
A Method for Recognizing Temporal Expressions 
in Estonian Natural Language Dialogue Systems 

Margus Treumuth 
Institute of Computer Science 

University of Tartu, Tartu, Estonia 
treumuth@ut.ee 

 
 

Abstract 

Extraction of temporal expressions from an 
input text is an important step in natural 
language processing tasks. Automated ex-
traction of temporal expressions can be 
used in dialogue systems where temporal 
constraints need to be enforced. The paper 
proposes an algorithm for processing tem-
poral information in natural language. The 
algorithm was implemented as a standalone 
rule-based temporal expression recognizer 
and was made available as a web-service. 
Finally the implemented module was par-
tially integrated into a spoken language 
dialogue system that is an interface to a 
theater information database. 

There is no evaluation as this work is still 
in progress. 

1 Introduction 

Temporal information can often be a significant 
part of meaning communicated in dialogues. There 
are various kinds of dialogues where people nego-
tiate dates and times. Therefore, the automatic ex-
traction of temporal expressions in natural lan-
guage is required in building dialogue systems 
where temporal constraints need to be enforced. 

Temporal expressions in text vary from explicit 
references, e.g. June 1, 1995, to implicit references, 
e.g. last summer, to durations, e.g. four years, to 
sets, e.g. every month, and to event-anchored ex-
pressions, e.g. a year after the earthquake. (Ha-
cioglu, et al., 2005) 

The paper proposes an algorithm for processing 
temporal information in natural language. The al-
gorithm was implemented to work on Estonian 
texts and partially integrated to an Estonian spoken 
language dialogue system that is an interface to a 
theater information database (Treumuth, et al., 
2006). 

The extraction tool of time expressions was im-
plemented as a standalone non-domain-specific 
module, and was made available as a web-service, 
that can be plugged into dialogue systems with 
some minor adjustments. 

The time expression recognizer could be a use-
ful software tool in the following list of currently 
available Estonian language technology software 
tools: 

• Text-to-speech synthesizer (Meister, et al, 
2003) (Mihkla, et al, 1999) 

• Speech recognizer (speech-to-text): ex-
perimental version (Alumäe, 2004) 

• Morphological analyzer + generator => 
spelling checker, hyphenator (Kaalep, 1997) 

• Shallow syntactic analyzer => experimen-
tal versions: noun phrase extractor, text 
summarizer, grammar checker (Müürisep, et 
al, 2006) 

• Word sense disambiguator: experimental 
version (Kaljurand, 2004) 

• Dialogue act recognizer: experimental ver-
sion (Fišel, 2005) 

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 265–268



Margus Treumuth

2 Algorithm 

The rule-based algorithm involves a grammar and 
a parser. A top down approach is used in matching 
the regular expressions to input text. The more 
specific patterns precede the less specific ones in 
the matching cycle. 

The input to the algorithm is text in Estonian, 
e.g. an utterance from the user of a dialogue sys-
tem. 
 
The output of the system is: 
1. recognized time expression as text 
2. recognized time expression as a logical 
expression (query constraint in meta SQL) 

 
For example: 
INPUT: veebruari teises pooles (second half on Febru-
ary) 
 
OUTPUT: 

RECOGNIZED: veebruari lõpus (in the end of February) 
 
CONSTRAINT = DATE between 15.02.$YEAR and 
last_day(01.02.$YEAR) 

 
Notice that the input term and the output term 

differ slightly, yet their meaning is the same. The 
output term is used in generating the answer and is 
a predefined term for each rule. This will be ex-
plained in more detail in the following sections. 

The output can contain many sets of recognized 
expressions and constraints. The more specific 
ones are listed prior to less specific ones. 

The Estonian Morphological Analyzer (Kaalep, 
1997) was not used in generating the grammar and 
was also not used in parsing the grammar. The in-
flections and agglutinations of Estonian date ex-
pressions are easily predictable and can be handled 
manually. The morphological analyzer will be used 
as this work is continued. At this time the morpho-
logical analyzer is being used in the dialogue sys-
tem, that employs the temporal recognition mod-
ule. The input to the temporal recognition module 
coming from a dialogue system is morphologically 
analyzed, providing lemmas or base forms, if no 
other forms yielded a recognition result. 

When integrating the parser with a dialogue sys-
tem, it would be useful to get some additional input 
from the dialogue system in addition to the current 
utterance. For instance, knowing the dates that 
were recognized earlier in the current conversation 
would provide a way to accept corrections from a 

user, in case the user would like to clarify prior 
temporal expressions. 

2.1 Grammar 

The analysis for the grammar generation process 
involved studying some real-life dialogues that 
were held with a dialogue system. It turned out that 
the users of the dialogue system often like to query 
the database for intervals of time, rather than for a 
specific date. That is, instead of requesting infor-
mation for a specific date as "January 11th", the 
users often tend to say "something in January". 

In addition, students of computational linguistics 
were used in checking corpora for various repre-
sentations of Estonian time expressions, finding 
out all the different ways to refer to a same single 
date expression. 

The grammar consists of 1405 rules where regu-
lar expressions are mapped to corresponding SQL 
constraints as follows: 
 

regular expression ==> SQL constraint 

 
For example: 

/ (oktoober|oktoobri)\S* laupäev\S* /U 
==> 

weekday(DATE) = 'laupäev' and DATE between 
01.10.$YEAR and last_day(01.10.$YEAR) 

 
This rule would recognize expressions like "ok-

toobris laupäeviti", "oktoobri laupäevadel" (in Oc-
tober on Saturdays) and the corresponding SQL 
constraint can be enforced on a relational database. 

The grammar can handle various constructions 
of time expressions where names of months and 
weekdays are used to represent an interval of time. 
Following are a few examples of some date ex-
pressions that are recognized by the temporal rec-
ognition agent: 
 
pühapäeviti ja esmaspäeviti jaanuaris - on Sundays and 
Mondays in January 
jaanuaris ja veebruaris - in January and in February 
esmaspäeviti ja laupäeviti - on Mondays and on Satur-
days 
aprilli lõpus - at the end of April 
juuni keskel - in the middle of June 
oktoobri alguses - in the beginning of October 
mais neljapäeviti - on Thursdays in May 

 
If the regular expressions in grammar are 

matched to a natural language input, the corre-
sponding SQL constraints are integrated into a 
SQL query's template WHERE clause as follows: 

266



A Method for Recognizing Temporal Expressions in Estonian Natural Language Dialogue Systems

 
<SELECT clause> 
<FROM clause> 
<WHERE clause 
 [temporal constraints] 
 [all other constraints]> 

 
For example: 
 

SELECT title 
FROM performances 
WHERE 
weekday(DATE) = 'Saturday' and DATE 

between 01.10.2007 and 

last_day(01.10.2007) 
[all other constraints] 

 
Upon execution of this query the dialogue sys-

tem would return the performances that match the 
time constraint and other constraints. These SQL 
constraints can easily be altered to suit the needs of 
a specific database. Also the functions weekday 
and last_day are available in most database en-
gines or can easily be implemented. 

It was more efficient and extendable to create an 
explicit grammar, rather than trying to implement 
an rule based program to cope with these expres-
sions. The grammar is residing in a text file (out-
side of program code) and can easily be altered and 
extended. This approach is similar to the one de-
scribed by Berglund (2004). 

2.2 Deictic Expressions 

Deictic expressions are expressions that refer to 
temporal aspect of an utterance and depends on the 
context in which they are used (Wiebe, et al., 
1998). For example "tomorrow" depends on cur-
rent date and is recognized as "current date + 1 
day" (with respect to the conversation date). 

The grammar currently contains a non-terminal 
$YEAR, that is used to enforce dependencies to 
current date by avoiding looking in past dates. No 
other deictic expressions are represented in gram-
mar. The algorithm copes with deictic expressions 
in a separate parser. It can recognize patters like 
"on weekends", "day after tomorrow", "today", 
"next Monday" and so on. 

3 Extensions to Grammar 

3.1 Answer Phrases 

While the grammar is used to recognize time ex-
pressions and execute queries based on returned 
constraints, there is also need to provide input for 

the answer generation, as the answer should also 
contain the recognized time expression in correct 
form. 

For that reason, the grammar that was described 
above, was extended by adding the recognized 
term into the rule as follows: 
 

oktoobris laupäeviti 

==> 
/ (oktoober|oktoobri)\S* laupäev\S* /U 

==> 
weekday(DATE) = 'laupäev' and DATE between 

01.10.$YEAR and last_day(01.10.$YEAR) 

 
The recognized term, in correct form, can be 

used in generating an answer to the user by plug-
ging it in a sentence. Assume a conversation: 
 
<User>: Are there any performances in October on 

Saturdays? 
<System>: Here are the plays that I found in October 
on Saturdays ... 

 
The pattern can match multiple formats, yet the 

answer phrase can be fixed to one format, as the 
rules are built to support this approach. 

3.2 Constraint Relaxation 

Partial constraint relaxation is implemented in a 
dialogue system that uses the temporal constraint 
grammar, yet the rules for constraint relaxation are 
not defined in the grammar.  

For example, the user might mention a date, that 
would result in "not found" response. Then it 
would be appropriate to relax this constraint, as in 
the following dialogue. 
 
<User>: Are there any performances on Saturdays? 

<System>: No, yet I found one on this Sunday ... 

 
Here we saw an example of a constraint relaxa-

tion where the original date constraint was relaxed 
by adding one day. This way the users of the sys-
tem can receive some alternative choices, instead 
of plain "not found" responses. 

The constraint relaxation properties can be held 
in the grammar as long as they stay separate from 
the dialogue domain.  

3.3 Correction Questions 

There are a some problems with deictic expres-
sions that can be solved by correction questions. 

267



Margus Treumuth

For example, if user mentions the word "week-
end" on Sunday evening, does the user mean next 
weekend or the current weekend. 

The correction questions are not implemented in 
the grammar, as they tend to be domain specific. 
The grammar could be extended by adding correc-
tion questions and choices for corresponding an-
swers, also as long as they stay separate from the 
dialogue domain.  

4  Conclusion 

The paper has described an algorithm that was im-
plemented as a standalone automated extraction 
tool for processing temporal information in Esto-
nian natural language. This rule-based approach 
can be used for other languages (English). The 
main idea and benefit of current approach is the 
output of logical expressions that can be used in 
SQL queries.  

The rule-based approach was chosen, as it 
turned out to save a lot of time to implement an 
explicit grammar by automatically generating hun-
dreds of rules and a parser (regular expression 
pattern matching), rather than trying to implement 
a clever, yet implicit black-box algorithm to cope 
with all these rules. Also a grammar generator was 
built, which is able to re-generate the grammar of 
1405 rules, making it easy to manage and extend 
the grammar. 

The grammar can be improved in using con-
straint relaxation options and predefined question-
answer sets for correction sub-dialogues. 

It would also be useful to get some additional 
input from the dialogue system in addition to the 
current utterance. For instance, knowing the dates 
that were recognized earlier in the current conver-
sation would provide a way to accept corrections 
from a user, in case the user would like to clarify 
prior temporal expressions. 

The time expression recognizer (e.g. as tagger) 
could be a useful software tool among the other 
currently available Estonian language technology 
software tools. 

References 

Tanel Alumäe. 2004. Large Vocabulary Continuous 
Speech Recognition for Estonian Using Morphemes 
and Classes. TSD 2004: 245-252.  

Anders Berglund. 2004. Extracting Temporal Informa-
tion and Ordering Events for Swedish. Master’s the-
sis report.  

Mark Fišel. 2005. Dialogue Act Recognition in Estonian 
Dialoguesusing Artificial Neural Networks, Proceed-
ings of the International Conferenc The Second Bal-
tic Conference on Human Language Technologies, 
231-235;  

Kadri Hacioglu, Ying Chen, and Ben Douglas. 2005. 
Automatic Time Expression Labeling for English and 
Chinese Text. In Proceedings of CICLing-2005, 
pages 348-359; Springer-Verlag, Lecture Notes in 
Computer Science, Vol. 3406.  

Heiki-Jaan Kaalep. 1997. An Estonian Morphological 
Analyser and the Impact of a Corpus on Its Devel-
opment. Computers and the Humanities 31: 115-133.  

Kaarel Kaljurand. 2004. Word Sense Disambiguation of 
Estonian with syntactic dependency relations and 
WordNet. In Proc. ESSLLI-2004, Nancy, France, 
128-137.  

Einar Meister, Jürgen Lasn, Lya Meister. 2003. 
SpeechDat-like Estonian database. - In: Text, Speech 
and Dialogue : 6th International Conference, TSD 
2003, Czech Republic, September 8-12, 2003 / Eds. 
Matoušek [et al.]. Berlin [etc.] : Springer, Lecture 
Notes in Artificial Intelligence, Vol. 2807. 412-417.  

Meelis Mihkla, Arvo Eek, Einar Meister. 1999. Text-to-
Speech Synthesis of Estonian. – Proceedings of the 
6th European Conference on Speech Communication 
and Technology, Budapest, Vol. 5 2095-2098.  

Kaili Müürisep, Heli Uibo. 2006. Shallow Parsing of 
Spoken Estonian Using Constraint Grammar. In: 
Treebanking for Discourse and Speech. Proceedings 
of NODALIDA-2005 special session on treebanking: 
NODALIDA-2005 special session on treebanking, 
Joensuu, 2005. (Ed.) Peter Juel Henrichsen, Peter 
Rossen Skadhauge. Frederiksberg, Denmark: Sam-
fundslitteratur, 105 - 118.  

Margus Treumuth, Tanel Alumäe, Einar Meister. 2006. 
A Natural Language Interface to a Theater Informa-
tion Database. Proceedings of the 5th Slovenian and 
1st International Language Technologies Conference 
2006 (IS-LTC 2006), 27-30.  

J. M. Wiebe, T. P. O'Hara, T. Ohrstrom-Sandgren and 
K. J. McKeever. 1998. An Empirical Approach to 
Temporal Reference Resolution. Journal of Artificial 
Intelligence Research, 9, 247-293.  

 

268


