactive di-
decide how to present the particular argumentatioflogue that will respond to the users counter ar-
operator and its parameters to the user according &ments as they come and extends the user beliefs
the dialogue context and the user’s reaction to th@0del as it goes. In our architecture if the user is

argument. This reactive process is described in tf#sagreeing with an argument, the plan is not revised
following sections. directly; if possible, the reactive component selects

new, contextually appropriate, supporting facts for
4.3.1 Realization and Reaction Strategies the current plan operator. It can do this multiple
Each step of the plan describes the general toptmnsecutivdocal repairsif the user needs more con-
of a dialogue segmeht A dialogue segment is vincing and the domain model provides enough de-
a set of utterances from the system and frorfenses. This allows for a simpler planning frame-
work.

ratel ower (iten(air_map)))

Step 5 do_support(...,
reorder (iten(flashlight),

item(air_map)))
Step6dofarewel|s

Yi.e. itis not directly interpreted as an instruction to geie

one unique utterance. 2a new plan could go against the previously used arguments.
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In addition, when available, and even if the useAccording to this labelling, the strategies described
agrees with the current argument, the reactive conmn section 4.3.1 and 4.3.3 are applied.
ponent can also choose from a set of “dialogue o
smoothing” or backchannel utterances to make tH3-3 Revising the plan
dialogue feel more natural. Here is an example from The reactive component will attemiptcal repairs
the Desert Scenario: to the plan by defending the argumentation move
chosen by the planning component. However, there
are cases when the user will still not accept an ar-
gument. In these cases, imposing the belief to the
user is counter-productive and the current goal be-
lief should be dropped from the plan.

For each utterance chosen by the reactive com-
ponent, the belief model of the user is updated to
represent the system knowledge of the user’s be-
liefs. Every time the user agrees to an utterance

S W don’t have nmuch water, we need to
be rescued as soon as possible.
(from plan stepuser_world( goal(befound)))

U right

S| amglad we agree. (backchannel)

S There is a good chance that the
rescue team al ready knows our
wher eabouts. W shoul d be
optimstic and plan accordingly,

don’t you think? from the system, the belief model is extended with
(from plan step: a new belief; in the previous example, when the
use world( rescueknowswhereyou are)) user says| see, it could be useful thenthe sys-

. . tem detects an agreement (see the Section 4.3.2)

4.3.2 Detecting user reactions and extends the user's beliefs model with the be-

The reactive component needs to detect if the Usgéf: can(helpatnight, item(flashlight)) The agree-
is agreeing to its current argument or resisting thgent is then followed by #ocal repair, since the
new fact that is presented. Because the dialogyger doesn't disagree with the statement made, the
management system was developed from the p&fystem also extends the belief model with beliefs rel-
spective of a system that could be easily ported tgyvant to the content of the local repair, thus learning
different domains, choice was made to use a domajfore about the user’s belief model.
independent and robust agreement/disagreement deas 3 result of this process, when the system de-
tection. cides to revise the plan, the planning component

The agreement/disagreement detection is basgges not start from the same beliefs state as previ-
on an utterance classifier. The classifier is a Cagusly. In effect, the system is able to learn user’s be-
cade of binary Support Vector Machines (SVM)jiefs based on the agreement/disagreement with the
(Vapnik, 2000) trained on the ICSI Meeting cor-yser, it can therefore make a more effective use of

pus (Janin etal., 2003). The corpus contains 813Re argumentation hierarchy to find a better plan to
spurt$ annotated with agreement/disagreement ingchieve the persuasive goals.

formation Hillard, Ostendorf, and Shriberg (2003). Still, there are some cases when the planning
A multi-class SVM classifier is trained docal component will be unable to find a new plan from
featuresof the spurts such as a) the length of thgnhe current belief state to the goal belief state — this
spurt, b) the first word of the spurt, c) the bigrams 0gan happen when the planner has exhausted all its
the spurts, and d) part of speech tags. The classificgrgumentative moves for a particular sub-goal. In
tion achieves an accuracy of 83.17% with an N-Folghese cases, the system has to make concessions and
4 ways split cross validation. Additional results anqjrop the persuasive goals that it cannot fulfil. By
comparison with state-of-the-art are available in Apdropping goals, the system will lower the final per-

pendix A. . - _ suasiveness, but guarantees not coercing the user.
During the dialogue, the classifier is applied on

each of the user’s utterances, trying to determine #.3.4 Generation

the user is agreeing or disagreeing with the system. ytterance generation is made at the reactive com-
3speech utterances that have no pauses longer than .5 sB@nent level. In the current version of the dia-

onds. logue management system, the utterance generation
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is based on an extended version of Alicebot AIML These three categories can be used to match
4, the wuser reaction during the dialogue seg-

AIML is an XML language that provides a pat-ment corresponding to the plan operator:
tern/template generation model mainly used fouse.world(goal(survive)) Category 1is used
chatbot systems. An AIML bot defines a set ofas the initiative taking generation. It will be the
categories that associate@pic, the context of the first one to be used when the system comes from
previous bot utterance (call¢bat in the AIML ter- a previously finished stepCategories 2-3are all
minology), amatching patterrthat will match the “defenses” that suppoi€ategory 1 They will be
last user utterance andgeneration template The used to react to the user if no agreement is detected
topic, matchingandthat field define matching pat- from the last utterances. For example, if the user
terns that can contain * wildcards accepting any tosays“what kind of survival insights??”as a reply
ken(s) of the user utterance (e.HEELLO * would to the generation fronCategory 1 a disagreement
match any utterance starting by “Hello”). They ards detected and the reactive component will have a
linked to ageneration templatéhat can reuse the to- contextualised answer as given ¢ategory 2vhose
kens matched by the patterns wildcards to generatdnat pattern matches the last utterance from the
an utterance tailored to the user input and the digystem, thepattern pattern matches the user
logue context. utterance.

For the purpose of layered dialogue management, The dialogue management system uses 187 cate-
the AIML language has been extended to includgories tailored to the Desert Scenario as well as 3737
more features: 1) A new pattern slot has been irgeneral categories coming from the Alice chatbot
troduced to link a set of categories to a particular aand used to generate the dialogue smoothing utter-
gumentation operator; 2) Utterances generations ag@ces. Developing domain specific reactions is a te-
linked to the belief they are trying to introduce todious and slow process that was iteratively achieved
the user and if an agreement is detected, this beligfith Wizard of OZ experiments with real users. In

is added to the user belief model. these experiments, users were told they were going
For example, a set of matching categories for thg have a dialogue with another human in the Desert
Desert Scenario could be: Scenario context. The dialogue system manages the

whole dialogue, except for the generation phase that
is mediated by an expert that can either choose the
Category 1: reaction of the system from an existing set of utter-

Pattern o ances, or type a new one.
Template Surviving i s our

priority, do you want
to hear about ny desert
survival insights?
Category 2 :
Pattern * i nsi ghts
That * survival insights
Template | mean, | had a few

Plan operator: use_wor | d( goal (survive))

5 Persuasiveness Metric

Evaluating a behavior change would require a long-
term observation of the behavior that would be de-
pendent to external elements (Bickmore and Picard,
2005). To evaluate our system, an evaluation proto-

i deas ...common know edge | col measuring the change in the beliefs underlying
suppose. the behavior was chosen. As explained in Section 3,
Category 3 : the Desert Scenario is used as a base for the evalu-
Pattern = ation. Each participant is told that he is stranded in
That * survival insights the desert. The user gives a preferred initial rank-
Template Wl |, we are in this ing R; of the items (knife, compass, map, etc.). The
together. Let nme tell you user then engages in a dialogue with the system. The
of what | think of desert system then attempts to change the user’s ranking to
survival, ok? a different rankingR, through persuasive dialogue.
*http: // ww. al i cebot . org/ At the end of the dialogue, the user can change this
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choice to arrive at a final ranking;. B full system O limited system
The persuasiveness of the dialogue can be mea

sured as the evolution of the distance between interpret &

the user ranking R;, Ry) and the system ranking

(R,). The Kendallr distance (Kendall, 1938) is not coerive &

used to compute the pairwise disagreement betweer

two rankings. The change of the Kendalldis- perceived persuasion &

tance during the dialogue gives an evaluation of the

persuasiveness of the dialogué, s asivencss = Persuasiveness J
K7(R;, Rs) — KT(Ry,Rs). In the current evalu- b a0 s
ation protocol, theR; is always the reverse of the

R;, sOKT(R;, R;) is always the maximum distance Figure 3: Comparative Resulténterpret, not coercive,
possible:” =1 wheren is the number of items to perceived persuasioare on a scale df) — 4] (see Ap-
rank. The minimum Kendall tau distance is 0. If the?€ndiX B). Persuasiveness is on a scale of—10, 10].
system was persuasive enough to make the user in-

vert the initial rankin ; of the system . .
g’PersZCffff_”ffs y Figure 3 reports the independemt, suqsiveness

is maximum and equal to—5—. If the system ,.yic raquits as well as interesting answers to a

does not succ_eed In changing the user ranking, th%rlljestionnaire that the participants filled after each

FPersuasiveness 1S Z€r0. dialogue (see the Appendix B for detailed results

and guestionnaire).

Over all the dialogues, th&ll system is18%

16 participants have been recruited from a variety ahore persuasive than tHinited system. This is

ages (from 20 to 59) and background. They wermeasured by th®., ..4siveness Metric introduced in

all told to use a web application that describes th8ection 5. With thdull system, the participants did

Desert Scenario (see Section 3) and proposes to wm average of.33 swaps of items towardshe sys-

dertake two instant messaging chats with two humaem'’s ranking. With thdimited system, the partic-

users. However, both discussions are managed bipants did an average 6f47 swaps of items away

different versions of the dialogue system, followingfrom the system’s ranking. However, the answers

a similar protocol: to the self evaluategerceived persuasioguestion
show that the participants did not see any significant

e one version of the dialogue is managed by gjfference in the ability to persuade of thieited
limited version of the dialogue system, with nognq thefull systems.

reactive component. This version is.similar to According to the questiointerpret the partici-
a purely task-oriented system, planning and r&;, s found that thémited system understood bet-
vising the plan directly on dialogue failures, o, \vhat they said. This last result might be ex-
¢ the second version is tHell dialogue system plained by the behavior of the systems: timaited
as described in this paper. system drops an argument at every user disagree-
o _ _ ment, making the user believe that the disagreement
Each participant went through one dialogue Wwithyyas understood. THeill system tries to defend the
each system, in a random order. This comparisofygument; if possible with a contextually tailored
shows that the dialogue flexibility provided by thesypport, however, if this is not available, it may use a
reactive component allows a more persuasive digeneric support, making the user believe he was not
logue. In addition, when faced with the second diafy|ly understood.
logue, the participant has formed more beliefs about o, inerpretation of the fact that the discrepancy

the scenario and is more able to counter argue.  onyeen yser self evaluation of the interaction with
5The  evaluation is  available  Online  at the system and the measured persuasion is that, even
http://ww. cs. york. ac. uk/ ai g/ eden if the full system is more argumentative, the user

6 Evaluation Results and Discussion
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didn’t feel coercedl. These results show that a more logic programming and n-person gamastit. Intell.,
persuasive dialogue can be achieved without deteri- 77(2):321-357.

: . . . Farzanfar, R., S. Frishkopf, J. Migneault, and R. Fried-
orating the user perception of the interaction. man. 2005. Telephone-linked care for physical ac-

. tivity: a qualitative evaluation of the use patterns of
7 Conclusion an information technology program for patients.of
) ) Biomedical Informatics38(3):220-228.
Our dialogue management system introduces Festinger, Leon. 1957.A Theory of Cognitive Disso-
novel approach to dialogue management by using nance Stanford University Press. .
a layered model mixing the advantages of state-of:'eedman, R. 2000. Plan-based dialogue managementin

. a physics tutor. IfProceedings of ANLP 'Q0
the-art dialogue management approaches. A plags;jiey "M., K. Mckeown, J. Hirschberg, and E. Shriberg.

ning component tailored to the task of argumenta- 2004. Identifying agreement and disagreement in con-
tion and persuasion searches the ideal path in an ar-versational speech: use of bayesian networks to model

gumentation model to persuade the user. To give &25}9%ﬁtgn%egéggigﬂﬁ;y%%ef'”gﬁ (i):]ég;?fd dis.

reactive and natural feel to the dialogue, this task- coyrse recipe-based model for task-oriented dialogue.
oriented layer is extended by a reactive component Discourse Processe83(2):133-158.

inspired from the chatbot dialogue management afsuerini, M., O. Stock, and M. Zancanaro. 2004. Per-

proach. The Desert Scenario evaluation, providing ;‘:gg'e";disr%ast%%'E%X?_%ﬂﬁf”cal relation selection. In

a simple and independent metric for the persuasivgyjjiard, D., M. Ostendorf, and E. Shriberg. 2003. Detec-
ness of the dialogue system provided a good proto- tion of agreement vs. disagreement in meetings: train-

col for the evaluation of the dialogue system. This ing with unlabeled data. IRroceedings of NAACL'03

one showed to be 18% more persuasive than a puréﬁmn’,\/@}’g Eﬁ %argg’s Igi'n E.?.ngj' E : SEr!lrﬁae% ('ielg?orlt_,

task-oriented system that was not able to react to the cke, and C. Wooters. 2003. The ICSI meeting corpus.
user interaction as smoothly. In Proceedings of ICASSP’03

Our current research on the dialogue manageme'ﬁ?gqa”' ':/',-kG-?)%gffz- '_“8 new measure of rank correlation.
system consists in developing another evaluation d%ei;]orge :'( {Ij\l/loo(n za)Hd I; W. Picard. 1999. This com-

main where a more complex utterance generation puter responds to user frustration.GHI'99.
can be used. This will allow going further than theLafferty, J. C., Eady, and J. Elmers. 197Zhe desert
simple template based system, offering more diverse Survival problem

o th d idi titions: it wilt€YY" D., R. Catizone, B. Battacharia, A. Krotov, and
answers 1o the user and avoiding repetitions, it Wil v \jiks. 1997. Converse:a conversational compan-

also allow us to experiment textual persuasion tai- jon. In Proceedings of 1st International Workshop on

lored to other parameters of the user representation,Human-Computer Conversation

such as the user personality Mazzotta, I., F. de Rosis, and V. Carofiglio. 2007. Por-
) tia: A user-adapted persuasion system in the healthy-

eating domainlintelligent Systems, IEER2(6).

References Moon, Y. 1998. The effects of distance in local versus

Allen, J. F., G. Ferguson, B. W. Miller, E. K. Ringger, and ~ 'émote human-computer interaction. Pmoceedings
T. Sikorski. 2000.Dialogue Systems: From Theory to of SIGCHI'98 .
Practice in TRAINS-96chapter 14. Norman, T|n_10thy J. and Chr_ls Rged. 2008%gumenta-
Bickmore, T. and T. Giorgino. 2004. Some novel aspects ion Machines : New Frontiers in Argument and Com-
of health communication from a dialogue systems per- Putation (Argumentation Library)Springer.
spective. IPAAAI Fall Symposium Reed, C. 1998.Generating Arguments in Natural Lan-
Bickmore, T. W. and R. W. Picard. 2005. Establishing and 9uage Ph.D. thesis, University College London.
maintaining long-term human-computer relationshipd?eiter, E., R. Robertson, and L. M. Osman. 2003.
ACM Trans. Comput.-Hum. Interacl2(2):293-327. Lessons from a failure: generating tailored smoking
Carenini, G. and J. Moore. 2000. A strategy for generat- cessation lettersirtif. Intell., 144(1-2):41-58.
ing evaluative arguments. International Conference Stiff, J. B. and P. A. Mongeau. 200Rersuasive Commu-
on Natural Language Generation nication, second edition. o ,
Dung, P. M. 1995. On the acceptability of argumenté/ap”'K V. N. 2000. The Nature of Statistical Learning

and its fundamental role in nonmonotonic reasoningz_ll]hegry\] D. Moore. and M. G. Core. 2002. A 3-tier
inn, C., J. L. , .G . . -ti

®The answers to theot coercivequestion do not show any ~ Planning architecture for managing tutorial dialogue.
significant difference in the perception of coercion of the t In Proceedings of ITS '02
system.

145



A Agreement/Disagreement Classification

Setup 1| Setup 2
Galley et al. global features 86.92% | 84.07%
Galley et al. Jocal features | 85.62% | 83.11%
Hillard et al. 82% NA

SVM 86.47% | 83.17%

Table 1: Accuracy of different agreement/disagreement
classification approaches.

The accuracy of state-of-the-art techniques
(Hillard, Ostendorf, and Shriberg (2003) and
Galley etal. (2004)) are reported in Table 1 and
compared to our SVM classifier. Two experimental
setups were used:

Setup 1 reproduces Hillard, Ostendorf, and Shriberg
(2003) training/testing split between meetings;

Setup 2 reproduces the N-Fold, 4 ways split used by
Galley et al. (2004).

The SVM results are arguably lower than Galley et al.
system with labeled dependencies. However, this is be-
cause our system only relies on local features of each
utterance, while Galley et al. (2004) ugbal features
(i.e. features describing relations between consecutive u
terances) suggest that adding global features would also
improve the SVM classifier.

B Evaluation Questionnaire

In the evaluation described in section 6, the participants
were asked to give their level of agreement with each
statement on the scale: Strongly disagree (0), Disagree
(1), Neither agree nor disagree (2), Agree (3), Strongly
Agree(4). Table 2 provides a list of questions with the
average agreement level and the result of a paired t-test
between the two system results.
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label guestion full system | limited system | ttest
interpret “In the conversation, the other user inter- 1.73 2.13 0.06
preted correctly what you said”
perceived persuasion “In the conversation, the other user was 2.47 2.53 0.44
persuasive”
not coercive “The other user was not forceful in 2.4 2.73 0.15
changing your opinion”
sluggish “The other user was sluggish and slowjto 1.27 1.27 0.5
reply to you in this conversation”
understand “The other user was easy to understand 3.2 3.13 0.4
in the conversation”
pace “The pace of interaction with the other 2.73 3.07 0.1
user was appropriate in this conversa-
tion”
friendliness "The other user was friendly” 2.93 2.87 04
length length of the dialogue 12min 19s 08min 33s | 0.07
persuasiveness | P.,suasiveness 1.33 -0.47 0.05

Table 2: Results from the evaluation questionnaire.

147




Modeling Vocal Interaction for Text-Independent
Participant Characterization in Multi-Party Conversatio n

Kornel Laskowski

Mari Ostendorf

Tanja Schultz

Cognitive Systems Labs Dept. of Electrical Engineering Cognitive Systems Labs

Universitat Karlsruhe
Karlsruhe, Germany
kornel @r a. uka. de

Abstract

An important task in automatic conversation
understanding is the inference of social struc-
ture governing participant behavior. We ex-
plore the dependence between several social
dimensions, including assigned role, gender,
and seniority, and a set of low-level features
descriptive of talkspurt deployment in a mul-
tiparticipant context. Experiments conducted
on two large, publicly available meeting cor-
pora suggest that our features are quite useful
in predicting these dimensions, excepting gen-
der. The classification experiments we present
exhibit a relative error rate reduction of 37% to
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dimensions from a set of low-level speech activ-
ity features, namely therobabilities of initiating

and continuing talkspurts in specific multipartici-
pant contexts, estimated from entire conversations.
For our purposes, talkspurts (Norwine and Murphy,
1938) are contiguous intervals of speech, with in-
ternal pauses no longer than 0.3 seconds. Features
derived from talkspurts are not only easier to com-
pute than higher-level lexical, prosodic, or dialogue
act features, they are also applicable to scenarios in
which only privacy-sensitive data (Wyatt et al, 2007)
is available. At the current time, relatively little is
known about the predictive power of talkspurt tim-

67% compared to choosing the majority class. ing in the context of large multi-party corpora.

As stated, our primary goal is to quantify the de-
pendence between specific types of speech activity

An important task in automatic conversation underfeatures and specific social dimensions; however,
standing is the inference of social structure goverrfloing so offers several additional benefits. Most
ing participant behavior; in many conversations, thémportantly, the existence of significant dependence
maintenance or expression of that structure is aifould suggest that multiparticipant speech activity
implicit goal, and may be more important than thedetectors (Laskowski, Fugen and Schultz, 2007) re-
propositional content of what is said. lying on models conditioned on such attributes may
There are many social dimensions along whicRutperform those relying on general models. Fur-
participants may differ (Berger, Rosenholtz andhermore, conversational dialogue systems deployed
Zelditch, 1980). Research in social psychology ha§ multi-party scenarios may be perceived as more
shown that such differences among participants eRtlman-like, by humans, if their talkspurt deploy-
tail systematic differences in observed turn-takingnent strategies are tailored to the personalities they
and floor-control patterns (e.g. (Bales, 1950), (Tar@'e designed to embody.
nen, 1996), (Carletta, Garrod and Fraser-Krauss, Computational work which is most similar to that
1998)), and that participant types are not indeperpresented here includes the inference of static dom-
dent of the types and sizes of conversations in whidnance (Rienks and Heylen, 2005) and influence
they appear. In the present work, we consider th@Rienks et al., 2006) rankings. In that work, the au-
dimensions of assigned role, gender, and seniathors employed several speech activity features dif-
ity level. We explore the predictability of thesefering from ours in temporal scale and normaliza-

1 Introduction
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tion. Notably, their features are not probabilitiespus can be successfully inferred frafhusing this
which are directly employable in a speech activityapproach; here, we employ the same framework to
detection system. In addition, several higher-levetlassify participant types in th&-length vectorg,
features were included, such as topic changes, pdor the group as a whole:

ticipant roles, and rates of phenomena such as turns

and interruptions, and these were shown to yield the g" = argmaxP(gl|F)

most robust performance. Our aim is also similar gcg P(g) P(F|g) 1)
. L. . . = argmax g g),
to that in (Vinciarelli, 2007) on radio shows, where gcG S AN ,

the proposed approach relies on the relatively fixed MM BM
tempora_ll str_ucture of productlon broadcasts, a pr_o'?/(/here MM and BM are the membership and behav-
erty which is absent in spontaneous conversanori\(jr models, respectively, and is the set of all pos-
Although (Vinciarelli, 2007) also performs single- » esp Y. P

channel speaker diarization, he does not explore b%'—ble aSS|gnme_nts o . i .
In the remainder of this section, we define the

havior during vocalization overlap. - L Co
. . participant characteristics we explore, which include
Aside from the above, the focus of the major-_ . s
. - o - assigned role, gender, and seniority. We treat these
ity of existing research characterizing participants

is the detection of dynamic rather than static roIeas separate tasks, applying the same classification

(i.e. (Banerjee and Rudnicky, 2004), (Zancanaro %%rgi\ggr”:ﬁ \s/\[gZ:;SSOiZ?gi:tz V\gﬁlquujgaoln S pro-
al, 2006), (Rienks et al., 2006)). From a mathe- '
matical perspective, the research presented herejs) Conversations with Unique Roles
a continuation of our earlier work on meeting typesGiVen a meeting o€ participants, we consider a set
(Laskowski, Ostendorf and Schultz, 2007), and we ' .
rely on much of that material in the presentationOf rolesR = {Ry, Ry, -, R} and assign to each
which follows. participantk, lgkgK, exact_ly one role iMR. An
example group assignment is the veatpof length
K, wherery [k] = Rj. The setR of group assign-
ment alternatives € R is given by permutations
Importantly, we characterize participants in entirex : R — R, wherea € Sk, thesymmetric group on
groups, rather than characterizing each participanf’ symbols’. The number of elements IR is iden-
independently. Doing so allows us to apply contically the number of unique permutations S, a
straints on the group as a whole, eliminating theuantity known as iterder [Sx| = K.
need for hypothesis recombination (in the event that To identify the most likely group assignmerit =
more than one participant is assigned a role which* (r1) given the seff of observables, we iterate
was meant to be unique). Additionally, treatingover theK'! elements of5 x using
groups holistically allows for modeling the interac-
tions between specific pairs of participant types. o = argmax P (Fla(r)) , 2

For each conversation or meetingf & partici- o esK
pants, we compute a feature vectorin which all  where we have elided the priét ( o) assuming that
one-participant and two-participant speech activityt is uniform. Following the application of Equa-
features are found in a particular order, typically im+jon 2, the most likely role of participari is given
posed by microphone channel or seating assignmey o* (r;) [£].
(the specific features are described in Section 4). Alternately, we may be interested in identifying
The goal is to find the most likely group assignmenbnly a subset of the roles iR, namely a leader, or
of participant labels that account for the observed manager. In this case, participant roles are drawn
F. In (Laskowski, Ostendorf and Schultz, 2007), ifrom £ = {L, - L}, under the constraint that exactly
was shown that meeting types in a large meeting cogne participant is assigned the rdle The setl of

2 Characterizing Participants

“Conversation” and “meeting” will be used interchange-  2For an overview of group theoretic notions and notation,
ably in the current work. we refer the reader to (Rotman, 1995).
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alternative group assignments h&sindicator vec- 3 Data
tor members;, 1<;j<K, wherel; [k]is L fork = j
and —L otherwise® We iterate over the indicator
vectors to obtain

In the current work, we use two different corpora of
multi-party meetings. The first, the scenario subset
of the AMI Meeting Corpus (Carletta, 2007), con-
j* = argmax P(F[l;), (3) sists of meetings involvindd = 4 participants who
el K} play different specialist roles in a product design
assuming uniform prior$> (1; ). Following the ap- team. We have observed the recommended division
plication of Equation 3;* is the index of the most of this data into: AMI TRAINSET of 98 meetings;
likely L participant. AMIDEVSET of 20 meetings; and\miI EVAL SET,

We note that this framework for unique role clas-also of 20 meetings. Although each participant takes
sification is applicable to classifying unique rankspart in approximately 4 meetings, the 3 sets are dis-
without first having to collapse them into non-joint in participants. We use only the provided word
unique rank classes as was necessary in (Rienksatignments of these meetings. The corpus is accom-
al., 2006). panied by metadata which specifies the gender and
assigned role of each participant.

The second corpus consists of tBed, Bnr,
The second type of inference we consider is for diand Br o meeting types in the ICSI Meeting Cor-
mensions in which roles are not unique, i.e. whergys (Janin et al., 2003). Each meeting is identified
participants are in principle drawn independentlyby one of{Bed, Bnr , Br o}, as well as a numerical
from a set of alternatives. This naturally includesdentifier 4. We have divided these meetings into:
dimensions such as gender, seniority, age, etC.  |cs|TRAINSET, consisting of the 33 meetings for

As an example, we treat the case of gender. Pajhich ¢ mod 4 € {1,2}; ICSIDEVSET, consist-
ticipant genders are drawn independently fraf= ing of the 18 meetings for whicik mod 4 = 3;
{Q@.,d}. The set of group assignment alternati¥es andicsiEvaL SET, consisting of the 16 meetings for
is given by the Cartesian produgt™, of 2% unique  which d mod 4 = 0. These three sets are not dis-
elements. We search for the most likely group aspint in participants, and the number of instrumented
signmenth®, given the observableB, by iterating participantsK varies from meeting to meeting, be-

2.2 Conversations with Non-Unique Roles

over these elements using tween 3 and 9. The corpus is accompanied by meta-
h* = argmax P(h) P(F|h). (4) data specifying the gender, age, and education level
heHK of each participant. We use only the forced align-
Onceh* is found, the gender of each participans ments of these meetings, available in the accompa-
available inh* [k]. nying MRDA Corpus (Shriberg et al, 2004).

A similar scenario is found for seniority, when
L . fl Features
it is not uniquely ranked. We assume a set o

Ng mutually exclusive seniority levelS; € S =  Qur observation space is the complé&feparticipant
{81,582, -+, Sng}, 1<i<Ng. During search, each yocal interaction on-off pattern description for a
participant’s seniority level is drawn independentlymeetingC, a discretized version of which we denote
from S, leading to group assignmenisc SX, of asq; € {0, 1}K for 1<t<T, whereT is the dura-
which there areV{ . As for gender, we iterate over tion of C in terms of the number of 100 ms frames.

these to find Details regarding the discretization (and subsequent
s* = argmax P(s) P(F|s). (5) feature computation) can be found in (Laskowski,
scSK Ostendorf and Schultz, 2007).
The seniority of participant, following the applica- ~ We compute fromgq; the following feature$
tion of Equation 5, is* [£]. which are the elements df: £, the probabil-

3For completeness, we note that edglcorresponds to a “Feature type superscripts indicate talkspurt initiatibnof
permutations : L — L of 1, and that3 € (r), thecyclicsub-  continuation (), for either single-participant vocalizatiofr'§
group generated by 7, wherer is the permutatior(1, 2, - - -, ). or vocalization overlap@®).
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ity that participantk initiates vocalization at time ticipant is typeg [k]. This model is used for gen-
when no-one else was speakingtat 1; fY'¢, the der (P(h)) and seniority £(s)). The probabilities
probability that participank continues vocalization of specific types are maximum likelihood estimates
at timet¢ when no-one else was speakingtat 1; from the training data.
fgjf, the probability that participant initiates vo-
calization at time: when participantj was speaking 6 Assigned Role Classification
att —1; and /¢ the probability that participant
continues vocalization at timewhen participant;
was speaking at— 1. Values of the features, which For unique role classification, we use the AMI Meet-
are time-independent probabilities, are estimated ulg Corpus. All meetings consist & = 4 par-
ing a variant of the Ising model (cf. (Laskowski, Os-ticipants, and each participant is assigned one of
tendorf and Schultz, 2007)). Additionally, we com-four roles: project manager (PM), marketing expert
pute a featuref), the probability that participant (ME), user interface designer (Ul), or industrial de-
k vocalizes at time, and single-participant aver- signer (ID).
ages of the two-participant featurqg;]gpj’ <f]?kzl>]' AS mentioned in Se.ct'ion 2.1,' f:lassifying the
(f2€),, and (f9C) ;. The complete feature vector Unique role of all participants, jointly, involves
for a conversation of¢ participants then consists of numerating over the possible permutations  of
7K one-participant features, amgk? — K) two- {PM,ME, UL, 1D }. We useami TRAINSET to train
participant features. the behavior model, and then classkyii DEVSET

We note that multiple phenomena contribute té!SINg Equation 2, one feature type at a time, to iden-
the overlap features. The featurg§! are based (fy the best 3 feature types for this task; develop-
on counts from interruptions, backchannels, and prél€nt experiments suggest that classification rates
cise floor handoffs. The featurg’fjc are based on level off after a small handful of the best perform-
counts from interruptions, attempts to hold the floorind feature types is included. Those feature types
and backchannels. Both feature types also contaj#ere found to befy”?, (f77);, and £/, capturing
counts incurred during schism, when the conversdhe probability of initiating a talkspurt in silence, of

6.1 Classifying Unique Roles

tion splits into two sub-conversations. initiating a talkspurt when someone else is speak-
ing, and of initiating a talkspurt when a participant
5 Models in a specific other role is speaking, respectively. On

. . . AMIEVAL SET, these feature types lead to single-
Since K may change from meeting to meeting, th e
: . . feature-type 4-way classification rates of 41%, 29%,
size of the feature vectd must be considered vari- .
and 53%, respectively. When all three types are used

able: We therefore factor the be“"’“’mf model, as[- gether $ K + K ? features in total), the rate is 53%.
suming that all features are mutually independen . .
ccuracy when all feature types are used is 46%, in-

and that each is described by its own univariat(a. . )
. 9 icating that some feature types are detrimental to
Gaussian modeN (u,0*). These parameters arethiS task

maximum likelihood estimates from th& and f; ; : , e .
i T The confusion matrix for classification using the

values in a training set of conversations. In most of . .
. 9 three best feature types is shown in Table 1. The
these experiments, where the number of classes IS -
- matrix shows that association between the reference

small, no parameter smoothing is needed. .

. .. _assignment of PM, as well as of Ul, and the hypoth-
For the cases where the group prior is not uniforni . .
- ; esized assignment based on the three feature types
and participant types are not unique, the member= """ . - -
. . - mentioned is statistically significant. On the other
ship model assumes independent participant types . .
and, assignment of ID and ME does not deviate
and has the general form

significantly from chance.

K
P(g) = J[P(glk]), (6) 6.2 Finding the Manager
k=1

Using the same data as above, we explore the sim-
whereP (g [k] ) is the probability that thé-th par- plified task of finding a specific participant type. We
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Table 1: Confusion matrix for role classification on
AMI EVAL SET; reference assignment is found in the rows
hypothesized assignment in columns. Correctly classifie o005}
roles, along the diagonal, are highlighted in bold. Statis
tical significance of association at the< 0.005 level

per class, using ax2 y2-test, is shown using++" and % 0005 001 0015 002 0025 003 0035 004
“__" for above chance and below chance values, re feature {*

spectively; the same is true of” and “—", for signifi-

cance at th@.005 < p < 0.05 level. Figure 1: Distribution of(fY’, f°1) pairs for each of

(-L,-L), (~L,L), and(L,—L). Ellipses are centered
on AMITRAINSET means and encompass one standard
equate the project manager role with and the re- deviation.

maining roles with-L. This is justified by the AMI
meeting scenario, in which participant groups take a

. i ._ IS also interesting that L is slightly less likely to
product design from start to prototype, and in Whlcr?nitiate a talkspurt whetd is already speaking than

the project manager is expected to make the 900 Phen another L is. This suggests thatL partic-
run smoothly.' ) ipants consistently observe thestatus of the al-

~ The behavior model, trained 0’MITRAINSET,  yo4qy speaking party when contemplating talkspurt
IS applled using Equation 3 to .determlne the mo%roduction. Finally, we note that neither the proba-
likely index ;™ of the leaderL, given the observed iy of continuing a talkspurtf)’© (related to talk-

F, from among thex” = 4 alternatives. To select gt quration) noyr}” (related to overall amount of

the best 3 feature types, we once againAgeDE- talk) are by themselves godd/—L discriminators.
VSET; these turn out to be the same as those for role

classification, namely,’”, (fkoj’>] andf,gjf. Using 7 Gender Classification

these three feature types individually, we are able

to identify the leader PM in 12 of the 20 meetingsGender classification is an example of a task with a

in AMIEVAL SET. When all three are used together,Cartesian search space. For these experiments, we

the identification rate is 60%. However, when alluse the AMI Meeting Corpus and the ICSI Meet-

feature types are used, the identification rate climbag Corpus. In both corpora, gender is encoded in

to 75%. Since all participants are equally likely tothe first letter of each participant’s unique identifier.

be the leader, the baseline for comparison is randohe ratio of male to female occurrences2is: 1

guessing (25% accuracy). in AMITRAINSET, and4 : 1 in ICSITRAINSET.
Figure 1 shows the distribution of two of the se-Choosing the majority class leads to gender classi-

lected features/}’” and /!, for the data inami- fication rates of 65% and 81% @mi EVAL SET and

TRAINSET; we also show the first standard de-CSIEVAL SET, respectively.

viation of the single-Gaussian diagonal-covariance We enumerate alternative group assignments us-

models induced. We first note thg{’/ and f’/ ing Equation 4. Somewhat surprisingly, no single

are correlated, i.e. that the probability of beginningeature type leads tamI EVAL SET or ICSIEVAL SET

a talkspurt in silence is correlated with the probaclassification rates higher than those obtained by hy-

bility of beginning a talkspurt when someone elsgothesizing all participants to be male. @wi DE-

is speaking. L consistently begins more talkspurts,vSET, one feature typeffjf) yields negligibly bet-

both in silence and during other people’s speech. ter accuracy, but does not generalize to the corre-
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sponding evaluation data. Furthermore, the assoaority assignment for all participants using Equa-
ation between reference gender labels and hypothigen 5. The best three feature types, determined
sized gender labels, on both evaluation sets, does nating IcSIDEVSET, are f;, f'/, and f§" (repre-

appear to be statistically significant at the< 0.05 senting the probability of speaking, of beginning a
level. This finding that males and females do notalkspurt when a specific seniority participant is al-
differ significantly in their deployment of talkspurts ready speaking, and of continuing a talkspurt when
is likely a consequence of the social structure of tha specific seniority participant is speaking), yield-
particular groups studied. The fact that AMI rolesing single-feature-type classification rates of 52%,

are acted may also have an effect. 59%, and 59%, respectively. When used together,
o - these three feature types produce the confusion ma-
8 Seniority Classification trix shown in Table 3 and a rate of 61%, better than

() i -
As a second example of non-unique roles, we ai’-Vhe” all feature types are used (58%). This rep

0 i i
tempt to classify participant seniority. For theseresemS a 28% rglatlve error reduc.tlo.n over chance.
s can be seen in the table, association between the

experiments, we use the ICSI Meeting corpus, i ¢ 4 hvoothesized orit . ts i
which each participant’'s education level appears erence and nypoihesized Seniofty assignments 1S
statistically significant on unseen data. It is also

an optional, self-reported attribute. We have man- dent that fusion betw d .
ually clustered these attributes infés = 3 mu- evident that coniusion betwe&RAD and PROFIS

tually exclusive seniority categoriésEach partic- lower than between more proximate seniority levels.

ipant’s seniority is drawn independently frofh = Hyp
. ) Ref
{GRAD, PHD, PROF}; a breakdown forCsITRAIN GRAD PHD  PROF
SET is shown in Table 2. Choosing the majority GRAD | ++11 26 3
class ¢ (PHD) = 0.444 on ICSITRAINSET) yields PHD ~ 2 4441 -3
a classification accuracy of 45% onSIEVAL SET. PROF 0 —— 6 ++10
We note that in this data, education level is closely
correlated with age group. Table 3: Confusion matrix for seniority classification on
ICSIEVAL SET; reference assignment is found in the rows,
Seniority Number of hypothesized assignment in cqumns. Highlighting and
spkrs| occur | meets use of “4-+", “+”,“—", and “——"as in Table 1.
GRAD 15 81 33 . C
HD 13 g7 29 Figure 2 shows the distribution off), f%)
pairs inICSITRAINSET, together with the first stan-
PROF 3 28 28 - L
dard deviation, for each combination of the al-
all 31| 196 33

ready speaking seniority participant and the senior-
Table 2: Breakdown by seniorit§ in ICSITRAINSET by ity participant initiating a new talkspurt (except for

the number of unique participants (spkrs), the numberleROF’ PROF), since there is at most oreROF in

occurrences (occur), and the number of meetings (mee@RCNICSITRAINSET meeting).
in which each seniority occurs. As is clear from the figurePROF participants in

this data talk more than either of the two other se-

niority types. The figure also demonstrates a differ-
8.1 Classifying Participant Types ence of behavior during speech overlap. The four

Independently of Conversation Types ellipses describingsRAD behavior when overlap-

We first treat the problem of classifying participantping with any of the other three classes, as well as
seniority levels independently of the type of converPHD behavior when overlapping withRAD partic-
sation being studied. We identify the most likely seipants, are relatively broad and indicate the absence
Forap indludes @ ad", as well as Under grad” of strong tendency or preferencg. HowevgﬁD .
“B, A" and “Fi ni shed BA in 2001", due to their smayl  P@rticipants are more likely to continue vocalizing in
number of exemplarseHp includes PhD’ and “Post doc™;  Overlap with othePHD participants, and even more
andpRrROFincludes ‘Pr of essor ” only. likely to continue through overlap withROFpartic-
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.
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ICSIDEVSET. This leads to a rate of 63% a@-
SIEVAL SET. Furthermore, if instead of estimating
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X
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feature f°€

05k 0\ [ (GRAD.) vyl | the prior on conversation typE (¢) from the train-
N T A S ing data, we use our meeting type estimates from
oal B o S Gioeron 1 (Laskowski, Ostendorf and Schultz, 2007), the clas-
ome 0 "  PRoEnDy) sification rate increases to 67%. A control experi-
03— ° I 04 Mmentin which the true typg..,; of each test meeting
feature is known, i.e.P (t) = 1if t;. = t and0 otherwise,

shows that the maximum accuracy achievable under

Figure 2: Distribution of(f", f¥') feature value pairs optimal P (¢) estimation is 73%.
for each of the(k, j) participant pairs(GRAD, GRAD),

(GRAD, PHD), (GRAD, PROP), (PHD,GRAD), 9 Conclusions

(PHD,PHD),  (PHD,PROF), (PROFGRAD), and

(PROF, PHD). Ellipses are centered orcsITRAIN-  We have explored several socially meaningful parti-
SET means and encompass one standard deviation.  tions of participant populations in two large multi-
party meeting corpora. These include assigned role,
leadership (embodied by a manager position), gen-
der, and seniority. Our proposed classifier, which

izing in overlap withGRAD participants lies below can represent. participants in groups rather than in-
11 — o (bottom 17%) of their model witkHp partic-  dePendently, is able to leverage the observed differ-
ipants. We believe that the senior researchers in thig'¢®S between specific pairs of pe.lrt|C|pant clas§es.
data are consciously minimizing their overlap withSing only low-level features capturing when partic-

students, who talk less, to make it easier for the lafP@nts choose to vocalize relative to one another, it
ter to speak up. attains relative error rate reductions on unseen data

of 37%, 67%, and 40% over chance on classifying
8.2 Conditioning on Conversation Type role, leadership, and seniority, respectively. We have

We now repeat the experiments in the previous se@lso shown that the same classifier, using the same
tion. but condition the behavior and membershiﬁeaturesl cannot discriminate between genders in ei-

models on meeting type ther corpus.
A comparison of the proposed feature types and

ipants. A similar trend is apparent feROF partici-
pants: the mean likelihood that they continue voca

s = argmax Z P(t) P(s|t) their performance on the tasks we have explored is
seSf teT P(F|s,t), (7 shown in Table 4. Consistently, the most useful fea-
ture types appear to be the probability of initiating
wheret € T = {Bed, Bnr ,Bro}. a talkspurt in silence, and the probability of initiat-

Performance using maximum likelihood esti-ing a talkspurt when a participant of a specific type
mates for the behavior modé? (F |s, ¢) results is already speaking. Additionally, on the ICSI Meet-
in a seniority classification rate ooSIEVAL SET of  ing Corpus, the probability of speaking appears to be
61%, i.e. no improvement over conversation-typedependent on seniority, and the probability of con-
independent classification. We suspect this is dueuing to vocalize in overlap with another partici-
to the smaller amounts of training material. To verpant appears to depend on the seniority of the lat-
ify this assumption, we smooth the maximum liketer. Finally, we note that, for seniority classification
lihood estimatesys, ¢, J%m, towards the maximum on the unseercsiEVAL SET, the top 3 feature types
likelihood conversation-type-independent estimatesutperform the best single feature type, indicating a
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Abstract

We describe a process for automatically de-
tecting decision-making sub-dialogues in tran-
scripts of multi-party, human-human meet-
ings. Extending our previous work on ac-
tion item identification, we propose a struc-
tured approach that takes into account the dif-
ferent roles utterances play in the decision-
making process. We show that this structured
approach outperforms the accuracy achieved
by existing decision detection systems based
on flat annotations, while enabling the extrac-
tion of more fine-grained information that can
be used for summarization and reporting.

1 Introduction

In collaborative and organized work environments,
people share information and make decisions exten-
sively through multi-party conversations, usually in
the form of meetings. When audio or video record-
ings are made of these meetings, it would be valu-
able to extract important information, such as the
decisions that were made and the trains of reason-
ing that led to those decisions. Such a capability
would allow work groups to keep track of courses
of action that were shelved or rejected, and could al-
low new team members to get quickly up to speed.
Thanks to the recent availability of substantial meet-
ing corpora—such as the ISL (Burger et al., 2002),
ICSI (Janin et al., 2004), and AMI (McCowan et
al., 2005) Meeting Corpora—current research on the
structure of decision-making dialogue and its use for
automatic decision detection has helped to bring this
vision closer to reality (Verbree et al., 2006; Hsueh
and Moore, 2007b).
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Our aim here is to further that research by ap-
plying a simple notion of dialogue structure to the
task of automatically detecting decisions in multi-
party dialogue. A central hypothesis underlying our
approach is that this task is best addressed by tak-
ing into account the roles that different utterances
play in the decision-making process. Our claim is
that this approach facilitates both the detection of
regions of discourse where decisions are discussed
and adopted, and also the identification of important
aspects of the decision discussions themselves, thus
opening the way to better and more concise report-
ing.

In the next section, we describe prior work on re-
lated efforts, including our own work on action item
detection (Purver et al., 2007). Sections 3 and 4 then
present our decision annotation scheme, which dis-
tinguishes several types of decision-related dialogue
acts (DAs), and the corpus used as data (in this study
a section of the AMI Meeting Corpus). Next, in Sec-
tion 5, we describe our experimental methodology,
including the basic conception of our classification
approach, the features we used in classification, and
our evaluation metrics. Section 6 then presents our
results, obtained with a hierarchical classifier that
first trains individual sub-classifiers to detect the dif-
ferent types of decision DAs, and then uses a super-
classifier to detect decision regions on the basis of
patterns of these DAs, achieving an F-score of 58%.
Finally, Section 7 presents some conclusions and di-
rections for future work.

2 Related Work

Recent years have seen an increasing interest in re-
search on decision-making dialogue. To a great
extent, this is due to the fact that decisions have
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been shown to be a key aspect of meeting speech.
User studies (Lisowska et al., 2004; Banerjee et al.,
2005) have shown that participants regard decisions
as one of the most important outputs of a meeting,
while Whittaker et al. (2006) found that the develop-
ment of an automatic decision detection component
is critical to the re-use of meeting archives. Identify-
ing decision-making regions in meeting transcripts
can thus be expected to support development of a
wide range of applications, such as automatic meet-
ing assistants that process, understand, summarize
and report the output of meetings; meeting tracking
systems that assist in implementing decisions; and
group decision support systems that, for instance,
help in constructing group memory (Romano and
Nunamaker, 2001; Post et al., 2004; Voss et al.,
2007).

Previously researchers have focused on the in-
teractive aspects of argumentative and decision-
making dialogue, tackling issues such as the detec-
tion of agreement and disagreement and the level
of emotional involvement of conversational partic-
ipants (Hillard et al., 2003; Wrede and Shriberg,
2003; Galley et al., 2004; Gatica-Perez et al., 2005).
From a perhaps more formal perspective, Verbree et
al. (2006) have created an argumentation scheme in-
tended to support automatic production of argument
structure diagrams from decision-oriented meeting
transcripts. Only Hsueh and Moore (2007a; 2007b),
however, have specifically investigated the auto-
matic detection of decisions.

Using the AMI Meeting Corpus, Hsueh and
Moore (2007b) attempt to identify the dialogue acts
(DAs) in a meeting transcript that are “decision-
related”. The authors define these DAs on the ba-
sis of two kinds of manually created summaries: an
extractive summary of the whole meeting, and an
abstractive summary of the decisions made in the
meeting. Those DAs in the extractive summary that
support any of the decisions in the abstractive sum-
mary are then manually tagged as decision-related
DAs. They trained a Maximum Entropy classifier
to recognize this single DA class, using a variety of
lexical, prosodic, dialogue act and topical features.
The F-score they achieved was 0.35, which gives a
good indication of the difficulty of this task.

In our previous work (Purver et al., 2007), we at-
tempted to detect a particular kind of decision com-
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mon in meetings, namely action items—public com-
mitments to perform a given task. In contrast to
the approach adopted by Hsueh and Moore (2007b),
we proposed a hierarchical approach where indi-
vidual classifiers were trained to detect distinct ac-
tion item-related DA classes (task description, time-
frame, ownership and agreement) followed by a
super-classifier trained on the hypothesized class la-
bels and confidence scores from the individual clas-
sifiers that would detect clusters of multiple classes.
We showed that this structured approach produced
better classification accuracy (around 0.39 F-score
on the task of detecting action item regions) than a
flat-classifier baseline trained on a single action item
DA class (around 0.35 F-score).

In this paper we extend this approach to the more
general task of detecting decisions, hypothesizing
that—as with action items—the dialogue acts in-
volved in decision-making dialogue form a rather
heterogeneous set, whose members co-occur in par-
ticular kinds of patterns, and that exploiting this
richer structure can facilitate their detection.

3 Decision Dialogue Acts

We are interested in identifying the main conver-
sational units in a decision-making process. We ex-
pect that identifying these units will help in detect-
ing regions of dialogue where decisions are made
(decision sub-dialogues), while also contributing to
identification and extraction of specific decision-
related bits of information.

Decision-making dialogue can be complex, often
involving detailed discussions with complicated ar-
gumentative structure (Verbree et al., 2006). Deci-
sion sub-dialogues can thus include a great deal of
information that is potentially worth extracting. For
instance, we may be interested in knowing what a
decision is about, what alternative proposals were
considered during the decision process, what argu-
ments were given for and against each of them, and
last but not least, what the final resolution was.

Extracting these and other potential decision com-
ponents is a challenging task, which we do not in-
tend to fully address in this paper. This initial study
concentrates on three main components we believe
constitute the backbone of decision sub-dialogues.
A typical decision sub-dialogue consists of three
main components that often unfold in sequence. (a)



key | DDA class description

I issue utterances introducing the issue or topic under discussion

R resolution utterances containing the decision that is adopted

RP | —proposal — utterances where the decision adopted is proposed

RR | — restatement | — utterances where the decision adopted is confirmed or restated
A agreement utterances explicitly signalling agreement with the decision made

Table 1: Set of decision dialogue act (DDA) classes

A topic or issue that requires some sort of conclu-
sion is initially raised. (b) One or more proposals are
considered. And (c) once some sort of agreement is
reached upon a particular resolution, a decision is
adopted.

Dialogue act taxonomies often include tags
that can be decision-related. For instance, the
DAMSL taxonomy (Core and Allen, 1997) in-
cludes the tags agreement and commit, as well
as a tag open-option for utterances that “sug-
gest a course of action”. Similarly, the AMI
DA scheme! incorporates tags like suggest,
elicit-offer-or-suggestion and assess.
These tags are however very general and do not cap-
ture the distinction between decisions and more gen-
eral suggestions and commitments.”> We therefore
devised a decision annotation scheme that classifies
utterances according to the role they play in the pro-
cess of formulating and agreeing on a decision. Our
scheme distinguishes among three main decision di-
alogue act (DDA) classes: issue (1), resolution (R),
and agreement (A). Class R is further subdivided into
resolution proposal (RP) and resolution restatement
(RR). A summary of the classes is given in Table 1.

Annotation of the issue class includes any utter-
ances that introduce the topic of the decision discus-
sion. For instance, in example (1) below, the utter-
ances “Are we going to have a backup?” and “But
would a backup really be necessary?” are tagged as
1. The classes RP and RR are used to annotate those
utterances that specify the resolution adopted—i.e.
the decision made. Annotation with the class RP
includes any utterances where the resolution is ini-

'A full description of the AMI Meeting Corpus DA scheme
is available at http://mmm.idiap.ch/private/ami/
annotation/dialogue_actsmanual_1.0.pdf, after
free registration.

2 Although they can of course be used to aid the identification
process—see Section 5.3.
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tially proposed (like the utterance “I think maybe we
could just go for the kinetic energy... ”). Sometimes
decision discussions include utterances that sum up
the resolution adopted, like the utterance “Okay,
fully kinetic energy” in (1). This kind of utterance
is tagged with the class RR. Finally, the agreement
class includes any utterances in which participants
agree with the (proposed) resolution, like the utter-
ances “Yeah” and “Good” as well as “Okay” in di-
alogue (1).

(1) A: Are we going to have a backup?
Or we do just—
B: But would a backup really be necessary?
A: I think maybe we could just go for the
kinetic energy and be bold and innovative.
C: Yeah.
B: I think— yeah.
A: It could even be one of our selling points.
C: Yeah —laugh—.
D: Environmentally conscious or something.
A: Yeah.
B: Okay, fully kinetic energy.
D: Good.?

Note that an utterance can be assigned to more
than one of these classes. For instance, the utter-
ance “Okay, fully kinetic energy” is annotated both
as RR and A. Similarly, each decision sub-dialogue
may contain more than one utterance corresponding
to each class, as we saw above for issue. While
we do not a priori require each of these classes to
be present for a set of utterances to be considered
a decision sub-dialogue, all annotated decision sub-
dialogues in our corpus include the classes /, RP and
A. The annotation process and results are described
in detail in the next section.

>This example was extracted from the AMI dialogue

ES2015¢ and has been modified slightly for presentation pur-
poses.



4 Data: Corpus & Annotation

In this study, we use 17 meetings from the AMI
Meeting Corpus (McCowan et al., 2005), a pub-
licly available corpus of multi-party meetings con-
taining both audio recordings and manual transcrip-
tions, as well as a wide range of annotated infor-
mation including dialogue acts and topic segmenta-
tion. Conversations are all in English, but they can
include native and non-native English speakers. All
meetings in our sub-corpus are driven by an elicita-
tion scenario, wherein four participants play the role
of project manager, marketing expert, interface de-
signer, and industrial designer in a company’s de-
sign team. The overall sub-corpus makes up a total
of 15,680 utterances/dialogue acts (approximately
920 per meeting). Each meeting lasts around 30
minutes.

Two authors annotated 9 and 10 dialogues each,
overlapping on two dialogues. Inter-annotator
agreement on these two dialogues was similar to
(Purver et al., 2007), with kappa values ranging
from 0.63 to 0.73 for the four DDA classes. The
highest agreement was obtained for class RP and the
lowest for class A.*

On average, each meeting contains around 40
DAs tagged with one or more of the DDA sub-
classes in Table 1. DDAs are thus very sparse, cor-
responding to only 4.3% of utterances. When we
look at the individual DDA sub-classes this is even
more pronounced. Utterances tagged as issue make
up less than 0.9% of utterances in a meeting, while
utterances annotated as resolution make up around
1.4%—1% corresponding to RP and less than 0.4%
to RR on average. Almost half of DDA utterances
(slightly over 2% of all utterances on average) are
tagged as belonging to class agreement.

We compared our annotations with the annota-
tions of Hsueh and Moore (2007b) for the 17 meet-
ings of our sub-corpus. The overall number of ut-
terances annotated as decision-related is similar in
the two studies: 40 vs. 30 utterances per meeting on
average, respectively. However, the overlap of the
annotations is very small leading to negative kappa
scores. As shown in Figure 1, only 12.22% of ut-

*The annotation guidelines we used are available on-
line at http://godel.stanford.edu/twiki/bin/
view/Calo/CaloDecisionDiscussionSchema
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Figure 1: Overlap with AMI annotations

terances tagged with one of our DDA classes corre-
spond to an utterance annotated as decision-related
by Hsueh & Moore. While presumably this is a
consequence of our different definitions for DDAs,
it seems also partially due to the fact that some-
times we disagreed about where decisions were be-
ing made. Most of the overlap is found with ut-
terances tagged as resolution (RP or RR). Around
32% of utterances tagged as resolution overlap with
AMI DDAs, while the overlap with utterances anno-
tated as issue and agreement is substantially lower—
around 7% and 1.5%, respectively. This is perhaps
not surprising given their definition of a “decision-
related” DA (see Section 2). Classes like issue and
especially agreement shape the interaction patterns
of decision-sub-dialogues, but are perhaps unlikely
to appear in an extractive summary.’

5 Experiments

5.1 Classifiers

Our hierarchical approach to decision detection in-
volves two steps:

1. We first train one independent sub-classifier for
the identification of each of our DDA classes,
using features derived from the properties of
the utterances in context (see below).

2. To detect decision sub-dialogues, we then train
a super-classifier, whose features are the hy-
pothesized class labels and confidence scores

3 Although, as we shall see in Section 6.2, they contribute
to improve the detection of decision sub-dialogues and of other
DDA classes.



from the sub-classifiers, over a suitable win-
dow.®
The super-classifier is then able to “correct” the

DDA classes hypothesized by the sub-classifiers on
the basis of richer contextual information: if a DA is
classified as positive by a sub-classifier, but negative
by the super-classifier, then this sub-classification is
“corrected”, i.e. it is changed to negative. Hence
this hierarchical approach takes advantage of the fact
that within decision sub-dialogues, our DDAs can be
expected to co-occur in particular types of patterns.

We use the linear-kernel support vector machine
classifier SVMlight (Joachims, 1999) in all classifi-
cation experiments.

5.2 Evaluation

In all cases we perform 17-fold cross-validation,
each fold training on 16 meetings and testing on the
remaining one.

We can evaluate the performance of our approach
at three levels: the accuracy of the sub-classifiers in
detecting each of the DDA classes, the accuracy ob-
tained in detecting DDA classes after the output of
the sub-classifiers has been corrected by the super-
classifier, and the accuracy of the super-classifier
in detecting decision sub-dialogues. For the DDA
identification task (both uncorrected and corrected)
we use the same lenient-match metric as Hsueh and
Moore (2007b), which allows a margin of 20 sec-
onds preceding and following a hypothesized DDA.’
We take as reference the results they obtained on de-
tecting their decision-related DAs.

For the evaluation of the decision sub-dialogue
detection task, we follow (Purver et al., 2007) and
use a windowed metric that divides the dialogue into
30-second windows and evaluates on a per window
basis. As a baseline for this task, we compare the
performance of our hierarchical approach to a flat
classification approach, first using the flat annota-
tions of Hsueh and Moore (2007a) that only include
a single DDA class, and second using our annota-
tions, but for the binary classification of whether an
utterance is decision-related or not, without distin-
guishing among our DDA sub-classes.

The width of this window is estimated from the training
data and corresponds to the average length in utterances of a
decision sub-dialogue—25 in our sub-corpus.

"Note that here we only give credit for hypotheses based on
a 1-1 mapping with the gold-standard labels.
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5.3 Features

To train the DDA sub-classifiers we extracted utter-
ance features similar to those used by Purver et al.
(2007) and Hsueh and Moore (2007b): lexical un-
igrams and durational and locational features from
the transcripts; prosodic features extracted from the
audio files using Praat (Boersma, 2001); general DA
tags and speaker information from the AMI annota-
tions; and contextual features consisting of the same
set of features from immediately preceding and fol-
lowing utterances. Table 2 shows the full feature set.

Lexical unigrams after text normalization

Utterance | length in words, duration in seconds,
percentage of meeting

Prosodic | pitch & intensity min/max/mean/dev,
pitch slope, num of voice frames

DA AMI dialogue act class

Speaker speaker id & AMI speaker role

Context features as above for utterances
w+-1...u+/-5

Table 2: Features for decision DA detection

6 Results
6.1 Baseline

On the task of detecting decision-related DAs,
Hsueh and Moore (2007b) report an F-score of 0.33
when only lexical features are employed. Using
a combination of different features allows them to
boost the score to 0.35. Although the differences
both in definition and prior distribution between
their DAs and our DDA classes make direct com-
parisons unstraightforward (see Sec. 4), we consider
this result a baseline for the DDA detection task.

As a baseline system for the decision sub-
dialogue detection task, we use a flat classifier
trained on the word unigrams of the current utter-
ance (lexical features) and the unigrams of the im-
mediately preceding and following utterances (+/-
1-utterance context). Table 3 shows the accuracy per
30-second window obtained when a flat classifier is
applied to AMI annotations and to our own anno-
tations, respectively.® In general, the flat classifiers
yield high recall (over 90%) but rather low precision
(below 35%).

8Note that the task of detecting decision sub-dialogues is not
directly addressed by (Hsueh and Moore, 2007b).



As can be seen, using our DA annotations (CALO
DDAs) with all sub-classes merged into a single
class yields better results than using the AMI DDA
flat annotations. The reasons behind this result are
not entirely obvious. In principle, our annotated
DDAs are by definition less homogeneous than the
AMI DDAs, which could lead to a lower perfor-
mance in a simple binary approach. It seems how-
ever that the regions that contain our DDAs are
easier to detect than the regions that contain AMI
DDAs.

Flat classifier | Re Pr F1
AMI DDAs 97 21 34
CALODDAs | .96 .34 .50

Table 3: Flat classifiers with lexical features and +/-1-
utterance context

6.2 Hierarchical Results

Performance of the hierarchical classifier with lex-
ical features and +/- 1-utterance context is shown
in Table 4. The results of the super-classifier can
be compared directly to the baseline flat classifier
of Table 3. We can see that the use of the super-
classifier to detect decision sub-dialogues gives a
significantly improved performance over the flat ap-
proach. This is despite low sub-classifier perfor-
mance, especially for the classes with very low fre-
quency of occurrence like RR. Precision for decision
sub-dialogue detection improves around 0.5 points
(p < 0.05 on an paired ¢-test), boosting F-scores to
0.55 (p < 0.05). The drop in recall from 0.96 to
0.91 is not statistically significant.

sub-classifiers super
I RP RR A | classifier
Re | .25 44 .09 .88 91
Pr| .21 24 .14 .18 .39
F1 | .23 .31 .11 .30 .55

Table 4: Hierarchical classifier with lexical features and
+/—1-utterance context

We investigated whether we could improve results
further by using additional features, and found that
we could. The best results obtained with the hierar-
chical classifier are shown in Table 5. We applied
feature selection to the features shown in Table 2
using information gain and carried out several trial
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classifier experiments. Like Purver et al. (2007) and
(Hsueh and Moore, 2007b), we found that lexical
features increase classifier performance the most.

As DA features, we used the AMI DA tags
elicit-assessment, suggest and assess for
classes I and A; and tags suggest, fragment and
stall, for classes RP and RR. Only the DA features
for the Resolution sub-classes (RP and RR) gave sig-
nificant improvements (p < 0.05). Utterance and
speaker features were found to improve the recall
of the sub-classes significantly (p < 0.05), and the
precision of the super-classifier (p < 0.05). As for
prosodic information, we found minimum and max-
imum intensity to be the most generally predictive,
but although these features increased recall, they
caused precision and F-scores to decrease.

When we experimented with contextual features
(i.e. features from utterances before and after the
current dialogue act), we only found lexical contex-
tual features to be useful. With the current dataset,
for classes I, RP and RR, the optimal amount of lex-
ical contextual information turned out to be +/- 1
utterances, while for class A increasing the amount
of lexical contextual information to +/-5 utterances
yielded better results, boosting both precision and
F-score (p < 0.05). Speaker, utterance, DA and
prosodic contextual features gave no improvement.

The scores on the left hand side of Table 5 show
the best results obtained with the sub-classifiers for
each of the DDA classes. We found however that
the super-classifier was able to improve over these
results by correcting the hypothesized labels on the
basis of the DDA patterns observed in context (see
the corrected results on Table 5). In particular, preci-
sion increased from 0.18 to 0.20 for class / and from
0.28 to 0.31 for class RP (both results are statisti-
cally significant, p < 0.05). Our best F-score for
class RP (which is the class with the highest over-
lap with AMI DDAs) is a few points higher than the
one reported in (Hsueh and Moore, 2007b)—0.38
vs. 0.35, respectively.

Next we investigated the contribution of the class
agreement. Although this class is not as informa-
tive for summarization and reporting as the other
DDA classes, it plays a key role in the interactive
process that shapes decision sub-dialogues. Indeed,
including this class helps to detect other more con-
tentful DDA classes such as issue and resolution.



sub-classifiers corr. sub-classifiers || corr. sub. w/o A || super | super

I RP RR A I RP RR A I RP RR || woA || withA
Re || 45 49 .18 .55 43 48 .18 55| 43 48 .18 91 .88
Pr || .18 28 .14 .30 .20 .31 .14 30| .18 .30 .14 .36 43
F1 | .25 36 .16 39| .28 38 .16 39| .26 .37 .16 52 .58

Table 5: Hierarchical classifier with uncorrected and corrected results for sub-classifiers, with and w/o class A; lexical,
utterance, and speaker features; +/—1-utt lexical context for [-RP-RR and +/-5-utt lexical context for A.

Table 5 also shows the results obtained with the hi-
erarchical classifier when class A is ignored. In this
case the small correction observed in the precision of
classes I and RP w.r.t. the original output of the sub-
classifiers is not statistically significant. The perfor-
mance of the super-classifier (sub-dialogue detec-
tion) also decreases significantly in this condition:
0.43 vs. 0.36 precision and 0.58 vs. 0.52 F-score
(p < 0.09).

6.3 Robustness to ASR output

Finally, since the end goal is a system that can au-
tomatically extract decisions from raw audio and
video recordings of meetings, we also investigated
the impact of ASR output on our approach. We
used SRI’s Decipher (Stolcke et al., 2008)° to pro-
duce word confusion networks for our 17 meeting
sub-corpus and then ran our detectors on the WCNs’
best path. Table 6 shows a comparison of F-scores.
The two scores shown for the super-classifier cor-
respond to using the best feature set vs. using only
lexical features. When ASR output is used, the re-
sults for the DDA classes decrease between 6 and
11 points. However, the performance of the super-
classifier does not experience a significant degrada-
tion (the drop in F-score from 0.58 to 0.51 is not
statistically significant). The results obtained with
the hierarchical detector are still significantly higher
than those achieved by the flat classifier (0.51 vs.
0.50, p < 0.05).

F1 I RP RR A | super | flat
WCNs | .22 30 .08 .28 | .51/.51 | .50
Manual | .28 38 .16 .39 | .58/.55 | .50

Table 6: Comparison of F-scores obtained with WCNs
and manual transcriptions

°Stolcke et al. (2008) report a word error rate of 26.9% on
AMI meetings.
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7 Conclusions & Future Work

We have shown that our earlier approach to action
item detection can be successfully applied to the
more general task of detecting decisions. Although
this is indeed a hard problem, we have shown that
results for automatic decision-detection in multi-
party dialogue can be improved by taking account
of dialogue structure and applying a hierarchical
approach. Our approach consists in distinguish-
ing between the different roles utterances play in
the decision-making process and uses a hierarchi-
cal classification strategy: individual sub-classifiers
are first trained to detect each of the DDA classes;
then a super-classifier is used to detect patterns of
these classes and identify decisions sub-dialogues.
As we have seen, this structured approach outper-
forms the accuracy achieved by systems based on
flat classifications. For the task of detecting deci-
sion sub-dialogues we achieved 0.58 F-score in ini-
tial experiments—a performance that proved to be
rather robust to ASR output. Results for the individ-
ual sub-classes are still low and there is indeed a lot
of room for improvement. In future work, we plan to
increase the size of our data-set, and possibly extend
our set of DDA classes, by for instance including
a disagreement class, in order to capture additional
properties of the decision-making process.

We believe that our structured approach can help
in constructing more concise and targeted reports of
decision sub-dialogues. An immediate further ex-
tension of the current work will therefore be to in-
vestigate the automatic production of useful descrip-
tive summaries of decisions.
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Abstract

We propose to use user simulation for testing
during the development of a sophisticated dia-
log system. While the limited behaviors of the
state-of-the-art user simulation may not cover
important aspects in the dialog system testing,
our proposed approach extends the functional-
ity of the simulation so that it can be used at
least for the early stage testing before the sys-
tem reaches stable performance for evaluation
involving human users. The proposed ap-
proach includes a set of evaluation measures
that can be computed automatically from the
interaction logs between the user simulator
and the dialog system. We first validate these
measures on human user dialogs using user
satisfaction scores. We also build a regression
model to estimate the user satisfaction scores
using these evaluation measures. Then, we
apply the evaluation measures on a simulated
dialog corpus trained from the real user cor-
pus. We show that the user satisfaction scores
estimated from the simulated corpus are not
statistically different from the real users’ satis-
faction scores.

1 Introduction

Spoken dialog systems are being widely used in
daily life. The increasing demands of such systems
require shorter system development cycles and
better automatic system developing techniques. As
a result, machine learning techniques are applied to
learn dialog strategies automatically, such as rein-
forcement learning (Singh et al., 2002; Williams &
Young, 2007), supervised learning (Henderson et

“ This study was conducted when the author was an intern at
Bosch RTC.
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al., 2005), etc. These techniques require a signifi-
cant amount of training data for the automatic
learners to sufficiently explore the vast space of
possible dialog states and strategies. However, it is
always hard to obtain training corpora that are
large enough to ensure that the learned strategies
are reliable. User simulation is an attempt to solve
this problem by generating synthetic training cor-
pora using computer simulated users. The simu-
lated users are built to mimic real users' behaviors
to some extent while allowing them to be pro-
grammed to explore unseen but still possible user
behaviors. These simulated users can interact with
the dialog systems to generate large amounts of
training data in a low-cost and time-efficient man-
ner. Many previous studies (Scheffler, 2002;
Pietquin, 2004) have shown that the dialog strate-
gies learned from the simulated training data out-
perform the hand-crafted strategies. There are also
studies that use user simulation to train speech rec-
ognition and understanding components (Chung,
2004).

While user simulation is largely used in dialog
system training, it has only been used in limited
scope for testing specific dialog system compo-
nents in the system evaluation phase (L6pez-Cdézar
et al., 2003; Filisko and Seneff, 2006). This is
partly because the state-of-the-art simulated users
have quite limited abilities in mimicking human
users' behaviors and typically over-generate possi-
ble dialog behaviors. This is not a major problem
when using simulated dialog corpus as the training
corpus for dialog strategy learning because the
over-generated simulation behaviors would only
provide the machine learners with a broader dialog
state space to explore (Ai et al., 2007). However,
realistic user behaviors are highly desired in the
testing phase because the systems are evaluated
and adjusted based on the analysis of the dialogs
generated in this phase. Therefore, we would ex-
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pect that these user behaviors are what we will see
in the final evaluation with human users. In this
case, any over-generated dialog behaviors may
cause the system to be blamed for untargeted func-
tions. What is more, the simulated users cannot
provide subjective user satisfaction feedback
which is also important for improving the systems.

Since it is expensive and time-consuming to test
every version of the system with a significant
amount of paid subjects, the testing during the de-
velopment is typically constrained to a limited
number of users, and often, to repeated users who
are colleagues or developers themselves. Thus, the
system performance is not always optimized for
the intended users.

Our ultimate goal is to supplement human test-
ing with simulated users during the development to
speed up the system development towards desired
performance. This would be especially useful in
the early development stage, since it would avoid
conducting tests with human users when they may
feel extremely frustrated due to the malfunction of
the unstable system.

As a first attempt, we try to extend the state-of-
the-art user simulation by incorporating a set of
new but straightforward evaluation measures for
automatically assessing the dialog system perform-
ance. These evaluation measures focus on three
basic aspects of task-oriented dialog systems: un-
derstanding ability, efficiency, and the appropri-
ateness of the system actions. They are first
applied on a corpus generated between a dialog
system and a group of human users to demonstrate
the validity of these measures with the human us-
ers' satisfaction scores. Results show that these
measures are significantly correlated with the hu-
man users' satisfactions. Then, a regression model
is built to predict the user satisfaction scores using
these evaluation measures. We also apply the re-
gression model on a simulated dialog corpus
trained from the above real user corpus, and show
that the user satisfaction scores estimated from the
simulated dialogs do not differ significantly from
the real users’ satisfaction scores. Finally, we con-
clude that these evaluation measures can be used to
assess the system performance based on the esti-
mated user satisfaction.

2 User Simulation Techniques
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Most user simulation models are trained from dia-
log corpora generated by human users. Earlier
models predict user actions based on simple rela-
tions between the system actions and the following
user responses. (Eckert et al., 1997) first suggest a
bigram model to predict the next user's action
based on the previous system's action. (Levin et al.,
2000) add constraints to the bigram model to ac-
cept the expected dialog acts only. However, their
basic assumption of making the next user's action
dependent only on the system's previous action is
oversimplified. Later, many studies model more
comprehensive user behaviors by adding user goals
to constrain the user actions (Scheffler, 2002; Piet-
quin, 2004). These simulated users mimic real user
behaviors in a statistical way, conditioning the user
actions on the user goals and the dialog contexts.
More recent research defines agenda for simulated
users to complete a set of settled goals (Schatz-
mann et al., 2007). This type of simulated user up-
dates the agenda and the current goal based on the
changes of the dialog states.

In this study, we build a simulated user similar
to (Schatzmann et al., 2007) in which the simulated
user keeps a list of its goals and another agenda of
actions to complete the goals. In our restaurant se-
lection domain, the users’ tasks are to find a de-
sired restaurant based on several constraints
specified by the task scenarios. We consider these
restaurant constraints as the goals for the simulated
user. At the beginning of the dialog, the simulated
user randomly generates an agenda for the list of
the ordered goals corresponding to the three con-
straints in requesting a restaurant. An agenda con-
tains multiple ordered items, each of which
consists of the number of constraints and the spe-
cific constraints to be included in each user utter-
ance. During the dialog, the simulated user updates
its list of goals by removing the constraints that
have been understood by the system. It also re-
moves from its agenda the unnecessary actions that
are related to the already filled goals while adding
new actions. New actions are added according to
the last system’s question (such as requesting the
user to repeat the last utterance) as well as the
simulated user’s current goals. The actions that
address the last system’s question are given higher
priorities then other actions in the agenda. For ex-
ample, if the dialog system fails to understand the
last user utterance and thus requests a clarification,
the simulated user will satisfy the system’s request



before moving on to discuss a new constraint. The
simulated user updated the agenda with the new
actions after each user turn.

The current simulated user interacts with the
system on the word level. It generates a string of
words by instantiating its current action using pre-
defined templates derived from previously col-
lected corpora with real users. Random lexical
errors are added to simulate a spoken language
understanding performance with a word error rate
of 15% and a semantic error rate of 11% based on
previous experience (Weng et al., 2006).

3 System and Corpus

CHAT (Conversational Helper for Automotive
Tasks) is a spoken dialog system that supports na-
vigation, restaurant selection and mp3 player ap-
plications. The system is specifically designed for
users to interact with devices and receive services
while performing other cognitive demanding, or
primary tasks such as driving (Weng et al., 2007).
CHAT deploys a combination of off-the-shelf
components, components used in previous lan-
guage applications, and components specifically
developed as part of this project. The core compo-
nents of the system include a statistical language
understanding (SLU) module with multiple under-
standing strategies for imperfect input, an informa-
tion-state-update dialog manager (DM) that
handles multiple dialog threads and mixed initia-
tives (Mirkovic and Cavedon, 2005), a knowledge
manager (KM) that controls access to ontology-
based domain knowledge, and a content optimizer
that connects the DM and the KM for resolving
ambiguities from the users' requests, regulating the
amount of information to be presented to the user,
as well as providing recommendations to users. In
addition, we use Nuance 8.5* with dynamic gram-
mars and classbased n-grams, for speech recogni-
tion, and Nuance Vocalizer 3.0 for text-to-speech
synthesis (TTS). However, the two speech compo-
nents, i.e., the recognizer and TTS are not used in
the version of the system that interacts with the
simulated users.

The CHAT system was tested for the navigation
domain, the restaurant selection and the MP3 mu-
sic player. In this study, we focus on the dialog
corpus collected on the restaurant domain only. A

! See http://www.nuance.com for details.

166

small number of human users were used as dry-run
tests for the system development from November,
2005 to January, 2006. We group the adjacent dry-
runs to represent system improvement stages on a
weekly basis. Table 1 shows the improvement
stages, the dry-run dates which each stage in-
cludes, and the number of subjects tested in each
stage. A final evaluation was conducted during
January 19-31, 2006, without any further system
modifications. This final evaluation involved 20
paid subjects who were recruited via internet ad-
vertisement.

Only the users in the final evaluation completed
user satisfaction surveys after interacting with the
system. In the survey, users were asked to rate the
conversation from 6 perspectives, each on a 5-
point scale: whether the system was easy to use,
whether the system understood the user well,
whether the interaction pattern was natural,
whether the system's actions were appropriate,
whether the system acted as expected, and whether
the user was willing to use the system on a regular
base. A user satisfaction score was computed as
the average of the 6 ratings.

Stage Dry-run Dates Users

1 11/21/05, 11/22/05

N

11/30/05, 12/1/05, 12/2/05

12/7/05, 12/8/05

12/13/05, 12/14/05, 12/15/05

12/19/05, 12/20/05, 12/21/05

12/27/05, 12/28/05

1/4/06, 1/5/06

1/10/06, 1/11/06, 1/13/06

O 0N O (Ol ]|W]|N
WA IN N [~OTIN|W

1/16/06, 1/17/06

Table 1: Dry-runs

Nine tasks of restaurant selections were used in
both dry-runs and the final evaluation using 12
constraints in total (e.g., cuisine type, price level,
location). These 12 constraints are spread across
the nine tasks evenly with three constraints per
task. In addition, each task is carefully worded
based on the task-constrained and language-
unconstrained guideline. In other words, we want
the users to form an intended mental context while
trying to prevent them from copying the exact
phrasing in the task description. During the dry-
runs, the users randomly pick three to four tasks to



Utterances

Constraints Understood by the

Action Types & Under-

System standing Status

Userl: I'm looking for a five star Thai [ltalian]
restaurant accept credit cards

Action: req_info
Slots conveyed: 3 slots

System1: There are 7 restaurants that have
a five star rating, accept credit cards, and
serve Thai food in my database. Here are
the first few: TeJUS, Slam Corner Cate,
Setha's Restaurant. Should | continue?

service level=five star
cuisine type=Thai
payment type=credit card

Action: pro_info
Slots accepted: 3 slots
Completely matched: 2 slots

User2: | need to look for Italian restaurant

Action: rereq_info
Slot conveyed: 1 slot

System2: Are you looking for a restaurant
that serves Italian food?

service level=five star
cuisine type=ltalian (unconfirmed)
payment type=credit card

Action: exp_confirm
Slot updated: 1 slot
Completely matched: 2.5 slot

User3: yes

Action: exp_confirm
Slot conveyed: 1 slot

System3: | found 38 restaurants that serve
Italian food, accept credit cards and have a
five star rating, for example, Toto Café ...

service level=five star
cuisine type=ltalian (confirmed)
payment type=credit card

Action: pro_info
Slots accepted: 3 slots
Completely matched: 3 slots

User4: I'm done.

Action: close_dialog

Table 2: A Sample Dialog with Annotations.

test the system, while in the final evaluation each
user is required to complete all of the 9 tasks. As a
result of the final evaluation in the restaurant do-
main with 2500 restaurants, we reached a task
completion rate of 94% with a word recognition
rate of 85%, and a semantic accuracy rate of 89%.

4  Evaluation Measures

In this section, we describe in detail the evaluation

measures covering three basic aspects of task-
oriented dialog systems: understanding ability, ef-
ficiency, and the appropriateness of the system
actions.

4.1 Understanding Ability Measures

Human-human dialog is a process to reach mutual
understandings between the dialog partners by ex-
changing information through the dialog. This in-
formation exchanging process also takes place in
the interaction between users and spoken dialog
systems. In a task-oriented conversation, the dialog
system's major task is to understand the users'
needs in order to provide the right service. In the
information-state update framework, the system
continuously updates its information-states during
the dialog while the users are conveying their re-
quirements. If a misunderstanding occurs, there
would be a mismatch between the users’ require-
ments and the system’s understandings. Thus, the
error recovery dialog is needed to fix the mis-

167

matches. The error recovery dialog can be initiated
either by the system by asking the user to rephrase
or to repeat the previous utterance, or by the user
to restate the previous request.

We use the percent of agreement between the
system's and the user's understandings (under-
standingAgreement) to measure how well the
system understands the user. The computation of
this measure is illustrated through the example dia-
log in Table 2. In this table, the first column shows
the system utterances and the user utterances re-
ceived by the system. The correct words are shown
in square brackets immediately after the misunder-
stood words (E.g., in Utterance “Userl”). The sec-
ond column represents semantic content from the
users’ utterances in the form of constraint-value
pairs based on the system’s understandings. This
information can be automatically retrieved from
the system logs. The third column includes the ac-
tion types of the current system/user utterances.
Since the dialog manager is an information-
updating dialog manager that manages information
in the format of slots, this column also shows the
number of slots that are exchanged in the utterance
and the number of matched slots. In our task do-
main, the user can request information (req_info),
request the same information again (rereq_info),
answer an explicit confirmation (exp_confirm),
and close a dialog (close_dialog). The system can
provide information (pro_info) or explicitly con-
firms (exp_confirm) the information. Another




available system action that is not shown in this
example is to ask the user to repeat/rephrase (re-
phrase), where the user can respond by providing
the information again (repro_info).

In our experiment, we measure the understand-
ings between the users and the system by compar-
ing the values of the constraints that are specified
by the users with their values understood by the
system. In this dialog, the user specified all con-
straints in the first utterance:

Service level = Five star
Cuisine type = Italian
Payment type = Credit card

The first system utterance shows that the system
understood two constraints but misunderstood the
cuisine type, thus the percent agreement of mutual
understandings is 2/3 at this time. Then, the user
restated the cuisine type and the second system
utterance confirmed this information. Since the
system only asks for explicit information when its
confidence is low, we count the system's under-
standing on the cuisine type as a 50% match with
the user's. Therefore, the total percent agreement is
2.5/3. The user then confirmed that the system had
correctly understood all constraints. Therefore, the
system provided the restaurant information in the
last utterance. The system's understanding matches
100% with the user's at this point.

The percent agreement of system/user under-
standings over the entire dialog is calculated by
averaging the percent agreement after each turn. In
this example, understandingAgreement is (2/3 +
2.5/3 + 1)/3 =83.3%. We hypothesize that the
higher the understandingAgreement is, the better
the system performs, and thus the more the user is
satisfied. The matches of understandings can be
calculated automatically from the user simulation
and the system logs. However, since we work with
human users' dialogs in the first part of this study,
we manually annotated the semantic contents (e.qg.,
cuisine name) in the real user corpus.

Previous studies (E.g., Walker et al., 1997) use a
corpus level semantic accuracy measure (semanti-
cAccuracy) to capture the system’s understanding
ability. SemanticAccuracy is defined in the stan-
dard way as the total number of correctly under-
stood constraints divided by the total number of
constraints mentioned in the entire dialog. The un-
derstandingAgreement measure we introduce here
is essentially the averaged per-sentence semantic
accuracy, which emphasizes the utterance level
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perception rather than a single corpus level aver-
age. The intuition behind this new measure is that
it is better for the system to always understand
something to keep a conversation going than for
the system to understand really well sometimes but
really bad at other times. We compute both meas-
ures in our experiments for comparison.

4.2  Efficiency Measure

Efficiency is another important measure of the sys-
tem performance. A standard efficiency measure is
the number of dialog turns. However, we would
like to take into account the user's dialog strategy
because how the user specifies the restaurant selec-
tion constraints has a certain impact on the dialog
pace. Comparing two situations where one user
specifies the three constraints of selecting a restau-
rant in three separate utterances, while another user
specifies all the constraints in one utterance, we
will find that the total number of dialog turns in the
second situation is smaller assuming perfect under-
standings. Thus, we propose to use the ratio be-
tween the number of turns in the perfect
understanding situation and the number of turns in
practice (efficiencyRatio) to measure the system
efficiency. The larger the efficiencyRatio is, the
closer the actual number of turns is to the perfect
understanding situation. In the example in Table 2,
because the user chose to specify all the constraints
in one utterance, the dialog length would be 2 turns
in perfect understanding situation (excluding the
last user turn which is always "I'm done™). How-
ever, the actual dialog length is 6 turns. Thus, the
efficiencyRatio is 2/6.

Since our task scenarios always contain three
constraints, we can calculate the length of the er-
ror-free dialogs based on the user’s strategy. When
the user specifies all constraints in the first utter-
ance, the ideal dialog will have only 2 turns; when
the user specifies two constraints in one utterance
and the other constraints in a separate utterance,
the ideal dialog will have 4 turns; when the user
specifies all constraints one by one, the ideal dia-
log will have 6 turns. Thus, in the simulation envi-
ronment, the length of the ideal dialog can be
calculated from the simulated users’ agenda. Then,
the efficiencyRatio can be calculated automati-
cally. We manually computed this measure for the
real users’ dialogs.



Similarly, in order to compare with previous
studies, we also investigate the total number of
dialog turns (dialogTurns) proposed as the effi-
ciency measure (E.g., Moéller et al., 2007).

4.3  Action Appropriateness Measure

This measure aims to evaluate the appropriateness
of the system actions. The definition of appropri-
ateness can vary on different tasks and different
system design requirements. For example, some
systems always ask users to explicitly confirm
their utterances due to high security needs. In this
case, an explicit confirmation after each user utter-
ance is an appropriate system action. However, in
other cases, frequent explicit confirmations may be
considered as inappropriate because they may irri-
tate the users. In our task domain, we define the
only inappropriate system action to be providing
information based on misunderstood user require-
ments. In this situation, the system is not aware of
its misunderstanding error. Instead of conducting
an appropriate error-recovering dialog, the system
provides wrong information to the user which we
hypothesize will decrease the user’s satisfaction.

We use the percentage of appropriate system ac-
tions out of the total number of system actions
(percentAppropriate) to measure the appropriate-
ness of system actions. In the example in Table 2,
only the first system action is inappropriate in all 3
system actions. Thus, the percent system action
appropriateness is 2/3. Since we can detect the sys-
tem’s misunderstanding and the system’s action in
the simulated dialog environment, this measure can
be calculated automatically for the simulated dia-
logs. For the real user corpus, we manually coded
the inappropriate system utterances.

Note that the definition of appropriate action we
use here is fairly loose. This is partly due to the
simplicity of our task domain and the limited pos-
sible system/user actions. Nevertheless, there is
also an advantage of the loose definition: we do
not bias towards one particular dialog strategy
since our goal here is to find some general and eas-
ily measurable system performance factors that are
correlated with the user satisfaction.

5 Investigating Evaluation Measures on
the Real User Corpus
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In this section, we first validate the proposed
measures using real users’ satisfaction scores, and
then show the differentiating power of these meas-
ures through the improvement curves plotted on
the dry-run data.

5.1 Validating Evaluation Measures

To validate the evaluation measures introduced in
Section 4, we use Pearson’s correlation to examine
how well these evaluation measures can predict the
user satisfaction scores. Here, we only look at the
dialog corpus in final evaluation because only
these users filled out the user satisfaction surveys.
For each user, we compute the average value of the
evaluation measures across all dialogs generated
by that user.

Evaluation Measure Correlation | P-value
understandingAgreement 0.354 0.05
semanticAccuracy 0.304 0.08
efficiencyRatio 0.406 0.02
dialogTurns -0.321 0.05
percentAppropriate 0.454 0.01

Table3: Correlations with User Satisfaction Scores.

Table 3 lists the correlation between the evalua-
tion measures and the user satisfaction scores, as
well as the p-value for each correlation. The corre-
lation describes a linear relationship between these
measures and the user satisfaction scores. For the
measures that describe the system’s understanding
abilities and the measures that describe the sys-
tem’s efficiency, our newly proposed measures
show higher correlations with the user satisfaction
scores than their counterparts. Therefore, in the
rest of the study, we drop the two measures used
by the previous studies, i.e., semanticAccuracy and
dialogTurns.

We observe that the user satisfaction scores are
significantly positively correlated with all the three
proposed measures. These correlations confirms
our expectations: user satisfaction is higher when
the system’s understanding matches better with the
users’ requirements; when the dialog efficiency is
closer to the situation of perfect understanding; or
when the system's actions are mostly appropriate.
We suggest that these measures can serve as indi-
cators for user satisfaction.

We further use all the measures to build a re-
gression model to predict the user satisfaction
score. The prediction model is:
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Figure 1: The Improvement Curves on Dry-run Data

User Satisfaction
= 6.123*percentAppropriate
+2.854*efficiencyRatio -- (1)
+0.864*understandingAgreement - 4.67

The R-square is 0.655, which indicates that
65.5% of the user satisfaction scores can be ex-
plained by this model. While this prediction model
has much room for improvement, we suggest that
it can be used to estimate the users’ satisfaction
scores for simulated users in the early system test-
ing stage to quickly assess the system's perform-
ance. Since the weights are tuned based on the data
from this specific application, the prediction model
may not be used directly for other domains.

5.2  Assessing the Differentiating Power of the

Evaluation Measures

Since this set of evaluation measures intends to
evaluate the system's performance in the develop-
ment stage, we would like the measures to be able
to reflect small changes made in the system and to
indicate whether these changes show the right
trend of increased user satisfaction in reality. A set
of good evaluation measures should be sensible to
subtle system changes.

We assess the differentiating power of the eval-
uation measures using the dialog corpus collected
during the dry-runs. The system was tested on a
weekly basis as explained in Table 1. For each im-
provement stage, we compute the values for the
three evaluation measures averaging across all dia-
logs from all users. Figure 1 shows the three im-
provement curves based on these three measures.
The x-axis shows the first date of each improve-
ment stage; the y-axis shows the value of the eval-
uation measures. We observe that all three curves
show the right trends that indicate the system’s
improvements over the development stages.
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6 Applying the Evaluation Measures on
the Simulated Corpus

We train a goal and agenda driven user simulation
model from the final evaluation dialog corpus with
the real users. The simulation model interacts with
the dialog system 20 times (each time the simula-
tion model represents a different simulated user),
generating nine dialogs on all of the nine tasks
each time. In each interaction, the simulated users
generate their agenda randomly based on a uniform
distribution. The simulated corpus consists of 180
dialogs from 20 simulated users, which is of the
same size as the real user corpus. The values of the
evaluation measures are computed automatically at
the end of each simulated dialog.

We compute the estimated user satisfaction score
using Equation 1 for each simulated user. We then
compare the user satisfaction scores of the 20 si-
mulated users with the satisfaction scores of the 20
real users. The average and the standard deviation
of the user satisfaction scores for real users are
(3.79, 0.72), and the ones for simulated users are
(3.77, 1.34). Using two-tailed t-test at significance
level p<0.05, we observe that there are no statisti-
cally significant differences between the two pools
of scores. Therefore, we suggest that the user satis-
faction estimated from the simulated dialog corpus
can be used to assess the system performance.
However, these average scores only offer us one
perspective in comparing the real with the simu-
lated user satisfaction. In the future, we would like
to look further into the differences between the
distributions of these user satisfaction scores.

7 Conclusions and Future Work

User simulation has been increasingly used in gen-
erating large corpora for using machine learning
techniques to automate dialog system design.
However, user simulation has not been used much
in testing dialog systems. There are two major con-



cerns: 1. we are not sure how well the state-of-the-
art user simulation can mimic realistic user behav-
iors; 2. we do not get important feedback on user
satisfaction when replacing human users with
simulated users. In this study, we suggest that
while the simulated users might not be mature to
use in the final system evaluation stage, they can
be used in the early testing stages of the system
development cycle to make sure that the system is
functioning in the desired way. We further propose
a set of evaluation measures that can be extracted
from the simulation logs to assess the system per-
formance. We validate these evaluation measures
on human user dialogs and examine the differenti-
ating power of these measures. We suggest that
these measures can be used to guide the develop-
ment of the system towards improving user satis-
faction. We also apply the evaluation measures on
a simulation corpus trained from the real user dia-
logs. We show that the user satisfaction scores es-
timated on the simulated dialogs do not
significantly differ statistically from the real users’
satisfaction scores. Therefore, we suggest that the
estimated user satisfaction can be used to assess
the system performance while testing with simu-
lated users.

In the future, we would like to confirm our pro-
posed evaluation measures by testing them on dia-
log systems that allows more complicated dialog
structures and systems on other domains.
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Abstract

Evaluating a dialogue system is seen as a
major challenge within the dialogue research
community. Due to the very nature of the task,
most of the evaluation methods need a sub-
stantial amount of human involvement. Fol-
lowing the tradition in machine translation,
summarization and discourse coherence mod-
eling, we introduce the the idea of evaluation
understudy for dialogue coherence models.
Following (Lapata, 2006), we use the infor-
mation ordering task as a testbed for evaluat-
ing dialogue coherence models. This paper re-
ports findings about the reliability of the infor-
mation ordering task as applied to dialogues.
We find that simple n-gram co-occurrence
statistics similar in spirit to BLEU (Papineni
et al., 2001) correlate very well with human
judgments for dialogue coherence.

1 Introduction

In computer science or any other research field, sim-
ply building a system that accomplishes a certain
goal is not enough. It needs to be thoroughly eval-
uated. One might want to evaluate the system just
to see to what degree the goal is being accomplished
or to compare two or more systems with one another.
Evaluation can also lead to understanding the short-
comings of the system and the reasons for these. Fi-
nally the evaluation results can be used as feedback
in improving the system.

The best way to evaluate a novel algorithm or a
model for a system that is designed to aid humans
in processing natural language would be to employ
it in a real system and allow users to interact with it.
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The data collected by this process can then be used
for evaluation. Sometimes this data needs further
analysis - which may include annotations, collect-
ing subjective judgments from humans, etc. Since
human judgments tend to vary, we may need to em-
ploy multiple judges. These are some of the reasons
why evaluation is time consuming, costly and some-
times prohibitively expensive.

Furthermore, if the system being developed con-
tains a machine learning component, the problem of
costly evaluation becomes even more serious. Ma-
chine learning components often optimize certain
free parameters by using evaluation results on held-
out data or by using n-fold cross-validation. Eval-
uation results can also help with feature selection.
This need for repeated evaluation can forbid the use
of data-driven machine learning components.

For these reasons, using an automatic evalua-
tion measure as an understudy is quickly becoming
a common practice in natural language processing
tasks. The general idea is to find an automatic eval-
uation metric that correlates very well with human
judgments. This allows developers to use the auto-
matic metric as a stand-in for human evaluation. Al-
though it cannot replace the finesse of human evalu-
ation, it can provide a crude idea of progress which
can later be validated. e.g. BLEU (Papineni et al.,
2001) for machine translation, ROUGE (Lin, 2004)
for summarization.

Recently, the discourse coherence modeling com-
munity has started using the information ordering
task as a testbed to test their discourse coherence
models (Barzilay and Lapata, 2005; Soricut and
Marcu, 2006). Lapata (2006) has proposed an au-
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tomatic evaluation measure for the information or-
dering task. We propose to use the same task as a
testbed for dialogue coherence modeling. We evalu-
ate the reliability of the information ordering task as
applied to dialogues and propose an evaluation un-
derstudy for dialogue coherence models.

In the next section, we look at related work in
evaluation of dialogue systems. Section 3 sum-
marizes the information ordering task and Lap-
ata’s (2006) findings. It is followed by the details
of the experiments we carried out and our observa-
tions. We conclude with a summary future work di-
rections.

2 Related Work

Most of the work on evaluating dialogue systems fo-
cuses on human-machine communication geared to-
wards a specific task. A variety of evaluation met-
rics can be reported for such task-oriented dialogue
systems. Dialogue systems can be judged based
on the performance of their components like WER
for ASR (Jurafsky and Martin, 2000), concept er-
ror rate or F-scores for NLU, understandability for
speech synthesis etc. Usually the core component,
the dialogue model - which is responsible for keep-
ing track of the dialogue progression and coming
up with an appropriate response, is evaluated indi-
rectly. Different dialogue models can be compared
with each other by keeping the rest of components
fixed and then by comparing the dialogue systems
as a whole. Dialogue systems can report subjective
measures such as user satisfaction scores and per-
ceived task completion. SASSI (Hone and Graham,
2000) prescribes a set of questions used for elicit-
ing such subjective assessments. The objective eval-
uation metrics can include dialogue efficiency and
quality measures.

PARADISE (Walker et al., 2000) was an attempt
at reducing the human involvement in evaluation. It
builds a predictive model for user satisfaction as a
linear combination of some objective measures and
perceived task completion. Even then the system
needs to train on the data gathered from user sur-
veys and objective features retrieved from logs of di-
alogue runs. It still needs to run the actual dialogue
system and collect objective features and perceived
task completeion to predict user satisfaction.
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Other efforts in saving human involvement in
evaluation include using simulated users for test-
ing (Eckert et al., 1997). This has become a popu-
lar tool for systems employing reinforcement learn-
ing (Levin et al., 1997; Williams and Young, 2006).
Some of the methods involved in user simulation
are as complex as building dialogue systems them-
selves (Schatzmann et al., 2007). User simulations
also need to be evaluated as how closely they model
human behavior (Georgila et al., 2006) or as how
good a predictor they are of dialogue system perfor-
mance (Williams, 2007).

Some researchers have proposed metrics for eval-
uating a dialogue model in a task-oriented system.
(Henderson et al., 2005) used the number of slots in
a frame filled and/or confirmed. Roque et al. (2006)
proposed hand-annotating information-states in a di-
alogue to evaluate the accuracy of information state
updates. Such measures make assumptions about
the underlying dialogue model being used (e.g.,
form-based or information-state based etc.).

We are more interested in evaluating types of di-
alogue systems that do not follow these task-based
assumptions: systems designed to imitate human-
human conversations. Such dialogue systems can
range from chatbots like Alice (Wallace, 2003),
Eliza (Weizenbaum, 1966) to virtual humans used
in simulation training (Traum et al., 2005). For
such systems, the notion of task completion or ef-
ficiency is not well defined and task specific objec-
tive measures are hardly suitable. Most evaluations
report the subjective evaluations for appropriateness
of responses. Traum et. al. (2004) propose a cod-
ing scheme for response appropriateness and scoring
functions for those categories. Gandhe et. al. (2006)
propose a scale for subjective assessment for appro-
priateness.

3 Information Ordering

The information ordering task consists of choos-
ing a presentation sequence for a set of information
bearing elements. This task is well suited for text-
to-text generation like in single or multi-document
summarization (Barzilay et al., 2002). Recently
there has been a lot of work in discourse coher-
ence modeling (Lapata, 2003; Barzilay and Lap-
ata, 2005; Soricut and Marcu, 2006) that has used



information ordering to test the coherence mod-
els. The information-bearing elements here are sen-
tences rather than high-level concepts. This frees the
models from having to depend on a hard to get train-
ing corpus which has been hand-authored for con-
cepts.

Most of the dialogue models still work at the
higher abstraction level of dialogue acts and inten-
tions. But with an increasing number of dialogue
systems finding use in non-traditional applications
such as simulation training, games, etc.; there is a
need for dialogue models which do not depend on
hand-authored corpora or rules. Recently Gandhe
and Traum (2007) proposed dialogue models that
do not need annotations for dialogue-acts, seman-
tics and hand-authored rules for information state
updates or finite state machines.

Such dialogue models focus primarily on gener-
ating an appropriate coherent response given the di-
alogue history. In certain cases the generation of
a response can be reduced to selection from a set
of available responses. For such dialogue models,
maintaining the information state can be considered
as a secondary goal. The element that is common
to the information ordering task and the task of se-
lecting next most appropriate response is the ability
to express a preference for one sequence of dialogue
turns over the other. We propose to use the informa-
tion ordering task to test dialogue coherence models.
Here the information bearing units will be dialogue
turns.!

There are certain advantages offered by using in-
formation ordering as a task to evaluate dialogue co-
herence models. First the task does not require a
dialogue model to take part in conversations in an
interactive manner. This obviates the need for hav-
ing real users engaging in the dialogue with the sys-
tem. Secondly, the task is agnostic about the under-
lying dialogue model. It can be a data-driven statis-
tical model or information-state based, form based
or even a reinforcement learning system based on
MDP or POMDP. Third, there are simple objective
measures available to evaluate the success of infor-
mation ordering task.

Recently, Purandare and Litman (2008) have used

!These can also be at the utterance level, but for this paper
we will use dialogue turns.
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this task for modeling dialogue coherence. But they
only allow for a binary classification of sequences
as either coherent or incoherent. For comparing dif-
ferent dialogue coherence models, we need the abil-
ity for finer distinction between sequences of infor-
mation being put together. Lapata (2003) proposed
Kendall’s 7, a rank correlation measure, as one such
candidate. In a recent study they show that Kendall’s
T correlates well with human judgment (Lapata,
2006). They show that human judges can reliably
provide coherence ratings for various permutations
of text. (Pearson’s correlation for inter-rater agree-
ment is 0.56) and that Kendall’s 7 is a good in-
dicator for human judgment (Pearson’s correlation
for Kendall’s 7 with human judgment is 0.45 (p <
0.01)).

Before adapting the information ordering task for
dialogues, certain questions need to be answered.
We need to validate that humans can reliably per-
form the task of information ordering and can judge
the coherence for different sequences of dialogue
turns. We also need to find which objective mea-
sures (like Kendall’s 7) correlate well with human
judgments.

4 Evaluating Information Ordering

One of the advantages of using information order-
ing as a testbed is that there are objective measures
available to evaluate the performance of information
ordering task. Kendall’s 7 (Kendall, 1938), a rank
correlation coefficient, is one such measure. Given
a reference sequence of length n, Kendall’s 7 for an

observed sequence can be defined as,
_ # concordant pairs — # discordant pairs
o # total pairs
Each pair of elements in the observed sequence

is marked either as concordant - appearing in the
same order as in reference sequence or as discor-
dant otherwise. The total number of pairs is Cy =
n(n — 1)/2. 7 ranges from -1 to 1.

Another possible measure can be defined as the
fraction of n-grams from reference sequence, that

are preserved in the observed sequence.
b — # n-grams preserved
™ #total n-grams
In this study we have used, by, fraction of bigrams

and b3, fraction of trigrams preserved from the ref-
erence sequence. These values range from 0 to 1.
Table 1 gives examples of observed sequences and




Observed Sequence by b3 T
[0,1,2,3,4,5,6,7,8,9] | 1.00 | 1.00 | 1.00
[8,9,0,1,2,3,4,5,6,7] | 0.89 | 0.75 | 0.29
[4,1,0,3,2,5,8,7,6,9] | 0.00 | 0.00 | 0.60
[6,9,8,5,4,7,0,3,2,1] | 0.00 | 0.00 | -0.64
[2,3,0,1,4,5,8,9,6,7] | 0.56 | 0.00 | 0.64

Table 1: Examples of observed sequences and their re-
spective by, bs & 7 values. Here the reference sequence
is [0,1,2,3,4,5,6,7,8.9].

respective be, b3 and 7 values. Notice how 7 al-
lows for long-distance relationships whereas bo, b3
are sensitive to local features only. 2

5 Experimental Setup

For our experiments we used segments drawn from 9
dialogues. These dialogues were two-party human-
human dialogues. To ensure applicability of our
results over different types of dialogue, we chose
these 9 dialogues from different sources. Three of
these were excerpts from role-play dialogues involv-
ing negotiations which were originally collected for
a simulation training scenario (Traum et al., 2005).
Three are from SRI’s Amex Travel Agent data which
are task-oriented dialogues about air travel plan-
ning (Brattet al., 1995). The rest of the dialogues are
scripts from popular television shows. Fig 6 shows
an example from the air-travel domain. Each excerpt
drawn was 10 turns long with turns strictly alternat-
ing between the two speakers.

Following the experimental design of (Lapata,
2006) we created random permutations for these di-
alogue segments. We constrained our permutations
so that the permutations always start with the same
speaker as the original dialogue and turns strictly al-
ternate between the speakers. With these constraints
there are still 5! x 5! = 14400 possible permutations
per dialogue. We selected 3 random permutations
for each of the 9 dialogues. In all, we have a total
of 27 dialogue permutations. They are arranged in 3
sets, each set containing a permutation for all 9 di-
alogues. We ensured that not all permutations in a
given set are particularly very good or very bad. We
used Kendall’s 7 to balance the permutations across

2For more on the relationship between b2, b3 and T see row
3,4 of table 1 and figure 4.

175

the given set as well as across the given dialogue.

Unlike Lapata (2006) who chose to remove the
pronouns and discourse connectives, we decided not
do any pre-processing on the text like removing
disfluencies or removing cohesive devices such as
anaphora, ellipsis, discourse connectives, etc. One
of the reason is such pre-processing if done manu-
ally defeats the purpose of removing humans from
the evaluation procedure. Moreover it is very diffi-
cult to remove certain cohesive devices such as dis-
course deixis without affecting the coherence level
of the original dialogues.

6 Experiment 1

In our first experiment, we divided a total of 9 hu-
man judges among the 3 sets (3 judges per set). Each
judge was presented with 9 dialogue permutations.
They were asked to assign a single coherence rat-
ing for each dialogue permutation. The ratings were
on a scale of 1 to 7, with 1 being very incoherent
and 7 being perfectly coherent. We did not provide
any additional instructions or examples of scale as
we wanted to capture the intuitive idea of coherence
from our judges. Within each set the dialogue per-
mutations were presented in random order.

We compute the inter-rater agreement by using
Pearson’s correlation analysis. We correlate the rat-
ings given by each judge with the average ratings
given by the judges who were assigned the same set.
For inter-rater agreement we report the average of 9
such correlations which is 0.73 (std dev = 0.07). Art-
stein and Poesio (2008) have argued that Krippen-
dorff’s a (Krippendorff, 2004) can be used for inter-
rater agreement with interval scales like the one we
have. In our case for the three sets o values were
0.49, 0.58, 0.64. These moderate values of alpha in-
dicate that the task of judging coherence is indeed a
difficult task, especially when detailed instructions
or examples of scales are not given.

In order to assess whether Kendall’s 7 can be used
as an automatic measure of dialogue coherence, we
perform a correlation analysis of 7 values against
the average ratings by human judges. The Pearson’s
correlation coefficient is 0.35 and it is statistically
not significant (P=0.07). Fig 1(a) shows the rela-
tionship between coherence judgments and 7 val-
ues. This experiment fails to support the suitability



Coherence Vs t; Pearson's r : 0.35

Coherence

Kendall's

(a) Kendall’s 7 does not correlate well with human
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(b) Fraction of bigram & trigram counts correlate well
with human judgments for dialogue coherence.

Figure 1: Experiment 1 - single coherence rating per permutation

of Kendall’s 7 as an evaluation understudy.

We also analyzed the correlation of human judg-
ments against simple n-gram statistics, specifically
(b2 +b3) /2. Fig 1(b) shows the relationship be-
tween human judgments and the average of fraction
of bigrams and fraction of trigrams that were pre-
served in the permutation. The Pearson’s correlation
coefficient is 0.62 and it is statistically significant
(P<0.01).

7 Experiment 2

Since human judges found it relatively hard to as-
sign a single rating to a dialogue permutation, we
decided to repeat experiment 1 with some modifica-
tions. In our second experiment we asked the judges
to provide coherence ratings at every turn, based on
the dialogue that preceded that turn. The dialogue
permutations were presented to the judges through a
web interface in an incremental fashion turn by turn
as they rated each turn for coherence (see Fig 5 in
the appendix for the screenshot of this interface). We
used a scale from 1 to 5 with 1 being completely in-
coherent and 5 as perfectly coherent. 3 A total of 11
judges participated in this experiment with the first
set being judged by 5 judges and the remaining two
sets by 3 judges each.

3We believe this is a less complex task than experiment 1
and hence a narrower scale is used.
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For the rest of the analysis, we use the average
coherence rating from all turns as a coherence rat-
ing for the dialogue permutation. We performed
the inter-rater agreement analysis as in experiment
1. The average of 11 correlations is 0.83 (std dev =
0.09). Although the correlation has improved, Krip-
pendorff’s o values for the three sets are 0.49, 0.35,
0.63. This shows that coherence rating is still a hard
task even when judged turn by turn.

We assessed the relationship between the aver-
age coherence rating for dialogue permutations with
Kendall’s 7 (see Fig 2(a)). The Pearson’s correlation
coefficient is 0.33 and is statistically not significant
(P=0.09).

Fig 2(b) shows high correlation of average coher-
ence ratings with the fraction of bigrams and tri-
grams that were preserved in permutation. The Pear-
son’s correlation coefficient is 0.75 and is statisti-
cally significant (P<0.01).

Results of both experiments suggest that,
(bg + b3) /2 correlates very well with human judg-
ments and can be used for evaluating information
ordering when applied to dialogues.

8 Experiment 3

We wanted to know whether information ordering as
applied to dialogues is a valid task or not. In this ex-
periment we seek to establish a higher baseline for
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(a) Kendall’s 7 does not correlate well with human
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(b) Fraction of bigram & trigram counts correlate well
with human judgments for dialogue coherence.

Figure 2: Experiment 2 - turn-by-turn coherence rating

the task of information ordering in dialogues. We
presented the dialogue permutations to our human
judges and asked them to reorder the turns so that
the resulting order is as coherent as possible. All 11
judges who participated in experiment 2 also partic-
ipated in this experiment. They were presented with
a drag and drop interface over the web that allowed
them to reorder the dialogue permutations. The re-
ordering was constrained to keep the first speaker
of the reordering same as that of the original di-
alogue and the re-orderings must have strictly al-
ternating turns. We computed the Kendall’s 7 and
fraction of bigrams and trigrams (bs + bs) /2 for
these re-orderings. There were a total of 11 x 9
= 99 reordered dialogue permutations. Fig 3(a)
and 3(b) shows the frequency distribution of 7 and
(ba + b3) /2 values respectively.

Humans achieve high values for the reordering
task. For Kendall’s 7, the mean of the reordered dia-
logues is 0.82 (std dev = 0.25) and for (b + b3) /2,
the mean is 0.71 (std dev = 0.28). These values es-
tablish an upper baseline for the information order-
ing task. These can be compared against the random
baseline. For 7 random performance is 0.02  and

“Theoretically this should be zero. The slight positive bias
is the result of the constraints imposed on the re-orderings -
like only allowing the permutations that have the correct starting
speaker.
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for (bg + b3) /2itis 0.11.7

9 Discussion

Results show that (by + b3) /2 correlates well with
human judgments for dialogue coherence better than
Kendall’s 7. 7 encodes long distance relationships
in orderings where as (b + b3) /2 only looks at lo-
cal context. Fig 4 shows the relationship between
these two measures. Notice that most of the order-
ings have 7 values around zero (i.e. in the middle
range for 7), whereas majority of orderings will have
a low value for (ba + b3) /2. 7 seems to overesti-
mate the coherence even in the absence of immedi-
ate local coherence (See third entry in table 1). It
seems that local context is more important for dia-
logues than for discourse, which may follow from
the fact that dialogues are produced by two speakers
who must react to each other, while discourse can be
planned by one speaker from the beginning. Traum
and Allen (1994) point out that such social obliga-
tions to respond and address the contributions of the
other should be an important factor in building dia-
logue systems.

The information ordering paradigm does not take
into account the content of the information-bearing
items, e.g. the fact that turns like “yes”, ”’I agree”,

SThis value is calculated by considering all 14400 permuta-
tions as equally likely.
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Figure 3: Experiment 3 - upper baseline for information ordering task (human performance)

“okay” perform the same function and should be
treated as replaceable. This may suggest a need to
modify some of the objective measures to evaluate
the information ordering specially for dialogue sys-
tems that involve more of such utterances.

Human judges can find the optimal sequences
with relatively high frequency, at least for short
dialogues. It remains to be seen how this varies
with longer dialogue lengths which may contain
sub-dialogues that can be arranged independently of
each other.

10 Conclusion & Future Work

Evaluating dialogue systems has always been a ma-
jor challenge in dialogue systems research. The core
component of dialogue systems, the dialogue model,
has usually been only indirectly evaluated. Such
evaluations involve too much human effort and are a
bottleneck for the use of data-driven machine learn-
ing models for dialogue coherence. The information
ordering task, widely used in discourse coherence
modeling, can be adopted as a testbed for evaluating
dialogue coherence models as well. Here we have
shown that simple n-gram statistics that are sensi-
tive to local features correlate well with human judg-
ments for coherence and can be used as an evalua-
tion understudy for dialogue coherence models. As
with any evaluation understudy, one must be careful
while using it as the correlation with human judg-
ments is not perfect and may be inaccurate in some
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cases — it can not completely replace the need for
full evaluation with human judges in all cases (see
(Callison-Burch et al., 2006) for a critique of BLUE
along these lines).

In the future, we would like to perform more ex-
periments with larger data sets and different types
of dialogues. It will also be interesting to see the
role cohesive devices play in coherence ratings. We
would like to see if there are any other measures or
certain modifications to the current ones that corre-
late better with human judgments. We also plan to
employ this evaluation metric as feedback in build-
ing dialogue coherence models as is done in ma-
chine translation (Och, 2003).
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Figure 4: Distributions for Kendall’s 7, (by + b3) /2 and the relationship between them for all possible dialogue
permutations with 10 turns and earlier mentioned constraints.

Speaker Text Co}l;:tlit::;ce

JACK Yeah this is Bauer.

TONY Jack, this is Tony. You guys are around 10 minutes from the airport? |-*i'i'* ik

JACK Do everything you have to. b Gk
No, not yet. We're still working on it. Look- you'll link up with the assault

TONY team, they're set outside the emergency room. They're sweeping the ground w7 "
now, they're starting to lock it down.

JACK Okay, that sounds alright. Tony, contacted Kim yet? L & & &
No, I haven't. I just called the sheriff's station, they sent out search teams. I

TONY just don't understand why she hasn't tried contacted us yet. nfaliadede

JACK Y_eah, that's seems about right. Look- you got a complete tail number on the o o
aircraft yet?

TONY Believe me; I'm putting every resource we can spare on it. L& &
She knows she can't go back to Los Angeles, and right now the LAPD's

JACK looking for her as a murder suspect. She's not gonna reach out to us- do you [F ¥ "
understand? We've got to find her. We've got to find her.

TONY Okay. L& & & &

Figure 5: Screenshot of the interface used for collecting coherence rating for dialogue permutations.
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Agent

AAA at American Express may I help you?

User yeah this is BBB BBB I need to make some travel arrangements
Agent ok and what do you need to do?
User ok on June sixth from San Jose to Denver, United
Agent leaving at what time?
User I believe there’s one leaving at eleven o’clock in the morning
Agent leaves at eleven a.m. and arrives Denver at two twenty p.m. out of San Jose
User ok
Agent yeah that’s United flight four seventy
User that’s the one
Doctor hello i’m doctor perez
how can i help you
Captain uh well i’m with uh the local
i’m i’m the commander of the local company
and uh i’d like to talk to you about some options you have for relocating your clinic
Doctor uh we’re not uh planning to relocate the clinic captain
what uh what is this about
Captain well have you noticed that there’s been an awful lot of fighting in the area recently
Doctor yes yes i have
we’re very busy
we’ve had many more casual+ casualties many more patients than than uh usual in the
last month
but uh what what is this about relocating our clinic
have have uh you been instructed to move us
Captain no
but uh we just have some concerns about the increase in fighting xx
Doctor are you suggesting that we relocate the clinic
because we had no plans
we uh we uh we’re located here and we’ve been uh
we are located where the patients need us
Captain yeah but
yeah actually it is a suggestion that you would be a lot safer if you moved away from
this area
we can put you in an area where there’s n+ no insurgents
and we have the area completely under control with our troops
Doctor i see captain
is this a is this a suggestion from your commander
Captain i’m uh the company commander

Figure 6: Examples of the dialogues used to elicit human judgments for coherence
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Abstract

Improvements in the quality, usability and ac-
ceptability of spoken dialog systems can be
facilitated by better evaluation methods. To
support early and efficient evaluation of dia-
log systems and their components, this paper
presents a tripartite framework describing the
evaluation problem. One part models the be-
havior of user and system during the interac-
tion, the second one the perception and judg-
ment processes taking place inside the user,
and the third part models what matters to sys-
tem designers and service providers. The pa-
per reviews available approaches for some of
the model parts, and indicates how anticipated
improvements may serve not only developers
and users but also researchers working on ad-
vanced dialog functions and features.

1 Introduction

Despite the utility of many spoken dialog systems
today, the user experience is seldom satisfactory.
Improving this is a matter of great intellectual in-
terest and practical importance. However improve-
ments can be difficult to evaluate effectively, and this
may be limiting the pace of innovation: today, valid
and reliable evaluations still require subjective ex-
periments to be carried out, and these are expensive
and time-consuming. Thus, the needs of system de-
velopers, of service operators, and of the final users
of spoken dialog systems argue for the development
of additional evaluation methods.

In this paper we focus on the prospects for an
early and model-based evaluation of dialog systems.
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Doing evaluation as early as possible in the de-
sign and development process is critical for improv-
ing quality, reducing costs and fostering innovation.
Early evaluation renders the process more efficient
and less dependent on experience, hunches and intu-
itions. With the help of such models predicting the
outcome of user tests, the need for subjective test-
ing can be reduced, restricting it to that subset of the
possible systems which have already been vetted in
an automatic or semi-automatic way.

Several approaches have already been presented
for semi-automatic evaluation. For example, the
PARADISE framework (Walker et al., 1997) predicts
the effects of system changes, quantified in terms of
interaction parameters, on an average user judgment.
Others (Araki and Doshita, 1997; Lopez-Cozar et
al., 2003; Moller et al., 2006) have developed dialog
simulations to aid system optimization. However the
big picture has been missing: there has been no clear
view of how these methods relate to each other, and
how they might be improved and joined to support
efficient early evaluation.

The remainder of this paper is organized as fol-
lows. Section 2 gives a brief review of different
evaluation purposes and terminology, and outlines a
new tripartite decomposition of the evaluation prob-
lem. One part of our framework models the behav-
ior of user and system during the interaction, and
describes the impact of system changes on the inter-
action flow. The second part models the perception
and judgment processes taking place inside the user,
and tries to predict user ratings on various percep-
tual dimensions. The third part models what mat-
ters to system designers and service providers for

Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue, pages 182—189,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



a specific application. Sections 3, 4, and 5 go into
specifics on the three parts of the framework, dis-
cussing which components are already available or
conceivable. Finally, Section 6 discusses the poten-
tial impact of the approach, and Section 7 lists the
issues to be resolved in future work.

2 Performance, Quality, Usability and
Acceptability Evaluation

Developers tend to use indices of performance to as-
sess their systems. The performance indicates the
“ability of a system to provide the function it has
been designed for” (Modller, 2005). The function
and an appropriate measure for quantifying the de-
gree of fulfillment may easily be determined for cer-
tain components — e.g. word accuracy for a speech
recognizer or concept error rate for a speech under-
standing module — but it is harder to specify for
other components, such as a dialog manager or an
output generation module. However, definitive mea-
sures of component quality are not always neces-
sary: what matters for such a module is its contri-
bution to the quality of the entire interaction, as it is
perceived by the user.

We follow the definition of the term quality as
introduced by Jekosch (2000) and now accepted
for telephone-based spoken dialog services by the
International Telecommunication Union in ITU-T
Rec. P.851 (2003): “Result of judgment of the per-
ceived composition of an entity with respect to its
desired composition”. Quality thus involves a per-
ception process and a judgment process, during
which the perceiving person compares the percep-
tual event with a (typically implicit) reference. It is
the comparison with a reference which associates a
user-specific value to the perceptual event. The per-
ception and the comparison processes take place in a
particular context of use. Thus, both perception and
quality should be regarded as “events” which hap-
pen in a particular personal, spatial, temporal and
functional context.

Usability is one sub-aspect of the quality of the
system. Following the definition in ISO 9241 Part
11 (1998), usability is considered as the “extent to
which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use”. Us-
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ability is degraded when interaction problems oc-
cur. Such problems influence the perceptual event
of the user interacting with the system, and conse-
quently the quality s/he associates with the system
as a whole. This may have consequences for the
acceptability or the system or service, that is, how
readily a customer will use the system or service.
This can be quantified, for example as the ratio of
the potential user population to the size of the target
group.

It is the task of any evaluation to quantify as-
pects of system performance, quality, usability or
acceptability. The exact target depends on the pur-
pose of the evaluation (Paek, 2007). For example,
the system developer might be most interested in
quantifying the performance of the system and its
components; s’he might further need to know how
the performance affects the quality perceived by the
user. In contrast, the service operator might instead
be most interested in the acceptability of the ser-
vice. S/he might further want to know about the
satisfaction of the user, influenced by the usability
of the system, and also by other (e.g. hedonic) as-
pects like comfort, joy-of-use, fashion, etc. Differ-
ent evaluation approaches may be complementary,
in the sense that metrics determined for one purpose
may be helpful for other purposes as well. Thus, it is
useful to describe the components of different eval-
uation approaches in a single framework.

Figure 1 summarizes our view of the evaluation
landscape. At the lower left corner is what we can
change (the dialog system), at the right is what the
service operator might be interested in (a metric for
the value of the system). In between are three com-
ponents of a model of the processes taking place in
the evaluation. The behavior model describes how
system and user characteristics determine the flow
of the interaction and translate this to quantitative
descriptors. The perception and judgment model
describes how the interaction influences the percep-
tual and quality events felt by the user, and trans-
lates these to observable user judgments. Finally the
value model associates a certain value to the qual-
ity judgments, depending on the application. The
model properties have been grouped in three layers:
aspects of the user and his/her behavior, aspects of
the system in its context-of-use, and the work of an
external observer (expert) carrying out the evalua-
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Figure 1: Tripartite view of a model-based evaluation. Observable properties are in boxes, inferred or hidden properties
are in ovals. The layers organize the properties as mostly user-related, mostly system-related, and mostly expert-

related, and mostly system-related.

tion. They have further been classified as to whether
they are observable (boxes) or hidden from the eval-
uator (ovals).

The next three sections go through the three parts
of the model left-to-right, explaining the needs, cur-
rent status, and prospects.

3 Behavior Model

The behavior model translates the characteristics of
the system and the user into predicted interaction be-
havior. In order to be useful, the representations of
this behavior must be concise.

One way to describe dialog behavior is with in-
teraction parameters which quantify the behavior of
the user and/or the system during the interaction.
Such parameters may be measured instrumentally or
given by expert annotation. In an attempt to sys-
tematize best practice, the ITU-T has proposed a
common set of interaction parameters suitable for
the evaluation of telephone-based spoken dialog sys-
tems in ITU-T Suppl. 24 (2005). These parameters
have been developed bottom-up from a collection of
evaluation reports over the last 15 years, and include
metrics related to dialog and communication in gen-
eral, meta-communication, cooperativity, task, and
speech-input performance (Moller, 2005). Unfortu-
nately, it as is yet unclear which of these parameters
relate to quality from a user’s point-of-view. In addi-
tion, some metrics are missing which address critical
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aspects for the user, e.g. parameters for the quality
and attractiveness of the speech output.

Another manageable way to describe system be-
havior is to focus on interaction phenomena. Sev-
eral schemes have been developed for classifying
such phenomena, such as system errors, user errors,
points of confusion, dead time, and so on (Bernsen et
al., 1998; Ward et al., 2005; Oulasvirta et al., 2006).
Patterns of interaction phenomena may be reflected
in interaction parameter values, and may be identi-
fied on that basis. Otherwise, they have to be deter-
mined by experts and/or users, by means of obser-
vation, interviews, thinking-aloud, and other tech-
niques from usability engineering. (Using this ter-
minology we can understand the practice of usability
testing as being the identification of interaction phe-
nomena, also known as “usability events” or “criti-
cal incidences”, and using these to estimate specific
quality aspects or the overall value of the system.)

Obtaining the interaction parameters and classi-
fying the interaction phenomena can be done, ob-
viously, from a corpus of user-system interactions.
The challenge for early evaluation is to obtain these
without actually running user tests. Thus, we would
like to have a system behavior model and a user be-
havior model to simulate interaction behavior, and
to map from system parameters and user properties
to interaction parameters or phenomena. The value
of such models for a developer is clear: they could



enable estimation of how a change in the system
(e.g. a change in the vocabulary) might affect the
interaction properties. In addition to the desired ef-
fects, the side-effects of system changes are also im-
portant. Predicting such side-effects will substan-
tially decrease the risk and uncertainty involved in
dialogue design, thereby decreasing the gap between
research and commercial work on dialog system us-
ability (Heisterkamp, 2003; Pieraccini and Huerta,
2005).

Whereas modeling system behavior in response to
user input is clearly possible (since in the last resort
itis possible to fully implement the system), user be-
havior can probably not be modeled in closed form,
because it unavoidably relates to the intricacies of
the user and reflects the time-flow of the interaction.
Thus, it seems necessary to employ a simulation
of the interaction, as has been proposed by Araki
and Doshita (1997) and Lopez-Coézar et al. (2003),
among others.

One embodiment of this idea is the MeMo work-
bench (Moller et al., 2006), which is based on
the idea of running models of the system and of
the user in a dedicated usability testing workbench.
The system model is a description of the possi-
ble tasks (system task model) plus a description of
the system’s interaction behavior (system interac-
tion model). The user model is a description of the
tasks a user would want to carry out with the sys-
tem (user task model) plus a description of the steps
s/he would take to reach the goal when faced with
the system (user interaction model). Currently the
workbench uses simple attribute-value descriptions
of tasks the system is able to carry out. From these,
user-desired tasks may be derived, given some back-
ground knowledge of the domain and possible tasks.
The system interaction model is described by a state
diagram which models interactions as paths through
a number of dialog states. The system designer pro-
vides one or several ‘intended paths’ through the in-
teraction, which lead easily and/or effectively to the
task goal.

The user’s interaction behavior will strongly de-
pend on the system output in the previous turn.
Thus, it is reasonable to build the user interaction
model on top of the system interaction model: The
user mainly follows the ‘intended path’, but at cer-
tain points deviations from this path are generated in
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a probabilistic rule-based manner. For example, the
user might deviate from the intended path, because
s/he does not understand a long system prompt, or
because s/he is irritated by a large number of op-
tions. Each deviation from the intended path has
an associated probability; these are calculated from
system characteristics (e.g. prompt length, number
of options) and user characteristics (e.g. experience
with dialog systems, command of foreign languages,
assumed task and domain knowledge).

After the models have been defined, simulations
of user-system interactions can be generated. These
interactions are logged and annotated on different
levels in order to detect interaction problems. Us-
ability predictions are obtained from the (simulated)
interaction problems. The simulations can also sup-
port reinforcement learning or other methods for au-
tomatically determining the best dialog strategy.

Building user interaction models by hand is
costly. As an alternative to explicitly defining rules
and probabilities, simulations can be based on data
sets of actual interactions, augmented with annota-
tions such as indications of the dialog state, current
subtask, inferred user state, and interaction phenom-
ena. Annotations can be generated by the dialog
participants themselves, e.g. by re-listening after the
fact (Ward and Tsukahara, 2003), or by top com-
municators, decision-makers, trend-setters, experts
in linguistics and communication, and the like. Ma-
chine learning techniques can help by providing pre-
dictions of how users tend to react in various situa-
tions from lightly annotated data.

4 Perception and Judgment Model

Once the interaction behavior is determined, the
evaluator needs to know about the impact it has on
the quality perceived by the user. As pointed out in
Section 2, the perception and judgments processes
take place in the human user and are thus hidden
from the observer. The evaluator may, however, ask
the user to describe the perceptual event and/or the
quality event, either qualitatively in an open form or
quantitatively on rating scales. Provided that the ex-
periment is properly planned and carried out, user
quality judgments can be considered as direct qual-
ity measurements, reflecting the user’s quality per-
ception.



Whereas user judgments on quality will reflect the
internal reference and thus depend heavily on the
specific context and application, it may be assumed
that the characteristics of the perceptual event are
more universal. For example, it is likely that sam-
ples of observers and/or users would generally agree
on whether a given system could be characterized
as responsive, smooth, or predictable, etc. regardless
of what they feel about the importance of each such
quality aspect. We may take advantage of this by
defining a small set of universal perceptual quality
dimensions, that together are sufficient for predict-
ing system value from the user’s point-of-view.

In order to quantify the quality event and to iden-
tify perceptual quality dimensions, psychometric
measurement methods are needed, e.g. interaction
experiments with appropriate measurement scales.
Several attempts have been made to come up with
a common questionnaire for user perception mea-
surement related to spoken dialog systems, for ex-
ample the SASSI questionnaire (Hone and Graham,
2000) for systems using speech input, and the ITU-
standard augmented framework for questionnaires
(ITU-T Rec. P.851, 2003) for systems with both
speech-input and speech-output capabilities. Studies
of the validity and the reliability of these question-
naires (Moller et al., 2007) show that both SASSI
and P.851 can cover a large number of different qual-
ity and usability dimensions with a high validity, and
mainly with adequate reliability, although the gener-
alizability of these results remains to be shown.

On the basis of batteries of user judgments ob-
tained with these questionnaires, dimension descrip-
tors of the perceptual quality dimensions can be ex-
tracted by means of factor analysis. A summary of
such multidimensional analyses in Moller (2005b)
reveals that users’ perceptions of quality and usabil-
ity can be decomposed into around 5 to 8 dimen-
sions. The resulting dimensions include factors such
as overall acceptability, task effectiveness, speed,
cognitive effort, and joy-of-use. It should be noted
that most such efforts have considered task-oriented
systems, where effectiveness, efficiency, and suc-
cess are obviously important, however these dimen-
sions may be less relevant to systems designed for
other purposes, for example tutoring or ‘“edutain-
ment” (Bernsen et al., 2004), and additional factors
may be needed for such applications.
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In order to describe the impact of the interac-
tion flow on user-perceived quality, or on some of
its sub-dimensions, we would ideally model the hu-
man perception and judgment processes. Such an
approach has the clear advantage that the resulting
model would be generic, i.e. applicable to differ-
ent systems and potentially for different user groups,
and also analytic, i.e. able to explain why certain in-
teraction characteristics have a positive or negative
impact on perceived quality. Unfortunately, the per-
ception and judgment processes involved in spoken-
dialog interaction are not yet well understood, as
compared, for example, to those involved in listen-
ing to transmitted speech samples and judging their
quality. For the latter, models are available which
estimate quality with the help of peripheral audi-
tory perception models and a signal-based compar-
ison of representations of the perceptual event and
the assumed reference (Rix et al., 2006). They are
able to estimate user judgments on “overall quality”
with an average correlation of around 0.93, and are
widely used for planning, implementing and moni-
toring telephone networks.

For interactions with spoken dialog systems, the
situation is more complicated, as the perceptual
events depend on the interaction between user and
systems, and not on one speech signal alone. A way
out is not to worry about the perception processes,
and instead to use simple linear regression models
for predicting an average user judgment from vari-
ous interaction parameters. The most widely used
framework designed to support this sort of early
evaluation is PARADISE (Walker et al., 1997). The
target variable of PARADISE is an average of several
user judgments (labeled “user satisfaction™) of dif-
ferent system and interaction aspects, such as system
voice, perceived system understanding, task ease,
interaction pace, or the transparency of the interac-
tion. The interaction parameters are of three types,
those relating to efficiency (including elapsed time
and the number of turns), those relating to “dialog
quality” (including mean recognition score and the
number of timeouts and rejections), and a measure
of effectiveness (task success). The model can be
trained on data, and the results are readily inter-
pretable: they can indicate which features of the in-
teraction are most critical for improving user satis-
faction.



PARADISE-style models can be very helpful tools
for system developers. For example, a recent inves-
tigation showed that the model can be used to ef-
fectively determine the minimum acceptable recog-
nition rate for a smart-home system, leading to
the same critical threshold as that obtained from
user judgments (Engelbrecht and Moller, 2007).
However, experience also shows that the PARADISE
framework does not reliably give valid predictions of
individual user judgments, typically covering only
around 40-50% of the variance in the data it is
trained on. The generality is also limited: cross-
system extrapolation works sometimes but other
times has low accuracy (Walker et al., 2000; Moller,
2005). These limitations are easy to understand in
terms of Figure 1: over-ambitious attempts to di-
rectly relate interaction parameters to a measure of
overall system value seem unlikely to succeed in
general. Thus it seems wise to limit the scope of the
perception and judgment component to the predic-
tion of values on the perceptual quality dimensions.

In any case, there are several ways in which such
models could be improved. One issue is that a linear
combination of factors is probably not generally ad-
equate. For example, parameters like the number of
turns required to execute a specific task will have a
non-zero optimum value, at least for inexperienced
users. An excessively low number of turns will be
as sure a sign of interaction problems as an exces-
sively large number. Such non-linear effects can-
not be handled by linear models which only support
relationships like “the-more-the-better” or “the-less-
the-better”. Non-linear algorithms may overcome
these limitations. A second issue is that of tempo-
ral context: instead of using a single input vector
of interaction parameters for each dialog, it may be
possible to apply a sequence of feature vectors, one
for each exchange (user-system utterance pair). The
features may consist not only of numeric measures
but also of categories encoding interaction phenom-
ena. Using this input one could then perhaps use a
neural network or Hidden-Markov Model to predict
various user judgments at the end of the interaction.

5 Value Model

Even if a model can predict user judgments of “over-
all quality” with high validity and reliability, this is
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not necessarily a good indicator of the acceptability
of a service. For example, systems with a sophis-
ticated and smooth dialog flow may be unaccept-
able for frequent users because what counts for them
is effectiveness and efficiency only. Different users
may focus on different quality dimensions in differ-
ent contexts, and weight them according to the task,
context of use, price, etc.

A first step towards addressing this problem
is to define quality aspects that a system devel-
oper or service operator might be concerned about.
There can be many such, but in usability engineer-
ing they are typically categorized into “effective-
ness”, “efficiency” and “satisfaction”. A more de-
tailed taxonomy of quality aspects can be found in
Moller (2005). On the basis of this or other tax-
onomizations, value prediction models can be de-
veloped. For example, a system enabling 5-year
old girls to “talk to Barbie” might ascribe little im-
portance to task completion, speech recognition ac-
curacy, or efficiency, but high importance to voice
quality, responsiveness, and unpredictability. The
value model will derive a value description which
takes such a weighting into account. A model for
systems enabling police officers on patrol to obtain
information over the telephone would have very dif-
ferent weights.

Unfortunately, there appear to be no published de-
scriptions of value prediction models, perhaps be-
cause they are very specific or even proprietary, de-
pending on a company’s business logic and cus-
tomer base. Such models probably need not be very
complex: it likely will suffice to ascribe weights to
the perceptual quality dimensions, or to quality as-
pects derived from system developer and/or service
operator requirements. Appropriate weights may be
uncovered in stakeholder workshops, where design-
ers, vendors, usability experts, marketing strategists,
user representatives and so on come together and
discuss what they desire or expect.

6 Broader Impacts

We have presented a tripartite evaluation framework
which shows the relationship between user and sys-
tem characteristics, interaction behavior, perceptual
and quality events, their descriptions, and the final
value of the system or service. In doing so, we



have mainly considered the needs of system devel-
opers. However, an evaluation framework that sup-
ports judgments of perceived quality could provide
additional benefits for users. We can imagine user-
specific value models, representing what is impor-
tant to specified user groups. These could be so-
licited for an entire group, or inferred from each
user’s own personal history of interactions and deci-
sions, e.g, through a personalization database avail-
able to the service operator. The models could also
be used to support system selection, or to inform
real-time system customization or adaptation.

Better evaluation will also support the needs of
the research community. With the help of model-
based evaluation, it will become easier for re-
searchers not only to do evaluation more efficiently,
but also to to produce more meaningful evaluation
results; saying not just “this feature was useful” but
also providing quantitative statements of how much
the feature affects various interaction parameters,
and from that how much it impacts the various qual-
ity dimensions, and ultimately the value itself. This
will make evaluation more meaningful and make it
easy for others to determine when an innovation is
worth adopting, speeding technology transfer.

One might worry that a standardized framework
might only be useful for evaluating incremental im-
provements, thereby discouraging work on radically
different dialog design concepts. However well-
designed evaluation components should enable this
framework to work for systems of any type, meaning
that it may be easier to explore new regions of the
design space. In particular it may enable more ac-
curate prediction of the value of design innovations
which in isolation may not be effective, but which in
combination may be.

7 Future Work

Although examples of some model components are
available today, notably several interaction simula-
tions and the PARADISE framework for predicting
user judgments from interaction parameters, these
are limited. To realize a complete and generally use-
ful evaluation model will require considerable work,
for example, on:

e User behavior model: Of the three compo-
nents, perhaps the greatest challenges are in
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the development of user behavior models. We
need to develop methods which produce simu-
lated behavior which is realistic (congruent to
the behavior of real users), and/or which pro-
duce interaction parameters and/or quality in-
dicators comparable to those obtained by sub-
jective interaction experiments. It is yet un-
clear whether realistic user behavior can also be
generated for more advanced systems and do-
mains, such as computer games, collaborative
problem solving systems, or educational sys-
tems. We also need to develop models that ac-
curately represent the behavior patterns of var-
ious user groups.

o Interaction parameters: Several quality aspects
are still not reflected in the current parameter
sets, e.g. indices for the quality of speech out-
put. Some approaches are described in Moller
and Heimansberg (2006), but the predictive
power is still too limited. In addition, many pa-
rameters still have to be derived by expert an-
notation. It may be possible to automatically
infer values for some parameters from proper-
ties of the user’s and system’s speech signals,
and such analyses may be a source for new pa-
rameters, covering new quality aspects.

o Perceptual and quality events and reference:
These items are subject of ongoing research in
related disciplines, such as speech quality as-
sessment, sound quality assessment, and prod-
uct sound design. Ideas for better, more realis-
tic modeling may be derived from cooperations
with these disciplines.

o Quality judgments and dimension descriptors:
In addition to the aspects covered by the SASSI
and P.851 questionnaires, psychologists have
defined methods for assessing cognitive load,
affect, affinity towards technology, etc. Input
from such questionnaires may provide a better
basis for developing value models.

Although a full model may be out of reach for the
next decade, a more thorough understanding of hu-
man behavior, perception and judgment processes is
not only of intrinsic interest but promises benefits
enough to make this a goal worth working towards.
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Abstract not exclusively, employs passive constructions or in-

finite verb forms:
A dialogue system can present itself and/or

address the user as an active agent by means (1)  Typical personal style constructions:
of linguistic constructions in personal style, or a. | found 20 albums.

suppress agentivity by using impersonal style. b. You have 20 albums.

We compare system evaluation judgments and

. . X . ; c. Please search for albums by The Beatles.
input style alignment of users interacting with

an in-car dialogue system generating output in (2) Typical impersonal style constructions:
personal vs. impersonal style. Although our a. 20 albums have been found.
results are consistent with earlier findings ob- b. There are 20 albums.

tained with simulated systems, the effects are ¢. The database contains 20 albums.

weaker. d. 20 albums found.

The designer of a dialogue system has the choice
to make it manifest (its own and the user’s) agen-
One of the goals in developing dialogue systems thévity linguistically through the use of personal con-
users find appealing and natural is to endow the systructions or not.
tems with natural and contextually appropriate out- Previous experiments with simulated systems
put. This encompasses a broad range of researighve shown that a natural language interface with
issues. The one we address in this paper pertaiassynthesized voice should not say “I” (Nass and
to style in the interpersonal dimensiodoes using Brave, 2005) and that users align the style of their
personal vs. impersonal style of system output havaput to that of the system output (Brennan and
an effect on dialogue system users, in particular, oBhaeri, 1994). (See Section 2 for more detail.)
their judgments about the system and on the way The dialogue systersAMMIE developed in the
they formulate their input to the system? TALK project (Becker et al., 2007) can use either per-

We define the personal/impersonal style disonal orimpersonal output style. In personal style, it
chotomy as reflecting primarily a distinction with generates constructions making explicit reference to
respect to agentivity: personal style involves the exhe agent (both the user and the system itself), such
plicit realization of an agent, whereas impersonaks (1a—1c); in impersonal style, it avoids explicit ref-
style avoids it. In the simplest way it is manifestecerence to any agent, as in (2a—2d). The system can
by the presence of explicit reference to the dialogulee set either to use one style consistently throughout
participants (typically by means of personal proa dialogue session, or to align to the user’s style, i.e.,
nouns) vs. its absence, respectively. More generalljimic the user’s style on a turn-by-turn basis.
active voice and finite verb forms are typical for per- Inspired by the earlier results obtained with sim-
sonal style, whereas impersonal style often, thoughlated systems (Nass and Brave, 2005; Brennan and

1 Introduction
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Ohaeri, 1994), we ran an experiment to test the efive o’clock”. On the other hand, “At five o’clock”
fects of style manipulation in theaMMIE system. is a more probable answer to “At what time do you
In this paper, we compare two versions of the syszlose?” (Levelt and Kelter, 1982). There is evi-
tem, one using consistently the personal output stytbence that alignment happens automatically as a re-
and the other the impersonal style. We designesult of priming, e.g., (Hadelich et al., 2004) for lexi-
our experiment to test (i) whether the users’ judgeal alignment.
ments of the system’s usability and performance dif- Lexical and syntactic alignment is present in
fer among the system versions using the personal yv@uman-computer interaction, too. (Brennan, 1996)
impersonal style, and (ii) whether users align to theuggested that users adopt system’s terms to avoid
system style. errors, expecting the system to be inflexible. How-
In Section 2 we review previous experiments conever, recent experiments show that alignment in
cerning the effect of system output style on usersiuman-computer interaction is also automatic and
judgments and style. We describe our own experits strength is comparable to that in human-human
ment in Section 3, present the results in Section 4ommunication (Branigan et al., 2003; Pearson et
and provide a discussion and conclusions in Seed., 2006).
tion 5. Early results concerning users’ alignment to sys-
tem output style in the interpersonal dimension are
reported in (Brennan and Ohaeri, 1994): They dis-
(Nass and Brave, 2005) address the issue whethetiraguish three styles: anthropomorphic (the system
voice interface should say “I” by investigating sev-refers to itself using first person pronouns, like in
eral dimensions of user attitudes to their simulatetlLla) above, fluent (complete sentences, but no self
system with a synthetic vs. recorded voice. Geneference) and telegraphic, like (2d). They found no
erally, agents that use “I” are perceived more likglifference in users’ perception of the system’s in-
a person than those that do not. However, systertglligence across the different conditions. However,
tend to be more positively rated when consisterthey observed that the anthropomorphic group was
with respect to such parameters as personality, gemore than twice as likely to refer to the computer
der, ontology (human vs. machine), etc. A systerusing the second person pronoun “you” and it used
with a recorded voice is perceived as more humarmore indirect requests and conventional politeness
like and thus entitled to the use of “I”, whereas ahen the other groups. They concluded that the an-
synthetic-voice interface is not perceived as humatiiropomorphic style is undesirable for dialogue sys-
enough to use “I" to refer to itself (Nass et al., 2006)tems because it encourages more complex user input
Another question is whether system output stylhich is harder to recognize and interpret.
influences users’ input formulation, as would be ex- The described experiments used either the
pected due to the phenomenonatifnment which  Wizard-of-Oz paradigm (Brennan, 1996) or prepro-
is generally considered a basic principle in naturajrammed system output (Branigan et al., 2003; Nass
language dialogue (Garrod and Pickering, 2004). and Brave, 2005) and involved written communica-
Experiments targeting human-human conversdgion. Such methods allow one to test assumptions
tion show that in spite of the variety of linguistic about idealized human-computer interaction. The
expressions available, speakers in spontaneous dprpose of our experiment was to test whether sim-
logues tend to express themselves in similar ways #ar effects arise in an interaction with an actual di-
lexical and syntactic levels. For example, the suralogue system, which may be plagued, among other
face form of a question can affect the format of théactors, by speech recognition problems.
answer: the question “What time do you close?” will
more likely get the response “Five o’clock” thanAt3 Experiment

2 Previous Work

T o . .
ThIS dlalogue_pheno_menon goes under a varlety_ of terms '{Sialogue System We used thsAMMIE in-car sys-
the literature, besides alignment, e.g., accommodation, adapt@a-

tion, convergence, entrainment or shaping (used, e.g., by (Brelem developed in theAaLk project (Becker et al.,
nan and Ohaeri, 1994)). 2006; Becker et al., 20073AMMIE provides a mul-
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timodal interface to an MP3 player through speech
and haptic input with a button which can be turned,
pushed down and pushed sideways in four direc-
tions. System output is by speech and a graphica
display. The user can perform a range of tasks: con+
trol the MP3 player (play/stop/pause playing song,
next/previous/go-to track, turn shuffle mode on/off),
search and browse by looking for various fields in
the MP3 database (song, artist, album, etc.), searc i
and select playlists, edit them or construct new ones
The sAMMIE system was designed with the aim
to support natural, intuitive mixed-initiative interac-
tion. Input can be given through any modality at

any point and is not restricted to answers to sys- Figure 1: Experiment setup
tem queries: the user can initiate new tasks as well

as give any information relevant to the current task
at any time. A sample interaction is shown below’

ee the experimenter, but heard her instructions, in-

(Becker et al., 2006) cluding the task assignments, from loudspeakers. If
B ' necessary, the subjects were able to talk to the ex-
(3) U: Show me the Beatles albums. perimenter.

S: | have these four Beatles albums. [shows a li

of album names] SIgarticipants A total of 28 participants were paid

U: Which i > fsel he R to take part in the experiment. All were native Ger-

: Which songs are on this one? [selects the e|“1nan speakers, 22 female and 6 male, 22 students of
Album] . .

. the Saarland University and 6 employees. All but

Isltﬂ;?hRed Album contains these songs [shows g narticipants had a driver’s license and 20 partic-
Istotthe Songs] ipants reported driving more than 500km a year. 10
U: Play the third one. participants had previous experience with a driving
S: [song “From Me To You” plays] simulation and 6 had used a dialogue system before.
Each participant was assigned to one style condition,

The sAMMIE system has a German and an Eny 4 4 hersonal and 14 to impersonal style. To ensure
glish version which both provide the same functiony g e\en 4 distribution as possible, there were 11 fe-

ality. The experiment employed the German Vefg, 56 and 3 male participants in each style condition,
sion. See (Kruijff-Korbayoa et al., 2008) for a de-

o ) one of whom was a non-driver. There were 4 em-
scription of the natural language generation mOdUI%onees in impersonal style condition and 2 in the

Setup Figure 1 shows a picture of the experimenPersonal one.

?r? tL{%D T:O s |mli]la|te" theﬁsvr'\g%_s |tlijaF|9n, we uSE(fgrocedure Each participant was welcomed by the
€ -ranrschule” software. The driving simu- experimenter, seated in the experiment lab, and

lator visuals were projected on a wall-sized back-. . ' . . . .
iven brief written instructions concerning the driv-

projection screen. The graphical interface of th hg simulator, thesAMMIE system and the evalua-

SAMMIE system was shown on a display next to th?hon procedure. The participants were instructed to

stegrlng wheel. Participants wore headphones W'hse mainly spoken input to accomplish the tasks, al-
a microphone for the spoken input and output. Th ough they were allowed to use manual input, too.

button for manual input was positioned to the right - , . .
. . . o The participants first made a ca. 2-minute drive
of their chair. The experimenter was sitting in an ad-

jacent room and could see and hear everything ha(%z get familiar with the driving simulator. Then they

enina in the experiment lab. The subiects could n ere asked to chose a destination city (Amsterdam,
P g P ' ) adrid or London) and drive there on a highway.

2http://www.3d-fahrschule.de/index.htm During the driving, the experimenter successively
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read to the participant 2 trial tasks and 11 experi- e Construction type:
mental tasks to be solved using theMMIE system. Personal (+/-) Is the utterance a complete sen-

The tasks involved exploring the contents of a tence in active voice or imperative form
database of about 25 music albums and were of four
types: (1) finding some specified title(s); (2) select-
ing some title(s) satisfying certain constraints; (3)
manipulating the playlists by adding or removing
songs and (4) free-use of the system.

The experimental tasks were presented to each
participant in randomized order apart from the free
use of the system, which was always the last task.
To avoid priming by the style of the task formula-
tion, and to help the participants memorize the task,
the experimenter (E) repeated each task assignments Politeness marking: (+/-) Does the utterance
twice to the participant, once in personal and once contain a politeness marker, such as “bitte”
in impersonal style, as shown in the example below.  (“please”), “danke” (“thanks”) and verbs in

subjunctive mood (eg. “ichdite gerne”)

Impersonal (+/-) Is the utterance expressed
by passive voice, infinite verb form (e.qg.,
“Lied abspielen” (it. “song play”)), or ex-
pletive “es-gibt” (“there-is”) construction

Telegraphic (+/-) Is the utterance expressed
by a phrase, e.g., “weiter” (“next”)

e Personal pronouns: (+/-) Does the utterance
contain a first or second person pronoun

(4) E:Bitte frage das System nach den Liedern von
“Pur”. Du willst also wissen welche Lieder von
“Pur” es gibt.
E: Please ask the the system about the songs YAt
“Pur”. You would like toyknow which songs gy Wl Style and Users’ Attitudes
“Pur” there are. The first issue addressed in the experiment was
whether the users have different judgments of the
The time the participants spent completing the inpersonal vs. impersonal version of the system. Since
dividual tasks was not constrained. It took themnpe system used a synthetic voice, the judgments
about 40 minutes to complete all the tasks. were expected to be more positive in the impersonal
Afterwards, each participant was asked to fill in &tyle condition (Nass and Brave, 2005). Based on
questionnaire about their attitudes towards the Sygctor analysis performed on attitudinal data from
tem, consisting of questions with a 6-point scalghe yser questionnaires we created the six indices

ranging from 1 (low grade) to 6 (high grade). Thejsted below. All indices were meaningful and re-
questions were a subset of those used in (Nass afhle

Brave, 2005) and (Mutschler et al., 2007), for ex-
ample: How do you assess the system in general: 1. General satisfaction with the communication

4 Results

technical (1) — human-like (6;ommunication with with the system was composed of 3 pairs of

the system seemed to ydaoring (1) — exciting (6); adjectives describing communication with the

In terms of usability, the system isnefficient (1) system: disappointing/motivating, uninterest-

—efficient(6). ing/interesting and boring/exciting (Cronbach’s
Upon completing the questionnaire, the partici-  «=0.86; t(26)=0.29, p=0.39 (one-tailed))

pant was paid and discharged. 2. Ease of communication with the system com-

prised 5 parameters: naturalness of the commu-
nication with the system, formality/informality
and indifference/sympathy of the system’s

Collected data The questionnaire responses have
been tabulated and the dialogues of the subjects with
the system have been recorded and transcrbed. communicative style, participants feelings dur-

The utterances of the participants (on average 95 ., the conversation: tensed/relaxed and pleas-

per session) were subsequently manually anno- ant/unpleasant o£0.83:  1(26)=0.00, p=0.5
tated with the following features for further analysis: (one-tailed)) R o '

3. Usability of the system consisted of 1
We did not record the data from the driving simulator. pair of adjectives referring to the success
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Figure 3: Distribution chart for syntactic construction

of communication with the system: un-fyPesinuser utterances depending on system output style

successful/successful, and 4 pairs of adjec-

tives describing the usability of the sys-pot (Nass and Brave, 2005).

tem: unpractical/practical, inefficient/efficient,

complicated/simple, inconvenient/convenien#.2 Style and Alignment

(a=0.76; 1(26)=0.08, p=0.47 (one-tailed)) The next issue we investigated was whether the users

4. Clarity of the system’s speech comprised Zormuylated their input differently with the personal
pairs of adjectives describing the system'ss. impersonal system version. For each dialogue
speech: unpredictable/predictable and confugessjon, we calculated the percentage of utterances
ing/clear €=0.88; t(25)=0.87, p=0.2 (one- containing the feature of interest relative to the total
tailed)) number of user utterances in the session.

5. Perceived “humanness” of the system was Fjrst we analyzed the distribution of personal,
composed of 3 parameters: perceived techypersonal and telegraphic constructions across the
nicality/humanness,  perceived  unfriendyersonal and impersonal style conditions. (The rea-
liness/friendliness and attributed consersgn we separated telegraphic constructions is be-
vatism/innovation¢=0.69; 1(25)=1.64, p=0.06 cayse they seem to be neutral with respect to style.)
(one-tailed)) We compared the means of the obtained numbers be-

6. System's perceived flexibility and creativity yyeen the two style conditions. Figure 3 shows the
comprised 3 parameters: rigidness/flexibilityyistribution of the types of syntactic constructions

of system’s speech, perceived creativity of the,ross the system output style conditions.
system and intelligence attributed to the system

(«=0.78; 1(26)=0.40, p=0.35 (one-tailed)) 1. We expected the participants to use more per-
) _ o _ sonal constructions with the personal style ver-
We did not find any significant influence of sys- sion of the system. Independent samples t-

tem output style on users’ attitudes. The only in- aqt showed a significant result in the predicted
dex with a weak tendency in the predicted direction  jirection (t(19)=1.8, p=0.05 (one-tailed): see
is perceived humanness of the syst@@5)=1.64, Figure 3).

p=.06 (one-tailed); see Figure 2). This goes in line

with the earlier observation that an interface that 2. We expected to find the reverse effect with
refers to itself by means of a personal pronoun is regard to the proportion of impersonal verb
perceived to be more human-like than one that does forms: participants using the personal style
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version of the system were expected to haveant difference in the distribution of telegraphic con-
less infinite, passive and “es-gibt” forms tharstructions. An unexpected finding was the higher
those in the impersonal style condition. How-proportion of telegraphic constructions than verb-
ever, we did not find any significant differencecontaining ones within the impersonal style condi-
between the two style conditions (t(26)=1.0tion. However, the personal style condition showed
p=0.17 (one-tailed)). no significant effect. Contrary to expectations, we
] ) ] ~also did not find any significant effect of style-
3. According to expectation we also did not findy, i 1ation on the number of personal pronouns,

any significant difference in the proportion of . on the number of politeness markers.
telegraphic constructions per style condition

(t(26)=1.4, p=0.09 (one-tailed)). 4.3 Style Alignment over Time

4. In the impersonal style condition we foundSince alignment can also be seen as a process of
a significantly lower proportion of verb- gradual adjustment among dialogue participants in
containing utterances than utterances in teldéhe course of their interaction, we were interested
graphic form (t(13)=3.5, p=0.00 (one-tailed)).in whether participants tended to converge to using
But in the personal style condition there was ngparticular constructions as their session with the sys-
statistically significant difference (t(13)=0.7,tem progressed. For each participant we divided the
p=0.25 (one-tailed)). transcribed conversation in two halves. Using paired

samples t-test, we compared the proportion of per-

Next we analyzed the distribution of first and secyonal, impersonal and telegraphic constructions in

ond person pronouns across style conditions. We e first and second halves of the conversations for
pected to find more personal pronouns in personghth style conditions.
than ip impersonal style condition (Brennan and |, the personal style condition, we found no sig-
Ohaeri, 1994). However, the results showed no st@sicant change in the usage of construction types
tistically significant difference (t(26)=0.67, p=0.25penyeen the first and the second half of the dialogue.
(one-tailed)). In the impersonal style condition, we did not find
Anoj[her prediction .based on .(Brennan an%ny significant difference in the distribution of im-
Ohaeri, 1994) was to find more politeness markeisersonal and telegraphic constructions either. How-
in the personal style. However, the analysis showeé{,er’ we found a significant change in the number
that participants in the personal style condition digh¢ personal constructions (t(13)=2.5, p=0.02 (one-

not use significantly more politeness markers tha&”ed)): The participants cut down on the use of per-
those in the impersonal style condition (t(20)=1.06¢5,5] constructions in the second half.

p=0.15 (one-tailed)).
Finally, (Brennan and Ohaeri, 1994) predicteds Discussion and Conclusions
that personal style, being more flexible, might cause
more speech recognition problems than input in imWe presented the results of an experiment with the
personal style. We checked whether patrticipants im-car multimodal dialogue systeBAMMIE, aimed
the personal style condition had a higher rate of urte test whether we obtain effects similar to earlier
recognized utterances than those in the impersorféidings concerning the influence of system output
style condition and found no significant differencestyle in the interpersonal dimension on the users’
(t(26)=0.60, p = 0.28 (one-tailed)). subjective judgments of a system (Nass and Brave,
To summarize, we observed a significant differ2005) as well as their formulation of input (Bren-
ence in the number of personal constructions acrosgn and Ohaeri, 1994). Although our results are not
style conditions, in accordance with the expectationonclusive, they point at a range of issues for further
based on style alignment in terms of agentivity. Butesearch.
we did not find a significant difference in the distri- Regarding users’ attitudes to the system, we
bution of impersonal constructions across style corieund no significant difference among the styles.
ditions. Not surprisingly, there was also no signifi-This is similar to (Brennan and Ohaeri, 1994) who
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found no difference in intelligence attributed to thecal for impersonal style also have their normal, neu-
system by the users, but it is at odds with the earlidral usage, and therefore, some of the utterances that
finding that a synthetic voice interface was judgedve have classified as impersonal style might just be
to be more useful when avoiding self-reference byeutral formulations, rather than cases of distancing
personal pronouns (Nass and Brave, 2005). or “de-agentivization”. However, we could not test
Whereas (Brennan and Ohaeri, 1994) used a fligttiis hypothesis, because we have not found a way
reservation dialogue system, (Nass and Brave, 200&) reliably distinguish between neutral and marked,
used a phone-based auction system which read dutly impersonal utterances. This is an issue requir-
an introduction and five object descriptions. Theréng further work.
are two points to note: First, the subjects were ex- The difference between our results concerning
posed to system output that was a read out contialignment and those of (Brennan and Ohaeri, 1994)
uous text rather than turns in an interaction. Thigs not likely to be due to a difference in the degree
may have reinforced the activation of particular styl®f interactivity (as with (Nass and Brave, 2005)).
features. Second, the auction task may have sen¥ile now comment on other differences between our
bilized the subjects to the distinction between sulsystems, which might have contributed to the differ-
jective (the system’s) vs. objective information preences in results.
sentation, and thus make them more sensitive to One aspect where we differ concerns our distinc-
whether the system presents itself as an active agéitin between personal and impersonal style, both in
or not. the implementation of theAMMIE system and in
Regarding the question whether users align theihe experiment: We include the presence/absence
style to that of the system, where previous experbf agentivity not only in the system’s reference to
ments showed strong effects of alignment (Brennaitself (akin to (Nass and Brave, 2005) and (Bren-
and Ohaeri, 1994), our experiment shows some efian and Ohaeri, 1994)), but also in addressing the
fects, but some of the results seem conflicting. Ouaser. This concept of the personal/impersonal dis-
the one hand, subjects interacting with the persontihction was inspired by such differences observed
style version of the system used more personal coim a study of instructional texts in several languages
structions than those interacting with the impersondKruijff et al., 1999), where the latter dimension is
style version. However, subjects in either condipredominant. The present experiment results make
tion did not show any significant difference with re-it pertinent that more research into the motives be-
spect to the use of impersonal constructions or teléind expressing or suppressing agentivity in both di-
graphic forms. We also found a higher proportion ofmensions is needed.
telegraphic constructions than verb-containing ones Apart from the linguistic design of the system’s
within the impersonal style condition, but no suctoutput, other factors influence users’ behavior and
difference in the personal style. Finally, when weperception of the system, and thus might confound
consider alignment over time, we find no change iexperiment results, e.g., functionality, design, er-
construction usage in the personal style, whereas wenomics, speech synthesis and speech recognition.
find a decrease in the use of personal constructionsEarlier experiments reported in (Nass and Brave,
in the impersonal style. 2005) suggest that a system with synthesized speech
That there is no difference in the use of teleshould be more positively rated when it does not
graphic constructions across conditions is not surefer to itself as an active agent by personal con-
prising. Being just phrasal sentence fragments, thes&uctions. Whereas the system used by (Brennan
constructions are neutral with respect to style. Buind Ohaeri, 1994) used written interaction, we used
why does there seem to be an alignment effect faheMARY text-to-speech synthesis system (Sctar
personal constructions and not for others? One wand Trouvain, 2003) with an MBROLA diphone
of explaining this is that (some of) the constructionsynthesizer, which produces an acceptable though
that we counted as impersonal are common in botiot outstanding output quality. But as discussed ear-
styles. Besides their deliberate use as means to avdiet, contrary to (Nass and Brave, 2005) we have not
explicit reference to oneself, the constructions typiebserved a difference in the users’ attitudes depend-
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ing on style. It thus remains an open issue what ef- In Proceedings of the Annual Conference of the Cog-

fect speech output quality has on on the users’ atti- nitive Science Society
tudes and alignment behavior. S. Brennan and J.O. Ohaeri. 1994. Effects of mes-

Regarding a possible influence of speech recodni- sage style on user’s attribution toward agentsPio-
9 gap P 9 ceedings of CHI'94 Conference Companion Human

tion on our results, we performed a post-hoc analysis gactors in Computing Systemsages 281-282. ACM
(Kruijff-Korbayova et al., 2008), which did not re-  press.

veal significant differences in user attitudes or alignS. Brennan. 1996. Lexical entrainment in spontaneous
ment behavior depending on better or worse speechdialogue. InProceedings of the International Sympo-
recognition performance experienced by the userg. S o1 Spoken Dialogue (ISSD-96ages 41-44.

. ... S. Garrod and M. Pickering. 2004. Why is conversation
A future experiment should address the possibility easy?TRENDS in Cognitive ScienZeBs

of an interaction between system style and speeg Hadelich, H. Branigan, M. Pickering, and M. Crocker.
recognition performance as both factors might be in- 2004. Alignment in dialogue: Effects of feedback
fluencing the user simultaneously. on lexical overlap within and between participants.

One radical difference between our experiment !N Proceedings of the AMLaP Conferenckix en

and the earlier ones is that the users of our syste@?ﬁ"e%ﬁijf? raTcekruijﬁ-KorbayOVé 3 Bateman

are occupied by the driving task, and therefore only Dochev, N. Gromova, T. Hartley, E. Teich,
have a limited cognitive capacity left to devote tothe s, sharoff, L. Sokolova, and K. Staykova. 1999.
interaction with the system. This may make them Deliverable TEXS2: Specification of elaborated text
less susceptible to the subtleties of style manipula- structures.  Technical report, AGILE Project, EU
tion than would be the case if they were free of other INCO COPERNICUS PL961104.

tasks. A possible future experiment could addredsKruifi-Korbayova, C. Gerstenberger, O. Kukina, and
this | by includi drivi diti J. Schehl. 2008. Generation of output style variation

|s.|ssue y inciu mg anon- r'lvmg an iton. . in the sAMMIE dialogue system. IProceedings of
Finally, as we pointed out in the introduction, |N_G'08, Salt Fork Resort, Ohio.

the SAMMIE system can also be used in an stylew.J.M. Levelt and S. Kelter. 1982. Surface form and
alignment mode, where it mimics the user’s style on memory in question answeringCognitive Psychol-
turn-to-turn basis. We plan to present experimenta| 09% 14:78-106.

. p P 'p . . Mutschler, F. Steffens, and A. Korthauer. 2007. De-
results comparing the alignment-mode with the fixed

. ) L liverable D6.4: Final report on multimodal experi-
personal/impersonal style in a future publication. ments Part I: Evaluation of tHeAMMIE system. Tech-

nical report, TALK Project, EU FP6, IST-507802.
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Abstract

We present a development pipeline and asso-
ciated algorithms designed to make grammar-
based generation easier to deploy in imple-
mented dialogue systems. Our approach real-
izes a practical trade-off between the capabili-
ties of a system’s generation component and
the authoring and maintenance burdens im-
posed on the generation content author for a
deployed system. To evaluate our approach,
we performed a human rating study with sys-
tem builders who work on a common large-
scale spoken dialogue system. Our results
demonstrate the viability of our approach and
illustrate authoring/performance trade-offs be-
tween hand-authored text, our grammar-based
approach, and a competing shallow statistical
NLG technique.

1 Introduction

This paper gives an overview of a new example-
based generation technique that is designed to make
grammar-based generation easier to deploy in dia-
logue systems. Dialogue systems present several
specific requirements for a practical generation com-
ponent. First, the generator needs to be fast enough
to support real-time interaction with a human user.
Second, the generator must provide adequate cover-
age for the meanings the dialogue system needs to
express. What counts as “adequate” can vary be-
tween systems, since the high-level purpose of a di-
alogue system can affect priorities regarding output
fluency, fidelity to the requested meaning, variety
of alternative outputs, and tolerance for generation
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failures. Third, developing the necessary resources
for the generation component should be relatively
straightforward in terms of time and expertise re-
quired. This is especially important since dialogue
systems are complex systems with significant devel-
opment costs. Finally, it should be relatively easy
for the dialogue manager to formulate a generation
request in the format required by the generator.

Together, these requirements can reduce the at-
tractiveness of grammar-based generation when
compared to simpler template-based or canned text
output solutions. In terms of speed, off-the-
shelf, wide-coverage grammar-based realizers such
as FUF/SURGE (Elhadad, 1991) can be too slow for
real-time interaction (Callaway, 2003).

In terms of adequacy of coverage, in principle,
grammar-based generation offers significant advan-
tages over template-based or canned text output by
providing productive coverage and greater variety.
However, realizing these advantages can require sig-
nificant development costs. Specifying the neces-
sary connections between lexico-syntactic resources
and the flat, domain-specific semantic representa-
tions that are typically available in implemented sys-
tems is a subtle, labor-intensive, and knowledge-
intensive process for which attractive methodologies
do not yet exist (Reiter et al., 2003).

One strategy is to hand-build an application-
specific grammar. However, in our experience,
this process requires a painstaking, time-consuming
effort by a developer who has detailed linguistic
knowledge as well as detailed domain knowledge,
and the resulting coverage is inevitably limited.

Wide-coverage generators that aim for applicabil-
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ity across application domains (White et al., 2007;
Zhong and Stent, 2005; Langkilde-Geary, 2002;
Langkilde and Knight, 1998; Elhadad, 1991) pro-
vide a grammar (or language model) for free. How-
ever, it is harder to tailor output to the desired word-
ing and style for a specific dialogue system, and
these generators demand a specific input format that
is otherwise foreign to an existing dialogue system.
Unfortunately, in our experience, the development
burden of implementing the translation between the
system’s available meaning representations and the
generator’s required input format is quite substan-
tial. Indeed, implementing the translation might re-
quire as much effort as would be required to build a
simple custom generator; cf. (Callaway, 2003; Buse-
mann and Horacek, 1998). This development cost is
exacerbated when a dialogue system’s native mean-
ing representation scheme is under revision.

In this paper, we survey a new example-based ap-
proach (DeVault et al., 2008) that we have devel-
oped in order to mitigate these difficulties, so that
grammar-based generation can be deployed more
widely in implemented dialogue systems. Our de-
velopment pipeline requires a system developer to
create a set of training examples which directly
connect desired output texts to available applica-
tion semantic forms. This is achieved through a
streamlined authoring task that does not require de-
tailed linguistic knowledge. Our approach then
processes these training examples to automatically
construct all the resources needed for a fast, high-
quality, run-time grammar-based generation compo-
nent. We evaluate this approach using a pre-existing
spoken dialogue system. Our results demonstrate
the viability of the approach and illustrate author-
ing/performance trade-offs between hand-authored
text, our grammar-based approach, and a competing
shallow statistical NLG technique.

2 Background and Motivation

The generation approach set out in this paper has
been developed in the context of a research pro-
gram aimed at creating interactive virtual humans
for social training purposes (Swartout et al., 20006).
Virtual humans are embodied conversational agents
that play the role of people in simulations or games.
They interact with human users and other virtual hu-
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Figure 1: Doctor Perez.

mans using spoken language and non-verbal behav-
ior such as eye gaze, gesture, and facial displays.

The case study we present here is the genera-
tion of output utterances for a particular virtual hu-
man, Doctor Perez (see Figure 1), who is designed
to teach negotiation skills in a multi-modal, multi-
party, non-team dialogue setting (Traum et al., 2005;
Traum et al., 2008). The human trainee who talks
to the doctor plays the role of a U.S. Army captain
named Captain Kirk. We summarize Doctor Perez’s
generation requirements as follows.

In order to support compelling real-time conver-
sation and effective training, the generator must be
able to identify an utterance for Doctor Perez to use
within approximately 200ms on modern hardware.

Doctor Perez has a relatively rich internal men-
tal state including beliefs, goals, plans, and emo-
tions. As Doctor Perez attempts to achieve his con-
versational goals, his utterances need to take a va-
riety of syntactic forms, including simple declar-
ative sentences, various modal constructions relat-
ing to hypothetical actions or plans, yes/no and wh-
questions, and abbreviated dialogue forms such as
elliptical clarification and repair requests, ground-
ing, and turn-taking utterances. Doctor Perez cur-
rently uses about 200 distinct output utterances in
the course of his dialogues.

Doctor Perez is designed to simulate a non-native
English speaker, so highly fluent output is not a ne-
cessity; indeed, a small degree of disfluency is even
desirable in order to increase the realism of talking
to a non-native speaker.

Finally, in reasoning about user utterances, dia-
logue management, and generation, Doctor Perez



[addressee captain-kirk
[addressee captain-kirk
dialogue-act | type assign-turn
actor doctor-perez
[actor doctor-perez i
addressee  captain-kirk
action assert
[type state 1
speech-act polarity  negative
content tim? present ,
attribute  resourceAttribute
value medical-supplies
object-id market

(a) Attribute-value matrix

addressee
dialogue-act.addressee
dialogue-act.type
dialogue-act.actor
speech-act.actor
speech-act.addressee

captain-kirk
captain-kirk
assign-turn

doctor-perez
doctor-perez
captain-kirk

speech-act.action assert
speech-act.content.type state
speech-act.content.polarity negative
speech-act.content.time present
speech-act.content.attribute  resourceAttribute
speech-act.content.value medical-supplies
speech-act.content.object-id ~ market

(b) Corresponding frame

Figure 2: An example of Doctor Perez’s representations for utterance semantics: Doctor Perez tells the captain that

there are no medical supplies at the market.

exploits an existing semantic representation scheme
that has been utilized in a family of virtual humans.
This scheme uses an attribute-value matrix (AVM)
representation to describe an utterance as a set of
core speech acts and other dialogue acts. Speech
acts generally have semantic contents that describe
propositions and questions about states and actions
in the domain, as well as other features such as po-
larity and modality. See (Traum, 2003) for some
more details and examples of this representation.
For ease of interprocess communication, and certain
kinds of statistical processing, this AVM structure is
linearized so that each non-recursive terminal value
is paired with a path from the root to the final at-
tribute. Thus, the AVM in Figure 2(a) is represented
as the “frame” in Figure 2(b).

Because the internal representations that make up
Doctor Perez’s mental state are under constant de-
velopment, the exact frames that are sent to the gen-
eration component change frequently as new rea-
soning capabilities are added and existing capabil-
ities are reorganized. Additionally, while only hun-
dreds of frames currently arise in actual dialogues,
the number of potential frames is orders of magni-
tude larger, and it is difficult to predict in advance
which frames might occur.

In this setting, over a period of years, a number
of different approaches to natural language gener-
ation have been implemented and tested, including
hand-authored canned text, domain specific hand-
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built grammar-based generators (e.g., (Traum et al.,
2003)), shallow statistical generation techniques,
and the grammar-based approach presented in this
paper. We now turn to the details of our approach.

3 Technical Approach

Our approach builds on recently developed tech-
niques in statistical parsing, lexicalized syntax mod-
eling, generation with lexicalized grammars, and
search optimization to automatically construct all
the resources needed for a high-quality run-time
generation component.

The approach involves three primary steps: spec-
ification of training examples, grammar induction,
and search optimization. In this section, we present
the format that training examples take and then sum-
marize the subsequent automatic processing steps.
Due to space limitations, we omit the full details
of these automatic processing steps, and refer the
reader to (DeVault et al., 2008) for additional details.

3.1 Specification of Training Examples

Each training example in our approach speci-
fies a target output utterance (string), its syn-
tax, and a set of links between substrings within
the utterance and system semantic representa-
tions. Formally, a training example takes the form
(u, syntax(u), semantics(u)).  We will illustrate
this format using the training example in Figure 3.
In this example, the generation content author



Utterance we don’t have medical supplies here captain
[cal SA }
{cat:isjiiiiiii o - ;a;NP‘
T |

[cat: NP } [cat: VP {pos: NN -‘

Syntax [pos: PRP } :pos: ;L;im \I;;VP } cap!ain
we do n’t T
7pos: AUX J ‘cal: NP ‘ 7ca!: ADVP J
have - .
pos: JJ ‘ Lpos: NNS ] 7pos: RB }
medical supplies here
, speech-act.action = assert
wedont......... . .
speech-act.content.polarity = negative
have............. speech-act.content.attribute = resourceAttribute
. medical supplies.. speech-act.content.value = medical-supplies

Semantics pp p L PP

here............. speech-act.content.object-id = market

addressee = captain-kirk
captain .......... dialogue-act.addressee = captain-kirk

speech-act.addressee = captain-kirk

Figure 3: A generation training example for Doctor Perez.

suggests the output utterance v = we don’t have
medical supplies here captain. Each utterance w is
accompanied by syntax(u), a syntactic analysis in
Penn Treebank format (Marcus et al., 1994). In this
example, the syntax is a hand-corrected version of
the output of the Charniak parser (Charniak, 2001;
Charniak, 2005) on this sentence; we discuss this
hand correction in Section 4.

To represent the meaning of utterances, our ap-
proach assumes that the system provides some set
M = {mq,..,m;} of semantic representations.
The meaning of any individual utterance is then
identified with some subset of M. For Doctor Perez,
M comprises the 232 distinct key-value pairs that
appear in the system’s various generation frames. In
this example, the utterance’s meaning is captured by
the 8 key-value pairs indicated in the figure.

Our approach requires the generation content
author to link these 8 key-value pairs to con-
tiguous surface expressions within the utterance.
The technique is flexible about which surface ex-
pressions are chosen (e.g. they need not corre-
spond to constituent boundaries); however, they do
need to be compatible with the way the syntactic
analysis tokenizes the utterance, as follows. Let
t(u) = (t1,...,ty) be the terminals in the syn-
tactic analysis, in left-to-right order. Formally,

201

semantics(u) = {(s1,M1), ..., (sk, M)}, where
t(u) = $1@-..Qsy (with @ denoting concatena-
tion), and where M; C M for all ¢ € 1..k. In this
example, the surface expression we don’t, which to-
kenizes as (we, do,n’t), is connected to key-values
that indicate a negative polarity assertion.

This training example format has two features that
are crucial to our approach. First, the semantics of
an utterance is specified independently of its syntax.
This greatly reduces the amount of linguistic exper-
tise a generation content author needs to have. It
also allows making changes to the underlying syn-
tax without having to re-author the semantic links.

Second, the assignment of semantic representa-
tions to surface expressions must span the entire ut-
terance. No words or expressions can be viewed as
“meaningless”. This is essential because, otherwise,
the semantically motivated search algorithm used in
generation has no basis on which to include those
particular expressions when it constructs its output
utterance. Many systems, including Doctor Perez,
lack some of the internal representations that would
be necessary to specify semantics down to the lex-
ical level. An important feature of our approach is
that it allows an arbitrary semantic granularity to be
employed, by mapping the representations available
in the system to appropriate multi-word chunks.



3.2 Automatic Grammar Induction and Search
Optimization

The first processing step is to induce a productive
grammar from the training examples. We adopt the
probabilistic tree-adjoining grammar (PTAG) for-
malism and grammar induction technique of (Chi-
ang, 2003). We induce our grammar from training
examples such as Figure 3 using heuristic rules to
assign derivations to the examples, as in (Chiang,
2003). Once derivations have been assigned, sub-
trees within the training example syntax are incre-
mentally detached. This process yields the reusable
linguistic resources in the grammar, as well as the
statistical model needed to compute operation prob-
abilities when the grammar is later used in genera-
tion. Figure 5 in the Appendix illustrates this pro-
cess by presenting the linguistic resources inferred
from the training example of Figure 3.

Our approach uses this induced grammar to treat
generation as a search problem: given a desired se-
mantic representation M’ C M, use the grammar
to incrementally construct an output utterance v that
expresses M’. We treat generation as anytime search
by accruing multiple goal states up until a specified
timeout (200ms for Doctor Perez) and returning a
list of alternative outputs ranked by their derivation
probabilities.

The search space created by a grammar induced
in this way is too large to be searched exhaustively
in most applications. The second step of automated
processing, then, uses the training examples to learn
an effective search policy so that good output sen-
tences can be found in a reasonable time frame. The
solution we have developed employs a beam search
strategy that uses weighted features to rank alterna-
tive grammatical expansions at each step. Our al-
gorithm for selecting features and weights is based
on the search optimization algorithm of (Daumé
and Marcu, 2005), which decides to update feature
weights when mistakes are made during search on
training examples. We use the boosting approach of
(Collins and Koo, 2005) to perform feature selection
and identify good weight values.

4 Empirical Evaluation

In the introduction, we identified run-time speed, ad-
equacy of coverage, authoring burdens, and NLG re-
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quest specification as important factors in the selec-
tion of a technology for a dialogue system’s NLG
component. In this section, we evaluate our tech-
nique along these four dimensions.

Hand-authored utterances. We collected a sam-
ple of 220 instances of frames that Doctor Perez’s
dialogue manager had requested of the generation
component in previous dialogues with users. Some
frames occurred more than once in this sample.

Each frame was associated with a single hand-
authored utterance. Some of these utterances arose
in human role plays for Doctor Perez; some were
written by a script writer; others were authored
by system builders to provide coverage for specific
frames. All were reviewed by a system builder for
appropriateness to the corresponding frame.

Training. We used these 220 (frame, utterance)
examples to evaluate both our approach and a shal-
low statistical method called sentence retriever (dis-
cussed below). We randomly split the examples
into 198 training and 22 test examples; we used the
same train/test split for our approach and sentence
retriever.

To train our approach, we constructed training ex-
amples in the format specified in Section 3.1. Syntax
posed an interesting problem, because the Charniak
parser frequently produces erroneous syntactic anal-
yses for utterances in Doctor Perez’s domain, but it
was not obvious how detrimental these errors would
be to overall generated output. We therefore con-
structed two alternative sets of training examples —
one where the syntax of each utterance was the un-
corrected output of the Charniak parser, and another
where the parser output was corrected by hand (the
syntax in Figure 3 above is the corrected version).
Hand correction of parser output requires consider-
able linguistic expertise, so uncorrected output rep-
resents a substantial reduction in authoring burden.
The connections between surface expressions and
frame key-value pairs were identical in both uncor-
rected and corrected training sets, since they are in-
dependent of the syntax. For each training set, we
trained our generator on the 198 training examples.
We then generated a single (highest-ranked) utter-
ance for each example in both the test and training
sets. The generator sometimes failed to find a suc-
cessful utterance within the 200ms timeout; the suc-
cess rate of our generator was 95% for training ex-



amples and 80% for test examples. The successful
utterances were rated by our judges.

Sentence retriever is based on the cross-
language information retrieval techniques described
in (Leuski et al., 2006), and is currently in use for
Doctor Perez’s NLG problem. Sentence retriever
does not exploit any hierarchical syntactic analy-
sis of utterances. Instead, sentence retriever views
NLG as an information retrieval task in which a set
of training utterances are the “documents” to be re-
trieved, and the frame to be expressed is the query.
At run-time, the algorithm functions essentially as a
classifier: it uses a relative entropy metric to select
the highest ranking training utterance for the frame
that Doctor Perez wishes to express. This approach
has been used because it is to some extent robust
against changes in internal semantic representations,
and against minor deficiencies in the training corpus,
but as with a canned text approach, it requires each
utterance to be hand-authored before it can be used
in dialogue. We trained sentence retriever on the 198
training examples, and used it to generate a single
(highest-ranked) utterance for each example in both
the test and training sets. Sentence retriever’s suc-
cess rate was 96% for training examples and 90%
for test examples. The successful utterances were
rated by our judges.

Figure 7 in the Appendix illustrates the alternative
utterances that were produced for a frame present in
the test data but not in the training data.

Run-time speed. Both our approach and sentence
retriever run within the available 200ms window.

Adequacy of Coverage. To assess output quality,
we conducted a study in which 5 human judges gave
overall quality ratings for various utterances Doctor
Perez might use to express specific semantic frames.
In total, judges rated 494 different utterances which
were produced in several conditions: hand-authored
(for the relevant frame), generated by our approach,
and sentence retriever.

We asked our 5 judges to rate each of the 494 ut-
terances, in relation to the specific frame for which
it was produced, on a single 1 (“very bad”) to 5
(“very good”) scale. Since ratings need to incorpo-
rate accuracy with respect to the frame, our judges
had to be able to read the raw system semantic rep-
resentations. This meant we could only use judges
who were deeply familiar with the dialogue system;
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however, the main developer of the new generation
algorithms (the first author) did not participate as
a judge. Judges were blind to the conditions un-
der which utterances were produced. The judges
rated the utterances using a custom-built application
which presented a single frame together with 1 to 6
candidate utterances for that frame. The rating inter-
face is shown in Figure 6 in the Appendix. The order
of candidate utterances for each frame was random-
ized, and the order in which frames appeared was
randomized for each judge.

The judges were instructed to incorporate both
fluency and accuracy with respect to the frame into
a single overall rating for each utterance. While it
is possible to have human judges rate fluency and
accuracy independently, ratings of fluency alone are
not particularly helpful in evaluating Doctor Perez’s
generation component, since for Doctor Perez, a cer-
tain degree of disfluency can contribute to believ-
ability (as noted in Section 2). We therefore asked
judges to make an overall assessment of output qual-
ity for the Doctor Perez character.

The judges achieved a reliability of & = 0.708
(Krippendorff, 1980); this value shows that agree-
ment is well above chance, and allows for tentative
conclusions. Agreement between subsets of judges
ranged from oo = 0.802 for the most concordant pair
of judges to @ = 0.593 for the most discordant pair.
We also performed an ANOVA comparing three
conditions (generated, retrieved and hand-authored
utterances) across the five judges; we found sig-
nificant main effects of condition (F(2,3107) =
55,p < 0.001) and judge (F'(4,3107) = 17,p <
0.001), but no significant interaction (F'(8,3107) =
0.55, p > 0.8). We therefore conclude that the indi-
vidual differences among the judges do not affect the
comparison of utterances across the different condi-
tions, so we will report the rest of the evaluation on
the mean ratings per utterance.

Due to the large number of factors and the dif-
ferences in the number of utterances correspond-
ing to each condition, we ran a small number
of planned comparisons. The distribution of rat-
ings across utterances is not normal; to validate
our results we accompanied each t-test by a non-
parametric Wilcoxon rank sum test, and signifi-
cance always fell in the same general range. We
found a significant difference between generated
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Figure 4: Observed ratings of generated (uncorrected
syntax) vs. retrieved sentences for test examples.

output for all examples, retrieved output for all ex-
amples, and hand-authored utterances (F'(2,622) =
16,p < 0.001); however, subsequent t-tests show
that all of this difference is due to the fact that hand-
authored utterances (mean rating 4.4) are better than
retrieved (¢(376) = 3.7,p < 0.001) and gener-
ated (¢(388) = 5.9, p < 0.001) utterances, whereas
the difference between generated (mean rating 3.8)
and retrieved (mean rating 4.0) is non-significant
(t(385) = 1.6,p > 0.1).

Figure 4 shows the observed rating frequencies
of sentence retriever (mean 3.0) and our approach
(mean 3.6) on the test examples. While this data
does not show a significant difference, it suggests
that retriever’s selected sentences are most fre-
quently either very bad or very good; this reflects
the fact that the classification algorithm retrieves
highly fluent hand-authored text which is sometimes
semantically very incorrect. (Figure 7 in the Ap-
pendix provides such an example, in which a re-
trieved sentence has the wrong polarity.) The qual-
ity of our generated output, by comparison, appears
more graded, with very good quality the most fre-
quent outcome and lower qualities less frequent. In
a system where there is a low tolerance for very
bad quality output, generated output would likely be
considered preferable to retrieved output.

In terms of generation failures, our approach had
poorer coverage of test examples than sentence re-
triever (80% vs. 90%). Note however that in this
study, our approach only delivered an output if it
could completely cover the requested frame. In the
future, we believe coverage could be improved, with
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perhaps some reduction in quality, by allowing out-
puts that only partially cover requested frames.

In terms of output variety, in this initial study our
judges rated only the highest ranked output gener-
ated or retrieved for each frame. However, we ob-
served that our generator frequently finds several al-
ternative utterances of relatively high quality (see
Figure 7); thus our approach offers another poten-
tial advantage in output variety.

Authoring burdens. Both canned text and sen-
tence retriever require only frames and correspond-
ing output sentences as input. In our approach, syn-
tax and semantic links are additionally needed. We
compared the use of corrected vs. uncorrected syn-
tax in training. Surprisingly, we found no significant
difference between generated output trained on cor-
rected and uncorrected syntax (¢(29) = 0.056,p >
0.9 on test items, t(498) = —1.1,p > 0.2 on all
items). This is a substantial win in terms of reduced
authoring burden for our approach.

If uncorrected syntax is used, the additional bur-
den of our approach lies only in specifying the se-
mantic links. For the 220 examples in this study,
one system builder specified these links in about 6
hours. We present a detailed cost/benefit analysis of
this effort in (DeVault et al., 2008).

NLG request specification. Both our approach
and sentence retriever accept the dialogue manager’s
native semantic representation for NLG as input.

Summary. In exchange for a slightly increased
authoring burden, our approach yields a generation
component that generalizes to unseen test problems
relatively gracefully, and does not suffer from the
frequent very bad output or the necessity to author
every utterance that comes with canned text or a
competing statistical classification technique.

5 Conclusion and Future Work

In this paper we have presented an approach to spec-
ifying domain-specific, grammar-based generation
by example. The method reduces the authoring bur-
den associated with developing a grammar-based
NLG component for an existing dialogue system.
We have argued that the method delivers relatively
high-quality, domain-specific output without requir-
ing that content authors possess detailed linguistic
knowledge. In future work, we will study the perfor-



mance of our approach as the size of the training set
grows, and assess what specific weaknesses or prob-
lematic disfluencies, if any, our human rating study
identifies in output generated by our technique. Fi-
nally, we intend to evaluate the performance of our
generation approach within the context of the com-
plete, running Doctor Perez agent.
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Figure 5: The linguistic resources automatically inferred from the training example in Figure 3.
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addressee captain-kirk =
dialogue-act.actor doctor-perez

dialogue-act.addressee captain-kirk

dialogue-act. type assign-turn

speech-act.action assert

speech-act.actor doctor-perez T
speech-act.addressee captain-kirk

speech-act.content.attribute acceptableAttribute
speech-act.content.object-id clinic

speech-act.content.polarity negative L
speech-act.content. time present

speech-act.content. type state

speech-act.content.value yes

4] Il

I [»

utterance

rating

it is not true that the clinic be in good condition captain

[e ]z /BRIl ][s]

the clinic downtown is not in an acceptable condition captain

N[NNI

the clinic is not in acceptable condition captain

Lela s |RRILS ]

captain the clinic downtown is unacceptable

[ela = ][+ |FEH

the clinic is not acceptable captain

[adlz ]l la]ls]

Figure 6: Human rating interface.
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Input semantic form

addressee captain-kirk
dialogue-act.actor doctor-perez
dialogue-act.addressee captain-kirk
dialogue-act.type assign-turn
speech-act.action assert
speech-act.actor doctor-perez
speech-act.addressee captain-kirk

speech-act.content.attribute  acceptableAttribute
speech-act.content.object-id  clinic

speech-act.content.time present

speech-act.content.type state

speech-act.content.value yes
Outputs

Hand-authored
the clinic is acceptable captain

Generated (uncorrected syntax)
Rank Time (ms)

1 16 the clinic is up to standard captain

2 94 the clinic is acceptable captain

3 78 the clinic should be in acceptable condition captain

4 16 the clinic downtown is currently acceptable captain

5 78 the clinic should agree in an acceptable condition captain

Generated (corrected syntax)
Rank Time (ms)

1 47 it is necessary that the clinic be in good condition captain
2 31 i think that the clinic be in good condition captain
3 62 captain this wont work unless the clinic be in good condition

Sentence retriever
the clinic downtown is not in an acceptable condition captain

Figure 7: The utterances generated for a single test example by different evaluation conditions. Generated outputs
whose rank (determined by derivation probability) was higher than 1 were not rated in the evaluation reported in this
paper, but are included here to suggest the potential of our approach to provide a variety of alternative outputs for the
same requested semantic form. Note how the output of sentence retriever has the opposite meaning to that of the input
frame.
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